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We explore the interplay of matter with quantum gravity with a preferred frame to highlight that the
matter sector cannot be protected from the symmetry-breaking effects in the gravitational sector. Focusing
on Abelian gauge fields, we show that quantum gravitational radiative corrections induce Lorentz-
invariance-violating couplings for the Abelian gauge field. In particular, we discuss how such a mechanism
could result in the possibility to translate observational constraints on Lorentz violation in the matter sector
into strong constraints on the Lorentz-violating gravitational couplings.
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I. INTRODUCTION

In our current theoretical framework for the building
blocks of nature, symmetries play a central role, not least
because of the visionary insights of the mathematician
Emmy Noether. As we push our understanding of the
fundamental interactions of nature to smaller distance
scales (higher energy scales), the fate of symmetries across
different scales is a key piece of information. In particular,
proposals that Lorentz symmetry is an emergent symmetry
at low energies, but broken at and beyond the Planck scale,
have been made, e.g., in [1–9], concertedly with sugges-
tions for experimental tests, e.g., [10], see also the reviews
[11–14]. In a quantum gravitational context, this implies,
e.g., the breakdown of diffeomorphism invariance to
foliation-preserving diffeomorphism symmetry, due to
the presence of a preferred frame. The remaining theory
is therefore invariant under three-dimensional rotations on
the spatial slices orthogonal to the timelike vector nμ.
Scenarios, where diffeomorphism invariance is broken due
to the existence of more general background structures and
therefore without residual foliation preserving diffeomor-
phism invariance, are investigated, for example in [15–20].
The observation of gravitational waves from a binary
neutron star merger [21–23], as well as from binary black

hole mergers [24–26], has opened up novel observational
opportunities in this area, cf. [27,28], and [29,30], respec-
tively. Yet, most experimental constraints in this field come
from the nonobservation of Lorentz-symmetry violation in
the matter sector, see, e.g., [20,31–53] and references
therein, and [54] for a summary of experimental bounds.
For searches of Lorentz-symmetry violations in the pure
gravitational sector, see, e.g., [28,55,56]. In fact, we expect
that Lorentz-invariance violation (LIV) cannot occur just in
the matter or the gravitational sector without also percolat-
ing into the respective other sector. This is due to the simple
fact that any form of matter gravitates, and therefore the
interaction between the two sectors cannot be switched off.
Typically, loop corrections in such coupled systems result
in the impossibility to isolate violations of symmetry to just
one sector. This argument has been made, e.g., in [57–63].
Here, we support the general argument by an explicit
calculation that provides an example showing that indeed
Lorentz-symmetry violation in quantum gravity necessarily
percolates into the matter sector. In particular, we show that
under certain assumptions that we will spell out in detail
below, the “amount” of Lorentz-symmetry violation in the
quantum-gravity sector (measured by the deviation of
dimensionless couplings singling out a preferred frame
from zero) correlates with the amount of Lorentz-symmetry
violation in the matter sector. Typically, gravitational
couplings of Oð10−nÞ induce LIV-matter couplings of
about the same order. Hence, strong constraints on LIV
couplings in the matter sector typically imply similarly
strong constraints on the gravitational LIV couplings.
Moreover, we highlight that the induced LIV couplings in
the matter sector include marginal couplings, which are—
unlikely their Planck-scale suppressed counterparts—
observationally easier to constrain.
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Wewillwork in amodel of quantumgravitywith foliation-
preserving diffeomorphism symmetry, coupled to a single
gauge field. This serves as a toy model of the Abelian gauge
sector of the Standard Model (corresponding to electromag-
netism below the scale of spontaneous electroweak sym-
metry breaking), in which the presence of LIV-couplings is
observationally strongly constrained by astrophysical obser-
vations as well as laboratory experiments.
We will perform a renormalization group (RG) study of

the system. In summary, we will show that the following
hold within our toy model and within the technical
limitations of our study, to be discussed below: (i) quantum
gravitational dynamics which single out a preferred frame
necessarily generate Lorentz-invariance violations for mat-
ter in the ultraviolet (UV) and (ii) under appropriate
conditions, this violation must necessarily persist in the
infrared. In other words, the violation of Lorentz symmetry
in the gravitational sector percolates into the matter sector
in the UV. Under appropriate conditions—amounting to the
existence of a infrared (IR) attractive fixed point in the RG
flow of the matter coupling—this symmetry violation must
persist into the infrared, where it is accessible to exper-
imental tests. The qualitative picture is therefore that small
violations of Lorentz invariance in the UV will in general
grow toward the IR. The existence of an IR attractive fixed
point prevents the violations of Lorentz invariance from
growing even larger. Experimental data provide strong
constraints on LIV in realistic models which include all
relevant degrees of freedom. Due to the points (i) and (ii),
these experimental bounds can in turn be used to put
constraints on UV violations of Lorentz symmetry in the
gravity sector.
Further, we argue that the various terms in the Standard

Model extension (SME) [64,65], see [20,66] for reviews,
are typically not independent when derived from an under-
lying microscopic model. A given microscopic model
(defined by a set of values for the gravitational couplings)
most likely generates all terms in the SME with a given set
of symmetries (e.g., CPT symmetry might or might not
hold in a given quantum-gravity setting). Typically, we
expect that all these couplings are generated with dimen-
sionless counterparts of order 1, if the gravity couplings
are order 1. This is of course a standard naturalness
argument—a given microscopic model might circumvent
this and in fact provide an explanation why a set of
couplings is “unnaturally” small. Here, we will provide
one example to show that a given set of microscopic
gravitational couplings typically generates the strongly
constrained marginal LIV couplings together with the less
strongly constrained higher-order couplings. Therefore,
weaker direct experimental constraints on the higher-order
couplings could, under certain conditions, actually be
supplemented by indirect strong consistency constraints.
Let us stress that we perform our study within a toy

model that does not account for the existence of Standard

Model degrees of freedom beyond the Abelian gauge field,
and that does not account for the difference between the
Abelian hypercharge field at high energies and the photon
at low energies, which is due to electroweak symmetry
breaking. Yet, we do not expect that these additional
intricacies can impact the main outcomes of our study,
at least at the qualitative level. The interplay of electroweak
symmetry breaking with LIV has been explored in [64].
This paper is organized as follows. In Sec. II we

introduce the system of an Abelian gauge field coupled
to foliation-preserving-diffeomorphism invariant gravity,
including the foliation structure and a LIV term for the
Abelian gauge field. In Sec. III, we investigate the impact
of Lorentz invariance violations in the gravity sector onto
the Abelian gauge field, and discuss the role of (pseudo)
fixed points as attractors and repulsors in the RG flow. In
Sec. IV we study the regions in the gravitational parameter
space giving rise to a universal value for the matter LIV
coupling ζ at the Planck scale using the flow equation
obtained in our approximation. Further, we aim at high-
lighting the constraining power that arises from the type of
study we perform here. For this purpose, we use exper-
imental constraints on Lorentz symmetry violations in the
photon sector. By imposing these bounds on the LIV
coupling for the Abelian gauge field in our toy model,
we arrive at strong constrains on the gravity LIV couplings.
We stress that these constraints are subject to the systematic
uncertainties of our study, and the difference of our toy
model to the full SME coupled to gravity. Therefore, these
constraints cannot yet be viewed on the same footing as
direct experimental constraints on the gravity LIV cou-
plings. However, our study clearly highlights the potential
constraining power of the gravity-matter interplay within a
LIV setting. This strongly motivates upgraded studies
which go beyond our toy model, in order to bring the
power of this idea to bear on quantum gravity. We under-
stand our present study as a blueprint that exemplifies this
idea, see also the corresponding comments in [27]. In
Sec. V we provide an explicit example to highlight that any
marginal LIV coupling is likely to be gravitationally
induced concertedly with a higher dimensional LIV cou-
plings. Their dimensionless couplings are typically of the
same order also due to the direct interplay between them.
This could give rise to indirect constraints on higher order
LIV couplings, which are expected to be stronger than
direct experimental constraints. Finally, in Sec. VI we
summarize our results and provide a brief outlook on future
perspectives.

II. IMPACT OF QUANTUM GRAVITY WITH A
PREFERRED FRAME ON MATTER

To investigate how the breaking of Lorentz symmetry in
the matter sector is influenced by symmetry-breaking terms
in the gravitational sector, we will explore the Wilsonian
scale dependence of a matter LIV coupling. For this study,

EICHHORN, PLATANIA, and SCHIFFER PHYS. REV. D 102, 026007 (2020)

