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We consider supergravity theories with 16 supercharges in Minkowski space with dimensions d > 3.
We argue that there is an upper bound on the number of massless modes in such theories depending on d.
In particular, we show that the rank of the gauge symmetry group G in d dimensions is bounded by
rG ≤ 26 − d. This in particular demonstrates that four-dimensional N ¼ 4 SYM theories with rank bigger
than 22, despite being consistent and indeed finite before coupling to gravity, cannot be consistently
coupled to N ¼ 4 supergravity in Minkowski space and belong to the swampland. Our argument is based
on the swampland conditions of completeness of spectrum of defects as well as a strong form of the
distance conjecture and relies on unitarity as well as supersymmetry of the world sheet theory of BPS
strings. The results are compatible with known string constructions and provide further evidence for the
string lamppost principle: that string theory lamppost seems to capture all consistent quantum gravitational
theories.
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I. INTRODUCTION

The swampland program [1] is based on the assumption
that one can draw general lessons about consistency of
quantum gravity theories by a careful examination of the
string landscape. If string landscape is only a small fraction
of what can be obtained from a consistent theory of
quantum gravity, drawing a conclusion based on string
theory constructions may be misleading. It is thus impor-
tant to evaluate to what extent the string lamppost is
complete.
One of the principles of swampland is the conjecture on

boundedness of the number of massless modes in a
consistent theory of quantum gravity [1]. This is motivated
mainly from the fact that in various string theory con-
structions it is believed that there are only a finite number of
internal compactifications consistent with a particular
amount of supersymmetry. For example, it is believed that
there is a finite number of Calabi-Yau manifolds in each
dimension [2]. However, could it be that we are being
misled by the string lamppost? Could it be that only the
ones we can obtain as part of the string landscape are
bounded but there is no intrinsic bound from quantum
gravity alone? To examine this question, we consider

simplest cases consisting of theories with large amounts
of supersymmetry.
The case of theories with maximal supersymmetry,

namely, 32 supercharges, is already interesting: In this
case, supersymmetry alone fixes the massless matter
content of the theory. So, one may think that this case is
too boring to check for the string lamppost completeness.
But, in fact, this is the first example to show that string
lamppost is complete: we can obtain theories with 32
supercharges in all allowed dimensions from string theory.
This did not have to be the case. The bulk of this paper is
devoted to the case with half this maximum amount of
supersymmetry in d > 3 dimensions, namely, those with 16
supercharges in d ¼ 4;…; 10. There are two types of such
theories: chiral ones which appear only in 10d and 6d, and
nonchiral ones which exist in d ¼ 4;…; 9. The chiral ones
are strongly constrained by anomalies. In particular, in
d ¼ 10, the matter can only allow gauge groups E8 ×
E8; SOð32Þ; E8 ×Uð1Þ248; Uð1Þ496 [3]. However, only the
first two are realized in string theory. One may have thought
that the lack of ability to get the latter two cases already
demonstrates the inadequacy of the string lamppost, but it
has been shown [4,5] that these belong to the swampland
based on general consistency conditions of supergravity,
again reinforcing the completeness of the string theory
lamppost. In d ¼ 6, the massless spectrum of chiral
theories with N ¼ ð2; 0Þ supersymmetry is completely
fixed [6], and it is indeed the case that this can be
constructed in string theory (by compactification of Type
IIB on K3). This again reinforces the power of the string
lamppost principle (SLP): that all consistent theories of
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quantum gravity are in the string landscape. A similar story
repeats for chiral theories with half as much supersymmetry
in six dimensions withN ¼ ð1; 0Þ supersymmetry. In these
theories, anomaly cancellations lead to infinitely many
possible massless spectra [7], but only a finite number of
them can be constructed using string theory. Again, it was
shown that at least a number of the infinite series of
anomaly free spectra that have not been constructed in
string theory belong to the swampland [5] (see also [8]).
This was shown by consideration of unitarity of theories
living on the BPS strings in these theories.
A skeptic of the SLP may surmise that the reason for

