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We systematically investigate the possibilities of realizing the spontaneous CP violation in Type 1IB
flux compactifications on toroidal orientifolds. Our detailed analysis for a generic choice of three-form
fluxes leads to the presence of flat directions, where CP-breaking and -conserving vacua are degenerate,
indicating that flux compactifications are not sufficient to realize the spontaneous CP violation.
Furthermore, the four-dimensional CP can be embedded into the duality symmetries, namely modular

symmetries for a particular choice of fluxes.
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I. INTRODUCTION

Understanding the origin of CP violation in the
Standard Model (SM) is of particular interest, not only
to explain the structure of Yukawa couplings but also to
search for new physics beyond the SM through experi-
ments on the neutron electric dipole moment [1], K
meson decays (probed by the KOTO experiment at the
J-PARC and the NA62 experiments at CERN), and
observations of the excess of baryons over antibaryons
in the Universe. It is interesting to ask the origin of CP
violation in string theory.

As pointed out in Refs. [2,3], CP is regarded as a discrete
gauge symmetry in a class of Eg x Eg and SO(32) heterotic
string theories. Calabi-Yau (CY) compactifications lead to
the spontaneous breaking of CP by the dynamics of
massless scalar fields, called moduli fields [4]. Here, the
four-dimensional (4D) CP is embedded into the 10D
proper Lorentz symmetry, indicating that the orientations
of 4D spacetime and 6D CY threefolds are reversed
simultaneously. In the heterotic string context, axionic
components of an axiodilaton and Kéihler moduli have
an odd parity under CP transformation [4] and the 4D CP
can be spontaneously broken by their vacuum expectation
values (vevs). However, it is difficult to achieve the
stabilization of the moduli fields on CY threefolds as well
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as toroidal orbifolds in a controlled way, due to sizable
backreactions from their stabilization.'

The purpose of this paper is to systematically investigate
the possibilities of realizing the spontaneous CP violation
in Type IIB string theory on toroidal orientifolds, where the
moduli stabilization as well as the calculation of Yukawa
couplings is performed in a controlled way. Similar to the
heterotic string theory, CP-odd axionic fields break the 4D
CP spontaneously, and their vevs induce the nonvanishing
Cabbibo-Kobayashi-Maskawa (CKM) phase. Since it is
possible to stabilize these axionic fields by three-form
fluxes in the low-energy effective action of Type IIB string
theory, we search for CP-breaking minima in Type IIB flux
compactifications on several toroidal orientifolds. Starting
from a CP-invariant potential with a generic choice of
three-form fluxes, we find that flat directions exist and CP-
breaking and -conserving vacua are degenerate. To realize
the spontaneous CP violation, a resolution of this degen-
eracy by other sources is required. Furthermore, 4D CP can
be embedded into the duality symmetries, namely modular
symmetries for a particular choice of fluxes. The approach
to unify CP and modular symmetries is recently developed
in Refs. [8—11], and the relationship between the strong
CP and CKM phases is also pointed out in Ref. [12].
Indeed, axions associated with the complex structure
moduli of tori play a crucial role in such a generalized CP
context [13-16].

This paper is organized as follows. In Sec. II, we briefly
review the origin of 4D CP in the effective action of Type II
string theory with intersecting/magnetized D-branes. In
Sec. III, we discuss the CP-invariant low-energy effective

"It might be possible to break CP through vevs of charged
scalar fields under the anomalous U(1) symmetry [5]. For the CP
violation in the orbifold context, see Refs. [6,7].
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action of Type IIB string theory on toroidal orientifolds.
Three-form fluxes cause both the stabilization of axionic
fields and spontaneous breaking of CP. It turns out that
massless fields generically appear in the flux vacua on
several toroidal orientifolds. Finally, we conclude in
Sec. IV.

II. ORIGIN OF CP IN INTERSECTING/
MAGNETIZED D-BRANE MODELS

In this section, we review the low-energy effective action
of magnetized D-branes in Type IIB string theory on
toroidal orientifolds with a special emphasis on 4D CP.
It is applicable to the Type IIA intersecting D-brane system
by T-dualizing Type IIB magnetized D-brane models.

Let us consider magnetized D7-branes wrapping (77); x
(T?); with i # j. When U(1) gauge boson on D7-branes
takes a nontrivial vev on the torus, the internal space carries
background gauge flux F’ on each torus (7?),,

m' . .
ﬁ/(ﬂ)[F:n’ (1)

where m' and n' correspond to the wrapping number of
magnetized D7-branes and the flux quanta, respectively.
[, = 27v/d denotes the string length. Such gauge fluxes
are relevant to determine 4D CP as discussed later.

The 4D @ term in the effective action of D7-branes
is determined by the following gauge kinetic function
[17-19]:

i

o n'n’
fp7 = [m'm/| (Tk T miml S) (2)

with i # j # k. Here, we denote the Kihler moduli 7% and
the axiodilaton S, respectively. Remarkably, the CP-odd
axionic components of these moduli fields (Ramond-
Ramond fields) Re(T?) = f(TZ)jX(Tz)k C, and Re(S) = Cy
induce the 4D 6 term.

