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The notion of a unique integrand does not a priori makes sense in field theory: different Feynman
diagrams have different loop momenta and there should be no reason to compare them. In string theory,
however, a global integrand is natural and allows one, for instance, to make explicit the separation between
left- and right-moving degrees of freedom. However, the significance of this integrand had not really been
investigated so far. It is even more important in view of the recently discovered loop monodromies that
are related to the duality between color and kinematics in gauge and gravity loop amplitudes. This paper
intends to start filling this gap, by presenting a careful definition of the loop momentum in string theory and
describing precisely the resulting global integrand obtained in the field-theory limit. We will then apply this
technology to write down some monodromy relations at two and three loops and make contact with the
color-kinematics duality.

DOI: 10.1103/PhysRevD.102.026006

I. INTRODUCTION

In the last few years, a variety of results for scattering
amplitudes in field theory at loop level have been derived
using string theoretic methods. Interestingly, many of them
have focused on integrands and have involved explicit
dependence on a loop momentum defined globally for a
string integrand.
While this is a peculiar idea from a traditional Feynman

perspective, this concept is actually present, though maybe
not emphasized, since the very early days of string theory
[1]. The seminal papers [2–5] then laid the foundations for
the definition of the loop momentum in string theory
amplitudes in their modern formulation as conformal
field-theory correlation functions integrated over the moduli
space of Riemann surfaces. Those correlation functions can
be written as holomorphic squares in loop amplitudes only in
the presence of loop momentum. Especially nontrivial for
superstrings (in the Ramond-Neveu-Schwarz formulation),
this property was called chiral splitting.
However, some aspects related to the precise definition

of the loop momentum had not been worked out and the
recent results alluded to above require us to now reinves-
tigate this question. We have especially in mind two
categories of results: the monodromy relations at higher
loops in string theory derived in [6,7] and the scattering

equation or ambitwistor string methods at loop level.
This paper will be focused on the former; we allude to
the latter in the discussion.
The monodromy relations in string theory were origi-

nally derived at tree level [8–10]. They are now understood
to generalize of the Bern-Carrasco-Johansson (BCJ) [11]
duality between color and kinematics that underlie the
so-called double-copy construction [12] of gravity inte-
grands as squares of Yang-Mills integrands. While imple-
mented very efficiently to compute loop amplitudes (see for
instance the last recent achievement at five loops [13] and
the review [14]), this duality is still not understood from
first principles.
The tree-level relations were extended to all loop

orders in [6,7] in open-string theory, which generalized
some previous works in field theory [15–19]. This gives
hope that string theory can shed light on the color-
kinematics duality and these relations need to be under-
stood deeper. In particular, some aspects related to the
definition of the loop momentum were only conjectured
in [6] and the present paper intends to fill this gap and
show in detail how to apply the monodromy relations at
higher loops.
Another aspect that this paper deals with is the notion of

an integrand in field theory. In [6], it was emphasized that
the relations induced in field theory by the stringy mono-
dromies are valid globally at the integrand level, i.e. mix
different integrands of different graphs at the same value of
the loop momentum, as in [20]. Wewill see how this picture
generically emerges from the field-theory limit of string
amplitudes.
Here is a summary of the main contributions of this

paper.
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Firstly, we give a precise definition of the loop momen-
tum in the string theory integrand in Sec. II, from a review
of classic computations and from solving directly the
classical equations of motion for the string. The definition
requires working on a so-called canonical dissection of the
surface (see Fig. 1), which, importantly, breaks modular
invariance [4] because it does not allow one to modify the
homology basis anymore after the loop momentum is
integrated out and the invariance is restored.
Secondly, we provide a careful study of its field-theory

limit (in Sec. II), which as a by-product gives how the loop
momentum is distributed across all Feynman graphs
appearing in this limit. This analysis uses some tools to
study the degeneration of Riemann surfaces.
Finally, we provide applications of these definitions in

loop amplitudes. In particular, we shall see in detail how the
monodromy relations work two- and three-loop ampli-
tudes, which support further the claim that the monodromy
relations generalize the BCJ duality. More precisely it will
support the conjecture that in all higher loop relations, the
monodromy relations always combine the numerators
appearing in the field-theory limit into groups of graphs
called BCJ triplets.
It should be noted that in this paper we will exclusively

be concerned with the bosonic part of the string amplitudes,
which is the one that carries the loop-momentum zero
modes. Further applications of these results are presented in
the discussion in Sec. V together with open questions.

II. STRING THEORY

The presence of loop momentum is standard in the
operator formalism of the string theory; this is for instance
how amplitudes are derived in the classic textbook by Green,
Schwarz and Witten [21]. These representations have the
advantage to make chiral splitting manifest; i.e. the string
integrand is factorized as a product of a purely left-moving
(holomorphic) and right-moving (antiholomorphic) part. The
traditional form of the string amplitudes is obtained after
integrating out the loop momentum, which induces non-
holomorphy in the integrand and destroys its chiral splitting.
The drawback, however, is that this formalism is difficult

to use at high multiplicity and loop orders because it
amounts to doing a very complicated Feynman diagram

computation, and the number of graphs increases quickly.
Besides, the structure of the moduli space of Riemann
surfaces at higher genus essentially renders the whole
process unusable. The modern approach to string theory
scattering amplitudes is based on complex (super)geometry
and conformal field-theory techniques [4]. In this manner,
the nonholomorphic terms are generated from the start
[2–5], essentially because meromorphic functions on
Riemann surfaces must have the sum of their residues
vanishing, via Stoke’s theorem [22].
We will now review the construction of the universal

part to string theory amplitudes at loop level. It is the
generalization of the Koba-Nielsen factor

Q
i<j jzi −

zjjα0ki·kj ubiquitous to tree-level string amplitudes. Here
and throughout, zi will be the locations of the vertex
operators on the string world sheet, α0 is the string Regge
slope, and ki are null momenta of the states, all taken to be
incoming, that satisfy momentum conservation