success of SLP in these cases may be because we are
dealing only with chiral theories which are strongly con-
strained by anomalies and if we consider cases without
chirality we could find counterexamples to SLP. It is known
from string constructions that for nonchiral theories with 16
supercharges the rank of the gauge group is bounded by
rG ≤ 26 − d.1 The upper bound on rank can in particular be
realized by toroidal compactifications of heterotic strings to
lower dimensions. We will show in this paper that indeed
all consistent quantum gravity theories with 16 super-
charges must satisfy this bound, reinforcing the SLP. The
basic idea we use is to follow the strategy in [5] and study
the theory living on BPS strings in these theories. We find
that supersymmetry and unitarity of QFT on these defects
lead to the above bound on the rank. To show this, we need
to use in particular a strong form of the distance conjecture
[9] (even though this strong version of the distance
conjecture is generally assumed, it seems it is not explicitly
stated except in the recent work [10–12]). The strong form
of distance conjecture states that at large distances in
moduli the light degrees of freedom lead to a dual
description of the theory. Using this, we argue that the
BPS string wrapped on a circle of radius R should be
viewed as a graviton of a dual theory on a circle with radius
1=R. This is needed to put bounds on the central charges of
the current algebra on the wound string by using the fact
that the spin of the dual gravity multiplet cannot be more
than 2.
The organization of this paper is as follows: in Sec. II, we

review some basic structures of theories with 16 super-
charges in various dimensions. We briefly summarize the
chiral cases before moving on to review the known
constructions for the nonchiral cases. In Sec. III, we argue
that any consistent quantum gravitational theory with 16
supercharges enjoys T duality, explaining one of the
features observed in string constructions. In Sec. IV,
we study the BPS string in these theories and use

supersymmetry combined with unitarity on their world
sheet to place a bound on the rank of the gauge groups for
nonchiral theories. Finally, in Sec. V, we present our
conclusion.

II. REVIEW OF SUPERGRAVITY THEORIES
WITH 16 SUPERCHARGES

In this section, we would like to review 4 ≤ d ≤ 10-
dimensional theories with 16 supercharges. Theories with
16 supercharges in d > 3 consist of chiral theories in d ¼
10 with N ¼ ð1; 0Þ and d ¼ 6 with N ¼ ð2; 0Þ supersym-
metry and nonchiral theories in dimensions d < 10. Below
we review what is known about these cases. As we will
review below, for the chiral theories all the cases allowed by
anomaly cancellation and other consistency conditions
have already been constructed in string theory. The non-
chiral theories will be the main focus of the present paper.

A. Chiral theories

These theories are chiral and are subject to anomaly
cancellation conditions which limits the gauge group that
appear in 10 and 6 dimensions.

(i) N ¼ ð1; 0Þ in 10d
In particular, the gauge and gravitational anomaly

cancellation in 10d implemented by the Green-Schwarz
mechanism [3] requires the gauge groups to be limited to
E8 × E8, SOð32Þ, E8 ×Uð1Þ248; Uð1Þ496. However, only
the first two gauge groups lead to consistent supergravities
and the latter two belong to the swampland as argued
in [4,5].
We can construct the two consistent ones in string theory

in various ways: E8 × E8, SOð32Þ heterotic strings, Type I,
SOð32Þ theory, and E8 × E8 via M theory on an interval.

(i) N ¼ ð2; 0Þ in 6d
These theories have similar anomaly cancellation con-

dition as the ten-dimensional theories. However, vector
multiplets are absent in such a theory and hence only the
number of tensor multiplets is restricted for a consistent
theory coupled to gravity. In particular, a 6d analogue of the
Green-Schwarz mechanism [13] restricts the number of
tensor multiplets to be n ¼ 21 [6]. The moduli space of
scalars in this theory is given by

SOð21; 5Þ
SOð21Þ × SOð5Þ ; ð1Þ

(where here, and in the following we ignore the duality
group quotient for the moduli space and all groups are over
the reals).
This theory can be understood as the low-energy limit of

Type IIB string theory on a K3. AT-dual description of this
theory can be found by considering M theory on the
orbifold T5=Z2 [14,15].