026007-2



we make use of the well-suited tool of the functional
renormalization group (RG) (see, e.g., [67–70] for
reviews). Due to a suitable infrared (IR) and UV regulari-
zation, it implements the Wilsonian idea of momentum-
shell wise integration of quantum fluctuations and allows to
investigate the scale dependence of quantum field theories
within and beyond perturbation theory. More specifically,
the functional RG relies on a flow equation, the Wetterich
equation [71–75], that is a functional integro-differential
equation for the scale-dependent effective action Γk. The
latter provides the RG scale k dependent equations of
motion for the expectation values of the quantum fields. In
the limit k → ∞, Γk essentially provides the microscopic or
classical action, whereas in the physical limit k → 0 all
quantum fluctuations are included, and Γk reduces to the
standard effective action. The Wetterich equation gives rise
to flow equations for the couplings, which encode how the
couplings in the effective dynamics change, as quantum
fluctuations with momenta of the order k are integrated
over. The functional RG is applied in a broad range of
contexts; selected examples in models with interacting
fixed points include the OðNÞ model, e.g., [76–79] and the
Gross-Neveu(-Yukawa) model [80–82]. In all cases, quan-
titative agreement with other methods was achieved by
extending the truncation according to the canonical power-
counting of higher-dimensional operators. For more details
on the functional RG for the present setup, see the
Appendix A 1. For other ideas to constrain physics
beyond the Standard Model using the functional RG in
the context of Lorentz invariant asymptotically safe gravity,
see, e.g., [83,84]. Let us stress that the functional RG relies
on using the Euclidean four-momentum, and therefore
provides access to the scale-dependence in Riemannian
quantum-gravity settings. Performing a continuation
of the results to a Lorentzian setting in the presence of
dynamical gravity is an outstanding challenge. Thus, we
work under the assumption that our results carry over to a
Lorentzian setting.
To explore the consequences of the existence of a

preferred frame, we adapt our setup to allow direct access
to the foliation structure of the manifold [85],M ¼ Σ ×R,
where Σ is a Riemannian 3-manifold and R is the “time”
direction (i.e., a preferred spatial direction in our Euclidean
spacetimes). In this setup, the full metric gμν is expressed in
terms of a tensor σμν, encoding the three-metric in Σ in a
covariant way, and an orthogonal, normalized time-like
vector nμ, i.e.,

gμν ¼ σμν þ nμnν

gμνnμσνρ ¼ 0;

gμνnμnν ¼ 1: ð1Þ

We refer the reader to Appendix A 2 for details. The
timelike vector nμ can be used to single out a preferred

frame, such that full diffeomorphism invariance is broken
to foliation-preserving diffeomorphisms. As we use the
functional RG, we choose the four-metric to be a
Riemannian metric. The vector field nμ singles out a
distinguished direction in which an analytic continuation
of the metric could be performed and in this sense it singles
out a time direction. Using the decomposition (1), quantum
fluctuations of the full metric gμν can be expressed in terms
of fluctuations in σμν and nμ. In the following, we will
denote the expectation values of these two fields simply by
σμν and nμ.
In our approximation, we will parametrize the dynamics

of the diffeomorphism invariant sector of gravity via the
Einstein-Hilbert action with the scale-dependent Newton
coupling GNðkÞ and the cosmological constant ΛðkÞ,

ΓEH
k ¼ 1

16πGNðkÞ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgρσÞ
q

ð−Rþ 2ΛðkÞÞ: ð2Þ

We use Γk to indicate that this is an ansatz for the
scale-dependent effective action entering the Wetterich
equation. Additionally, we include in our truncation of
the dynamics the effect of all the canonically most relevant
operators that break Lorentz invariance. The three inde-
pendent [85] tensor structures containing up to two
derivatives are given by1

ΓGrav;LIV
k ¼ 1

16πGNðkÞ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgρσÞ
q

ðk2ðkÞKμνKμν

þ k0ðkÞK2 þ a1ðkÞAμAμÞ; ð3Þ

with symmetry-breaking and scale-dependent couplings
k2ðkÞ, k0ðkÞ and a1ðkÞ. Here, the extrinsic curvature on
spatial slices Kμν is orthogonal to the normal vector

nμKμν ¼ 0: ð4Þ

In terms of the fields nμ and σμν, it reads

Kμν ¼
1

2
ðnαDασμν þDμnν þDνnμÞ: ð5Þ

In addition, K is the trace of the extrinsic curvature and Aμ

is the acceleration vector

Aμ ¼ nαDαnμ: ð6Þ

All the “breaking terms” are invariant under foliation-
preserving diffeomorphisms but not under full diffeomor-
phisms, thus singling out a physical, preferred frame. All
other terms with these symmetries and at second order in

1The couplings associated with the breaking of Lorentz
symmetry in the gravitational sector in [27] and in our work
are related via γ ¼ k0, β ¼ k2 and α ¼ −a1.
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derivatives are, up to a total derivative which is neglected,
related via the Gauss-Codazzi equations. Therefore, the
truncation we consider in this paper corresponds to the IR
limit of Horava-Lifshitz gravity coupled to an Abelian
gauge field, which is perturbatively renormalizable. Due to
the Wilsonian treatment, additional operators, such as
Lorentz-invariance violating matter-gravity operators, are
induced at lower scales. Besides that, the Wilsonian treat-
ment allows for a broader perspective, since it allows the
study of theories, where some other theory sets in beyond a
cutoff scale in the far UV. The gravitational part of the
action is complemented with the standard gauge-fixing and
ghost term, and a constraint term which implements the
foliation structure of the system. Following [85], we
implement the latter like a gauge condition into the path
integral. For details on the implementation of the foliation
constraint, see Appendix A 2. Since the conditions (1) are
second-class constraints, as opposed to gauge conditions
which are first-class constraints, their implementation
might require a modification of this procedure [86]. This
contributes to the systematic uncertainty of our results,
which are however expected to be dominated by truncation
errors. This ansatz for Γk is based on canonical power
counting, i.e., the truncation of the theory space is chosen
by including operators by canonical relevance. Such a
truncation is expected to reliably capture physics in the
perturbative regime, where higher-order couplings typi-
cally remain small and irrelevant. In fact, even in a setting
with interacting fixed points, such truncations could be
reliable. Indeed, in the context of diffeomorphism invariant
gravity, there are indications that the asymptotically safe
fixed point lies in a near-perturbative regime [87–90],
where higher order operators follow their canonical scaling
[91–94]. For a nongravitational example showing the
convergence of a truncation based on canonical power
counting for an interacting fixed point, see, e.g., [79].
As for the matter part of the action, we focus on the

Abelian gauge sector with

ΓAbelian
k ¼ ZAðkÞ

4

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgκϵÞ

p
gμρgνσFμνFρσ; ð7Þ

where Fμν is the field-strength tensor of the Abelian gauge
field Aμ and ZAðkÞ is a wave-function renormalization of
the gauge field. Even in the absence of charged matter,
quantum fluctuations of gravity generate a nontrivial scale-
dependence, giving rise to an anomalous dimension

ηA ¼ −k∂k lnZAðkÞ: ð8Þ

Finally, all possible extensions of the Abelian gauge sector
that violate Lorentz invariance but preserve CPT and gauge
symmetry can be written as [64]

ΓAbelian;LIV
k ¼ ZAðkÞ

4

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgκϵÞ

p
kμνρσF ðkÞFμνFρσ; ð9Þ

where kμνρσF ðkÞ is real and has the symmetries of the
Riemann tensor, i.e., antisymmetry under μ ↔ ν and ρ ↔
σ and symmetry under an exchange of the pairs fμ; νg and
fρ; σg. To see this, start with a general tensor k̂μνρσ with no
symmetries. Its completely antisymmetric part results in the
CP-violating F̃F-term, which is a total derivative for the
Abelian gauge field. Further, symmetry under exchange of
the index pairs ðμ; νÞ ↔ ðρ; σÞ follows from the contraction
with two field-strength tensors. Finally, gauge symmetry
demands antisymmetry of the field-strength tensor, result-
ing in antisymmetry of kμνρσ under exchanges of indi-
ces μ ↔ ν.
The presence of the LIV operator in Eq. (9) leads to

vacuum birefringence: The dispersion relation resulting
from Eqs. (7) and (9) is still linear in the spatial momentum,
i.e., p0 ¼ cðkFÞjp⃗j. Therefore, there is no wavelength
dependence in the speed of propagation. Yet, the two
polarizations feature a different proportionality factor
cðkFÞ, which leads to a phase shift between the two
polarizations that accumulates with propagation distance.
For a detailed discussion, see [65,95].
Under the impact of quantum fluctuations, kμνρσF acquires

a dependence on the RG scale k. For a general dynamical
preferred frame [2], which was explicitly applied to
Horava-gravity [7,96–101] in [102], the only possible
tensor in the general expression Eq. (9) is2

kμνρσF ¼ ζ

4
ðnμnρgνσ þ nνnσgμρ − nνnρgμσ − nμnσgνρÞ; ð10Þ

with the coupling ζ ¼ ζðkÞ. We stress that in the presence
of a single vector field nμ as the source of a preferred frame,
ζ is the unique coupling that can be nonzero. In particular, if
we assumed that the different components of kF were
parametrized by different couplings, this would amount to
the introduction of the corresponding nontrivial tensor as
the source of a preferred frame.3 Therefore, all experiments
that put constraints on individual components of the general
tensor kμνρσF in Eq. (9) automatically put constraints on the
coupling ζ. We summarize experimental bounds in Table I,
where the strongest bound on any of the components of
kμνρσF is translated into a bound on ζ. Note that although the
measurements on LIV in the matter sector could be affected
by the presence of higher-order operators, due to the
Planck-scale suppression of the corresponding couplings

2The couplings associated with the breaking of Lorentz
symmetry in [102] and in our work are related via 1

2
ð1 − λγÞ ¼ ζ.

3Experimentally, the various components of kF are constrained
individually, as typically no assumption on the precise way in
which a preferred frame is selected, is made.
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their impact to the low-energy measurement of kF is
negligible.