P
n
i¼1ki¼0

for and n-particle process.
Along the way we shall see how the loop momentum

appears. We will mostly follow [4] and supplement the
construction with careful normalizations and definitions of
the loop momentum. Note that the paper [23] presents
details on these computations and an exhaustive reference
list on the matter.
In the conformal gauge, the Polyakov action for closed

strings reads

SP ¼
1

2πα0

Z
Σ
∂zX∂ z̄X; ð1Þ

where Xμðz; z̄Þ are the coordinates of the string in
d-dimensional target flat space.
The equations of motion of the theory without vertex

operator insertions split the X field into left and right
movers as

Xμðz; z̄Þ ¼ Xμ
LðzÞ þ Xμ

Rðz̄Þ; ð2Þ

which will share a common zero mode xL ¼ xR and a loop-
momentum zero mode to be introduced momentarily. In the
presence of n plane-wave vertex operator insertions [24]

VjðkjÞ ¼ expðikj · Xðzj; z̄jÞÞ ð3Þ

the phases can be inserted in the action and the object we
seek to compute is given by

⟪V1ðk1Þ…VnðknÞ⟫

¼
Z

DXe−ð1=2πα
0Þ
R

d2z∂zXμ∂ z̄Xμþ2iπα0
P

n
j¼1

kμjXμðz;z̄Þδ2ðz−ziÞd2z;

ð4Þ

FIG. 1. Canonical dissection along the homology cycles.
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where the double bracket notation is that of [4]. To compute
this path integral, we need to invert the kinetic operator
∂z∂ z̄, i.e. compute the Green’s function

Gðz; wÞημν ¼ hXðz; z̄ÞμXðw; w̄Þνi: ð5Þ

The subtlety when doing this directly comes from the fact
that ∂z and ∂ z̄ have zero modes on a compact Riemann
surface Σ of genus g ≥ 1, that correspond to loop momen-
tum. They are supported by g holomorphic and antiholo-
morphic one-forms ωI and ω̄J that span the cohomologies
Hð1;0ÞðΣÞ and Hð0;1ÞðΣÞ:

∀ I ¼ 1…g; ∂ω̄I ¼ 0; ∂̄ωI ¼ 0: ð6Þ

In this equation and below, ∂ and ∂̄ are operators
∂¼ð∂=∂zÞdz and ∂̄¼ð∂=∂z̄Þdz̄, as defined in the
Appendix. We also abbreviate ∂z ≔ ð∂=∂zÞ and likewise
for ∂ z̄.
The holomorphic one-forms are dual to a homology of

one-cycles, traditionally called a- and b-cycles, canonically
defined by their intersection numbers aI ∩ bJ ¼ δI;J, for
I; J ¼ 1…g, all other vanishing. Pairing a cycle with a form
is done via the period map ðω; cÞ ↦ R

c ω. Normalizing the
period of the one-forms on the aI-cycles to δIJ makes the
periods along the b-cycles define the period matrix Ω of
the surface as follows:

I
aI

ωJ ¼ δIJ;
I
bI

ωJ ¼ ΩIJ: ð7Þ

It is a symmetric g × g matrix with positive-definite
imaginary part ImΩ > 0.
Let us then consider a Riemann surface Σ of genus g. The

kinetic operator can be inverted on the space orthogonal to
the zero modes [2–4] and the equations that define the
corresponding Green’s function are

Z
Σ
Gðz; wÞd2z ¼ 0; ð8Þ

∂z∂ z̄Gðz; wÞ ¼ −2πα0δ2ðz − wÞ þ 2πα0R
d2z

ffiffiffi
g

p ; ð9Þ

∂z∂w̄Gðz; wÞ ¼ 2πα0δð2Þðz − wÞ
− α0π

X
I;J

ωIðzÞðImΩÞ−1IJ ω̄JðwÞ; ð10Þ

where g is the determinant of the metric on the surface, as
defined in the Appendix. These equations can be solved
and yield

Gðz1; z2Þ ¼ −
α0

2
ln ðjEðz1; z2Þj2Þ

þ α0πIm
�Z

z1

z2

ωI

�
ððImΩÞ−1ÞIJIm

�Z
z1

z2

ωJ

�

ð11Þ

up to terms which we neglect because vanish on the support
of momentum conservation. The prime form E is defined in
Eq. (A8). Its essential property is that it vanishes linearly on
the diagonal

Eðx; yÞ ¼ x − yþOðx − yÞ3:

It is defined on the universal cover of Σ, because it has
monodromies [given in Eq. (A10)] along a- and b-cycle
transportation. The nonholomorphic correction in Eq. (11)
exactly cancels these monodromies and the Green’s func-
tion is correctly defined on the surface and not its cover.
The correlation function (4) is then computed by Wick’s

theorem:

�Yn
i¼1

eikiXðzi;z̄iÞ
�

¼ e−
P

i<j
ki·kjGðzi;zjÞ: ð12Þ

Because of the nonholomorphic terms, this expression
cannot be written as it stands as a modulus square. Note
that they are absent at tree level:

hXμðz1; z̄1ÞXνðz2; z̄2Þi ¼ −
α0

2
ημν lnðjz1 − z2j2Þ ð13Þ

and the correlator (12) can be chirally split. At loops, where
the ln jEj2 term similarly poses no problem, in the expo-
nential of (12) the problematic terms are

QNH¼α0π
X
i<j

ki ·kjIm

�Z
zi

zj

ωI

�
ððImΩÞ−1ÞIJIm

�Z
zi

zj

ωJ

�
:

ð14Þ

Let P be a point on the surface, so that we can
decompose the integration

R
zi
zj

as
R
P
zj
þ R zi

P , and (14) then

becomes

QNH ¼ α0π
X
i<j

ki · kjIm

�Z
P

zj

þ
Z

zi

P
ωI

�
ððImΩÞ−1ÞIJ

× Im

�Z
P

zj

þ
Z

zi

P
ωJ

�
: ð15Þ

The diagonal terms Im
R zi
P ωIððImΩÞ−1ÞIJIm R zi

P ωJ vanish
by momentum conservation (summing over j in this case),
so we keep only the crossed terms and we would want to
rewrite (15) as
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QNH ¼ −2πα0
X
i<j