1Note that of course there is nothing inconsistent with a d-
dimensional 16 supercharge theory of arbitrary rank coupling to
gravity in dimensions bigger than d. This is the case, for instance,
for N parallel and coincident D3 branes coupling to 10d gravity
in a 10-dimensional Minkowski background (leading at large N
to the holographic dual AdS5 × S5).
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B. Nonchiral theories

In this subsection, we review various known construc-
tions of nonchiral theories with 16 supercharges in dimen-
sions 3 < d < 10 giving more detail for the cases d ¼ 9, 8,
7 which have been more thoroughly studied. A nonchiral
theory with 16 supercharges in d dimensions has matter
scalar fields which belong to the coset space

SOðrG; 10 − dÞ
SOðrGÞ × SOð10 − dÞ ; ð2Þ

and in addition an Rþ for d > 4 and a complex axiodilaton
in d ¼ 4 coming from the gravity multiplet. Here rG
denotes the rank of the gauge group G (of the vector
multiplets) and for generic point of the scalar field the G is
Abelianized to Uð1ÞrG [in fact as is well known in string
theory, different groupsGwith the same rank can emerge at
different points in the vacuum expectation value (VEV) of
scalar fields]. Moreover, the gravity multiplets of a non-
chiral theory has (10 − d) Uð1Þ gauge fields as well as an
antisymmetric 2-form gauge field Bμν.

2 We will be inter-
ested in strings charged under the B field later in this paper.
As we will review below, even though classical super-

gravity alone allows arbitrary rank rG, the ones that appear
from string theory constructions all satisfy the bound
rG ≤ 26 − d. This bound is saturated by considering
toroidal compactifications of heterotic strings. Below we
review some of the string theory constructions leading to
various lower ranks as well.

1. d = 9 theories

(i) Rank ¼ 17
The nine-dimensionalN ¼ 1 theory with rank 17

can be constructed in many ways. The simplest way
is by considering a circle compactification of het-
erotic strings. This can of course be described in
many dual ways, including Type I or M theory as
well.
The moduli space branches for the E8 × E8 and

SOð32Þ gauge groups in 9d are actually not distinct
but parts of the full moduli space of rank 17 theories
[16]. Each of these components can be reached by
turning on Wilson lines for the heterotic/Type I
theories or equivalently moving D8 branes in Type I.
Therefore, for rank 1, there exists one inequivalent
nine-dimensional N ¼ 1 theory with moduli
space SOð17; 1Þ=SOð17Þ.

(ii) Rank ¼ 9
There is also one inequivalent rank 9 theory which

in different regions of its moduli space can be
described in terms of M theory on a Mobius strip

[17,18], the 9d CHL string [19,20] and IIA with a
shift-orientifold O80 and O8− þ 7D8 with an extra
D8 [21]. Hence, we obtain nine-dimensional N ¼ 1
theory with gauge group E8 ×Uð1Þ and moduli
space given by SOð9; 1Þ=SOð9Þ.

(iii) Rank ¼ 1
There exist two inequivalent rank 1 theories in

nine dimensions with moduli space given by
SOð1; 1Þ.

The first one can be obtained from M theory on
the Klein bottle [18] resulting in a theory with 16
supercharges and gauge group Uð1Þ. The moduli
space of this theory has different weakly coupled
descriptions at different regions of the space. In
particular, the different regions can be characterized
by M theory on the Klein bottle, IIA with two shift-
orientifolds O80 and the asymmetric orbifold of IIA
(AOA) [21].

The second inequivalent theory is given by Type
IIB theory on a Dabholkar-Park background [18].
This latter theory also has various weak coupling
descriptions [21]. Upon compactification on a fur-
ther circle this leads to a T-dual description of M
theory on Klein bottle mentioned above. Therefore,
we have reviewed here two theories in d ¼ 9 with
rG ¼ 1 which are distinct, since they have discon-
nected moduli spaces and can only be connected
through T duality by going to 8d.

2. d = 8 theories

Discussions for constructions of theories in d ¼ 8 can be
found in [18,22] as well as in [23].

(i) Rank ¼ 18
This theory can be constructed by considering the

circle reduction of the 9d rank 17 theory with an
extra Uð1Þ factor coming from the second circle.

(ii) Rank ¼ 10
This theory can be viewed as the 8d CHL string

[19] which is dual to IIA orientifold on the Mobius
strip [17]. The strong coupling limit of the latter
description is M theory on the Mobius strip which is
dual to the 9d CHL string.

(iii) Rank ¼ 2
There are two inequivalent 9d rank 1 theories

which describe the same theory in eight dimensions
[21]. Therefore, there is one eight-dimensional rank
2 theory coming from the 9d circle reduction with an
extra Uð1Þ factor.

3. d = 7 theories

The seven-dimensional theories are interesting because
they do not all come from a simple circle compactification
of the 8d theories [22]. In particular, they find new theories
by considering the heterotic string on T3 with some Zn

2Sometimes one considers the dual of this field; for example,
in 4d, the B field is usually dualized to a scalar axion.
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triples of commuting holonomies, IIB orientifolds, and F/M
theory compactifications.