III. THE RELATION BETWEEN LORENTZ
INVARIANCE VIOLATION IN THE GRAVITY
SECTOR AND IN THE MATTER SECTOR

It is a crucial question, whether Lorentz symmetry
breaking necessarily percolates from the gravitational
sector into the matter sector. This matters both for theo-
retical as well as phenomenological reasons: On the
theoretical side, this is crucial to understand the form of
a matter sector that is consistently coupled to a LIV-gravity
sector. On the phenomenological side this is key, as it
allows to translate strong observational bounds on LIV in
the matter sector into constraints on LIV couplings in the
quantum gravity sector.
More formally, the key question is whether the Lorentz

invariant subspace of the matter sector is attractive or
repulsive under the RG flow toward low energies. In other
words, starting from small deviations from the Lorentz
invariant hypersurface at large energies, is the system
driven away from the symmetric subspace or toward it,
when lowering the energy? To answer this question as
comprehensively as possible, we remain agnostic about
the properties of a UV completion for the system. Thus, we
view the description in terms of quantum field theory as an
effective description with a high-energy (i.e., trans-
Planckian) cutoff scale ki ≫ M2

Pl. At that cutoff scale, a
microscopic model sets the initial conditions for the
RG flow toward the IR by determining the values of
couplings at that scale.4 We explore, whether gravitational

fluctuations then drive the LIV matter coupling back to
zero, or whether there is a nonzero preferred value.
In a nutshell, our results are the following: We will show

that ζðkÞ cannot consistently be set to zero in the presence
of k0, k2 and a1 at high energies. This is a consequence of
the absence of a free fixed point in the beta function for ζ. In
other words, quantum fluctuations generate ζ and drive it
away from zero. Moreover we find that, within our
approximation, there is always an IR-attractive fixed point
at a finite value of ζ. Consequently, quantum fluctuations
drive ζ toward a preferred, nonzero value. Under the RG
flow, a large range of initial conditions ζðkiÞ, set at the
ultraviolet scale ki, is thus mapped into a unique Planck-
scale value, corresponding to the IR-attractive fixed point
of the RG flow. Below the Planck scale, the effect of k0, k2
and a1 switches off dynamically, simply because quantum
fluctuations of gravity become negligible and quantum
gravity decouples from particle physics. In our toy-model,
the flow of ζ vanishes in this regime, as quantum fluctua-
tions of gravity are the only ones that drive the system.
Therefore, the universal fixed-point value attained by the
RG flow at Planckian scales is also the low-energy value of
ζðk ¼ 0Þ, cf. Fig. 1 for an illustration.
In a more complete treatment that accounts for the other

Standard-Model degrees of freedom, additional fluctua-
tions would drive the low-energy flow of ζ. Since ζ is a
marginal coupling, below the Planck scale it is expected to
depend logarithmically on the RG scale k. In our toy model,
this low-energy running is absent.
The low-energy value of ζ (referring to the actual

electromagnetic interaction of the Standard Model) is
constrained observationally. In turn, this experimental
bound can be mapped onto a constraint for its Planck-
scale value. We expect that the latter is a function of the
LIV-gravity couplings k0, k2 and a1, just as it is in our toy
model. Accordingly, observational constraints on ζ con-
strain the microscopic values of k0, k2 and a1, and can
therefore indirectly constrain the fundamental symmetries

TABLE I. Different experimental bounds on the analogue of our Lorentz-symmetry breaking coupling ζ for the photon sector of the
Standard Model. We assume that the existence of a single vector field nμ as source of a preferred frame is the only source of Lorentz-
symmetry violations. In this case the coupling ζ is the unique nonzero coupling. For each experiment, the strongest bound on the
coefficients of kμνρσF , cf. (9), are translated into bounds on ζ. Except for the second line, all bounds assume the absence of LIV couplings
in the pure gravity sector, since some assumption on the gravitational background is necessary for the conversion of experimental data to
bounds on LIV couplings. We stress the difference between the experimental bounds on the photon-LIV coupling and the coupling ζ in
our toy model. The above experimental bounds on the photon LIV couplings are intended to give an impression on the sensitivity of
experiments in the photon sector. They do not directly translate into constraints on the LIV coupling ζ in our toy model.

Bound Year Ref. Method

10−37 2006 [35] Polarization measurement in gamma ray bursts
10−9 2007 [36] Atomic gravimeter
10−15 2004 [31] Comparison of a cryogenic sapphire microwave resonator and a hydrogen maser
10−18 2014 [40] Terrestrial Michelson-Morley experiment
10−21 2018 [49] Michelson-Morley with trapped ions (assuming no Lorentz-symmetry violation for electrons)
10−20 2016 [43] Light interferometry (LIGO data)

4In case of an asymptotically safe/free fixed point, that initial
condition corresponds to values of the relevant couplings a high-
energy scale at which relevant perturbations drive the system
away from the fixed point.
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of the theory. The conditions under which such an indirect
constraint arises will be discussed in detail below.
This idea constitutes an example of how studies of the

interplay of quantum gravity with matter can be key to
constrain quantum gravity observationally, by tapping into
the wealth of experimental data on particle physics.
Having explained the key idea underlying our work, we

can now discuss in detail how the IR-attractive fixed point
is generated and how the gravitational couplings impact the
scale dependence of the LIV-matter coupling ζ. To this end
we compute the scale dependence of ζ, treating all
gravitational couplings as input parameters. (See [85] for
the beta functions of these couplings.) This allows us to
remain agnostic about a UV completion for the gravity
sector,5 and explore a large class of possible models,
labeled by different values of these couplings, simulta-
neously. To obtain an analytical expression for the scale
dependence of ζ, we expand all expression to first order in
k0, k2 and a1 and to second order in ζ, which is sufficient
for the assumption of small deviations from the Lorentz
invariant hypersurface at high energies. In fact, it is the
dimensionless ratios6

gðkÞ ¼ GNðkÞk2; λðkÞ ¼ ΛðkÞk−2; ð11Þ

which enter the beta function

βζ ¼ k∂kζðkÞ: ð12Þ

For technical details of our calculation, we refer the reader
to the Appendix. To evaluate the RG flow, we use the
Mathematica package xAct [103–106] as well as the
FORM-tracer [107].
Driven by quantum fluctuations of gravity and the

Abelian gauge field itself, the beta function for ζ is

βζ ¼ g

�
−
10a1 þ 21k0 þ 257k2

384πð1− 2λÞ2 þ−6a1 þ 53k0 þ 329k2
576πð1− 2λÞ3

�

þ ζg

�
1

6πð1− 2λÞ−
183a1 − 390k0 − 1690k2 þ 1840

960πð1− 2λÞ2

þ 2313a1 − 5ð246k0 þ 4039k2Þ
1440πð1− 2λÞ3

�

þ ζ2g

�
79

60πð1− 2λÞ−
21a1 þ 495k0 − 920k2 þ 5072

960πð1− 2λÞ2

þ 6911a1 − 9515k0 − 60420k2
1440πð1− 2λÞ3

�
; ð13Þ

where we have dropped the dependence on k from all
couplings for brevity. We briefly highlight the existence of
the nontrivial denominators which are in contrast to beta
functions obtained with perturbative techniques, which are
typically purely polynomial. Such denominators arise when
there is a masslike term for a field, and result in a dynamical
decoupling of the corresponding degree of freedom once
the RG scale k drops below the corresponding mass. For
metric fluctuations, the cosmological constant acts akin to a
masslike term, suppressing metric fluctuations for large
negative λ. Notice that this refers to the microscopic (i.e.,
high-energy) value of the dimensionless cosmological
constant, which is itself a scale-dependent coupling that
can take a rather different value in the UV than in the IR. In
particular, a negative λ in the UV is not incompatible with a
positive cosmological constant at observational scales
[108,109].
In order to understand the implications of the expression

(13), we focus on special cases first.
If we set g ¼ 0, then the entire beta function vanishes.

This is a consequence of the fact that at g ¼ 0, the model
consists of just a kinetic term for the Abelian gauge field,
i.e., it is a noninteracting theory. The beta functions in such
a theory vanish identically. Beyond our toy model, the
existence of additional matter degrees of freedom would
not change this conclusion, unless there was LIV already
present in other couplings in the matter sector.
At g ≠ 0, we focus on the limit ζ ¼ 0 first. In this case,

only the first line in Eq. (13) remains. Except for very
special points in the parameter space spanned by
fa1; k0; k2; λg, this expression is nonvanishing. This has
important implications: Even setting ζðkiÞ ¼ 0 (where ki ≫
MPl is an arbitrary initial scale), βζðζ ¼ 0Þ ≠ 0, and there-
fore ζðki − δkÞ ≠ 0. In other words, quantum fluctuations
generate ζ, even if it vanishes at ki. On the other hand, if

FIG. 1. We show a schematic illustration of the key idea
underlying our results.

5In [57] the spontaneous breaking of Lorentz invariance has
been discussed, while recent studies of gravity-matter systems
also allow for the possibility of explicit symmetry breaking,
cf. [63,102].