ki · kjIm

�Z
zj

P
ωI

�
ððImΩÞ−1ÞIJ

× Im

�Z
zi

P
ωJ

�
ð16Þ

(the sign comes from flipping the orientation of the
integration in one term). The reason why this identity is
not straightforward is because it is valid if and only if all the
paths from P to zi need to be uniquely defined. Hence, we
are looking for a way to define uniquely, for all values of zi
on Σ, a path from P to zi. Ambiguities can arise from z
winding along a nontrivial cycle, and therefore what we
describe is a way to cut open the Riemann surface into a
polygon with 4g faces, called its canonical dissection, as in
Fig. 1. It is defined by cutting open the surface along the
a- and b-cycles, not considered anymore as representatives
in the homology, but as actual curves, all of which touch in
one point exactly.
Now, because the sum is factorized in (16), we can

introduce a Gaussian d-dimensional integration so that

ðdet ImΩÞd=2
Z

dDl
ð2πÞD e−πα

0lIlJImΩIJ−2πα0
P

i;J
lJ ·kiIm

R
zi
P

ωJ

¼ e2πα
0P

i<j
ki·kjImð

R
zj
P

ωIÞððImΩÞ−1ÞIJImð
R

zi
P

ωJÞ ð17Þ

up to a global normalization factor. Using that
expð−2ImxÞ ¼ j expðxÞj2, this expression can be further
rewritten as a modulus square, and finally we have

⟪V1ðk1Þ…VnðknÞ⟫ ¼
Z

ddl
ð2πÞd ⟪V1ðk1Þ…VnðknÞ⟫ðlIÞ;

ð18Þ
where

⟪V1ðk1Þ…VnðknÞðlIÞ⟫
¼ ðImΩÞd=2

���eðiπα0=2ÞlIlJΩIJþiπα0
P

i;J
lJ ·ki

R
zi
P

ωJ

×
Y
i;j

Eðzi; zjÞα0kikj=2
���2; ð19Þ

which is Eq. (2.99) of [4]. This is the content of chiral
splitting for the bosonic part of the amplitudes.
The most important conclusion of this section is that

the loop momenta are defined with respect to a specific
canonical dissection, and not just the homology. Now we
will see how this can be derived from looking at the
classical trajectory for the field X; this will lead to a precise
definition of the momentum flowing through a given cycle.
A consequence of working on a canonical dissection

is that modular invariance (the freedom to change a- and
b-cycles) is totally broken, because a- and b-cycles cannot
be mixed anymore within the string integrand. Of course,

reintegrating out the loop momentum gives modular
invariant expressions.
Classical solution.—Since the action is free, all those

quantities could have been equivalently computed from the
classical solution of the Euler-Lagrange equation with
sources. For X, it can be obtained by varying the action
(4) or, equivalently, by computing

Xμ
classðz; z̄Þ ¼

hXμðz; z̄ÞQn
i¼1 e

ikiXðzi;z̄iÞi
hQn

i¼1 e
ikiXðzi;z̄iÞi ð20Þ

using the individual two-point functions hXXi.
Let us follow the former approach. We want to minimize

the following action:

S ¼ 1

2πα0

Z
Σ
∂zX∂ z̄X þ 2iπα0

X
j

kμjXðz; z̄Þδ2ðz − zi; z̄ − z̄iÞ:

ð21Þ

It is instructive to first do the computation at tree level
when there are not yet zero modes. The δ

δX variation of this
Lagrangian yields

2∂z∂ z̄Xμ ¼ 2iπα0
X
i

kμi δ
2ðz − zi; z̄ − z̄iÞ: ð22Þ

Using that

∂ z̄
1

z
¼ ∂z

1

z̄
¼ 2πδð2Þðz; z̄Þ; ð23Þ

this integrates once to

∂ z̄Xμ ¼ iα0

2

X
i

kμi
z̄ − z̄i

ð24Þ

and then

Xμ
class ¼ xR þ iα0

2

X
i

kμi lnðz̄ − z̄iÞ þ XLðzÞ: ð25Þ

The holomorphic part is determined by reinjecting this
equation in the equations of motion and one finds

Xμ
class ¼ x0 þ

iα0

2

X
i

ln jz − zij2; ð26Þ

where x0 ¼ xL þ xR is the zero mode that gives rise to
momentum conservation upon

R
ddx0 integration.

Let us now go to loop level and consider a Riemann
surface Σ of genus g. Analogously to the tree-level case,
we can obtain the singular part of ∂Xμ

LðzÞ in terms of
meromorphic differentials with single poles ωzþ;z− ¼
ωzþ;z−ðzÞdz with residue �1 at z ¼ z�. They are called
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Abelian differentials of third kind [25] and can be uniquely
defined by normalizing to zero their periods along the
a-cycles:

ωzþ;z−ðzÞ ∼
z→z�

� 1

z − z�
; ∀ I ¼ 1…g;

I
aI

ωzþ;z− ¼ 0:

ð27Þ

For further convenience, let us denote ci the circles
jz − zij ¼ ϵ. This allows us to define a singular homology
on Σ − fz1;…; zng by augmenting that of Σ with these n
new c-cycles.
The new ingredient compared to the tree-level case is the

presence of zero modes for the ∂̄ and ∂ operators, given by
the holomorphic one-forms and their complex conjugates,
as in (6). After the first integration of (22), we find

∂Xμ
LðzÞ ¼ iπα0

Xg
J¼1

ωJl
μ
J þ

iα0

2

Xn
i¼1

ωzi;z0k
μ
i ; ð28Þ

∂̄Xμ
Rðz̄Þ ¼ iπα0

Xg
J¼1

ω̄Jl̃
μ
J þ

iα0

2

Xn
i¼1

ω̄zi;z0k
μ
i ; ð29Þ

where z0 is an extra variable whose dependence drops out
by momentum conservation. We left unspecified the zero
modes for the holomorphic and antiholomorphic fields;
they will be fixed later by a physical requirement to mea-
sure a correctly normalized momentum. Integrating once
more gives

Xμ
L;classðzÞ ¼ xμL þ iπα0

Xg
J¼1

lμ
J

Z
z

P
ωJ þ

iα0

2

Xn
i¼1

kμi

Z
z

P
ωzi;z0 ;

ð30Þ

Xμ
R;classðz̄Þ ¼ xμR þ iπα0

Xg
J¼1

l̃μ
J

Z
z̄

P
ω̄J þ

iα0

2

Xn
i¼1

kμi

Z
z̄

P
ω̄zi;z0 :

ð31Þ

Finally, Xμ
class is given by the sum of these two equations.