The CKM phase in Yukawa couplings of chiral zero
modes on magnetized D7-branes is also determined by one
of the closed string moduli, namely the complex structure
moduli z; associated with tori (72),. Indeed, the presence of
magnetic fluxes induces the multiple number of chiral zero
modes with nontrivial moduli-dependent Yukawa cou-
plings. From the calculation of the Yukawa couplings of
chiral zero modes in the conformal field theory as well as
the field theoretical approach, it is known that holomorphic
Yukawa couplings on each two torus (72) ; inside the four-
cycle wrapped by magnetized D7-branes are given by the
Jacobi theta function [20-23],

9 [(C)] (0.7)) = 3 emilet s, (3)

lez

For illustrative purposes, let us suppose that the U(N)
gauge symmetry realized in N stacks of D7-branes is
broken by magnetic fluxes to U(N,) x U(N,) x U(N,.)
with N = N, + N, + N.. Then, bifundamental zero modes
(N, Np), a,p = a,b, c have I\, = n{,/m{, — nj;/mj; num-
ber of zero modes on each torus (77?);. Holomorphic
Yukawa couplings of such zero modes are provided by

- L (.i_|_.i> S
Y, = 19{ Tap \Jea  The }(O,1i|lgblj,clga ), (4)
0
up to the normalization factor. Here, ¢ = 0, 1, ..., |[IL,| — 1,

and s =0,1,..., |I§,L,| — 1 denote flavor indices, and we
employ p = s —¢g mod I, [23].

In this way, axionic components of the complex structure
moduli determine the magnitude of CKM phase, namely
the Jarlskog determinant. (For explicit examples, see, e.g.,
Ref. [24].) The moduli-dependent Yukawa couplings as
well as the gauge kinetic function in Type ITA intersecting
Do6-branes have the analogous form by T-dualizing the
Type 1IB magnetized D7-brane models [20]. For Type 1IB
string theory with D5/D9-branes, the gauge kinetic func-
tion and Yukawa couplings are also dependent on the
Kihler moduli and complex structure moduli, respectively.
It is remarkable that the complex structure moduli control
not only the 4D CP but also the flavor symmetry in Type
IIB string theory.2

III. FOUR-DIMENSIONAL CP IN FLUX
COMPACTIFICATIONS

So far, we have discussed the origin of 4D CP phases in
the effective action of magnetized D-branes. This section is
devoted to exploring the spontaneous CP violation on the
basis of the effective action of moduli fields. We draw
general conclusions about the spontaneous CP violation in
Type IIB toroidal orientifolds with fluxes.

A. CP-invariant moduli potential

We begin with the simplest 7°/Z, orientifold, following
the convention of Ref. [27]. It is straightforward to extend
the setup to 7°/(Z, x Z)) and other orbifolds, as dis-
cussed later.

As argued in Refs. [2,3], the 4D CP is regarded as the
higher-dimensional proper Lorentz symmetry, in particular,
the 10D proper Lorentz symmetry in string theory. When
the extra 6D space consists of the factorizable 7¢ subject to

*For the relationship between the flavor symmetry and the
modular symmetry of z in Type IIB string theory, see, e.g.,
Refs. [25,26].
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Z, identification, namely IT;_,(7?),/Z, with coordinates
Z;, the 10D proper Lorentz symmetry is defined by the 4D
CP and 6D transformations z; — z; or z; = —z;, leading to
the negative determinant in the transformation of 6D space.
In this paper, we restrict ourselves to z; — —z; trans-
formations, allowing us to consider Imz; > O in the com-
plex structure moduli spaces. According to z; = —z}, 7;
transform as

T = =T, (5)

and at the same time, the axiodilaton S = C,, + ie~? also
transforms

S — =S. (6)

Note that the real part of the axiodilaton is the Ramond-
Ramond axion.

Let us discuss CP invariance of the moduli effective
action on the basis of IT3_, (7?),/Z, orientifold. Under the
above transformations, the moduli Kéhler potential,

K =—1In(-i(S-S))—2InV
—In(i(z; = 7,)(7, — %) (73 — 73)) (7)

is invariant. Here, we denote ) as the volume of 7° and
employ the reduced Planck mass unit Mp = 1. On the
other hand, the superpotential is induced by an existence of
a background three-form flux G5 [28],

W l/QA@, (8)

= 2
with [; = 27vd.? Now the holomorphic three-form €,
Q =dz; ANdzy A dzs, 9)
transforms under the CP transformation as
Q- -Q. (10)

The three-form flux G5 is defined by a linear combination
of Ramond-Ramond (RR) F5; and Neveu-Schwarz (NS)
three-forms Hs, namely G; = F3 — SH3; both of which are
expanded on the basis of H3(T®, Z),

>The normalization factor to match with the dimensional
reduction of Type IIB supergravity action is irrelevant to the
following discussion, and therefore, we omit such a factor for
simplicity.