(i) Rank ¼ 19; 11
These theories are equivalent to the 8d rank 18,10

theories compactified on a circle, respectively.
(ii) Rank ¼ 7

There is one theory with rank 7 obtained from the
heterotic string on T3 with some Z3 triples. This
theory is dual to F theory on K3×S1

Z3
.

(iii) Rank ¼ 5
Similarly, this theory can be constructed from the

heterotic string withZ4 triples and is dual to F theory
on K3×S1

Z4
.

(iv) Rank ¼ 3
There are in total seven inequivalent theories with

rank 3. In particular, there are two inequivalent
theories obtained from the heterotic string with
Z5;6 triples and are dual to F theory on K3×S1

Z5;6
,

respectively. In addition, there are two inequivalent
theories coming from IIB orientifolds
4O7− þ 4O7þ. One of these two theories turns
out to have a dual given by F theory
ðT4 × S1Þ=Z2. Finally, there are three inequivalent
theories coming from F theory on T4×S1

Z3;4;6
. These three

theories do not have a heterotic description but have
an M theory description in terms of K3 compacti-
fication with frozen singularities.

III. T DUALITY AND THE STRONG VERSION OF
THE DISTANCE CONJECTURE

In this section, we use the strong version of the distance
conjecture [9] to argue that if we take a nonchiral theory
with 16 supercharges in d dimensions and put it on a circle
of radius Rwith no additional Wilson lines turned on, in the
limit of R → 0 it is equivalent to another theory with 16
supercharges again in d dimensions. Moreover, the winding
string of one is equivalent to momentum modes of the dual
theory. The resulting theory may or may not be the original
theory. An example of this, when you get the same theory
back, is compactification of the heterotic string on a circle
as the heterotic circle is self-dual under T duality. An
example of the T duality which is not a self-duality is the
two inequivalent rank 1 theories we discussed in nine
dimensions, which are T dual of one another. We will now
argue, regardless of the origin of the nonchiral theory, the
strong version of the distance conjecture leads to the
prediction of T duality. As we will see, the main ingredient
in this argument is that such a large amount of supersym-
metry strongly constrains the moduli space of the theory
upon circle compactification.
We consider a d-dimensional nonchiral theory with 16

supercharges with a gauge group of rank rG in the low
energy effective action on a circle S1. The moduli space of

this theory was written in (2) and upon the circle compac-
tification and in the absence of Wilson lines on the circle it
only acquires an extra factor SOð1; 1Þ coming from the
radius of the circle. This subspace of the moduli space
associated with the vector multiplets is then given by

SOðrG; 10 − dÞ
SOðrGÞ × SOð10 − dÞ × SOð1; 1Þ: ð3Þ

We note that if we were to turn on Wilson lines for the
gauge fields around the circle, then some scalars would
acquire a VEV and the moduli space would become3

SOðrG þ 1; 10 − dþ 1Þ
SOðrG þ 1Þ × SOð10 − dþ 1Þ : ð4Þ

However, in the cases we are considering, such VEVs are
not turned on and hence the moduli remain the same when
we put on a circle up to the extra SOð1; 1Þ. Note that as
already mentioned the gravity multiplet includes a Bμν

field. Compactifying the theory on a circle will lead to a
gauge field Bμθ where θ is along the direction of the circle.
Strings charged under B and wound around the circle will
continue to carry the charge of the gauge field in the lower
dimension. In addition, there is a gauge field associated to
the reduction of the gravity mode on the circle gμθ and the
modes carrying KK momentum are charged under this
mode. The supersymmetry algebra implies that BPS states
charged under the momentum and winding modes have
central charges ðn=R;mRÞ where ðn;mÞ denote the
momentum and winding numbers.
We now consider the circle becoming very small. Then

one would expect the dual theory to at least have (d − 1)-
dimensional Lorentzian symmetry. We will now argue that
the theory should actually end up being d dimensional in the
limit R → 0. The general statement of the distance con-
jecture [9] is that at infinite distance in moduli space an
infinite tower of light states emerges. A stronger version of
this conjecture states that when this tower appears then there
exists a dual weakly coupled description with its basic
modes comprised of the states in the light tower. In the case
at hand as R → 0, the supersymmetry algebra implies that
the winding modes are getting light. This winding modes
should be the dual description of some elementary excita-
tions of a dual theory. On the other hand, we have found that
the moduli space of the theory whose masses do not depend
on R includes