To make contact with the previous derivation and Eq. (19)
in particular, note that the prime form is related to the
Abelian differentials of the third kind by

∂z ln
�
Eðz; aÞ
Eðz; bÞ

�
¼ ωa;bðzÞ: ð32Þ

This also defines uniquely the zero modes of ∂X; ∂̄X
with correct normalization. To measure the loop momen-
tum flowing through a typical cycle C, which is a com-
bination of the canonical aJ-cycles and ci-cycles, we define
the following flux:

Pμ
C ¼ 1

2πα0

I
C
ð−∂zdzþ ∂ z̄dz̄ÞX: ð33Þ

The normalization is fixed in a first stage by demanding
that integration along ci-cycles provides momentum ki:

1

2πα0

I
ci

ð−∂zdzþ ∂ z̄dz̄ÞXμ ¼ kμi
iα0

4πα0

I
ci

ð−ωzi;z0 þ ω̄zi;z0Þ

¼ kμi : ð34Þ

Then we have

1

2πα0

I
aI

ð−dz∂z þ dz̄∂ z̄ÞXμ ¼ −δIJiðlμ
J − l̃μ

JÞ=2≡ lμ
I

ð35Þ

if the loop momenta are taken to be purely imaginary. This
derivation gives another check of this property which was
originally observed in [4,5] and that seems fundamental
to string theory on euclidean world sheets. It would be
interesting to study the consequences of this fact in the
ambitwistor string where a similar normalization was
observed to arise by matching against field-theory compu-
tations in [26].
Open strings on orientable surfaces are obtained by

modding out by the involution z ≃ z̄ along the a-cycles of
the string world sheet [27] and letting the punctures live on
the boundary of the surfaces. More precisely, if z ¼ ρeiθ

with θ ∈ ½0; 2π½ is a local coordinate along an a-cycle, we
identify θ ↔ −θ. This is the natural involution to describe
the gauge theory channel of open-string amplitudes, which
we will use later to apply the monodromy relations in open-
string theory and their induced relations in field theory.
This involution can also be used to obtain some nonplanar
graphs, as long as they are given by orientable surfaces.
Note also that this turns the cycles of the canonical

dissection into segments on the world sheet such thatH
aI
ωJ →

R
a0I
ωJ ¼ δIJ=2, where a0I is aI modulo the

involution.

III. FIELD-THEORY INTEGRAND

In this section we will investigate one implication of
the previous considerations. Since there exists a global
integrand in string theory, there needs to exist one in field
theory, induced via the field-theory limit. In practice, after
studying the field-theory limit itself, we will be able to
describe the graph integrand topologies: external leg order-
ing and labeling of the internal loop momenta.
The understanding of the mechanism of the field-theory

limit of string graphs is almost as old as string theory itself
[28]. It is produced by corners of the moduli space where
the surface degenerates so that all internal edges become
infinitely long and thin (this is a b-cycle statement) or
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equivalently where all a- and c-cycles are pinched. This is a
continuous process, known in the math literature as a
tropical limit [29].
The property which we will need to describe the graph

loop-momentum labeling is that the momentum flowing
through a cycle is preserved by the field-theory limit. As
the momentum is a zero mode, it is not affected by the
decoupling of the excited states of the string; therefore, the
result which we seek is physically sound and the problem
reduces to a computational matter. Let C be a closed curve
made of aI- and ci-cycles:

C ¼∪i∈IC
ai ð36Þ

where a is either an a-cycle or a c-cycle with coefficient 1.
This defines implicitly the set IC. This excludes the possi-
bility that our cycle C could wind multiple times. For
illustrative purposes, see Fig. 2. Let us call the correspond-
ing momentum

pμ
C ¼ −

1

2πα0

I
C
ðdz∂z − dz̄∂ z̄ÞX ¼

X
I;i∈IC

ðlμ
I þ kμi Þ ð37Þ

with obvious notations for the summation. The crucial
point is that this quantity is a topological invariant; there-
fore, it cannot change as we deform continuously the
surface when taking the field-theory limit. We now will
check this property, see when the C cycle degenerates, and
demonstrate that a propagator 1=p2

C factorizes out of the
string amplitude.

A. Single pinching of a Riemann surface

There are two types of degenerations that a Riemann
surface can undergo: separating and nonseparating. The
separating degeneration corresponds to pinching off a
trivial cycle in the homology or a c-cycle: it splits apart
a surface of genus g into two surfaces of genera g1 and g2
such that g ¼ g1 þ g2. A nonseparating degeneration

pinches off an a-type cycle and the resulting object is a
surface with genus decreased by one unit and two extra
punctures. This is the case of interest for us because we
want to check that a propagator with expected loop-
momentum labeling is generated. An example of such a
degeneration is provided in Fig. 3.
Firstly, let us observe that we do not lose in generality by

considering that the a-cycle part of our C cycle is the cycle
ag (we could always relabel the a-cycles).
The degeneration of the Riemann surface is done via the

so-called plumbing fixture construction; see [30] or [4,31].
In this construction, the degenerating curve Σg is con-
structed from a Riemann surface of genus g − 1, Σg−1 with
period matrix Ωg−1 and a pair of points marked on the
surface pa and pb; see Fig. 4. To construct Σg, one con-
structs two pairs of circles centered around pa and pb: C00

a
andC0

b of radius 1 and C
0
a; C00

b of radius jqj < 1 for complex
number q that parametrizes the degeneration. The internal
disk is then cut out of the surface and the annuli between
the disks are identified via an invertible map

xy ¼ q:

The extra a-cycle ag is a closed loop around C00
a for

instance; the extra b-cycle bg is a line that connects any
two points za and zb in the annuli that obey zazb ¼ q.
Choosing jzaj ¼ jzbj ¼

ffiffiffiffiffiffijqjp
ensures that when q ¼ 0, the

extra cycle is really the line connecting the two points pa
and pb which are identified. Then, ifΩg is the period matrix
of Σg, Fay in [30] proves that

Ωg ∼
�Ωg−1 v⃗

v⃗t τ

�
; where q ¼ e2iπτ; ð38Þ

up to subleading terms and where the components of v⃗ are

given by vI ¼
R
pb
pa

ωðg−1Þ
I , I ¼ 1…g − 1. The exponent on

FIG. 2. From the picture we see that C ∪ ða2Þ−1 ∪ b1 ∪
ðb1Þ−1 ∪ c1 ∪ c2 ¼ id; hence, C¼ a2 ∪ ðc1Þ−1 ∪ ðc2Þ−1 and the
momentum flowing through C is given by 1

2πα0
H
Cð−∂ þ ∂̄ÞXμ ¼

lμ
2 − kμ1 − kμ2.