1 ) )

l—2F3 = Clo(l() + a’ai + biﬂl + boﬂo,

1 . .

l—2H3 :Can—l-c’a,-—l-diﬂ’—l—doﬁo, (11)

with

ag = dx' A dx* A dx3, a; = dy' A dx* A dx3,
ay = dy> A dx' A dx?,
pl = —dx' A dy?* A dy?,
B = —dx® A dy' A dy?,

(12)

a, = dy* A dx® A dx!,
B0 = dy' Ady* A dy*,
f* = —dx’> ndy> A dy',

satisfying  [;ea; A/ =6&]. Note that flux quanta
{123 by 153, ¢%123,dy 1 53} are even and/or odd inte-
gers depending on the existence of exotic O3'-planes
[29,30], and they are constrained by the tadpole cancella-
tion condition,

1
nﬂux:ﬁ/H3/\F3
= % = dya’ + > (c'b; - d;a’)
=32- 2nD3 — Nopy’ < 32, (13)

where np; and ngy are the number of D3-branes and exotic
O3’-planes, respectively. Here, anti-D3-brane contribu-
tions are not taken into account to preserve the supersym-
metry in our system.

Since the coordinate transformations z; — —z; corre-
spond to x; = —x; and y; — y;, these three-form bases also
transform as

ﬁo—)ﬁo’
(i=1,23). (14)

ay — —Q,

a; = &, ﬁi - _ﬁiv
To be invariant under the CP transformation, the flux-
induced superpotential should be transformed as

W — el'W, (15)

with y = 0 or # (mod 2x) because F'3 and H; are integer
quantized and have no imaginary part. Recall that the only
complex quantity is S in G5, with y # 0, and z (mod 27) is
contradicted with the real three-forms F; and H5. Hence,
the three-form fluxes obey

G3 - —€in3. (16)

It restricts us to the following two patterns of RR and NSNS
three-forms:
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i) y =0 (mod 2x)

1 .
1—2F3 = d’ay + b,
N

1 )
l—2H3 = cla; + doff°, (17)

leading to G; = —F5; + SH; = —G;.
(i) y = & (mod 2x)

1 )
l—2F3 = alai + boﬁo,

1 .
s = g+ dif (18)

leading to G5 — F5 — SH; = Gj. Other choices to obtain
the nonvanishing CP-invariant superpotential are impos-
sible because of the real three-forms F; and Hj.
Then, it results in the two classes of the superpotential:
1) y =0 (mod 2x)

W = CZOT]T273 + C]STQT:; + CZST]T3
3
+ 38yt = Y bty + dy S, (19)

i=1
(i) y =z (mod 27x)

W = —cSt,1o73 — a'1y73 — aP1y7
17273 273 173

3
- 6131'172 + z dl‘STl‘ - b(). (20)

i=1

Note that the above statement also holds for
I_,(T?%);/(Z, x Z),) orientifolds with or without D-
branes, taking into account the expansion of F3, H; on
the basis of H3(T®,4Z) for the case without discrete
torsion, and H3 (T, 8Z) for the case with a discrete torsion.
Here, the Q5 and G5 are expanded with respect to a basis of
H3 (T®) for the orientifold with O3/ O7-planes and H> (T9)
for the orientifold with O5/09-planes with H; = 0, where
the number of untwisted moduli is counted by 42" and 42",
respectively. (For the detailed discussions of toroidal
orientifolds, see, e.g., Ref. [31].) Other toroidal orbifolds
are discussed in Sec. III D.

B. T%/Z, and T%/(Z, x Z},) with single complex
structure modulus
We first analyze the overall complex structure modulus,
namely 7 = 71 = 7, = 73, and check whether the 4D CP is
spontaneously broken or not. For the single complex
structure modulus, the superpotential is simplified as

W { a7 +3¢St? — 3bt + d,S, (r=0) .2
—c%87% — 3ar? + 3dSt — by, )

where we define

b= bl = b2 = b3,
dEdl :d2:d3. (22)
On the other hand, the Kihler potential is given by

K =—-In(=i(S=S8)) =2V -3In(-i(r-7)). (23)
As a consequence of the no-scale structure for the volume
moduli, the moduli fields except for the volume moduli can

be stabilized at the supersymmetric minimum D W =

(1) y =0 (mod 2x)
/4
Im(z) = (— bodo)l ,

NORYE
mis) = (~) 2
(i) y = 7 (mod 2x)
1/4
Re(z) = Re(S) =0, Im(z) = (— %) .

(a)’b ") " (25)

in(s) = (G

As a result, the 4D CP is not spontaneously broken at the
supersymmetric minimum for this simplest case. Hence, we
move on to the case treating three independent complex
structure moduli and search for the supersymmetric CP-
breaking minimum in the next section.

C. T%/Z, and T%/(Z, x Z},) with three complex
structure moduli

We next explore the existence of a CP-breaking mini-
mum for the case with three complex structure moduli. We
analytically discuss the spontaneous CP violation fory = 0
in Sec. [IIC 1 and y = 7 in Sec. III C 2, respectively.