SOðrG; 10 − dÞ
SOðrGÞ

; ð5Þ

which predicts that the theory must have at least d dimen-
sions, because of the classification of scalar moduli space of

3We are ignoring the fact that in 3d the gauge bosons can be
dualized to scalars and add to the dimension of moduli space.
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theories with 16 supercharges. Thus, the light modes which
used to bewindingmodes of the original theorymust nowbe
part of theweak coupling limits of this d-dimensional theory.
In other words, they must be the momentum modes of this
theory. Said differently we have argued that every nonchiral
theory enjoys T duality. Of course, this argument does not
predict whether the T-dual theory is different or the same as
the original theory, compatible with the fact that both
versions do occur in string theory. Note that this implies
that the singly wound string of the original theory in its
ground states should carry the same quantum numbers as a
graviton multiplet with one unit of momentum around the
circle, since it is dual to it. In particular, it is amassive state in
a d − 1-dimensional theory with maximum spin 2. We will
use this fact below.

IV. DERIVATION OF THE BOUND ON THE RANK

As we have discussed, the supergravity multiplet for
nonchiral theories with 16 supercharges includes an anti-
symmetric 2-form tensor field B. By completeness of the
spectrum, we can consider a BPS string charged under this
field and study the consequences of supersymmetry and
unitary of the world sheet CFTon this string. From this, we
will show that the rank of the gauge group is bounded from
above. The strategy to find the bound is exactly the one
employed in [5].
The string with tensor charge Q couples to the bulk

theory through the following term:

Sstr ¼ Q
Z
Md

B ∧ Yd−2
a¼1

δðxaÞdxa ¼ Q
Z
M2

B; ð6Þ

where we assume the string is located at the origin xa ¼ 0

of the transverse Rd−2 directions.
The 1=2 BPS string will preserve N ¼ ð0; 8Þ super-

symmetry. This can be explained as follows. The super-
symmetry algebra in the presence of the string should
comprise only unbroken symmetry generators. In particu-
lar, the momentum generators along the transverse Rd−2

cannot be parts of the algebra. First, consider the 4d case.
Suppose, a string is stretched along x0, x3 directions in 4d
supergravity. The 4d SUSY algebra involves fQI

α; Q̄_βJg ∼
ðσμPμÞα _βδIJ with the Pauli matrices σμ ¼ ð−1; σiÞ. Then,
for the absence of P1, P2 generators in this algebra, the
string will pick unbroken eight supercharges QIþ; Q̄ _þJ

(or QI
−; Q̄ _−J) whose currents turn out to be right-moving

(or left-moving) in the 2d world sheet. Also, half the
supercharges in d > 4 supergravity preserved in the
presence of 2d defects reduce to these chiral supercharges
under toroidal compactification to 4d (with the string
world sheet transverse to the circles). This shows that the
eight supercharges have a definite chirality on the world
sheet for all d. They are right-moving in our convention.

We note that the B field transforms nontrivially under the
local Lorentz and the gauge transformations with param-
eters Θ and Λi, respectively,

δB ¼ −
1

4
TrðΛ · FÞ þ κtrðΘRÞ; ð7Þ

with the gauge field strength Fi’s and the curvature 2-form
R in the bulk supergravity. We have used a · b ¼ Ωijaibj
for the dot product of two vectors in the charge lattice
ΓrG;10−d with respect to the SOðrG; 10 − dÞ-invariant metric
Ωij with signature ðrG; 10 − dÞ. Here, the gauge variations
of B are fixed by invariance of the action under 16
supercharges [24–26]. On the other hand, the variation
under the local Lorentz transformation is from higher
derivative corrections that cannot be fixed solely by
supersymmetry. So, the coefficient κ is yet to be determined
by other means. The bulk action now includes the string
action Sstr that is not invariant under the symmetry trans-
formations due to the variation rules (7) of B. Therefore, the
presence of the string induces anomaly inflow toward the
string world sheet. This anomaly inflow must be cancelled
by the anomaly coming from the world sheet degrees of
freedom.
The chiral degrees of freedom on the world sheet

conformal field theory (CFT) could have nontrivial
anomaly and we expect that this world sheet anomaly
cancels the anomaly inflow from the bulk gravity theory
discussed above. The cancellation of the anomaly inflow
then restricts the anomaly polynomial of the world sheet
CFT on Q strings to the form