FIG. 3. Handle-representation drawing of the pinching that we
studied in this section.

FIG. 4. Illustration of the plumbing fixture construction.
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the differential form ωðhÞ
I designates the surface Σh to which

it is associated for h ¼ g, g − 1.
With this, we can already extract the degeneration of the

quadratic term in the loop momentum in the exponential in
Eq. (19):

Xg
I;J¼1

lI · lJImΩg ¼ l2
gImτ þ 2

Xg−1
I¼1

lI · lgImðvIÞ

þ
Xg−1
I;J¼1

lI · lJImΩg−1: ð39Þ

To study the degeneration of the other two terms in (19),
we need the degeneration of the differential forms one-
forms. That of the holomorphic forms is standard and
detailed in the references mentioned above:

ωðgÞ
I ¼ ωðg−1Þ

I þOðqÞ; ð40Þ

ωðgÞ
g ¼ ωðg−1Þ

pa;pb þOðqÞ: ð41Þ

This allows us to extract the degeneration of the second
term in (19):

X
i;J

lJ · ki

Z
zi

P
ωðgÞ
J ¼ lg ·

Xn
i¼1

ki

Z
zi

P
ωðg−1Þ
pa;pb

þ
Xn
i¼1

Xg−1
J¼1

lJ · ki

Z
zi

P
ωðg−1Þ
J þOðqÞ:

ð42Þ

We therefore need to evaluate the integrals
R zi
P ωðg−1Þ

pa;pb .
The circle cycle C defined as above is represented in Fig. 5.
It cuts out the surface into two distinct components (we are
still working in the canonical dissection; hence, one should
not cross through the a-cycles).
When P and zi are on the same side, almost nothing is to

be done and
R zi
P ωðg−1Þ

pa;pb provides directly two terms similar
to the ki · kj terms of Eq. (19). To see this, we use the
reciprocity theorem [32] for Abelian differentials of the
third kind with zero a periods:

Z
A

B
ωC;D ¼

Z
C

D
ωA;B: ð43Þ

Therefore we have that

Z
zi

P
ωðg−1Þ
pa;pb ¼

�Z
pa

z0

−
Z

pb

z0

�
ωðg−1Þ
zi;P

; ð44Þ

which now has the desired form, if z0 is chosen as in (30)
and (31). While these terms have been easy to obtain, the
ones that descend from degenerating the other terms in the
exponent of (19) that contribute to induce a new Koba-
Nielsen factor on the resulting pinched-and-dissected sur-
face are more subtle, and we shall not treat them here but
instead focus exclusively on how the propagator 1=p2

C is
produced.
If now zi is on the other side of the cycle C, the path

between P and zi is a sum of two segments, as in Fig. 5:
Z

zi

P
¼

Z
zb

P
þ
Z

zi

za

: ð45Þ

As seen in the picture, the path can be deformed so as to
make apparent that it contains the following integral:

Z
za

zb

ωðg−1Þ
pa;pb : ð46Þ

Generically, this term is equal to τ, up to subleading
corrections of order Oð1Þ þOðqÞ. If we follow the refine-
ment of the plumbing fixture construction developed in
[31] called the “funnel formalism,” this integral is exactly
equal to the lower right entry of the period matrix τ in
Eq. (38); see (3.27) in [31] and [33].
If I ¼ fi1…ikg denotes the set of particles being on the

other side of the cycle C, from those terms we therefore get
a global factor of

4iπτlg ·
X
i∈I

ki: ð47Þ

Finally we need to investigate the last category of terms,
those of the form ki · kj

R zj
P ωzi;z0 . But the degeneration is

essentially identical to what we did before. When zj is on
the same side of the cycle as P, nothing happens. If zj is on
the other side, we get a factor of τ for each of these zj.
Equivalently, because of Eq. (32) we need the degener-

ation of the prime form. In [29], the full degeneration of the
string world sheet integrals into worldline graphs (“tropical
graphs”) was studied and it was verified that the logarithm
of the prime form descends to the worldline propagator of
[34]. The latter is given by the sum of the distance in the
graph between two points, which essentially parametrizes
the degeneration. In field theory, for a graph with an edge of
proper time T, there always is a modulus of the Riemann
surface parametrized by q ¼ expð−2πðT=α0 þ θÞÞ → 0 for
θ ∈ ½0; 2π½ such that

lnðEðx; yÞÞ ¼ lnðqÞ þ � � � : ð48Þ
If we now look at our case where the surface is degenerated
in one cycle, this fact needs to remain true (essentiallyFIG. 5. Integration cycle on the cut surface.
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because the limit is continuous and the deformation of
this cylinder does not influence the other moduli of the
surface to first approximation) and all the propagators
lnðjEðzi; zjÞjÞ that end up splitting apart two punctures on
each side of C produce a factor of lnðqÞ [35]. If we call I
and J the (disjoint) sets of punctures on each side of the
cut, we get a total factor of

lnðqÞ
X

i∈I ;j∈J
ðki · kjÞ: ð49Þ

To conclude, we can collect all the terms that undergo a
degeneration in (19). They conspire to produce a quadratic
propagator given by K2 ¼ ðlþP

kiÞ2 which appears as
follows:

Z
jqj<ϵ

d2q
jqj2 jqj

−α0πK2 ∝
1

α0K2
þOðϵÞ; ð50Þ

where we have used that a d2τ ∝ d2q=jqj2 is a modulus of
the surface and, hence, is being integrated over in the full
string amplitude. It can also be checked that all other
dependence on the modulus drops, to subleading order, as
far as the exponential is concerned [36].
Using this property in combination with the observation

that the cycle running through a node is a topological
invariant proves that all the graphs obtained in the tropical
or field-theory limit can be given a uniform loop momen-
tum. In the next section we study this labeling and use it in
the monodromy relations.

