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The zigzag model is a relativistic N-body system arising in the high-energy limit of the worldsheet
scattering in adjoint two-dimensional QCD. We prove classical Liouville integrability of this model by
providing an explicit construction of N charges in involution. Furthermore, we also prove that the system is
maximally superintegrable by constructing N − 1 additional independent charges. All of these charges are
piecewise linear functions of coordinates and momenta. The classical time delays are determined
algebraically from this integrable structure. The resulting S-matrix is the same as in the N-particle
subsector of a massless TT̄ deformed fermion.
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I. INTRODUCTION

Understanding the mechanism of quark confinement
continues to stand out as an interesting challenge and as
a source of new developments in theoretical and math-
ematical physics.
Starting with [1], much effort has recently been put into

a study of scattering on the worldsheet of a single confining
string in the t’ Hooft planar limit [2]. An especially
interesting problem is to understand the high-energy
dynamics on the worldsheet. In this regime one expects
the confining string to exhibit characteristically gravita-
tional behavior similarly to that of critical strings [3].
An interesting possibility is that hard high-energy

scattering on the worldsheet approaches integrable asymp-
totics [4]. A concrete version of this proposal, the axionic
string ansatz [4,5], identifies the corresponding integrable
theories as TT̄ deformations [6–9] of certain free massless
models. This proposal is motivated and supported by the
recent analysis [4,10,11] of lattice measurements of flux
tubes excitations [12–15]. For D ¼ 3 gluodynamics it is
also supported by lattice determinations of glueball masses
and spins [5,16,17]. The physical reason for the emergence
of integrable dynamics in the high-energy worldsheet
scattering is the asymptotic freedom of the underlying
gauge theory [18]. Finally, axionic strings also came out
recently as a result of the flux tube S-matrix bootstrap [19].
A natural playground for testing this idea is provided by

adjoint QCD inD ¼ 2 dimensions (aQCD2). The spectrum

of this theory was extensively studied in the early 1990s
[20–23] (see, e.g., [24,25] for more recent interesting
works). A study of the worldsheet scattering in the model
has been initiated in [26], building up on the techniques
developed in prehistoric times [27,28].
Recently, a candidate relativistic N-body system describ-

ing the integrable high-energy asymptotics of the world-
sheet theory in aQCD2 was identified [29]. For reasons
which will become clear we call this system the “zigzag
model.” In [29] we provided partial numerical and
analytical evidence for classical integrability of the zigzag
model. The goal of the present paper is to provide a
complete proof that the zigzag model is integrable at the
classical level.
The rest of the paper is organized as follows. In Sec. II

we describe the model. In Sec. III we describe a discrete
topological invariant present in the model. This topological
invariant ensures that the total number of left- and right-
movers is conserved in any scattering event. In Sec. IV we
construct N conserved charges in involution and 2N − 1
algebraically independent conserved charges. All of these
charges are piecewise linear functions of coordinates and
momenta. This construction establishes that the zigzag
model is Liouville integrable and, moreover, maximally
superintegrable. We conclude in Sec. V. In the Appendix
we provide explicit expressions for integrals of motion for
N ¼ 2 and N ¼ 3.

II. DESCRIPTION OF THE MODEL

The zigzag model describes a chain of N ordered
particles on a line with nearest neighbor interactions.
The structure of its Hamiltonian is very similar to the
celebrated Toda chain [30]. The difference is that particles
in the zigzag model are massless, i.e., they always move
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with unit velocity. The exponential nearest neighbor
Toda potential is replaced with a piecewise linear one of
the form

VðqÞ ¼ qþ jqj: ð1Þ

The full Hamiltonian then takes the following form:

H ¼
XN
i¼1

jpij þ
XN−1

i¼1

Vðqi;iþ1Þ; ð2Þ

where

qi;iþ1 ¼ qi − qiþ1:

Pictorially, this system may be represented as a sequence of
beads on a rubber band, see Fig. 1. All particles move with
velocities �1 depending on the sign of the corresponding
momentum. A generic configuration of particles exhibits a
number of zigzags, which explains the name of the model.
The only particles experiencing a force are those at the
zigzag turning points. Momenta of all other particles stay
constant.
In the gauge theory language, beads correspond to

quarks in the adjoint representation and the rubber band
to the confining string. As a consequence of asymptotic
freedom, processes which change the number of quarks
(partons) are suppressed at high energies. Hence the
worldsheet theory splits into separate sectors labeled by
the number of partons N, each described by (2) at the
leading order in the high-energy expansion.
Similarly to the Toda chain, in addition to the open

zigzag model described by (2), one may also consider its

compact version. The latter describes a closed confining
string wound around a compact spatial circle. As men-
tioned in [29], there is overwhelming numerical evidence
that the compact zigzag model is also integrable. In the
present paper we restrict our discussion to the open case.
An important property of the zigzag model is that it

inherits Poincaré symmetry from the underlying gauge
theory. Namely, it is straightforward to check that the
Poisson brackets between the Hamiltonian H, total
momentum

P ¼
XN
i¼1

pi; ð3Þ

and the boost generator

J ¼
XN
i¼1

qijpij þ
1

2

XN−1

i¼1

ðqi þ qiþ1ÞVðqi;iþ1Þ ð4Þ

give rise to the ISOð1; 1Þ Poincaré algebra

fH;Pg¼ 0; fJ;Pg¼H; fJ;Hg¼P: ð5Þ

As we will see, it is often convenient to treat momenta
pi and coordinate differences qi;iþ1 on equal footing.
This is achieved by introducing a string of variables

Qa ¼ ðp1; q1;2; p2;…; qN−1;N; pNÞ ð6Þ

with a ¼ 1;…; 2N − 1. Associated with this string there
is also a sequence of the corresponding sign variables
(“classical bits”)

Sa ¼ ðs1; s1;2; s2;…; sN−1;N; sNÞ; ð7Þ

where

si ¼ signðpiÞ; si;iþ1 ¼ signðqi;iþ1Þ: ð8Þ
In what follows we also often use the notation

S0 ¼ S2N ¼ −1: ð9Þ

With these notations the equations of motion take the
following simple form:

_Qa ¼ Sa−1 − Saþ1: ð10Þ

For any configuration of Qa ’s at early times one finds a
bunch of right-moving particles on the left and a bunch of
left-moving particles on the right, freely approaching each
other (i.e., no zigzags are present). As left- and right-
movers reach each other and start to collide, the string goes
through a sequence of zigzag configurations (see Fig. 1). At
late times all zigzags are gone and one finds a bunch of left-
movers on the left and a bunch of right-movers on the right.

(a)

(b)

(c)

FIG. 1. Snapshots of time evolution in the zigzag model. At
early times (a) all left-movers are located on the right and right-
movers are on the left. The interaction period (b) proceeds
through a series of zigzag formation resulting in the momenta
exchanges. At late times (c) all left-movers are on the left and
right-movers are on the right. The topological invariant (11)
ensures that the difference between the number of left- and right
movers stays constant at all times, where left (right) is defined
with respect to the string worldsheet. This definition is illustrated
by the color coding, where right-movers are colored blue and left-
movers red.
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Classical integrability of the model manifests itself in the
absence of momentum exchange as one compares early and
late configurations. Namely, the values (and orderings) of
all early and late left- and right-moving momenta are the
same. Of course, particles momenta do change their values
at intermediate times. The main goal of this paper is to
prove integrability by constructing a sufficiently large set of
conserved charges.
Note that any solution to (10) is a piecewise linear

function of time. Hence, the zigzag model is definitely
integrable (or, better to say, solvable) in the broad sense—
starting with any initial value it is straightforward to find an
explicit solution for a later time evolution. All that one
needs to do is to linearly evolve the system forward in time
until one of the sign differences Sa−1 − Saþ1 in the right-
hand side of (10) changes its value. This corresponds
either to a zigzag formation/annihilation (i.e., to a collision
of two particles), or to a sign flip of one of the momenta.
Then one continues linear evolution with different values of
the velocities. A Mathematica solver implementing this
procedure can be downloaded from [31]. Note that this
solver provides an exact rather than a numerical solution to
the equations of motion starting with arbitrary rational
initial conditions. We will prove now that in addition to
being integrable in this broad sense the zigzag model is
actually Liouville integrable and, moreover, maximally
superintegrable.