1. Odd polynomials (y=0)

In this section, we focus on the superpotential (19)
consisting of odd polynomials with respect to the moduli
fields. The supersymmetric conditions D;W = 0 are still
complicated equations with respect to the moduli fields,
even for the CP invariant superpotential (19). To analyti-
cally solve the supersymmetric conditions, we simplify the
effective action by redefining the moduli fields,
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1 2 3
c c
/ / / !
T =X, 0= GXT, 7= 5T S =x,5. (26)

According to the redefinition of the moduli fields, the Kéhler potential and the superpotential are redefined as

K =—1In(=i(S=1S8)) =2V —In(i(z; — 7,
— n(=i(S' = §)) = 2InV = In(i(7, — 7

N
—
Q
[38)
1
58]
~—
—
i)
w
31
w
N
~

)(7y = ) (25 = 7)) = In(xjc' e/ (a°)?),

W = a0111273 + C]S1'213 + C25T11'3 + C3STsz - Z biTi + doS
i=1

= {72yt + S'Theh + ST, + ST} — Zb’.rﬁ +d,S’, (27)
where we take
(a0)2 1/3 ¢l

In the following analysis, we omit prime symbols of fields unless specified otherwise. Then, we analyze the following
Kihler potential and superpotential:

K=—-In(=i(S=95))=2InV —=In(i(r; = 7)) (12 — ) (73 — T3)),

3
W = TszT3 —|— ST273 + ST]T3 —|— ST]TZ - Z biTi —|— doS, (29)
i=1

which is a simplified version of the superpotential (19) with a° = ¢! = ¢? = ¢3 = 1.

To analytically solve the supersymmetric conditions D;W = 0, we analyze the following equations equivalent to solve
D IW =0:

Im(z;)Re(D, W) & Im(z,
Im(z;)Re(D,, W) F Im(z,
Im(z;)Im(D,, W) £ Im(z,
Im(z))Im(D,, W) F Im(z,

Re(D,,W) & Im(z3)Re(D, W) — Im(S)Re(DsW) =
Re(D,,W) & Im(z3)Re(D, W) + Im(S)Re(DsW) =
Im(D,, W) + Im(z3)Im(D,, W) £ Im(S)Im(DsW) =
Im(D,,W) — Im(z3)Im(D,, W) £ Im(S)Im(DsW) =

)
)
)Im(D,
) ; (30)

2

where the + signs are correlated. There is a CP-conserving solution,

brbsydy\ /4
Re(r;) = Re(r;) = Re(r;) =Re(S) =0,  Imz; = <_ 2b? O) ,

1/4 1/4 1/4
1m<rz>—(—%d°> , 1m<r3>—(—%d°) , 1m<s>—(—%”3) | (1)

at which all the moduli masses squared are positive. In addition, we find that there exist five classes of solutions enumerated
as follows:

026004-5
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(i) Solution 1

Re(r,) _ Im(z,) _ b Re(z3) _ _Im(z3) __ |
Re(z;) Im(z)) b, Re(t)) Im(z;) by’
Re(S)  Im(S) _ Vb
Re(zy) Im(zy) by — Vb —vby
Re(r,) = + VVPi1(=bav/bs + %b}% b1 (v/b2y/By + (7). (32)
with dy = —(v/By, + Vb — v/b3)?.
(i1) Solution 2
Re(r)  Im(m) b Re(es)  Im(zm)  [by
Re(z;)  Im(zy)  \/ by Re(r;)  Im(z)  \/ by
Re(S)  Im(S) Vb1
Re(ry)  Im(r)) b5 —by + Vb,
Ree) = YV ) BT -
with dy = —(=v/b; + /b, + /b3)%.
(iii) Solution 3
Re(z,) _ _Im(rz) _ by Re(z3) _ Im(z3) _ b
Re(z)) Im(z;) by’ Re(ry) Im(z)) by’
Re(S)  Im(S) Vb
Re(r)) Im(r)) b3+ b= b,
R = OOV = ) (/s TG T) -
1
with dy = —(v/by — /b, + /b3)*.
(iv) Solution 4
Re(7,) _ Im(z,) _ by Re(z3) _ Im(z3) _ b
Re(z;)  Im(z)) by’ Re(z;)  Im(z) by
Re(S)  Im(S) Vb
Re(z)) Im(z,) Vb3 + /by + /by’
Re(11> - 4+ \/\/b_l\/g(\/a + \/b_f/;%\/a)\/a - bIIrn(TI)2 , (35)
with dy = —(v/b, + /bs + /b3)>.
(v) Solution 5
Im(7,) = \/‘70 Re(7;) =0,
Im(z,) = \/dy — Re(1,)?, Im(z3) = \/dy — Re(t3)?,
Im(S) = y/dy — Re(S)?,
Re(S) = —dy[doIm(z3)* — Im(z,)*(Im(z3)* + \/(dp — Im(2,)*) (dg — Im(z3)?))] (36)

Withbl:b2:b3:—

Vdy —Im(7,)*(doIm(z,)?

+ (dy — Im(z,)?)Im(z3)?)