B. Graph labeling in the field-theory limit

1. Closed string

Let us now study the graph labeling induced in the
field-theory limit for this closed string picture. The choice
of the point where the cycles touch in Fig. 1 defines all
the possible degeneration channels and the associated
momenta. The graphs are obtained by letting the puncture
travel through the whole surface and pinching all possible
a-type cycles. To identify the momentum flowing through
an inner edge, work out which homology cycle being
pinched (as in Fig. 8) on the Riemann surface and derive the
momentum flowing through it with the rules of Eqs. (34)
and (33).
The fact that the punctures move over the whole surface

implies in particular that, for a given type of degeneration
with prescribed momenta, all the graphs with legs per-
muted should appear in the integrand.

2. Open string

In the open string, the graph labeling that emerges from
the integration over the string moduli space is similar to the
closed string picture, expect that individual graphs are color
ordered. This allows one to select restricted classes of

numerators when studying properties like the monodromy
relations.
The open string will be the subject of the next section

where we study the monodromy relations at two and three
loops. We give there more details and examples on the
systematics of the limit and the labeling.

3. Nonplanar graphs

There are two types of nonplanar contributions present in
the field-theory limit of closed string graphs (in gravity
amplitudes): nonplanar vacuum graphs and planar vacuum
graphs where external legs are inside. While the latter may
seem to cause no troubles concerning the definition of
the loop momentum, the former may appear problematic.
They are actually not and are neatly generated by the
mechanism of the field-theory limit (pinching a-cycles);
therefore, they also come with a uniquely defined loop
momentum. The interested readers can look at the graph in
Fig. 6 and convince themselves that the graph suggested by
the drawing of this Riemann surface can be obtained from a
regular “planar-looking” genus 4 surface by pinching a sum
of a-cycles with �1 coefficients.
There are nonorientable open-string graphs, and it would

be interesting to study the loop momentum of these graphs,
too [37].

IV. APPLICATION TO THE MONODROMY
RELATIONS IN OPEN-STRING AND
GAUGE THEORY AT LOOP LEVEL

Monodromy relations to all loop orders were derived
in [6] in a representation involving loop momentum.
Compared to the tree-level case [9,10], the relations do
not hold at the level of the amplitude but at the level of the
integrand. This stems from the fact that the integrand has
both local and global monodromies, and the latter involve
phases that depend on the loop momentum. The whole
construction is fairly simple and exposed in [6] so it will not
be reviewed too deeply here.
The basic idea is to consider a particular open-string loop

diagram with particles ordered along the boundaries (inner
and outer). Using a representation with loop momentum
yields directly an integrand that is holomorphic, as we saw
above. Therefore, taking one of these particles along a
closed contour inside the surface gives, via the residue
theorem, that the sum of all individual portion vanishes
exactly at the integrand level. Each portion can be rewritten

FIG. 6. Non-planar-looking closed string graph.
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as a properly ordered open-string integrand but at the cost
of picking up a phase, that depends on the loop momentum
when the particle is on a different boundary than the one we
started from. The portions of the contour that run along the
a-cycles (in red in Fig. 7) cancel after loop-momentum
integration (they are related by a simple shift in the loop
momentum; see [38] for detailed examples at one loop).

A. Two loops

To be concrete, we provide an example of the field-
theory limit of two-loop four-gluon amplitude in type I
superstrings.
The orientable topologies of the open-string amplitude

(no cross-caps) for N ¼ 4 Yang-Mills at two loops are
obtained from the celebrated two-loop formulas for closed
strings of D’Hoker and Phong [39]. They read

Að2Þ
orientð1; 2; 3; 4Þ ¼ s12s23Atreeð1; 2; 3; 4Þ

Z Q
I≤JdΩIJ

ðdet ImΩÞ5

×
Z
ð∂ΣÞ4

YS exp

�X
i;j

ki · kjGðzijÞ
�
;

ð51Þ
up to a global normalization factor, and where Atreeð1; 2;
3; 4Þ is the tree-level four-gluon color-ordered partial
amplitude, while the kinematics invariants are defined by
sij ¼ −ðki þ kjÞ2. The integration ordered along the boun-
dary ð∂ΣÞ4 ≃ f ∀ i ¼ 1…4; zi ∈ ∂Σ; z1 < z2 < z3 < z4g
and YS is defined by

3YS ¼ ðk1 − k2Þ · ðk3 − k4ÞΔðz1; z2ÞΔðz3; z4Þ þ ð13Þð24Þ
þ ð14Þð23Þ; ð52Þ

in terms of the differential form bilinears

Δðz; wÞ ¼ ω1ðzÞω2ðwÞ − ω1ðwÞω2ðzÞ: ð53Þ

For maximally supersymmetric amplitudes in general at
two loops in type I and type II, the field-theory limit
procedure was worked out in [29,40] and the numerators
are given by the tropical limit of the factor YS, which equals
the kinematic invariant sij whenever the two legs are on the
same b-cycle and no subtriangle is present in the graph,
which matches the field-theory result of [41] (this means
that we just have double-box and nonplanar double-box
graphs).

In terms of the string loop integrand Ið2Þ ≃ Ið2Þðzi;liÞ of
Að2Þ
orient, the monodromy relations of [6] at two loops read

k1 · k2Ið2Þð2134Þ þ k1 · ðk2 þ k3ÞIð2Þð2314Þ
− l1 · k1Ið2Þð234j1j:Þ − l2 · k1Ið2Þð234j:j1Þ ≃ 0: ð54Þ

The two terms on the rightmost part correspond to non-
planar amplitudes where the particle 1 is integrated along
the first and second inner disks of the two-loop open
string graph, respectively (from left to right in Fig. 7). The
≃ symbol means “up to terms that vanish after momentum
integration.” These are generated by integrals along the
boundary of the cut surface and correspond to loop-
momentum shifts.