III. TOPOLOGICAL CHARGE

Let us start a construction of conserved charges in the
zigzag model by describing the topological charge intro-
duced in [29]. Namely, it is straightforward to check that

T2N ¼ 1

2

X2N−1

a¼0

SaSaþ1 ð11Þ

stays constant under the time evolution described by the
equations of motion (10). We refer to T2N as topological
charge because it defines a piecewise constant function on
the phase space, separating it into dynamically discon-
nected topological sectors. In the asymptotic regions t →
�∞ no zigzags are present, hence all

si;iþ1 ¼ −1

so that one finds

T2N jt→�∞ ¼ −
XN
i¼1

si ¼ NL − NR; ð12Þ

where NL and NR count the numbers of left- and right-
movers in the initial and final states. This proves that
scattering does not change NL and NR. To see the
geometrical meaning of T2N at intermediate times let us
rewrite it in the following form:

T2N ¼ 1

2

XN
i¼1

siðsi−1;i þ si;iþ1Þ: ð13Þ

We see that also at intermediate times T2N can be
interpreted as a difference in the number of left- and
right-movers, provided left and right is determined with
respect to the string worldsheet rather than with respect to
the physical space. Particles at the zigzag turning points
should not be counted at all, see Fig. 1. Interestingly, if one
thinks about Sa’s as a classical spin sequence, T2N is equal
to the Ising model Hamiltonian.
In the construction of the dynamical conserved charges

presented in Sec. IV we will encounter the following
piecewise constant functions on the phase space, which
generalize (11),

Ta ¼
1

2

Xa−1
b¼0

SbSbþ1: ð14Þ

Unlike T2N , a general Ta may change its value in the course
of evolution when zigzags form/annihilate or particle
momenta flip sign. Indeed using the equations of motion
(10) we find that for a < 2N

_Ta ¼
1

2
Sa−1 _Sa ¼ ð1 − Sa−1Saþ1ÞδðQaÞ: ð15Þ

In what follows we need to know what are the possible
values of

Ta ≡ Tð0; aÞ

at fixed NL, NR (or, equivalently, at fixed N, T2N). In
general, one can write that

Ta ¼
a
2
− nf; ð16Þ

where nf is the number of sign flips in the ðS0;…; SaÞ
sequence of bits. In the absence of any additional restric-
tions, the possible range of values for nf is

0 ≤ nf ≤ a: ð17Þ

Restricting to the topological sector with a fixed NL, NR
imposes an additional constraint

nf þ n̄f ¼ 2NR; ð18Þ

where

0 ≤ n̄f ≤ 2N − a ð19Þ

is a number of sign flips in the complementary sequence
of bits ðSa;…; S2NÞ. Combining (18) and (19) we obtain
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that in addition to (17) the range of nf is also constrained
to satisfy

a − 2NL ≤ nf ≤ 2NR: ð20Þ

Recalling the relation (16) between nf and Ta the inequal-
ities (17) and (20) imply that Ta may take values in the
shaded region P shown in Fig. 2.
Figure 2 also illustrates another point, which will be

important in Sec. IV. Namely, as follows from (16), the
value of Ta unambiguously determines the value of the
corresponding spin Sa. This relation is shown in Fig. 2,
where solid dots correspond to Sa ¼ 1 and empty ones
to Sa ¼ −1.

IV. LINEAR CHARGES

Let us turn now to the construction of the dynamical
conserved charges in the zigzag model. Given that the
general solution of (10) is a piecewise linear function of
time, it is natural to look for charges which are piecewise
linear functions in the phase space. Restricting to transla-
tionally invariant charges we arrive then at the following
ansatz:

I ¼
X2N−1

a¼1

FaðSÞQa: ð21Þ

A time derivative of I contains a smooth contribution
related to time evolution of Qa ’s and δ-functional con-
tributions caused by sign flips in the set of Sa ’s. All

δ-functional contributions have to vanish separately, imply-
ing that _FaðSÞ ∝ δðQaÞ or equivalently that the coefficient
functions FaðSÞ satisfy

∂bFaðSÞðSb−1 − Sbþ1Þ ¼ 0 for a ≠ b: ð22Þ

It is clear by (15) that Ta and Sa satisfy this requirement.
Using the equations of motion (10) it is straightforward to
check that these are the only nontrivial solutions to (22) and
that the coefficient functions take the following functional
form:

FaðSÞ ¼ FaðSa; Ta; NL; NRÞ: ð23Þ

In what follows we suppress the NL and NR dependence
of Fa, assuming that these are kept fixed and nonzero.
In addition, as discussed in Sec. III, the value of Sa is
determined by Ta, so in what follows we write simply
FaðTaÞ.
Then the single remaining equation comes from requir-

ing that I stays constant under a smooth time evolution of
Qa’s and takes the following form:

C≡ X2N−1

a¼1

FaðTaÞðSa−1 − Saþ1Þ ¼ 0: ð24Þ

In particular, (24) implies that the value of C is invariant
under the change Sa → −Sa, provided the flip of Sa is
dynamically allowed. By (10) a flip is allowed when

Sa−1 þ Saþ1 ¼ 0; ð25Þ
which gives the constraints

CðSaÞjSa−1¼−Saþ1
¼ Cð−SaÞjSa−1¼−Saþ1

: ð26Þ

These reduce to the following set of equations:

Faþ1ðTa−1Þ¼ Sa−1

�
Fa

�
Ta−1−

Sa−1
2

�

−Fa

�
Ta−1þ

Sa−1
2

��
þFa−1ðTa−1Þ: ð27Þ

These equations hold for any a ¼ 1;…2N − 1, if one
sets F0 ¼ F2N ¼ 0. Roughly speaking, (27) provides a set
of linear recursion relations which determine Faþ1 in terms
of Fa and Fa−1. This is not exactly the case though, because
Ta−1 [which appears as an argument of Fa−1 in (27)] does
not take all values which Taþ1 may take, see Fig. 2. As a
result (27) leaves Faþ1ðTaþ1Þ undetermined at

Taþ1 ¼ � aþ 1

2
:

The structure of these recursion relations is illustrated in
Fig. 3, where we use the grid of possible values of Ta from

FIG. 2. The shaded P region shows possible values of Ta at
fixedNL,NR. For solid dots Sa ¼ 1, and for empty dots Sa ¼ −1.

JOHN C. DONAHUE and SERGEI DUBOVSKY PHYS. REV. D 102, 026005 (2020)

026005-4



Fig. 2 with the understanding that there is a number, which
is the corresponding value of FaðTaÞ, assigned to each
point of the grid. Arrows illustrate the relations between
numbers at different points on the grid, as determined by
(27). Figure 3 makes it clear that a general solution to (27)
is determined by 2N boundary values Fað� aþ1

2
Þ, subject to

one linear constraint at the right corner of the shaded
rectangular P region,

F2N ¼ 0:

This leaves us with 2N − 1 linearly independent solutions
to the recursion relations (27). Not all of these solutions
correspond to conserved charges, because (27) is the
condition for C in (24) to be constant, rather than zero.
Enforcing C ¼ 0 provides an additional linear constraint
leaving us with 2N − 2 translationally invariant indepen-
dent integrals of motion.
It is straightforward to construct these integrals explic-

itly. Indeed, let us consider Fa’s which are nonzero only on
one of the internal diagonals of the P region as shown in
Fig. 3 and is equal to the corresponding Sa at each of the
points on that diagonal. It is easy to see that these provide
2N − 2 linearly independent solutions to (27). An explicit
formula for the corresponding Fa’s is

FL;nL
a ¼ SaδTa;nL−a

2
ð28Þ

for diagonals going from the upper left side of the P region
to the lower right (like the violet one in Fig. 3) and

FR;nR
a ¼ SaδTa;−nRþa

2
ð29Þ

for diagonals going from the lower left side to the upper
right (like the blue one in Fig. 3). Here the range of values
for nL, nR is

nLðRÞ ¼ 1;…; 2NLðRÞ − 1; ð30Þ

and δTa;n is the Kronecker symbol. As a function of Sa’s the
latter can be written as

δTa;n ¼
Yk≠nþa

2
;k¼a

k¼0

Ta þ a
2
− k

nþ a
2
− k

;

where n can take any of the values − a
2
;− a

2
þ 1;…; a

2
.