026004-6
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In these five solutions, CP-breaking and -conserving
minima are degenerate. That is, the above five solutions
always include the flat directions in the moduli space of
axiodilaton and complex structure moduli, compared with
the CP-conserving solution (31). We will study the origin
of the above flat directions in the flux vacua from the
viewpoint of modular symmetries in Sec. IIl E. The CP-
breaking sources are then required to resolve the degen-
eracy between the CP-breaking and -conserving minima.
Indeed, when we include the explicit CP-breaking term by,
in the superpotential,

W = a1 11515 + ¢! Sty15 + 28775

3
+ C3S7172 - Zbﬂ-i + dOS - bO? (37)

i=1

it is possible to resolve the degeneracy between the CP-
breaking and -conserving minima. Note that the moduli
fields are denoted by 7;, S rather than 7/, §'. For instance,
under the following flux set:

0

A =c'=c*=c=2,

K=-In(-i(S=S5))-=2InV —In(i(z; - 74

=—In(-i(§'=5))—-2InV -In(i(} — 7

—_— ~—

leading to ng,, = 24, all the complex structure moduli and
axiodilaton are stabilized at a CP-breaking minimum,

Re(’l’]) = Re(TQ) >~ 0127,
Im(z,) = Im(z,) ~ 0.958,

Re(73) = Re(S) ~0.258,
Im(z3) = Im(S) ~ 1.37,
(39)

with the masses squared of the moduli fields being positive,
V72(19,18,9.3,8.7,8.2,7.9,4.0,3.3) (40)
in the descending order.

2. Even polynomials (y =nr)

Next, we analyze the superpotential (20) consisting of
polynomials of an even degree in the moduli fields. Similar
to the analysis in Sec. III C 1, we redefine the moduli fields,

1 2

a ’ a

/
7, = T Ty = ——7
Ax, cOx, %
pE
/ !
T3 = —5— T3 S =x,9, (41)
Ox,

) = 5)(7 = 1)) — In(a'a’a®/(c")’x3),

W = =c%St,1,75 — a'ty13 — a*ry73 — a’ryT, + E d;St; — b

i=1

3
= —{S'Ttyts + Tyt + T Th + 7o) + Y diS' — b, (42)

i=1

where we define

ala2ad\ 172 a
x3‘<<c°>2>’ di=d

i

iE7 b6 = by. (43)

In analogy with the analysis in the previous section, we omit the prime symbols of fields unless specified otherwise.
Then, we analyze the following Kihler potential and superpotential:

K=—In(=i(S=3)) = 2InV = In(i(z) = 7,)(0s — %) (25 = 73)).

3
W = —S1'11'21'3 —TT3 — 1173 — 1717 + ZdiSTi - b(), (44)
i=1

1 2

which is the simplified version of the superpotential with ¢* = a! = a?> =a’® = 1.
Following the analysis in the previous subsection, we solve the redefined supersymmetric equations (30). It turns out that

there exists a CP-conserving solution,
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Re(7;) = Re(r,) = Re(r3) = Re(S) =0,

Im(z,) = (— M) 1/4, Im(z3) = <

d>

bod,dy )\ /4
i (-2254)"
bod,d>\ '/* by 1/4
-_ , Im(S) = | — s 45
ds > m(S) =\~ dandy (45)

at which the masses of the moduli fields squared are positive. In addition, we find another solution:

(1) Solution 6

Im(rl) = bO—RC(Tl)Z,

Im(z;) = /by — Re(z,)%,
Im(z3) = /by — Re(z3)%
Im(S) = /bi— Re(S)?,
Re(7)) = by

Re(z,) + Re(r3) + bgRe(S) + Re(z,)Re(73)Re(S)

with dl = d2 = d3 = —bo.
As aresult, there exist flat directions at the minimum due to
the presence of unfixed moduli, and also CP-breaking and -
conserving minima are degenerate. In the same way as in
Sec. I C 1, CP-breaking sources are required to lift the flat
directions.

We perform the numerical search to find the super-
symmetric CP-breaking minima in which the masses of all
the moduli fields squared are positive, but we cannot find
such a solution as indicated by our analytical expressions.

D. Extension to other toroidal orbifolds

So far, we have discussed the factorizable 7°/Z, orienti-
fold, which is also applicable to the T/(Z, x Z,') orienti-
fold, taking into account the proper tadpole cancellation
conditions. In these 7¢/Z, and T/ (Z, x Z,') orientifolds,
the largest number of flux quanta (three-cycles) is allowed
under the orbifold projections. In this section, we discuss
other toroidal orbifolds where the possible three-cycles (12)
are restricted due to the orbifoldings.