I4 ¼ Q

�
−κtrðR2Þ þ 1

4
TrðF · FÞ

�

¼ Q

�
κ

2
p1ðT2Þ − κc2ðSOðd − 2ÞÞ þ 1

4
TrðF · FÞ

�
; ð8Þ

where p1ðT2Þ is the first Pontryagin class of the tangent
bundle T2 on the 2d world sheet and c2ðSOðd − 2ÞÞ is the
2nd Chern class of the SOðd − 2Þ normal bundle for the
transverse Rd−2 rotation. Here we used the decomposi-
tion trR2 ¼ − 1

2
p1ðT2Þ þ c2ðSOðd − 2ÞÞ.

When d ¼ 10, for example, the anomaly polynomial
with κ ¼ 1 coincides with that of the 2d CFT on BPS
strings in the 10d N ¼ ð1; 0Þ supergravity with E8 × E8 or
SOð32Þ gauge group computed in [5]. In this case, the
constant κ ¼ 1 is fixed by the bulk anomaly cancellation by
Green-Schwarz mechanism.
The world sheet theory at low energy reduces to a 2d

conformal theory with at least (0,8) supersymmetry. It is
a priori conceivable that the supersymmetry gets enhanced
in the IR to (8,8). It is important to distinguish these two
possibilities because the anomaly coefficients compute the
left minus right contributions. Let us first discuss the case
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where there are no enhancements and the theory in the IR
has (0,8) supersymmetry only.
For the (0,8) case, we can easily compute the central

charges of the 2d world sheet theory from the anomaly
polynomial. First, the coefficient of the gravitational
anomaly − 1

24
p1ðT2Þ encodes the relative central charge

cR − cL. In addition, we can obtain the right-moving
central charge cR using the N ¼ ð0; 2Þ superconformal
subalgebra in the N ¼ ð0; 8Þ supersymmetric theory. The
Uð1ÞR R-symmetry group of the N ¼ ð0; 2Þ superconfor-
mal algebra is chosen as an SOð2Þ subgroup of the
SOðd − 2Þ rotation group (which can be done since
d ≥ 4). Then the (0,2) algebra relates the right-moving
central charge with the ’t Hooft anomaly kR of the Uð1ÞR
symmetry such as cR ¼ 3kR ¼ 12κ, where κ is the ’t Hooft
anomaly coefficient for the JSOð2Þ current of SOð2Þ ⊂
SOðd − 2Þ bulk symmetry related to the Uð1ÞR current
by JR ¼ 2JSOð2Þ. As a consequence, we find the central
charges,

cR ¼ 12κ; cL ¼ 24κ: ð9Þ

κ is quantized to be an integer because the SOð2Þ ⊂
SOðd − 2Þ is part of the Lorentz symmetry.
We note that this result involves the contributions from

the center-of-mass degrees of freedom that come from the
zero modes of broken symmetries in the presence of BPS
strings. The center-of-mass modes form a free (0,8)
multiplet ðσa; Yi; λþÞ with a ¼ 1;…; 10 − d and i ¼
1; � � � d − 2 where σa are right-moving compact scalars
and Yi are noncompact scalars (which realize the symmetry
currents associated with the 10 − d graviphotons), and λþ
are eight right-moving fermions. A simple counting yields
their central charges ccomR ¼ 12; ccomL ¼ d − 2. Thus, the
central charges of the interacting sector in the world sheet
theory are

c̃R ¼ cR − ccomR ¼ 12ðκ − 1Þ;
c̃L ¼ cL − ccomL ¼ 24κ þ 2 − d: ð10Þ

The ’t Hooft anomaly coefficients of flavor symmetry
groups are identified with the levels of the Kac-Moody
current algebra. For a string with Q ¼ 1, the anomaly
polynomial in (8) tells us that the ’t Hooft anomalies ki for
flavor symmetry groups, which originate from the bulk
gauge symmetries, are given by eigenvalues of the metric
Ωij. In our convention, right-moving (or left-moving)
current algebra provides negative (or positive) contribution
to the associated ’t Hooft anomaly. The ki is a net
contribution from both sectors. Therefore, one can deduce
that the 2d CFT on a single string must contain at least one
current algebra for every symmetry groupGi realized in the
right-moving sector if ki < 0 or in the left-moving sector
if ki > 0.