6Note that here gðkÞ stands for the dimensionless Newton
coupling, and should not be confused with the “g” of the metric
tensor, gμν, which we always refer to with two indices.
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k0 ¼ 0, k2 ¼ 0, a1 ¼ 0, then the first line of Eq. (13)
vanishes identically. This choice corresponds to a gravita-
tional theory that respects full diffeomorphism invariance.
In this case, there is no Lorentz symmetry violation in the
gravitational sector, which is reflected in the existence of a
fixed point of βζ at ζ ¼ 0. The hypersurface in the space of
couplings that preserves Lorentz symmetry in the matter
sector is only an invariant surface under the RG flow,
if no LIV exists in the gravity sector. Hence, Lorentz-
symmetry breaking will percolate from the gravity sector
into the matter sector, if the couplings k0, k2 and a1 are
nonvanishing.
In the next step, we take the terms ∼ζg and ∼ζ2g in the

second and following lines of Eq. (13) into account. The
beta function βζ is generically nonzero, i.e., starting from
an initial condition ζðkiÞ, the LIV coupling ζðkÞ will flow,
and assume a different value at lower scales. In this context,
the notion of attractors of the flow, i.e., fixed points, is
crucial. Under the influence of an IR-attractor, a large
interval of initial conditions in the UV is mapped to a small
interval of values at lower scales: A universal prediction of
a nonzero value of ζ arises that is largely independent of the
UV initial conditions. We now analyze the notion of such
IR attractors in terms of fixed points and pseudo fixed
points in more detail.
Let us schematically write

βζ ¼ b0 þ b1ζ þ b2ζ2; ð14Þ

and let us treat the bi as (real) constants for now. The zeros
of βζ, where the scale-dependence of ζ vanishes, are

ζ�;1=2 ¼
−b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b0b2

p
2b2

: ð15Þ

If b21 − 4b0b2 > 0, these fixed points of the RG flow lie at
real values which are generically nonzero. One of the two
fixed points is IR-repulsive and the other is IR-attractive, as
one can infer by calculating the critical exponents

θ1=2 ¼ −
∂βζ
∂ζ

����
ζ�;1=2

¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 − 4b0b2

q
: ð16Þ

The critical exponent encodes whether a fixed point is IR
attractive or IR repulsive. A positive critical exponent
signifies that the distance to the corresponding fixed point
increases under the RG flow to the IR—the coupling is a
relevant perturbation of this fixed point. In contrast, a
negative critical exponent implies that the fixed point is an
attractor of the RG flow. This is clearly visible in Fig. 2
where we show selected RG trajectories (blue lines) for
ζðkÞ. The fixed point coming with θi < 0 (red dashed line)
acts as an attractor, whereas the fixed point with θi > 0
(magenta dotted line) repulses RG trajectories. Therefore, a
universal prediction arises: The IR-attractive fixed point at

ζ�;1 focuses trajectories. Except for initial conditions7

which lie above ζ�;2, a large range of initial conditions
at k ¼ ki is mapped to ζð10−10kiÞ ¼ ζ�;1. Therefore,
trajectories with initial conditions below the IR-repulsive
fixed point (magenta dotted line) will be focused on the
IR-attractive fixed point ζ�;1. Trajectories starting at ζðkiÞ >
ζ�;2 are quickly driven toward rather large values of ζ.
Next, we have to understand the situation when the

coefficients b0, b1 and b2 are scale dependent due to the
scale dependence of the gravitational couplings. In this
case, ζ�;1=2 ¼ ζ�;1=2ðkÞ become pseudo fixed-points: They
are still the solutions to βζ ¼ 0, but these solutions are no
longer scale-independent. Accordingly, they lose the inter-
pretation as a scale-invariant regime of the theory, but they
do keep the interpretation as (scale-dependent) attractors
and repulsors of the flow.8 Their effectiveness depends on
the speed of the flow—the derivative of the beta function—
compared to the speed with which the pseudo-fixed-point
value changes as a function of the scale. If the derivative of
the beta function is large, then the flow easily follows the

FIG. 2. We show the beta function (right panel) and the
associated flow of ζðkÞ for g ¼ 1, a1 ¼ λ ¼ 0 and k2 ¼ k0 ¼ 1
(left panel). The magenta dotted line corresponds to the IR-
repulsive fixed point. The blue lines are a sample of RG
trajectories obtained from varying the initial condition ζðkiÞ.
The arrows indicate the direction of the flow, toward the IR. RG
trajectories with initial conditions above the magenta line are
driven away from the Lorentz-invariant sub-theory space. Con-
versely, RG trajectories set by initial conditions below the
magenta line flow toward the IR-attractive fixed point, i.e., the
red dashed line, at low energies.

7This follows as an IR repulsive fixed-point shields a certain
set of UV initial conditions from the IR attractive fixed point at
lower energies. Specifically, in the case of Fig. 2, any value of
ζðkÞ < ζ�;2, with ζ�;2 being the IR repulsive fixed point, is
inaccessible from initial conditions ζðkiÞ > ζ�;2.

8Strictly speaking, not the points ζ�;1=2ðkÞ are the attractors/
repulsors, but a close-by set of points ζ̃�;1=2ðkÞ, where the slope of
ζ̃�;1=2ðkÞ balances a nonvanishing contribution from βζ. The
larger the slope of the beta function compared to the “speed” of
the points ζ̃�;1=2ðkÞ, the closer ζ̃�;1=2ðkÞ lie to the pseudo fixed
points ζ�;1=2ðkÞ.
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IR-attractive pseudo fixed-point, as in the example in
Fig. 3. From an appropriate set of initial conditions, the
flow is quickly attracted to the vicinity of the IR-attractive
pseudo fixed-point, and then converges to it at lower scales.
In the other case, where the speed of the flow is slow
compared to the rate of change of the pseudo-fixed-point
value, the flow cannot follow the pseudo fixed-point and
the latter becomes ineffective as an attractor of the flow.
In the following, we will make the assumption that the

gravitational couplings change as a function of the RG
scale in such a way that the rate of change of the pseudo
fixed-point is smaller than the speed of the flow. This
ensures that the pseudo fixed-points are effective as
attractors/repulsors. For an IR-attractive pseudo fixed point,
a large range of UV initial conditions for ζðkÞ is mapped to
a small interval around the pseudo fixed-point (red dashed
curve, Fig. 3). The latter is the instantaneous fixed-point
value, i.e., the solution to βζ ¼ 0 with the values of the
gravitational couplings at the Planck scale. Therefore, if
the initial condition ζðkiÞ lies in the basin of attraction of
the IR-attractive pseudo fixed-point, the “history” of the
trajectory, i.e., the scale-dependence of the gravitational
couplings above the Planck scale, becomes unimportant.
Otherwise, i.e., if ζðkiÞ is outside the basin of attraction of
the IR-attractive pseudo fixed-point, the corresponding RG
trajectory will flow away from the IR-repulsive fixed point
(magenta dotted curve, Fig. 3), so that ζðkÞ becomes large
at low energies.
As the gravitational contributions to the flow turn off at

the Planck scale, the flow toward the IR vanishes.
Therefore, each value at the Planck scale can be translated
into a unique value in the IR, such that the IR value of ζ is a
prediction of the theory. For initial conditions in the basin
of attraction of the IR-attractive pseudo fixed point, the IR

value of ζ is a universal9 prediction, as in this case the flow
“loses memory” of the initial conditions: The IR-attractive
pseudo fixed point depends on the gravity-LIV couplings
of the system, but is independent of the initial value ζðkiÞ.
Thus, changes in the gravity LIV couplings result in a
change of the Planck-scale value of ζ, and thereby its low-
scale value.
In summary, this setup provides us with a map between

Planck-scale values of the gravitational couplings and the
IR value of ζ. With the help of such a map, strong
observational constraints on ζ can in principle be translated
into strong constraints on the gravitational couplings. These
hold in a setting where
(1) a quantum-field theoretic description is applicable

beyond the Planck scale,
(2) the rate of change of the pseudo fixed point is

smaller than the speed of the flow (this can be
checked from the beta function, given a particular
scale-dependence for the gravitational couplings),

(3) the initial condition for ζðkiÞ lies in the basin of
attraction of the IR fixed point,

(4) the additional Standard Model degrees of freedom
beyond our setting do not significantly alter the
flow of ζ.

As already mentioned, for initial conditions outside the
basin of attraction of the IR fixed point, the RG flow
generically drives ζ toward large absolute values. In this
case, the IR value of ζ is not a universal prediction, but
depends on the initial condition ζðkiÞ. Generically, the
initial condition ζðkiÞ ¼ 0 results in

ζðkÞ ¼ −
b0
b1

�
1 −

�
ki
k

�
b1
�
; ð17Þ

which holds for small enough ζ, so that the quadratic term
in Eq. (14) can be neglected. Parametrically, the value of
ζðkÞ is set by the gravitational LIV couplings which enter
b0 and b1. To keep ζ small, it follows that b0 ≪ 1 if
b1 ∼Oð1Þ, or b1 ≪ 1. Such conditions require either very
small LIV gravity couplings, and for the case of b1 ∼Oð1Þ
at least one LIV coupling of order 1, which is incompatible
with direct constraints [27], derived under the assumption
of photons propagating at the speed of light, see [110–117].
Accordingly, we tentatively conclude that strong observa-
tional constraints on ζ are only compatible with Lorentz
invariance violation Oð1Þ in the gravitational sector under
the assumption of very special initial conditions for ζðkiÞ.

FIG. 3. We show the flow for the case g ¼ 1, λ ¼ 0, a1 ¼ 0,
k0 ¼ 1 − t2=20 and k2 ¼ 1. The zeros of βζ acquire a scale
dependence through the scale-dependence of the LIV coupling
k0. These pseudo-fixed points (magenta dotted line and red
dashed line) approximate the attractors/repulsors of the flow.