To see the physical meaning of these solutions let us
inspect the corresponding functions IL;nL , IR;nR in the
infinite past and future, t → �∞. This is conveniently
done by using the following interesting space-time inter-
pretation of Fig. 3. Note, that any particle configuration
is naturally represented by a slice of P. Indeed, any
configuration QaðtÞ leads to a “bit” sequence SaðtÞ, which
can be equivalently represented as a sequence of Ta values,
such that

Taþ1ðtÞ ¼ TaðtÞ �
1

2
;

see Fig. 4. At early times no zigzags are present (i.e., all
qi;iþ1 ¼ −1) and all left-movers are on the right and right-
movers are on the left. Hence, this configuration corre-
sponds to the values of Ta ’s at the lower boundary of the P
region. As time evolves the slice moves upwards mono-
tonically. This motion corresponds to the dynamics of a
melting 2D crystal—the evolution proceeds through a
series of upward jumps of the points at the corners of
the “melting surface”. At late times t → þ∞ the slice
reaches the upper boundary of P.
Using this picture we see that at t → �∞

IL;nL ¼ −QL
nL; ð31Þ

IR;nR ¼ ð−1ÞnRþ1QR
nR; ð32Þ

whereQL
nL andQ

R
nR are subsets ofQa corresponding to left-

and right-movers at t → �∞, i.e., at t → −∞

QR
nR ¼ QnR; ð33Þ

QL
nL ¼ Q2NRþnL ð34Þ

FIG. 3. The structure of the recursion relation (27) as illustrated
by arrows in the ða; TaÞ plane. Blue and violet diagonals
correspond to right and left charges respectively. Boundary
conditions for the recursion relations (27) are imposed at the
points along the dashed red lines.
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and at t → þ∞

QR
nR ¼ Q2NLþnR ; ð35Þ

QL
nL ¼ QnL: ð36Þ

Given that solutions of (27) are either integrals of motion or
linear functions of time, we see that IL;nL , IR;nR are actual
integrals of motion (because they stay constant in the
asymptotic regions). In particular, these integrals contain
individual momenta of particles in the asymptotic regions
t�∞ so this construction proves that the set of initial and
final momenta are conserved in the course of the collision
(as well as the ordering of the momenta among left- and
right-movers). It also proves the Liouville integrability of
the system, because integrals corresponding to the asymp-
totic momenta provide us a set of N commuting conserved
charges.
The remaining (N − 2) constructed integrals in the

asymptotic regions reduce to the coordinate differences
among left-movers or right-movers. Their existence implies
that the time delays experienced by all left-movers are
equal to each other and the same is true for the time delays
experienced by all right-movers.
To find these time delays let us inspect the last remaining

independent solution of (27). For reasons which will
become clear soon, we refer to the corresponding piecewise

linear function on the phase space (21) as H̃.1 The
corresponding Fa’s are nonzero at the right boundary of
the P region. Unlike for internal diagonals, we need to use
now both upper and lower parts of the boundary to satisfy
the F2N ¼ 0 condition. This results in the following non-
vanishing Fa’s for this solution:

FH̃
a ¼ SaðδTa;2NL−a

2
− δTa;−2NRþa

2
Þ: ð37Þ

Then in the asymptotic regions one finds

H̃ ¼
�
QR −QL − PL; at t → −∞
QR −QL þ PR; at t → þ∞;

ð38Þ

where PLðRÞ is the total asymptotic left(right)-moving
momentum2 and QL, QR are the positions of the right-
most left- and right-movers in the asymptotic regions. This
implies that H̃ is a linear function of time, rather than a
conserved charge, i.e.,

H̃ ¼ 2ðt − t0Þ; ð39Þ

where t0 is a constant. Equivalently, the Poisson brackets of
H̃ with the Hamiltonian H and momentum P are

fH̃; Hg ¼ 2; fP; H̃g ¼ 0; ð40Þ

where the latter follows from the translational invariance of
H̃. This allows one to construct a new conserved charge

P̃ ¼ fJ; H̃g; ð41Þ

which is not translationally invariant,

fH; P̃g ¼ 0; fP; P̃g ¼ 2: ð42Þ

Altogether, IL;nL , IR;nR , and P̃ provide a set of (2N − 1)
independent conserved charges, which proves that the
zigzag model is maximally superintegrable.
To calculate the time delays, let us evaluate P̃ in the

asymptotic regions. Using the asymptotic expression (38)
we obtain

P̃ ¼
�−QL −QR þ PL; at t → −∞
−QL −QR þ PR; at t → þ∞;