Let us now turn to unitarity constraints on the world sheet
of (0,8) CFTs of BPS strings. First, the current algebra of
simple non-Abelian group G with level k in the 2d CFT
contributes to the central charge by the factor (see, e.g., [27])

cG ¼ k dimG
kþ h∨ ; ð11Þ

where dimG is the dimension and h∨ is the dual-Coxeter
number of groupG, respectively. For aUð1Þ current algebra,
the central charge contribution is cUð1Þ ¼ 1. This leads to the
following constraint on the left-moving central charge [5]:

X
i

cGi
≤ c̃L; ð12Þ

where the sum for i is taken over the left-moving currents.
Remarkably, this inequality provides a strict upper bound on
the rank of the bulk gauge group. On the Coulomb branch,
where the bulk gauge symmetry is broken to Abelian groups
including Uð1ÞrG , we can further simplify the bound as

rG ≤ c̃L ¼ 24κ þ 2 − d: ð13Þ

If this bound is violated, the anomaly inflow from the bulk
gravity theory cannot be cancelled by the anomalies of a
unitary CFT on the string. Hence, a consistent bulk gravity
theory involving BPS strings must satisfy this bound.
We now argue that any gravity theory with 16 super-

charges that has awell-defined T-dual theory necessarily has
κ < 2. For this, we consider a string with Q ¼ 1 wrapped
around a circle of radius R and study its ground states.
Consider first the ground states of the wound string in the
Ramond sector of the interacting CFT. As has been argued
in [28], the maximum charge for the Uð1ÞR spectrum in the
Ramond sector for this theory is given by cR=6, the central
charge of the current, i.e., 2ðκ − 1Þ after removing the
center-of-mass contribution, which means that the spin is
less than or equal to (κ − 1). Moreover, as argued there, this
maximum range is actually realized by the spectral flow of
the vacuum state of the Neveu-Schwarz sector to the R
sector.4

Now, we use the fact that the spectrum of the singly
wound string already includes spin 2 states arising from the
center-of-mass degrees of freedom in the right-moving
sector. As we argued, in addition, the internal degrees of
freedom from the interacting CFT contains right-movers
carrying charges under the SOð2Þ ⊂ SOðd − 2Þ rotational
symmetry. This simply means that the ground states of the
wound string will include a state with a net spin bigger than

4The argument in [28] is mainly in the context of (2,2)
supersymmetric theory, but that can be easily adapted to the
ð0; 2Þ ⊂ ð0; 8Þ being considered here, using the integrality of
charges of the Uð1ÞR, which follows from the fact that it is twice
the spins in physical space which are integer or half-integer.
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2 when κ − 1 > 0. This higher spin state is generated by a
tensor product of the spin 2 states in the center-of-mass
spectrum and the internal right-moving state carrying
SOð2Þ Lorentz charge κ − 1. On the other hand, a conse-
quence of T duality is that the ground states of the wound
string should have the same quantum numbers as the
gravity multiplet in the dual theory. So, T duality cannot
hold if κ > 1 due to the higher spin states. Therefore, we
conclude there are only two possibilities

κ ¼ 1 or 0: ð14Þ
When κ ¼ 1, the central charges of the 2d CFT on a

single string are ðcL; cRÞ ¼ ð24; 12Þ. The unitarity of this
string probe when coupled to the bulk gravity imposes a
novel constraint on the rank of the bulk gauge groups,

rG ≤ 26 − d: ð15Þ

The case κ ¼ 0 is not allowed for the (0,8) case as can be
seen from the fact that there are always the center-of-mass
modes and thus we cannot have cL ¼ cR ¼ 0 which would
be a consequence of (9). However, the κ ¼ 0 case is in fact
forced on us, as we will discuss next, for the case when the
supersymmetry is enhanced in the IR to (8,8).
We now turn to the case with (8,8) supersymmetry.