9Universality here does not refer to scheme-independence, as
the gravitational contributions depend on the scheme due to the
dimensionful nature of the Newton coupling. Universality in our
context means the independence from microscopic physics, i.e.,
initial conditions for the RG flow.
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IV. CONSTRAINTS

We now discuss how the considerations in the previous
section constrain the quantum gravitational LIV sector. To
exemplify this, we work with the beta function in Eq. (13).
This beta function was obtained within truncations of the
dynamics and further approximations, cf. Appendix A, and
is therefore subject to systematic errors. Further, our results
are obtained using a Euclidean setup and we make the
assumption that the form of the beta function will be the
same in the Lorentzian setup. Due to the absence of a
well-defined Wick rotation in quantum gravity, this is an
assumption which is not straightforward to test, although
the presence of a foliation is a prerequisite for a Wick
rotation. Finally, we work within a toy model for the
Standard Model which only includes an Abelian gauge
sector, but neglects the other Standard Model degrees of
freedom as well as the difference between the Abelian
hypercharge gauge field and the photon that is due to
electroweak symmetry breaking. Due to the above points,
the quantitative limitations of our study should be obvious.
Nevertheless, the result that the gravity LIV couplings enter
the beta function for matter LIV couplings with numerical
prefactors Oð1Þ should be generic. Therefore, the key
result, that constraints on the matter LIV couplings of
order Oð10#Þ constrain gravitational LIV couplings to
roughly the same precision, is expected to be generic
and is indeed a key point we want to make in this paper.
Since we are interested in small deviations from the

Lorentz-invariant subspace, let us start with the Lorentz
invariant case, i.e., k0 ¼ k2 ¼ a1 ¼ 0. In this case the
coefficient b0 in Eq. (14) vanishes, and βζ features one
Gaussian and one non-Gaussian fixed-point:

ðζ�;1; ζ�;2Þjk0¼k2¼a1¼0 ¼
�
0;−

5ð4λþ 21Þ
158λþ 238

�
; ð18Þ

with critical exponent

ðθ1; θ2Þjk0¼k2¼a1¼0 ¼
�

gð4λþ 21Þ
12πð1 − 2λÞ2 ;−

gð4λþ 21Þ
12πð1 − 2λÞ2

�
:

ð19Þ

For nonvanishing, but small LIV couplings k0, k2 and a1,
the coefficient b0 in Eq. (14) is nonvanishing, shifting the
Gaussian fixed point (GFP) ζ�;1 to an interacting shifted
Gaussian fixed point (sGFP). (The notation ζ�;1=2 in
Eq. (18) was chosen such that ζ�;1 always corresponds
to the GFP, in contrast to Eq. (15), where the sGFP can be
either of the fixed points, depending on the sign of b1.) For
small LIV gravity couplings, the sGFP is a continuous
deformation of the GFP in the symmetry-restored case,
while the fixed point ζ�;2 is always interacting. Therefore,
for small LIV gravity couplings, the existence of the sGFP
is robust and controlled as it is a continuous deformation of

the free fixed point. The interacting fixed point ζ�;2,
however, cannot be traced back to a free fixed point.
Therefore, its existence might be subject to extensions of
the truncation.
From Eq. (19) it is evident that the critical exponent of

the (s)GFP changes sign at λcrit ¼ − 21
4
. For λ > λcrit the

sGFP is IR repulsive and the interacting fixed point IR
attractive. This situation is illustrated in Figs. 2 and 3.
In the following we investigate both cases, i.e., λ > λcrit

and λ < λcrit.

A. Constraints on LIV gravity couplings for λ > λcrit
In the case of λ > λcrit, the sGFP ζ�;1 is IR repulsive,

while the interacting fixed point ζ�;2 is IR attractive, as
illustrated in Fig. 2. The basin of attraction of ζ�;2 contains
all values ζðkÞ < ζ�;1. For all these values it follows that
ζðMPlÞ ≈ ζ�;2. To link to experimental constraints, ζðMPlÞ
has to be used as the initial condition for the RG flow below
the Planck scale. In our case, the dynamical switching off of
gravitational fluctuations, encoded in a quadratic scaling of
gðkÞ to zero, results in a swift freeze-out of ζðk < MPlÞ.
Therefore, for the exclusion plots in Fig. 4 and Figs. 7–9,
we make the rather conservative assumption that the ratio
ζð0Þ=ζðMPlÞ is not smaller than 1=10.
Through the map fk0; k2; a1; λg → ζ�;2 ¼ ζðMPlÞ →

ζðk ¼ 0Þ, we translate the experimental constraints on
the LIV coupling ζ to constraints on ζ at the Planck scale.
In turn, this constrains the gravitational LIV couplings k2,
k0 and a1. We emphasize that the limitations of our study
should be kept in mind when interpreting the constraints
that result from our study.
To highlight the typical strength of such constraints, let

us investigate the special case of λ ¼ 0. To linear order in
the LIV couplings, the IR-attractive fixed point is given by

ζ�;2 ¼
−179025a1 þ 766741k0 þ 1776274k2

1165248
−
15

34
: ð20Þ

If we assume experimental constraints jζj < 10−10, it is
evident from Eq. (20) that values for k2, k0 and a1 of order 1
are already excluded. Only specific combinations of k0, k2
and a1 with at least one coupling of Oð1Þ can satisfy this
bound, cf. Fig. 4. This is a direct consequence of the
nonvanishing value of ζ�;2jk0¼k2¼a1¼0, which is ofOð10−1Þ.
However, as shown in Fig. 4, any Oð1Þ LIV gravity
coupling compatible with jζj < 10−10 is already excluded
by direct cosmological constraints and by the observational
data on gravitational waves [27]. We emphasize that the
existence of the IR attractive fixed point ζ�;2 saves the
system from an uncontrolled behavior toward the IR, rather
than generating the strong constraints. In other words,
without the interacting fixed point, the system would be
driven to even larger values of couplings in the IR, resulting
in even stronger constraints. If therefore in future studies
the interacting fixed point ζ�;2 turns out to be spurious tiny
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violations of Lorentz invariance in the gravity sector will
conflict with constraints in the matter sector, since ζ will
increase very strongly toward the IR.
For initial conditions in the range ζðkiÞ ≥ ζ�;1, the flow

of ζðkÞ is governed by the sGFP ζ�;1, which is IR-repulsive.
In contrast to the IR-attractive fixed point, the sGFP
defocuses trajectories. Hence, ζðkÞ is driven away from
ζ�;1 toward lower scales, and no universal bound arises. In
this case, the IR value of ζ is generically too large to stay
within the experimental bounds. The set of initial con-
ditions at the scale ki which allow for a small enough
ζðMPlÞ to satisfy strong constraints is very special:
Generically, the flow toward larger jζj is rather fast, unless
one starts very close to the sGFP. Specifically, for a
nonvanishing value c of any of the gravity-LIV couplings,
a value ζð10−5kiÞ ∼ c is generated, starting from the initial
condition ζðkiÞ ¼ 0, cf. Fig. 5. This behavior follows from
the dependence of the sGFP ζ�;1 on the gravitational LIV
couplings. For the case λ ¼ 0 (which is generic for the
purposes of this argument), it reads

ζ�;1 ¼
−42a1 þ 43k0 − 113k2

2016
; ð21Þ

such that very small or very special values for the gravity
LIV couplings are necessary to accommodate a small value
for the sGFP. From Fig. 6, we can estimate how non-
generically the initial conditions have to be chosen above

the Planck scale to accommodate the strong bounds at
lower scales: Starting from ζðkiÞ ¼ 0, a flow over four
orders of magnitude is sufficient to regenerate a non-
vanishing value of ζ. Imposing constraints on the IR value
of ζ as they arise from the corresponding observations on ζ
in the full Standard Model would result in the conclusion
that these initial conditions are excluded, except for very
special points in the gravitational parameter space, i.e.,
exactly on the fixed point itself or tiny deviations around it.

FIG. 5. For the case λ ¼ 0 (which is generic for the purposes of
this plot), the RG flow over a few orders of magnitude generates
ζðkÞ ∼ c from ζðkiÞ ¼ 0, for any nonvanishing gravity LIV
coupling of OðcÞ. The couplings k0, k2 and a1 not mentioned
in the respective label are set to zero.

FIG. 4. Exclusion for λ > λcrit with initial conditions in the basin of attraction of the IR attractive interacting fixed point ζ�;2, for
λ ¼ k2 ¼ 0. Left panel: the red region shows the excluded region by demanding that ζ�;2 < 10−4. The hatched area marks the region
which is already excluded by cosmology and observation of gravitational waves. Right panel: zoom into the only region, which can
accommodate ζ�;2 < 10−4 (lighter red areas). The tiny white band corresponds to values of k0 and a1 that make ζ�;2 exactly zero,
according to Eq. (20). This region is already excluded by cosmological observations [27].
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B. Constraints on LIV gravity couplings for λ < λcrit
We now focus on the case of λ < − 21

4
. We emphasize

that λ pertains to the microscopic value of the dimension-
less cosmological constant. Quantum fluctuations of matter
might drive the cosmological constant to positive values in
agreement with observations in the IR, starting from initial
conditions at negative λ in the UV [108]. For a specific
realization in the case of Lorentz-invariant gravity, see
Fig. 4 in [118], where one explicit trajectory in the
approximation of [108] was employed.
For λ < λcrit, the interacting fixed point ζ�;2 is IR

repulsive and therefore shields all initial conditions with
ζðkiÞ < ζ�;2 from a phenomenologically viable regime.
Specifically, small deviations from ζ�;2 at ki will increase
toward lower scales. In a similar manner to the case
analyzed in the previous section, this results in strong
constraints on the gravitational LIV couplings. For the case
of initial conditions exactly on the fixed point, a small value
of ζðMPlÞ can still be achieved. The white line in Fig. 7
shows where ζðMPlÞ ¼ 0 can be satisfied. The allowed
region for jζ�;2j < ζexp with some experimental bound ζexp
corresponds to a band with the width of 2ζexp around the
white line. As can be understood from the linear expansion
of this fixed point for the generic choice of λ ¼ −11=2,

ζ�;2 ≈ −0.317a1 − 0.597k0 − 7.518k2 − 0.00792; ð22Þ

this cancellation can only happen for −a1 ∼Oð10−2Þ,
which is excluded by observations [27]. For initial con-
ditions with ζðkiÞ > ζ�;2, the RG trajectories are focused
by the IR attractive sGFP ζ�;1 toward a universal value

ζðMPlÞ ≈ ζ�;1ðMPlÞ. This universal value depends on theLIV
couplings k0, k2 and a1. In turn, this allows to translate the
constraints on ζðMPlÞ into strong constraints onk0, k2 anda1.
We use the observational constraints on ζð0Þ to constrain
ζðMPlÞ in our toy model. With the corresponding caveats in
mind, we extract bounds on the gravitational LIV couplings,
as shown in the exclusion plots Figs. 8 and 9. There, we
combine the constraints on the gravityLIVcouplings coming
from the strong constraints on ζ�;1 with the existing con-
straints from cosmology and the observation of gravitational
waves from a neutron-star merger with electromagnetic
counterpart [21–23]. We focus on the ðk0; a1Þ–plane for
different values of k2, since the observation of gravitational
waves leads to the strong constraint jk2j < 10−15 [27].10

FIG. 6. For λ ¼ 0, g ¼ 1 and k2 ¼ 0, we show the value of
ζð10−4kiÞ generated by the RG flow, starting from the initial
condition ζðkiÞ ¼ 0 at the transplanckian UV scale ki. The
colored regions indicate where ζð10−4kiÞ exceeds a certain value.