ð43Þ

Combining (38), (39), (43) and the conservation of P̃ we
find that

ΔtLðRÞ ¼ PRðLÞ ð44Þ

FIG. 4. A physical configuration of particles can be represented
as a (red) slice in the ða; TaÞ plane. This snapshot corresponds to
the one in Fig. 1(b). Physical time evolution corresponds to the
melting dynamics of this slice. Red dashed arrows show next
possible changes for the shape of the slice in the course of the
time evolution.

1This quantity is different from the one which was called H̃ in
[29], but has similar properties.

2It is defined in such a way that PLðRÞ ≥ 0.
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for the time delays ΔtLðRÞ experienced by left(right)-
moving particles. These time delays correspond to the
celebrated shock wave phase shift [32,33] confirming that
the zigzag model describes the N-particle subsector of a
massless TT̄-deformed fermion.

V. DISCUSSION

To summarize, in this paper we presented an exhaustive
analysis of the integrable structure of the classical zigzag
model (2). The natural next step is to quantize the model.
Given that the classical time delay (44) reproduces the
exact phase shift of a known quantum model—a massless
TT̄ deformed fermion—one expects the quantization pre-
serving the Poincaré symmetry and integrability to exist.
Note that a close relative of the zigzag model appeared in

mid 1970s under the name of folded strings [34,35].3 There,
exact solvability of a very similar Hamiltonian was under-
stood as a consequence of the map between the corre-
sponding mechanical solutions and folded string solutions
of the two-dimensional Nambu-Goto theory. This corre-
spondence reinforces the relation of the zigzag model with
the TT̄ deformation, given that the latter can be understood
as arising from the coupling of an undeformed quantum
field theory to two-dimensional strings [36,37]. In this
language the zigzag model describes dynamics of a long
string, while the early papers [34,35] studied the short
string sector. The relation of folded strings to aQCD2 was
conjectured in [38]. The analysis of [26,29] makes this
relation precise, by demonstrating how the zigzag model
arises as a leading high-energy approximation to the
worldsheet dynamics.
The possibility of a consistent covariant quantization of

folded strings remains somewhat controversial (see, e.g.,
[39,40]). We think that the connections to the TT̄ defor-
mation and aQCD2 strongly suggest that such a quantiza-
tion is possible, and should in fact be one-loop exact (at
least in the long string sector, corresponding to the zigzag
model). Hopefully, a detailed understanding of the classical
integrable structure achieved in the present paper will help
to resolve this.
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APPENDIX: EXPLICIT INTEGRALS FOR N = 2, 3

For illustrative purposes we report here the explicit
expressions for the integrals of motion for N ¼ 2 and

N ¼ 3withNL ¼ 1. ForN ¼ 2, asymptotics are defined by
s1 ¼ 1, s2 ¼ −1 for t ¼ −∞ and s1 ¼ −1, s2 ¼ 1 for
t ¼ þ∞. Our translationally invariant integrals are

IR;1 ¼ p1

2
ð1þ s1Þ þ

q1;2
2

ð1þ s1;2Þ þ
p2

8
ð3 − s1 þ 3s2

− s1s2 þ s1;2 þ s1s1;2 þ s2s1;2 þ s1s2s1;2Þ ðA1Þ

and

IL;1 ¼ p1

2
ð−1þ s1Þ þ

q1;2
2

ð1þ s1;2Þ þ
p2

8
ð−3 − s1 þ 3s2

þ s1s2 − s1;2 þ s1s1;2 þ s2s1;2 − s1s2s1;2Þ: ðA2Þ

As outlined in (31)–(36), asymptotically

IR;1 ¼
�
p1; at t → −∞
p2; at t → þ∞;

ðA3Þ

and

IL;1 ¼
�−p2; at t → −∞
−p1; at t → þ∞:

ðA4Þ

Further, we have

H̃¼q1;2
2

ðs1−s1s1;2Þþ
p2

4
ð3−s1s2þs1;2þs1s2s1;2Þ ðA5Þ

P̃ ¼ q1
2
ð−1þ s1;2Þ þ

p2

4
ð−s1 þ 3s2 þ s1s1;2 þ s2s1;2Þ

−
q2
2
ð2 − s1s2 þ 2s1;2 þ s1s2s1;2Þ ðA6Þ

In accordance with (38) and (43), asymptotically
we find

H̃ ¼
�
q1 − q2 − jp2j; at t → −∞
q2 − q1 þ jp2j; at t → þ∞;

ðA7Þ

and

P̃ ¼
�−q1 − q2 þ jp2j; at t → −∞
−q2 − q1 þ jp2j; at t → þ∞:

ðA8Þ

ForN¼3,NL¼1 asymptotics are defined by s1¼ s2¼ 1,
s3 ¼ −1 for t ¼ −∞ and s1 ¼ −1, s2 ¼ s3 ¼ 1 for
t ¼ þ∞. Our translationally invariant integrals are3We thank Antal Jevicki for directing us to these early papers.
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IR;1 ¼ p1

2
ðs1 þ 1Þ þ q1;2

2
ðs1;2 þ 1Þ þ p2

8
ðs2s1s1;2 þ s1s1;2 þ s2s1;2 þ s1;2 − s2s1 − s1 þ 3s2 þ 3Þ

þ q2;3
8

ðs1s1;2 þ s1s1;2s2;3 − s1s2;3 þ s2s1;2 þ s2s2;3 þ s2s1;2s2;3 þ 2s2;3 − s1 þ s2 þ 2Þ

þ p3

32
ð−s2s1s1;2 − s2s3s1s1;2 þ 3s3s1s1;2 þ 3s1s1;2 − s2s1s2;3 − s2s3s1s2;3 − s3s1s2;3 þ s2s1s1;2s2;3

þ s2s3s1s1;2s2;3 þ s3s1s1;2s2;3 þ s1s1;2s2;3 − s1s2;3 þ 3s2s1;2 − s3s1;2 − s1;2 þ 3s2s2;3

þ 3s2s3s2;3 þ 3s3s2;3 þ s2s1;2s2;3 þ s2s3s1;2s2;3 þ s3s1;2s2;3 þ s1;2s2;3 þ 3s2;3 þ s2s1

þ s2s3s1 − 3s3s1 − 3s1 þ 3s2s3s1;2 þ s2 þ s2s3 þ 5s3 þ 5Þ; ðA9Þ

and

IR;2 ¼ q1;2
4

ðs1s1;2 þ s1;2 − s1 − 1Þ þ p2

8
ð−s2s1s1;2 þ s1s1;2 þ s2s1;2 − s1;2 þ s2s1 − s1 þ 3s2 − 3Þ

þ q2;3
8

ð−s1s2s1;2 − s1s2s2;3 þ s1s2s1;2s2;3 − s1;2 þ s1;2s2;3 þ 3s2;3 þ s1s2 − 3Þ

þ p3

16
ð−s2s1s1;2 þ s2s3s1s1;2 þ s3s1s1;2 − s1s1;2 − s2s1s2;3 þ s2s3s1s2;3 − s3s1s2;3 þ s2s1s1;2s2;3

− s2s3s1s1;2s2;3 þ s3s1s1;2s2;3 − s1s1;2s2;3 þ s1s2;3 − s2s1;2 þ s2s3s1;2 þ s3s1;2 − s1;2 − s2s2;3

þ s2s3s2;3 − s3s2;3 − s2s1;2s2;3 þ s2s3s1;2s2;3 − s3s1;2s2;3 þ s1;2s2;3 þ s2;3 þ s2s1 − s2s3s1

− s3s1 þ s1 − s2 þ s2s3 þ 5s3 − 5Þ: ðA10Þ

Equations for IR;3 and IL;1 are similar. Correspondingly we find

IR;1 ¼
�
p1; at t → −∞
p2; at t → þ∞;

ðA11Þ

and

IR;2 ¼
�−q1;2; at t → −∞
−q2;3; at t → þ∞:

ðA12Þ

Further, we have

H̃ ¼ q1;2
4

ð−s1s1;2 þ s1;2 þ s1 − 1Þ þ p2

8
ðs2s1s1;2 þ s1s1;2 þ s2s1;2 þ s1;2 − s2s1 − s1 þ 3s2 þ 3Þ

þ q2;3
16

ð−3s2s1s1;2 − s1s1;2 − 3s2s1s2;3 þ 3s2s1s1;2s2;3 þ s1s1;2s2;3 − s1s2;3 − s2s1;2 − 3s1;2 − s2s2;3

þ s2s1;2s2;3 þ 3s1;2s2;3 þ 5s2;3 þ 3s2s1 þ s1 þ s2 − 5Þ
þ p3

32
ðs2s1s1;2 þ 3s2s3s1s1;2 þ s3s1s1;2 − 5s1s1;2 þ s2s1s2;3 þ 3s2s3s1s2;3 þ s3s1s2;3

− s2s1s1;2s2;3 − 3s2s3s1s1;2s2;3 − s3s1s1;2s2;3 − 3s1s1;2s2;3 þ 3s1s2;3 − 5s2s1;2 þ s2s3s1;2

þ 3s3s1;2 þ s1;2 − 5s2s2;3 þ s2s3s2;3 − 5s3s2;3 − 3s2s1;2s2;3 − s2s3s1;2s2;3 − 3s3s1;2s2;3

− s1;2s2;3 þ s2;3 − s2s1 − 3s2s3s1 − s3s1 þ 5s1 − 3s2 − s2s3 þ 5s3 þ 15Þ ðA13Þ
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P̃ ¼ q1
4
ð−s1s1;2 þ s1;2 þ s1 − 1Þ þ p2

8
ðs2s1s1;2 þ s1s1;2 þ s2s1;2 þ s1;2 − s2s1 − s1 þ 3s2 þ 3Þ

þ q2
16

ð−s2s1s1;2 þ 5s1s1;2 − s2s1s2;3 þ s2s1s1;2s2;3 − s1s1;2s2;3 þ s1s2;3 þ s2s1;2 − 5s1;2

þ s2s2;3 − s2s1;2s2;3 þ s1;2s2;3 þ 7s2;3 þ s2s1 − 5s1 − s2 − 3Þ
þ q3
16

ð−3s2s3s1s1;2 − s3s1s1;2 þ 4s1s1;2 − 3s2s3s1s2;3 − s3s1s2;3 þ 3s2s3s1s1;2s2;3

þ s3s1s1;2s2;3 þ 4s1s1;2s2;3 − 4s1s2;3 þ 4s2s1;2 − s2s3s1;2 − 3s3s1;2 þ 4s2s2;3 − s2s3s2;3 þ 5s3s2;3

þ 4s2s1;2s2;3 þ s2s3s1;2s2;3 þ 3s3s1;2s2;3 − 8s2;3 þ 3s2s3s1 þ s3s1 − 4s1 þ 4s2 þ s2s3 − 5s3 − 8Þ
þ p3

32
ð3s2s1s1;2 þ s2s3s1s1;2 − 5s3s1s1;2 þ s1s1;2 þ 3s2s1s2;3 þ s2s3s1s2;3 þ 3s3s1s2;3

− 3s2s1s1;2s2;3 − s2s3s1s1;2s2;3 − 3s3s1s1;2s2;3 − s1s1;2s2;3 þ s1s2;3 þ s2s1;2 − 5s2s3s1;2 þ s3s1;2

þ 3s1;2 þ s2s2;3 − 5s2s3s2;3 þ s3s2;3 − s2s1;2s2;3 − 3s2s3s1;2s2;3 − s3s1;2s2;3 − 3s1;2s2;3 − 5s2;3 − 3s2s1

− s2s3s1 þ 5s3s1 − s1 − s2 − 3s2s3 þ 15s3 þ 5Þ ðA14Þ

In accordance with (38) and (43), asymptotically we find

H̃ ¼
�
q2 − q3 − jp3j; at t → −∞
q3 − q1 þ jp2j þ jp3j; at t → þ∞;

ðA15Þ

and

P̃ ¼
�−q2 − q3 þ jp3j; at t → −∞
−q3 − q1 þ jp2j þ jp3j; at t → þ∞:

ðA16Þ

We see that these expressions rapidly become quite lengthy, in spite of the existence of a simple geometric description
provided in the main text of the paper.
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