There exists a single untwisted complex structure modu-
lus on toroidal orbifolds, including the factorizable T,/Z,,
suchas T8/ (Z, x Z3) = T%/Z_1;, T/ (Z, X Zs), T®/ Z,,
T%/Zg_;;, and T®/Z,_;; [33-36], for the orbifolds pre-
serving A/ = 2 supersymmetry, on which a part of the
three-form basis in Eq. (12) remains under the orbifold
projections [37].* On the other hand, in other orbifolds,
(untwisted) complex structure moduli are fixed at discrete
values. When we label the single untwisted complex

*Whether there exists a single complex structure modulus or
not depends on lattices to construct 7°.

by + Re(7;)Re(73) + byRe(S)(Re(z) + Re(z3))

(46)

structure modulus U on the above orbifolds, the 4D CP
invariance is preserved for the following superpotential via
the procedure in Sec. I A:

(1) y =0 (mod 2x)

W =& U+ &S, (47)
(i) y = 7 (mod 27)
W =&SU + &4, (48)

where &), 34 are integers constrained by the quantization
conditions of F3, Hs. Given the Kihler potential of U,

K = —In(=i(U - 0)), (49)

the supersymmetric minimum is obtained by solving
D UW — D SW — 0,
(1) y =0 (mod 2x)

Re(U) = —g—TRe(S), Im(U) = g—?lm(S), (50)

(i) y = 7 (mod 27)

&4 Re(S)
Re(l) =~ e Re(52 + Im(s)”
Im(U) =~ 1m(S) (51)

& Re(S)2 + Im(S)?

At the minima, there exists a flat direction in the moduli
space of an axiodilaton and complex structure modulus,
even for the restricted orbifolds. Hence, we conclude that
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Type IIB flux compactifications on toroidal orientifolds
are not sufficient to realize the spontaneous CP violation.
Since flat directions generically appear at degenerate
CP-breaking and -conserving minima, it is required to
consider other CP-breaking sources which are discussed in
Sec. I F.

E. CP and modular symmetry

Before going to discuss the mechanism to lift the flat
directions, we discuss the relationship among the 4D CP,
the modular symmetry, and flat directions, which appear in
the above potential analysis. In general, the presence of

|

three-form fluxes breaks SL(2, Z)¢ and SL(2, Z); modular
symmetries associated with the axiodilaton S and three
complex structure moduli z; in the low-energy effective
action, respectively, but it is possible to preserve subgroups
of the modular groups for a specific choice of three-form
fluxes. (For the classification of discrete modular sym-
metries, see Ref. [38].)

Let us focus on T%/Z, and T®/(Z, x Z,) orientifolds
with three complex structure moduli in Sec. III. After
redefining the moduli fields as in Egs. (29) and (44), three-
form fluxes are expanded as

(1) y =0 (mod 2x)

1 4 o .y
= Fy = ap + b = A\ d& dghdx® + A det dglay?,

s
Lo, = a1y = ADdgi agland + A dei deldy® (52)
l% [ 0 ij 152 ij 1%52 ’
with & = (v, x))T and
Al — ("”3 0) A@:( 0 =h\ o _ (0 1) A® — ("6 0)_ (53)
Y 0 1) Y b, 0 Y 1 0) Y 0 1
(i) y = = (mod 27x)
1 . o o
2 Fs = da;+ by’ = B déjdgjd + B} e d}dy’.
1 4 o .y
2 Hy = Cag - diff = B dg|dghd’ + B de| dgjdy’. (54)
with
gy _ (01 OB o _ (74 0 I Y (55)
Y 1 0) Y 0 1)’ Y 0 1) Y -d, 0

When we consider the modular transformations on the
tori (7?);, the complex structure moduli as well as the
coordinate of tori transform

T; = RiTi’ é‘: - (Ri_l)Tfh (56)

with

R, = (Pi qi
ri S

satisfying p;s; —q;r; = 1. As discussed in detail in
Ref. [38], the modular invariance of the effective action
is realized when the three-forms F; and H; themselves are
invariant under the modular transformations. Given the

> e SL(2,2), (57)

[

modular transformations on (7?), x (T?),, the requirement
for having the modular symmetries in the effective action
leads to the modular transformations for the flux quanta in
Egs. (53) and (55),

A(m) _ RI_IA(m)(REI)T, B(m) —_ Rl_lB(m)(REI)T,

(58)

with m = 1,2, 3,4, where we use the transformations of ¢&;
in Eq. (56). Hence, the transformation matrices R;, are
constrained to satisfy the above relations for all m. From
explicit expressions of R,,
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R2 _ (A(m))T(Rl—l)T(A(m))—l.T

b g
(Gl Gl )
h_l P1 m=1’ _b’2r1 S m=2’ - S m=37 _Z]I_é Pi
P1 —q S d’3r1 A —b6r1 P1 - d’]
= bl ﬂ ’ _(]_| ’ d’r s (59)
- S1 m=1 d, Pi m=2 by, Pi m=>3 — oLt S1 m=4

we find that only the following flux quanta:

dy=-by=1. by =b (y=0).
dy=-by=-1. di=dy (y=n) (60)

with g, = ry, py = s; or
dy=-by=~1,  by=b (r=0),
dy=-by=1. d=dy (y=n) (61)

with ¢, = —ry, p; = s, are solutions of Eq. (58). Taking into account the condition det(R;) = det(R,) = 1, the flux choice
(60) corresponds to the trivial diagonal matrix for R, as well as R, whereas another choice (61) allows the S transformation
for the diagonal part of SL(2, Z), x SL(2, Z),. We further analyze the modular transformation on (7?),, which transforms
the three-form fluxes F; and H; into