FIG. 7. Exclusion plot for λ < λcrit with initial conditions close
to the IR repulsive interacting fixed point ζ�;2. We display the
results for the specific choice λ ¼ −11=2 (which is generic for the
purposes of this argument). The red region marks the area where
jζj > 10−10. The white line is the only allowed region: it is a band
with width of twice the bound, 2ζexp, centered on values of a1 and
k0 that render ζ�;2 exactly zero, cf. Eq. (22). The white band lies
within the black hatched region, that marks the range of values in
the ða1; k0Þ–plane already excluded by direct observations [27].

10Strictly speaking this bound is obtained by the LIGO data
[23] assuming that the speed of photons remains unchanged, i.e.,
vγ ¼ 1. Neglecting the difference between the Abelian gauge
field Aμ in our work and photons, in the present context, the
photons are expected to propagate with vγ ¼ 1þ Cζ, C being a
constant, due to the presence of the LIV coupling ζ. Therefore
the observation of gravitational waves from a neutron-star
merger with electromagnetic counterpart leads to a constraint
jk2 − Cζj < 10−15. While for k2 ¼ 0 this would actually con-
strain the value of ζ, we do not use this constraint, to emphasize
the difference between our toy model containing the Abelian
hypercharge, and the measurement involving the photon.
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For the generic choice of λ ¼ −11=2, the IR attractive
sGFP to linear order in the gravity LIV couplings reads

ζ�;1 ¼
186a1 þ 325k0 þ 4297k2

576
: ð23Þ

Hence, for k2 ¼ �10−15, the viable region with
jζ�;1j < ζexp, where ζexp is the experimental bound, is a
band with width of 2ζexp in the ða1; k0Þ–plane, cf. Figs. 8
and 9. We emphasize that the fixed point ζ�;1, which leads
to a universal value of ζ at the Planck scale, goes over into
the GFP in the limit of vanishing LIV couplings. Therefore,
its existence is expected also beyond the present truncation,
such that the qualitative features of the above analysis
are expected to carry over to extended truncations.
Furthermore, if we assume the interacting fixed point
ζ�;2 to be an artifact of the truncation, the region ζðkiÞ <
ζ�;2 is not shielded from the phenomenologically viable
region. Consequently, any value of ζðkÞ would lie in the
basin of attraction of the IR attractive FP ζ�;1, leading to
constraints on the gravity LIV couplings.

V. MODIFIED DISPERSION RELATIONS

The experimental study of Lorentz symmetry violation
often proceeds by constraining each term in the SME
separately. Within a given theoretical setting, these terms
are typically not independent. This is important in light of

FIG. 8. Exclusion for λ < λcrit and k2 ¼ 10−15 with initial
conditions in the basin of attraction of the IR attractive sGFP,
cf. (23). The dark and light red regions indicate the areas where
ζ�;1 > 10−20 and ζ�;1 > 10−10, respectively. The white line
corresponds to ζ�;1 ¼ 0, while the black hatched region indicates
the area of exclusion by direct observations [27].

FIG. 9. Exclusion for λ < λcrit with initial conditions in the basin of attraction of the IR attractive sGFP, cf. (23). The red region marks
the area where the value of ζ�;1 exceeds a certain bound, e.g., jζj ≤ 10−10. The different contours and shades exclude the corresponding
area for different values of the assumed bound. The white line indicates ζ�;1 ¼ 0, and the hatched region marks area of exclusion by
direct observations [27]. The left panel shows the case k2 ¼ −10−15, while the right panel refers to the case k2 ¼ 0.
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the fact that leading order, marginal couplings are typically
much simpler to constrain experimentally. In contrast,
higher-order terms are generically Planck-scale suppressed,
and therefore hard to strongly constrain by observations.
Yet, within a given theoretical setting, consistency con-
ditions link these couplings. These conditions can be
derived from their beta functions. To exemplify this idea,
let us explore terms which modify the dispersion relation
for propagating Abelian gauge fields. Due to their canoni-
cal mass dimension, the corresponding couplings are
expected to feature an IR-attractive (shifted) Gaussian
fixed point. Accordingly, their IR value is a universal
prediction of the theory in the same way as exploited in the
previous sections.
As an example, we consider the higher-order operator

κ̄nαnβDαDβFμνFμν. Such a term gives rise to a higher-order
dependence on the energy in the dispersion relation, i.e.,

p⃗2 ¼ E2 þ κ

M2
Pl

E4: ð24Þ

For photons, such modifications have received significant
observational interest, see, e.g., [110–114,116,117] and
references therein. Within our setup, the cubic term,
explored in an EFT setting, e.g., in [119], can actually
be set to zero consistently. We focus on the dimensionless
counterpart of the coupling κ̄, i.e., κ ¼ κ̄=k2. Instead of
considering the full beta function for κ, we limit our study
to the inducing term, i.e., the analog of b0 in Eq. (14). It
reads

b0;κ ¼ g

�
815a1 − 179k0 − 1847k2

1080πð1 − 2λÞ2

þ 230a1 þ 262k0 þ 1021k2
540πð1 − 2λÞ3

�

þ ζg

�
−

4

3πð1 − 2λÞ þ
1685a1 − 1905k0 þ 1204k2

2160πð1 − 2λÞ3

−
3167a1 − 243k0 þ 280k2 þ 5760

2160πð1 − 2λÞ2
�

þ ζ2g

�
9

4πð1 − 2λÞ þ
−17277a1 þ 6809k0 þ 9807k2

5400πð1 − 2λÞ3

þ 24819a1 þ 3797k0 − 5109k2 þ 32580

10800πð1 − 2λÞ2
�
: ð25Þ

The first line shows that κ is induced by gravitational
fluctuations in the presence of the LIV couplings k2, k0, a1.
The following lines highlight that ζ is also induced once a
finite ζ is present. Lorentz symmetry breaking therefore
percolates from the gravitational to the matter sector, but
also spreads within the matter sector, once a “seed” in the
form of one nonvanishing LIV matter coupling is present.
Including the term linear in κ, which also accounts for

the canonical mass dimension of κ, the beta function reads

βκ ¼ b0;κ þ 2κ þ b1;κκ; ð26Þ

where the second term is the contribution due to the
canonical mass dimension of κ̄. From Eq. (26), the
fixed-point value of κ is given by

κ� ¼ −
b0;κ

2þ b1;κ
: ð27Þ

This relation holds under the self-consistency assumption
that κ� ≪ 1, as then terms quadratic in κ can be neglected in
βκ. The critical exponent of this fixed point (27) is
θ ¼ −2 − b1;κ. This fixed point is IR attractive, as long
as metric fluctuations remain near-perturbative, i.e.,
jb1;κj < 1. Due to the constant offset in the denominator,
the fixed-point value κ� is parametrically set by the fixed-
point value for ζ and the values of k0, k2 and a1. Following
the same logic as in the previous section, the value of κ at
the Planck scale corresponds to the fixed-point value κ�.
Below the Planck scale, gravitational fluctuations turn off
dynamically, resulting in a vanishing flow for κ except for
the dimensional term. This has the simple solution

κðk < MPlÞ ¼ κ�

�
k

MPl

�
2

: ð28Þ

For the dimensionful counterpart κ̄, this implies

κ̄ðk < MPlÞ ¼
κ�
M2

Pl

: ð29Þ

Let us briefly compare this with experimental constraints
on the quartic term in the dispersion relation for photons,
which constrains the dimensionless coupling to be jκexpj <
106 [115], see also [114]. In contrast, a significantly
stronger indirect constraint can be obtained by choosing
ζ, k2, k0 and a1 such that they satisfy the corresponding
constraints but maximize b0κ. With the exception of very
special points in the parameter space, this generically
constrains b0κ to about the same order as ζ itself.
Conversely, within a setting described by our toy model
we would not expect direct searches for κ to result in a
detection, unless a rather significant improvement was
achieved in future observations. We emphasize that the
above analysis, especially the restriction to the inducing
contribution to βκ, is only the first step in the analysis of
effects of the higher order coupling κ. However, the
qualitative feature of the sGFP κ�, i.e., the form of
Eq. (27), will remain unchanged under the consideration
of the full βκ, since any direct contribution will contribute to
b1;κ or b2;κ. Therefore, the qualitative feature that κ� serves
as an IR attractor, with the value parametrically set by ζ�,
already follows from the analysis of the inducing term b0;κ.
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VI. CONCLUSIONS AND OUTLOOK

Probing the quantum nature of gravity observationally
is notoriously difficult. The interplay of quantum gravity
with matter could become a key stepping stone for progress
in this direction: At the microscopic level, this interplay
could determine properties of elementary particles that are
accessible to experiments at lower energies. Thereby, low-
energy (sub-Planckian) measurements could constrain trans-
Planckian Physics. This idea to use matter as a “magnifying
glass” for the quantum properties of spacetime underlies
part of the swampland-program in string theory, as well as a
similar program within the asymptotic-safety approach.
Here,wehighlight the potential power of such considerations
for Lorentz-invariance violating gravity-matter models.
The key idea underlying this paper is the following:

Quantum fluctuations of gravity that only respect foliation-
preserving diffeomorphisms generate Lorentz-invariance
violating interactions for matter, in our case parametrized
by the scale dependent coupling ζðkÞ. Within the toy model
we consider and within our approximation of the dynamics,
the corresponding beta function features an infrared-
attractive fixed point. Its value is determined by the
gravity-LIV couplings. Under appropriate conditions,
spelled out in this paper, it governs the scale dependence
of ζ. Due to its infrared-attractive nature, it results in a
universal value of ζ at the Planck scale, which is inde-
pendent of the initial conditions for ζðkiÞ at the high-energy
scale ki, but depends on the values of the gravity-LIV
couplings. The Planck-scale value of ζ can be mapped to its
low-energy value by the standard RG flow without gravity.
At low energies, experimental constraints on LIV-matter
couplings exist. Such low-energy experimental bounds also
indirectly constrain the values attained by the LIV-matter
couplings at Planckian scales. As the latter Planck-scale
values depend on the LIV gravitational couplings, exper-
imental bounds on LIV-matter couplings can be translated
into constraints on the LIV couplings of the gravitational
sector.Moreover, as observational constraints onmatter-LIV
couplings are rather strong for marginal couplings, this
mechanism can provide constraints on the gravity-LIV
couplings which are significantly stronger than the direct
observational constraints.
To support this general idea, we have performed a study

of an Abelian gauge field coupled to gravity with foliation-
preserving diffeomorphisms only. Our study has the fol-
lowing technical limitations: It is performed in a truncation
of the full dynamics, as the RG flow generates additional
terms. We do not account for their feedback. This results in
a systematic uncertainty of our results. Further, we work in
a Euclidean setup in order to apply FRG techniques. The
presence of a foliation should ensure that a Wick-rotation
exists. Finally, we work in a toy model for the photon-
gravity system: We do not account for the additional matter
degrees of freedom of the Standard Model, and neglect

electroweak symmetry breaking which implies that the U(1)
gauge field relevant at high energies is not the same as the
photon of electromagnetism. Bearing these limitations in
mind, our study supports the general idea explained above.
Specifically, we have shown that the breaking of Lorentz

symmetry in the gravitational sector automatically perco-
lates into the matter sector. This result is entailed in the
ζ-independent part of the beta function for ζ, cf. Eq. (13).
This term measures the “amount of LIV” in the gravita-
tional sector that impacts the matter sector, and it vanishes
if gravity retains full diffeomorphism invariance. Due to
this term, ζ ¼ 0 is no longer a fixed point of the RG flow.
Thus, a nonvanishing ζ is generated by the flow, even if it is
set to zero at some initial scale. Consequently, Lorentz
symmetry violation necessarily percolates from the gravi-
tational to the matter sector.
Furthermore, as we have shown within our approxima-

tion, the beta function for ζ always features an IR-attractive
fixed point, that can be reached from a wide range of initial
conditions in the far UV, i.e., at trans-Planckian scales.
Therefore, we can remain agnostic about the ultimate UV
completion of the theory: As long as it sets initial conditions
for the couplings within the appropriate range, there will be
a universal Planck-scale value of ζ, corresponding to the
IR-attractive fixed point of its RG flow. In this case, the value
of ζ at the Planck scale is fully determined by the values of
the LIV couplings in the gravitational sector, i.e., k0, k2 and
a1 [cf. Eq. (3)], as well as the dimensionless cosmological
constant λ. The RG flow below the Planck scale is trivial in
our setting, where gravitational fluctuations switch off
dynamically, resulting in ζðk ¼ 0Þ ≈ ζðMPlÞ.
To exemplify the constraining power of such a fixed

point, we translate the stringent experimental bounds on the
actual photon-LIV coupling, cf. Table I, into bounds on the
gravity LIV couplings k0, k2 and a1 using the fixed-point
relation. Note that for quantitatively robust constraints, this
should be repeated in an extended study accounting for the
presence of additional degrees of freedom and reducing
systematic uncertainties by working within extended trun-
cations. We highlight that if we nevertheless used the fixed-
point relation for ζ that arises from our calculation, even the
least stringent observational bound on ζ would exclude an
additional area in the parameter space spanned by the
gravity-LIV coupling that is not excluded by the observation
of gravitational waves, the BBN and ppN constraints. This
highlights the power of an IR-attractive fixed point which is
related to the breaking of some symmetry: If this symmetry-
breaking is strongly constrained in one sector of the system,
an IR-attractive fixed point in this sector can be used to
translate observational bounds into constraints on the other
sector. A future analysis of the RG flow of the combined
gravity-matter system, including the scale dependence of
the gravity LIV couplings, would allow to identify intervals
of initial conditions for the gravitational LIV couplings, for
which the scenario presented in this paper is valid.
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Finally, we have also shown that a higher-order LIV
coupling κ—related to a modification of the dispersion
relation—is induced in the same way as ζ is induced. Due
to its canonical mass dimension, it is expected to feature an
IR attractive fixed point, whose value is parametrically of
the same size as the fixed-point value of ζ. Therefore,
constraints on ζ restrict the possible values of κ�. Due to
their Planck-scale suppression, this kind of irrelevant
coupling is experimentally less strongly constrained. We
therefore estimate that the parametric dependence of
κðMPlÞ on ζðMPlÞ, together with the strong constraints
on ζ could result in strong, indirect constraints of κ. A more
extended analysis including the entire beta-function of κ
and an analysis of the fixed-point structure can confirm this
expectation.
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APPENDIX A: FOLIATED SPACETIMES AND
THE FUNCTIONAL RENORMALIZATION

GROUP

1. Functional renormalization group setup for the
metric-matter system

The system we study comprises gravity as well as an
Abelian gauge field. To investigate the RG flow of this
system, we employ the functional renormalization group
(FRG). This is based on a scale-dependent effective action
Γk, whose flow is given by the Wetterich equation [71–75],

k∂kΓk½Φ; ḡ� ¼ 1

2
STr½ðΓð2Þ

k ½Φ; ḡ� þ Rk½ḡ�Þ−1 _Rk½ḡ��: ðA1Þ

By Γð2Þ
k we denote the second functional derivative of Γk

with respect to the fields. Here, the superfield Φ is a
collection of all dynamical fields, which in the context of
the present work will be

ΦA ¼ ðhμν; nμ; AμÞ: ðA2Þ
Here, hμν are metric fluctuations, nμ is a normalized vector
that singles out a preferred frame, and Aμ is the Abelian

gauge field. The super-trace STr includes a summation over
all discrete indices and an integration over continuous
coordinates. Further, it also implements a trace in field

space, since Γð2Þ
k is actually a matrix in field space, spanned

by the inverse propagators, as well as mixed entries.
Finally, the function Rk is a scale-dependent infrared
regulator, which implements the Wilsonian idea of
momentum-shell wise integration of quantum fluctuations,
and ensures the UV and IR finiteness of the Wetterich
equation. In particular, throughout this work we will
employ a Litim-type regulator [120]. For gravity, the cutoff
function Rk has to be set up with respect to a background
metric ḡ in order to allow for a local coarse graining and the
definition of a momentum. As a consequence, the regulator
term is, besides the gauge-fixing action, a second source of
breaking of diffeomorphism invariance.
We highlight a key advantage of the Wetterich equation:

It depends on the full, nonperturbative (and field depen-
dent) propagator ðΓð2Þ

k þ RkÞ−1, but is structurally a one-
loop equation. This is central to allow feasible calculations
in a gravitational context. In the derivation of the Wetterich
equation, this one-loop structure is ensured by introducing
the regulator as a mass-like term, i.e., introducing the
quadratic interaction ΦRkΦ into the generating functional.
In addition, the presence of a background field allows to
gauge-fix the gravitational fluctuations. Just as for gauge
theories, using the background field method for the gauge
fixing allows to preserve a background gauge symmetry.
Unlike in the functional quantization of gauge theories, the
introduction of a background field is however not optional
in a local formulation of gravitational fluctuations. The
background field is an auxiliary field and in principle could
be kept arbitrary—in fact, keeping track of the physical
metric and the background metric is key to restore back-
ground independence [121]—but specific choices greatly
simplify the calculations. In particular, for the projection on
curvature-independent matter interactions, the choice of
background does not matter. A flat background is the
technically simplest choice in this case. In the following,
we will therefore adopt this strategy and choose a flat
background metric, i.e.,

ḡμν ¼ δμν: ðA3Þ

The Wetterich equation leads to a tower of coupled
differential equations that encode the scale-dependence
of all infinitely many couplings of the theory space. In
practice, this tower has to be restricted to a, typically finite,
subset of equations. Therefore, all results are subject to
systematic errors, which have to be estimated by studies of
residual gauge, regulator dependences and changes under
the extension of the truncation. To set up our truncation, we
choose an ansatz for the scale dependent effective action
Γk, which is expanded in terms of metric fluctuations hμν
around the background metric (A3),
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hμν ¼ gμν − δμν: ðA4Þ

Since in the present work, we will investigate the effect of
metric fluctuations on matter couplings, an expansion up to
second order in metric fluctuations is sufficient. The ansatz
for the Lorentz invariant part for the present metric-matter
system is given by

ΓLI
k ¼ ΓAbelian

k þ ΓAbelian;gf
k þ ΓEH

k þ ΓGrav;gf
k ; ðA5Þ

cf. Eqs. (2), (7). We work with the standard gauge-fixing
term for the Abelian gauge field,

ΓAbelian;gf
k ¼1

ξ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðḡκϵÞ

p
ðḡμνD̄μAνÞ2; ξ→0; ðA6Þ

and for gravity,

ΓGrav;gf
k ¼

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðḡκϵÞ

p
32πGNðkÞα

FμḡμνFν; α → 0; ðA7Þ

with the gauge-fixing condition

Fμ ¼
�
ḡμκD̄λ −

1þ β

4
ḡκλD̄μ

�
hκλ; β ¼ 1: ðA8Þ

Note that this gauge fixing also gives rise to Fadeev-Popov
ghosts in the gravitational sector. However, since in this
work we neglect induced ghost-matter interactions, they do
not contribute in the present computations. The Fadeev-
Popov ghosts for the Abelian gauge sector decouple from
the Abelian gauge field, but contribute to the running of
gravitational couplings. As these are not studied in this
work, the Abelian Fadeev-Popov ghosts can be neglected.
Finally, despite the breaking of diffeomorphism invari-

ance due to gauge fixing and regulator, we will assume that
all different n-point functions originating from the same
term in the effective action Γk come with the same
coupling. Indications that this assumption holds semi-
quantitatively at an asymptotically safe fixed point has
been investigated in a Lorentz invariant setting, e.g., in
[87–90].