ð55Þ

All other diagrams are suppressed by supersymmetry in
the field-theory limit because of the properties of the
tropical limit of the integrand given by YS that we just
described. These graphs are scalar graphs, with their deno-
minator and with the same numerator s12 ¼ −ðk1 þ k2Þ2
because Ys ¼ s34 ¼ s12 (again see Table 1, p. 41, in
Ref. [29]). Therefore, these graphs are just scalar graphs
with a constant numerator.
Using the antisymmetry of the three-point vertex [6,38],

we can equate the two graphs on the second line up to a sign
and reduce the factors in front of the graphs to differences
of propagators:

l1 · k1 ¼ ðl1 þ k1Þ2 − l2
1; ð56Þ

ðl1 þ k2Þ · k1 ¼ ðl1 þ k1 þ k2Þ2 − ðl1 þ k2Þ2; ð57Þ
ð−l1 þ l2Þ · k1 ¼ ðl1 − l2Þ2 − ðl1 − l2 − k1Þ2: ð58Þ

In this way, six terms are produced which almost cancel
pairwise:

ð59Þ

In this equation, the plain (respectively, dashed) lines cor-
respond to a positive (respectively, negative sign). Four
terms cancel pairwise, while two, the negative contribution
of the first graph and the positive one of the last graph,
differ by a shift in the loop momentum as

FIG. 7. Two-loop example of field-theory limit for open strings
and determination of the loop momentum.
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ð60Þ

Because the relation is exact at fixed loop momentum, this
gives a precise definition the terms in the right-hand side.
A more graphical explanation of this phenomenon can be
found in [38]. At any rate, after loop-momentum integra-
tion, these terms cancel, as they should. Note that for more
generic amplitudes, the numerators are not simply con-
stants anymore and the field-theory limit of the terms on the
right-hand side could provide interesting physical quan-
tities. These will be studied elsewhere.
This derivation provides a stronger check than the

unitarity cut check that was originally performed in [6].

B. A relation at three loops

What we have seen so far is that the string representation
in terms of loop momentum induces a global definition of
the loop momentum. Now we will investigate a new
phenomenon related to this that arises at three loops: there
are two different vacuum topologies of one-particle-irre-
ducible graphs, mercedes and ladder, which share the same
loop momentum.
After characterizing this effect, we will work out an

example of application of the monodromy relations to
support further that their connection to the BCJ color-
kinematics duality extends to all loops.
Figure 8 displays two representative graphs that follow

from the field-theory limit of the open-string graph on the
left-hand side. Both these graphs appear under the same
loop-momentum integral in the field-theory limit and
provide a natural correspondence between the same loop
momentum but in different graphs.
The monodromy relations in string theory at three loops

are obtained by following the method exposed in [6].
Circulating leg 1 inside a previously planar graph with
ordering 1 < 2 < 3 < 4 as in Fig. 8 yields a relation, whose
field-theory limit is given by

k1 · k2Ið3Þð2134Þ þ k1 · ðk2 þ k3ÞIð3Þð2314Þ
− l1 · k1Ið3Þð234j1j:j:Þ − l2 · k1Ið3Þð234j:j1j:Þ
− l3 · k1Ið3Þð234j:j:j1Þ ≃ 0: ð61Þ

The notations are similar to those of Eq. (54). The terms on
the second line correspond to nonplanar amplitudes where
particle 1 is integrated along the first, second and third inner
disks, respectively, according to the numbering of the a
cycles in Fig. 8.
Many graphs arise in this integrand relation [42]. They

mix different topologies and orderings. The systematics of
the propagator cancellation is similar to what happens at
two loops. We illustrate this below for a particular subset of
these graphs, which will give stronger evidence that a BCJ
representation always satisfies the monodromy relation,
up to the loop-momentum shifting terms.
The main point is that this sum of graphs can be

reorganized into BCJ triplets. For instance, the following
four terms appear in the sum in the left-hand side of (61):

ð62Þ

where þ � � � indicate the rest of the terms of the sum. These
graphs represent full integrands: numerators over denom-
inator. They are those of any gauge theory we started with
in the open string [43].
With the momenta are distributed as in Fig. 8, it is easy to

see that the factors in front of the graphs indeed recombine
into differences of irreducible propagators which organize
themselves as a BCJ identity with shifted momenta of the
form

ð63Þ

Here, Dð·Þ is the scalar denominator corresponding to the
graph (nonobvious loop-momentum locations are depicted,
and l2 is not affected) and Nð·Þ is the numerator of the

FIG. 8. The two graphs on the right-hand side are generated by
the field-theory limit of the open-string graph on the left-hand
side. It is an interesting exercise for the reader to work out this
example explicitly.
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corresponding graph. We have used again the antisymmetry
of the three-point vertex

ð64Þ

The three terms above therefore combine into a BCJ triplet
involving some loop-momentum shifts on top of denom-
inators with one propagator canceled.
We have worked out the specific case that is the most

delicate, i.e. the one that involves loop-momentum shifts.
The other triplet identities are simpler and therefore it is
very reasonable to guess that the property persists for
all types of trivalent graphs also including those with
internal triangles, bubbles or not—see [38] for examples
at one loop.
Note that an identity that would mix up mercedes and

ladder topologies requires one to apply the monodromy
relations twice or to start from a nonplanar amplitude.
To sum up the relations that stem from the monodromy

relations in the field-theory limit, we schematically denote
by the letter JG;e the sum of BCJ triplets for the graph G
with one inner edge e contracted. We obtain

X
G;e

JG;e
DG;e

≃ 0: ð65Þ

In the generalized double-copy construction [44], these J
functions generate higher point vertices that need to be
canceled by introducing contact terms. The structure of
these objects is still quite poorly understood, in particular
how to simplify them as much as possible, and it would be
interesting to see if the monodromy relations can provide
some formal constraints on these objects, maybe in relation
to the loop shifting terms of the right-hand side.