In this case, we still have

cL − cR ¼ 12κ;

but, in addition, we have two Uð1ÞR currents, one left-
and one right-moving with anomaly coefficients kL, kR,
satisfying

kL − kR ¼ 4κ;

with cL ¼ 3kL; cR ¼ 3kR. By the T-duality argument, we
just used which implies that we should have no additional
spins other than those coming from the center of mass, we
learn that kL ¼ kR ¼ 1 and κ ¼ 0. Moreover, this implies
that cL ¼ cR ¼ 12 and subtracting the degrees of freedom
coming from the center of mass, we get the bound on the
rank of the gauge group rG ≤ 10 − d. This bound is
stronger than the one coming for theories with (0,8)
supersymmetry (15). Taking this into account, we learn
that any gravity theory with 16 supersymmetries while
having higher rank gauge groups beyond the bound in (15)
are inconsistent and therefore belong to the swampland.
Both the (0,8) and (8,8) supersymmetric cases on BPS

strings are realized in string theory. In particular, the
toroidal compactifications of heterotic string realize the
(0,8) case, consistent with the fact that it has
ðcL; cRÞ ¼ ð24; 12Þ. An interesting example of this is the
rank 9 theory in d ¼ 9. In this case, we can have at the CHL
point the E8 ×Uð1Þ matter gauge symmetry. The central
charge of the left-moving degrees of freedom comes from

the center-of-mass contribution of (c1 ¼ 7) plus E8 at level
k ¼ 2 (c2 ¼ 15 1

2
) plus the Uð1Þ (c3 ¼ 1) and a leftover

piece which is an Ising model (c4 ¼ 1
2
) leading to cL ¼ 24.

The case with (8,8) is also realized: one such example is
the IIA limit of M theory compactified on Klein bottle,
called the AOA theory, introduced in [21]. A BPS string in
the AOA theory enjoys the (8,8) symmetry enhancement.
The 2d theory on a single string consists of bosonic fields
ðA0; A1; A2; YiÞ with i ¼ 1;…; 7 and a pair of fermionic
fields ψ� where A0, A1 are 2d gauge fields and A2 is a
compact (but nonchiral) scalar and Yi are noncompact
scalars, and � denotes the 2d chirality [21]. The SOð7Þ
Lorentz symmetry acts on both (anti-)chiral fermions ψ� as
well as Yi. These fields form a free (8,8) multiplet for the
center-of-mass degrees of freedom of the string. From the
matter content, one can read off the central charges as
cR ¼ cL ¼ 12. We also notice that the ’t Hooft anomalies
for the Uð1Þ ×Uð1Þ gauge symmetry receive contributions
þ1 and −1, respectively, from the left- and the right-
moving components of the compact scalar A2, which
precisely cancel the anomaly inflow for Uð1Þ ×Uð1Þ
gauge symmetry. Toroidal compactifications of this theory
give rise to other examples with N ¼ ð8; 8Þ enhanced
supersymmetry in κ ¼ 0 gravity theories.
Note that the upper bound on the rank (15) is saturated

by the toroidal compactifications of 10d heterotic strings to
lower dimensions. By turning on holonomies in the
compactifications, we can also construct a large class of
lower rank theories. Hence, the above rank bound provides
a strong evidence for the string lamppost principle.

V. CONCLUSION

We have seen that the number of massless modes in a
supersymmetric theory of gravity with 16 supercharges
admittingMinkowski background is bounded. In particular,
the massless matter in such theories, which is determined
by the choice of a gauge group G, satisfies a bound on its
rank rG ≤ 26 − d. Moreover, as we have seen, this bound is
satisfied by all the known string theory constructions.
There are a number of ways one may hope to extend the

results in this paper: one direction is to find a further
refinement on the ranks. For example, the string construc-
tions suggest that in d ¼ 9 the only allowed ranks are
17,9,1. There are similar restrictions from known string
constructions on the actual ranks that do appear in other
dimensions. Can one derive these bounds as well? Another
restriction is to find the actual gauge groups that can appear
in consistent theories, which are compatible with the rank
conditions. It is known that not all groups which are
consistent with the rank condition seem to arise. For
example, in d ¼ 8, some gauge groups are forbidden by
global anomalies [23]. However, even taking into account
global anomalies some cases, like G2 gauge group does not
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seem to appear as part of consistent theory with 16
supercharges in d ¼ 8. It would be interesting to find all
the allowed groups that can appear.
This paper is part of the larger program of finding an

upper bound on the number of massless modes in super-
symmetric gravity theories. We now know that theories
withN ¼ 32, 16 supercharges have a fixed upper bound on
the number of massless modes in each dimension which are
indeed all realized by string constructions. It would be
natural to continue this to theories with less supersym-
metry, and in particular to the next case with N ¼ 8
supercharge theories in six and lower dimensions and
check whether the SLP still continues to hold.
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