<F3> - (Cﬁ?déidfé CEPdéidéé) <y3>
Hy cWagiag) cag g/ \ ¥
(2) 7ei gei (1) ei ge)
_>{<C” “id G dg‘d§2>(R§‘)T}<y3) (62)
¢ dgag; ¢ dgas *

with Cl(;") = {Afjr")Bf;")} which is not invariant under SL(2,7Z), for a generic choice of fluxes. Indeed, S and T

transformations of SL(2, Z); change the three-form fluxes (F3, H3) themselves, namely,

~Cjjldgjdg; CJdgidg)\ | 0 1
F; (—d?d&idéé CE}”d:id&é) (x3> oo <-1 0>
<H3> T [ —cPagiag + P agiael cagidgl £y e (1]
(—Cii)déidéé +Cy dé de] Cﬁf)dzfidfé) <x3 ) e ( )
which is not identical to the original (F, H3).
However, there is a chance to keep the (discrete) modular symmetry on (72),, identifying the modular transformation R

of SL(2, Z), with SL(2, Z)¢ modular transformation R associated with the axiodilaton. Note that SL(2, Z) always exists
in the effective action, where the axiodilaton as well as the three-form fluxes transform

n (3)-a(3)

for R € SL(2,Z)s.
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For the following choice of fluxes with

dy, =F b%,
dy =7F b)),

by = by =
dy = dy =

+1,
+1,

(r =0),
(r =),
the three-form fluxes (F3, H3) allow us to identify R with

the element of SL(2,Z)y after performing the S trans-
formation of SL(2,Z),,

(65)

1 i P 2 ; .
<F 3) . RR-I(—C%)dedé’é Cf-,-)dfld«:’z> <y3>
& ~Cjdede) cidgiag ) \X
Fy
= R< I ) (66)
3
with
0 1
R = ( + ) (67)
+1 0
¢1:<bﬁ)l/4i ¢2:<b’2 )1/4 2
bybs)  pi’ bib,)
with py = (=\/b] — /D5 + \/D5)"/.
(i) Solution 2
) e
% 2= o)
with p, = (/b bl — \/7 172,
(iii)) Solution 3
1/4 by 47
" b/ b/ 7= b/lbé p3’
with p3 = (—/b} + /b, — \/E)uz‘
(iv) Solution 4
@:(%>“i %:<%>Wg
b/2b/3 Pa ’ b/lb/g o0 ’
with py = (1/b} + /b + \/b_g)l/z_
(v) Solution 5
_ 7 B 7
¢1 - \/76’ ¢2 — \/_6,
(vi) Solution 6
_ T )
¢l - \/*Toy ¢2 — b6 N

Here, the 4 signs are correlated in Egs. (65) and (67).
Hence, the S transformation of a diagonal SL(2,Z); x
SL(2,Z) exists in the potential for a particular choice of
fluxes, but it is difficult to realize the 7 transformation of
SL(2,7Z), even when the modular transformation of the
axiodilaton is taken into account. The spontaneous sym-
metry breaking of these modular symmetries will be
analyzed in the actual flux vacua later. Although we choose
a particular basis of the three-form fluxes (52) and (54),
namely {&;, &}, it is possible to consider other bases, such
as {£1.&} and {&. 5}

In the following, we analyze the modular symmetry
of the flux vacua, which is the remnant of a modular
symmetry in the effective action discussed so far.
Remarkably, all the solutions we found in Sec. III satisfy
the relation,

Re(¢,)* + Im(¢,,)* = 1, (68)
with ¢,, being the rescaled moduli for the solutions:
(i) Solution 1
b 1/4 ¢/ pIS/
w5 el
) e My @

b 1/4 4/ pzS'
@=(3> 3 =1 (70)

bby) P (b byb)'

b/ 1/4 T/ p3sl
a8 el o
) e T ey Y

b 1/4 ¢/ p4S’

e (BYE s
) w7
7 S
b3 = 3,» by =—=. (73)
Vi Vdy
&
$; = bs =1/ DGS'- (74)
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Here, we have explicitly written prime symbols in the
solutions.

In this way, the flux vacua are distributed along the
circumference of the unit circle as in Eq. (68) for the
rescaled moduli. It means that when the rescaled moduli ¢,,
are equal to the original unrescaled moduli fields, some of S
transformations in IT3_ SL(2,Z); x SL(2,Z)g modular
groups,

Pm
[P

with |¢,,| = 1 are manifest in the obtained flux vacua for a
particular choice of fluxes. Furthermore, S transformations
in the flux vacua with |r;| =1 correspond to the CP
transformations z; — —7%; as discussed in Sec. II. The
presence of a CP transformation at the flux vacua also
supports the existence of unbroken 4D CP. Note that the
solutions found in Sec. III C are parametrized by more
generic fluxes, compared with the flux vacua having the
(discrete) modular symmetry. To clarify this point,
we show the solution 5 with the specific flux quanta
d, = —b| = —-b,, = —b% = 1 which lead to the following
superpotential:

¢m - _<¢m)_1 -

, (75)

W = {7\7)7} + S'th7} + S'7| 7, + ST 7L} + 23:1; + 5.
i=1
(76)
The explicit form of the solution 5 is given by
Re(¢,,)? +Im(gh,)* = dy = 1., (77)

where ¢,, = {7}, S’} are distributed along the circumfer-
ence of the unit circle. However, the above solutions do not
satisfy the condition (65), meaning that only the S trans-
formation of the diagonal SL(2,Z), x SL(2,Z), remains
in the flux vacua. Thus, the flat directions are remnant of
the modular symmetries in rescaled moduli. Furthermore,
the 4D CP can be embedded into a modular symmetry
in the background of three-form fluxes such that the flat
directions correspond to the unit circle in the unrescaled
moduli. The other choices of three-form fluxes give rise to
the circle with different radii, and the 4D CP is not
identified with the S transformation.

F. Comments on the CP-breaking sources

In this section, we comment on sources of CP vio-
lation to resolve the degeneracy between CP-breaking
and -conserving minima.

So far, we have focused on the complex structure moduli
and dilaton, but the unfixed Kihler moduli whose axions
determine the size of the € term still play an important role
of CP violation and affect the dynamics of the other

moduli. To stabilize the Kéhler moduli, we introduce the
nonperturbative effects to the superpotential,

W =y(r,8)e /T, (78)

where T denotes the Kidhler moduli appearing in the gauge
kinetic function (2). Here, y(z, S) is supposed to the one-
loop determinant of the D3-brane instanton effects or
the one-loop corrections to the gauge couplings on the
D7-branes, where the gauginos condensate. Although the
lifting of flat directions in the CP-breaking and -conserving
minima is highly dependent on the functional form of
y(z,S) as well as the mechanism to uplift the anti—de Sitter
vacuum obtained after having fixed all the moduli to the de
Sitter one, it might lead to the realization of spontaneous
CP violation even when y(z, S) is a CP-invariant function.
Another possibility to realize the spontaneous CP
violation is to consider Calabi-Yau threefolds or blowing
up the orbifolds as an extension of toroidal orbifolds. It is
interesting to discuss the Calabi-Yau compactifications
with three-form fluxes, but the number of complex struc-
ture moduli is typically of O(100), which is hard to analyze
the CP-breaking minima analytically. Also, the introduc-
tion of geometric fluxes" as well as nongeometric fluxes
will be useful to realize the spontaneous CP violation
because such fluxes induce couplings between the Kéhler
moduli and complex structure moduli [39-41]. We leave
the detailed study of these possibilities for future work.

IV. CONCLUSIONS

In this paper, we systematically investigated whether the
spontaneous CP violation can be realized in Type IIB flux
compactifications on toroidal orientifolds, which allow for
the stabilization of the moduli in a controlled way.

Similar to the heterotic string theory, 4D CP is regarded
as a discrete gauge symmetry embedded into the 10D
proper Lorentz symmetry. To ensure the presence of 4D CP
in the potential, the three-cycles three-form fluxes turn on
are restricted to even or odd polynomials with respect to the
complex structure moduli associated with tori and the
axiodilaton. Our detailed analysis for a generic choice of
fluxes shows that there exist flat directions, where CP-
breaking and -conserving vacua are degenerate. Hence, the
flux compactifications are insufficient to realize the spon-
taneous CP violation in Type IIB toroidal orientifolds.
The statement also holds for the heterotic string theory as
well as Type IIA string theory on toroidal orbifolds with
fluxes because the functional form of the flux-induced
superpotential is restricted to one of the Type IIB flux
compactifications. These flat directions are remnants
of the modular § transformation for rescaled moduli.
Furthermore, the 4D CP is embedded into the modular
symmetries in the effective action for a particular choice of
fluxes, and such an approach to unify CP and modular
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symmetries is closely related to the recent discussion in the
heterotic orbifold context [7—10] but in a different context.

To resolve the degeneracy between the CP-breaking and
-conserving vacua, an extension of our system is required to
introduce nonperturbative effects with respect to the Kihler
moduli and/or (non)geometric fluxes in the superpotential.
Calabi-Yau compactifications as well as the blown up
orbifold compactifications will give a crucial role of lifting
the flat directions. We will report this interesting work in
the future.

Recently, modular flavor symmetries were studied to
derive realistic quark and lepton mass matrices. (See, e.g.,
Ref. [42].) Although the modular symmetry is completely
broken at a generic value of 7, its subgroups remain at fixed
points, e.g., Z; symmetry at 7 = /3, Z, symmetry at

7 =1, and Z, symmetry at 7 = ioco. In this sense, moduli
values at and near these fixed points are interesting. (See,
e.g., Ref. [43].) For example, realistic quark and lepton
mass matrices are obtained around 7 = i [44]. Our analysis
can lead to such values, i.e., 7; = i for dy = 1 in solution 5
and 7y, = 0.127 4 0.958i in Eq. (39) as well as 7 ~ ico for
sufficiently large dj in solution 5. Our result would also be
important from this viewpoint.
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