V. DISCUSSION

A. An integrand in field theory

In this paper we analyzed some aspects related to the
definition of the loop momentum in string and field theory.
This formalism was mostly developed to be applied to the
monodromy relations, but it would be very interesting to
see if the global integrand defined in this way has any nice
physical properties.
Furthermore, in standard perturbative field theory there

is no particular notion of field-theory integrand except in
the case of planar amplitudes: this has led to remarkable
constructions such as the all-loop integrand for planar
N ¼ 4 super-Yang Mills [45] and the amplituhedron [46].
This program was then extended to gravitational theories
in [47] and it would be interesting to see if all these

constructions are connected to the general considerations
presented in this paper.
The ambitwistor string [48], based on the scattering

equation formalism [49] also provides loop integrands
[26,50–58]. The bottleneck in pushing this formalism to
all loops has so far been the understanding of the geometry
of the moduli space and the connection to the zero modes
(loop momentum) in the path integral. There is no doubt
that a better understanding of the loop momentum in string
theory should help to fix these issues.

B. Kawai-Lewellen-Tye

Since they realize splitting of the holomorphic and
antiholomorphic degrees of freedom in string integrands,
loop-momentum representations should also be linked
to the extension of the tree-level Kawai-Lewellen-Tye
(KLT) [59,60] formulas to loop level. Recently, Mizera
has reformulated in the language of twisted cycles this
program [61,62] and a deeper understanding of the loop
momentum will be necessary to understand these con-
structions at loop level where global monodromies arise.
Relatedly, it would be very interesting to see if these
relations can be extended to amplitude relations. The theory
developed in [63] for field-theory integrands, inspired from
[61], would seem like a natural starting point to study these
questions. Relatedly, “generalized elliptic functions” have
been introduced in [64–67] and it would be interesting to
see if a proper treatment of the loop momentum can help in
characterizing the nature of these objects.

C. Twisted strings and modular invariance

Twisted strings [68] are the tensionful versions of
ambitwistor strings. To my knowledge, the first time such
a construction was mentioned is in the paper [69], and in
spirit they were present in [70,71] already. Classically, they
are just identical to traditional string theory; but their
quantization is modified (different operator ordering),
which results in a truncated spectrum. The cleanest way
to understand their scattering amplitudes is at tree level so
far, via the twisted period relations of [62].
It is conjectured [72] that the loop-level version should

also involve only a change in oscillator modes of the string;
therefore, all we said here about the loop-momentum zero
modes should apply to the twisted string too. However,
loop amplitudes have proven difficult to write so far, and a
very good hope to guess them would be to generalize the
twisted period relations to loop level. This ties in with the
previous paragraph on KLT.
One could even think of using these twisted string

loop amplitudes to then take the ambitwistor string limit
(tensionless limit of the twisted string; see [72–76]). But
one may doubt that this could produce a sensible answer,
mostly because the loop momentum breaks modular invari-
ance [4] and the saddle point equations of the tensionless
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limit [77] seem to induce a maximum value for the loop
momentum, while all values should be allowed and
integrated on to give back the original integral without
loop momentum. This problem will be studied elsewhere.

ACKNOWLEDGMENTS

I thank David Andriot, Enrico Hermann, Alexander
Ochirov, Julio Parra-Martinez, Boris Pioline, Amit Sever
and Sasha Zhiboedov for useful discussions and com-
ments. This research project has been supported by a Marie
Skłodowska-Curie Individual Fellowship of the European
Commissions Horizon 2020 Program under Contract
No. 749793 NewLoops.

Note added.—Since this paper has appeared, another check
on the prescription was provided in [78], in the nonplanar
sector, where the phases of the subleading order relations
found in [6] were corrected to match those of [7].

APPENDIX: DEFINITIONS

Here are the conventions that are used in this paper (we
follow mostly Kiritsis [79]):

z ¼ σ1 þ iσ2; z̄ ¼ σ1 − iσ2; ðA1Þ

∂
∂z ¼

1

2
ð∂1 − i∂2Þ;

∂
∂z̄ ¼

1

2
ð∂1 þ i∂2Þ: ðA2Þ

The metric reads d2s ¼ 2gzz̄dzdz̄; therefore,
ffiffiffi
g

p ¼ gzz̄
such that the volume measure is given by

R ffiffiffiffiffiffiffi
gab

p
d2σ ¼R ffiffiffi

g
p

d2z, which yields

2dσ1dσ2 ¼ d2z ¼ idz ∧ dz̄: ðA3Þ

For the diagonal metric gab ¼ diagð1;1Þwe have gzz̄ ¼ 1=2,
which implies that δ2ðz; z̄Þ ¼ 1

2
ffiffi
g

p δðxÞδðyÞ ¼ δðxÞδðyÞ, as
this yields

Z ffiffiffi
g

p
d2zδ2ðz; z̄Þ ¼ 1: ðA4Þ

We also have

∂ z̄
1

z
¼ ∂z

1

z̄
¼ 2πδ2ðz; z̄Þ: ðA5Þ

We will use the language of differential forms (all
conventions are spelled out in the Appendix), upon which,
essentially,

d2z ¼ idz ∧ dz̄; ∂ ¼ ∂zdz; ∂̄ ¼ ∂ z̄dz̄; d ¼ ∂ þ ∂̄;
ðA6Þ

where d is the standard differential operator, d2 ¼ 0. The i
normalization factor will be important soon. The Stokes
theorem states that, for ω a k-form and D a (kþ 1)-chain,
we have

Z
∂D

ω ¼
Z
D
dω; ðA7Þ

where ∂D is the boundary of D.
The prime form is a ð−1=2; 0Þ ⊗ ð−1=2; 0Þ biholomor-

phic form defined on the universal covering of the surface
by

Eðx; yÞ ¼ θ½ν�ðR y
x ðω1;…;ωgÞjΩÞ
hνðxÞhνðyÞ

∈ C; ðA8Þ

where hνðxÞ2 ¼
P

I ωI∂Iθ½ν�ð0jΩÞ are half-differentials
(section of the square root of the canonical bundle). It is
independent of the spin structure chosen to define it.
The Riemann theta functions are defined by

θ½ν�ðζjΩÞ ¼
X
n∈Zg

eiπðnþβÞ·ΩðnþβÞe2iπðnþβÞ·ðζþαÞ; ðA9Þ

where ½βα� ¼ ν ∈ ðZ=Z2Þ2g is a theta characteristic. They
have monodromies that can be found in standard textbooks,
which lead to the following monodromies for the prime
form [4]:

Eðx; yÞ → exp

�
−ΩJJ=2 −

Z
y

x
ωJ

�
Eðx; yÞ ðA10Þ

and trivial signs along a-cycles.
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