2. Functional renormalization group setup for the
foliation structure and Lorentz-symmetry violations

In order to study the effect of operators which are
invariant under foliation preserving diffeomorphisms, as
a first step the implementation of a foliation structure on the
four dimensional Euclidean space(time) is necessary. In
order to implement a foliation structure, and restrict the
sum over all metrics in the gravitational functional integral
to a sum over globally hyperbolic spacetimes, we need to
resort to a suitable parametrization for the full metric and its
fluctuations.

One common choice of parametrization in the context of
foliated spacetimes and Lorentz-symmetry breaking theo-
ries is to express the full metric in terms of ADM variables
[109,122–128]. To parametrize fluctuations, each of these
fields is split linearly into background and fluctuation
quantities, i.e., in an analogous way to Eq. (A4). The
advantage of this procedure is that the choice of ADM
variables automatically ensures the foliation structure
of the full metric. However, the map between the metric
fluctuations hμν and the fluctuations of the ADM fields is
nonlinear.
As pointed out in the previous section, iff the regulator

term is quadratic in the fluctuation fields, the flow
equation (A1) is structurally a one-loop equation. If we
imagine the path integral for gravity to be defined in terms
of the fluctuation field hμν, with an appropriate quadratic
regulator, a transition to ADM variables is disastrous: Due
to the nonlinearity of the metric fluctuations h in terms of
the fluctuations of the ADM fields, implementing a
foliation structure via ADM variables would break the
one-loop structure of the Wetterich equation. Preserving the
one-loop structure of the flow equation within the ADM
setup requires to define the regularized path integral
directly at the level of the ADM fields, such that the
regulator term ΦRkΦ is quadratic in the fluctuations of the
ADM fields.
In addition, we require the regulator term to be invariant

under the auxiliary background gauge invariance. Yet, for
full diffeomorphism invariance, the ADM fluctuation fields
transform nonlinearly under the gauge transformation.
Therefore, a regulator term quadratic in the ADM-fluctua-
tions fields would break full background diffeomorphim
invariance down to foliation preserving diffeomorphims.
In other words, within the ADM formalism, writing a
quadratic regulator that preserves background gauge invari-
ance while arising from a linear split of the original metric
into background and fluctuation, appears impossible, as
emphasized in [125]. In contrast, in a setting with foliation-
preserving diffeomorphisms, the symmetry acts linearly on
the ADM fields, allowing a standard construction of a flow
equation. However, the main purpose of our work it to
understand whether and how LIV-terms in the matter sector
can be induced by quantum gravitational fluctuations in the
presence of LIV gravitational couplings. To this end, it is
crucial to have a subsector of the gravity theory (para-
metrized by the Einstein-Hilbert action) that preserves full
diffeomorphism symmetry. In this way, we can cleanly
distinguish that it is the LIV-terms in the gravitational
sector that induce LIV terms in the matter sector, and that it
is not gravitational fluctuations per se which result in LIV
terms in the matter sector.
We will therefore employ an alternative formalism

proposed in [85], which ensures the required symmetries.
In this approach, the full metric gμν is written in terms of a
spatial metric σμν and a normalized timelike vector nμ,
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according to Eq. (1). On the level of the fields σμν and nν,
the split (A4) of the full metric into background and
fluctuations is parametrized by

nμ ¼ n̄μ þ n̂μ;

σμν ¼ σ̄μν þ σ̂μν − n̂μn̂ν: ðA9Þ

Due to the nonlinear split of σμν, this amounts to a linear
parametrization of the metric fluctuations in terms of the
fluctuations of nμ and σμν

hμν ¼ σ̂μν þ n̄μn̂ν þ n̂μn̄ν: ðA10Þ

The linearity of hμν in the fluctuating fields ðn̂; σ̂μνÞ is
the key ingredient for constructing a background-
diffeomorphism-invariant flow equation on foliated space-
times, while preserving the typical one-loop structure of the
flow equation in the metric formalism [85].
The path integral is then restricted to foliated spacetimes

by translating the conditions (1) into constraints for the
fluctuation fields ðn̂; σ̂μνÞ. Both conditions are solved by

F μ ¼ n̄νσ̂μν − n̄νn̂μn̂ν ¼ 0: ðA11Þ

In the present work, this constraint will be implemented
akin to a gauge-fixing term, i.e., by introducing and then
exponentiating a delta-function of the constraint into the
path integral. This procedure results in an additional term,

ΓFol
k ¼ 1

32πGNðkÞαFol

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðḡκϵÞ

p
ḡμνF μF ν; αFol → 0;

ðA12Þ

into the action. Some remarks on Eq. (A12) and the
implementation of the second-class constraints (1) are
necessary. At variance of first-class constraints, i.e., con-
straints associated with gauge symmetries, second-class
constraints cannot be implemented via the Faddeev-Popov
trick. With second-class constraints, a Hamiltonian analysis
is actually desirable to understand whether secondary
constraints need to be imposed in addition. Within the
functional Renormalization Group framework, this is—to
our knowledge—not well explored yet. More details on the
implementation of second-class constraints will be dis-
cussed elsewhere [86].
In the present work, we assume that the implementation

of the constraint (A11) via the constraint term (A12) is
sufficient to capture the relevant features. Additionally, we
implement the orthogonality condition Eq. (4) of the
extrinsic curvature at the level of the scale dependent
effective action Γk.
Employing the parametrization (A10) for the metric

fluctuations and implementing the foliation structure via
the constraint term (A11), we can study the effect of

operators which are invariant under foliation preserving
diffeomorphisms only on the background diffeomorphism
invariant system parametrized by ΓLI

k . We restrict ourselves
to the most relevant operators that break full diffeomor-
phisms. Our ansatz for the Lorentz-invariance-violating
(LIV) part of the scale dependent effective action is

ΓLIV
k ¼ ΓAbelian;LIV

k þ ΓGrav;LIV
k ; ðA13Þ

with ΓAbelian;LIV
k and ΓGrav;LIV

k specified in Eq. (9) and
Eq. (3), respectively.
All other pure-gravity terms which are invariant only

under foliation preserving diffeomorphisms containing up
to two derivatives, are related via the Gauss-Codazzi
equations, up to a total derivative.
For the Abelian gauge field, there are no further non-

vanishing invariants at quadratic order in the gauge field:
nμnνnκnλFμνFκλ vanishes due to the antisymmetry of the
field-strength tensor. The operator FF̃ ¼ FμνFκλϵ

μνκλ is a
total derivative. As for the invariant FμνFκλϵ

μνκρnρnλ, we
notice that

Fμνϵ
μνκρFκλ ∼ ðE⃗ · B⃗Þδρλ : ðA14Þ

Due to the normalization of nμ, this relation directly
leads to

Fμνϵ
μνκρFκλnρnλ ∼ ðE⃗ · B⃗Þ ∼ FF̃; ðA15Þ

such that also this invariant corresponds to a total derivative
and can thereby be neglected. Finally, we explicitly neglect
any gauge-symmetry-violating operator generated by the
flow, i.e., we work under the assumption that the theory
space is spanned by gauge-invariant operators only.

APPENDIX B: PROJECTION ONTO THE LIV
MATTER COUPLING

The flow equation for the system under consideration is
obtained by inserting

Γk ¼ ΓLI
k þ ΓFol

k þ ΓLIV
k ðB1Þ

into the Wetterich equation (A1).
In order to derive indirect constraints on the LIV-gravity

couplings, based on the experimental and observational
bounds on the value of ζ at low energies, we need to extract
the flow of the wave-function renormalization ZA and the
LIV coupling ζ. To that end, we project the RG flow, i.e.,
the right-hand side of the Wetterich equation, onto the two
corresponding invariants FμνFμν and nμnκFμνFκ

ν (where
the appropriate symmetrization is understood implicitly).
We can project the RG flow onto the FμνFμν-term by taking
two derivatives with respect to Aμ, closing the open indices
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with a transverse projector, selecting the terms quadratic in
external momenta, and subsequently taking the 0th order
term in n. In order to project onto the LIV term nμnκFμνFκ

ν,
we find that taking two derivatives with respect to the gauge
field, closing the indices with a transverse projector,
selecting the terms that are quadratic in momenta and
taking all terms containing the vector field nμ or its norm, is

already sufficient to isolate this term. After this procedure,
we set n2 ¼ 1.
We stress that the projection described here is not unique

and that within truncations and due to the breaking of gauge
invariance, these different projections might lead to quan-
titatively different results for the scale dependence of the
LIV coupling ζ.
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