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We present the technique for resummation of flux tube excitations series arising in pentagon operator
expansion program for polygonal Wilson loops in A/ =4 SYM. Here we restrict ourselves with
contributions of one-particle effective states and consider as a particular example NMHV, amplitude
at one-loop. The presented technique is also applicable at higher loops for one effective particle
contributions and has the potential for generalization to contributions with more effective particles.
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I. INTRODUCTION

The discovery of integrability of A" =4 SYM in planar
limit, see [1,2] for a review, has led to tremendous progress
in our ability to compute different observables in general at
arbitrary values of N' =4 SYM coupling constant. In par-
ticular the collinear or pentagon Operator Product Expansion
(POPE) approach to null-polygonal Wilson loops thanks to
duality between amplitudes and (super)Wilson loops [3-8]
gives us means for computing scattering amplitudes both at
weak and strong values of coupling constant [9-28]. There is
also a similar approach' to structure constants [30-32] and
correlation functions [30,33-47].

The important problem present within pentagon OPE
approach is the problem of resummation of contributions
coming from different flux tube excitations. The latter is
required if we are going to recover full kinematical
dependence of scattering amplitudes computed within
POPE approach without restriction to collinear limits. At
weak coupling a procedure for resummation of single
particle gluon bound states was presented in [48,49], see
also [50] for resummation in the context of n-point
functions of Bogomol’'nyi Prasad Sommerfield (BPS)
operators. At strong coupling the procedure for systematic
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resummation was studied in [24-28], where one should
account for resummation of contributions from gluons,
scalars, fermions, and mesons. On the other hand a
systematic approach for resummation at weak coupling
[20,51-53] is tightly connected with the concept of
effective particles [18,20]. The latter are formed by funda-
mental excitations (gluon or its bound states, scalars,
and large fermions/antifermions) together with arbitrary
number of small fermions/antifermions. The introduction
of effective particles allowed us to reconstruct several
scattering amplitudes in general kinematics at tree level
[20,52,53] and Maximal Helicity Violating (MHV) hex-
agon amplitude at one-loop level. Here we are going to
extend these results and present the technique for resum-
mation of one effective particle contributions to hexagon
amplitudes at arbitrary order of perturbation theory. As a
particular example we consider NMHV, amplitude at
one-loop. Within POPE approach the one effective particle
contribution for scattering amplitudes is given in terms
of multiple series with complex summand. On the other
hand we know that the result for scattering amplitudes2
is expressible in terms of multiple polylogarithms. So,
there should be a way to evaluate mentioned series in terms
of multiple polylogarithms. The aim of the present paper is
to offer a possible solution to precisely this problem. The
presented technique has also the potential for generaliza-
tions to both higher point scattering amplitudes and
contributions with more then one effective particle.

This paper is organized as follows. In Sec. II we give a
brief introduction to the collinear pentagon OPE approach

%At least for sufficiently low loop orders.
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and the concept of effective particles. Section III contains
details of our resummation technique in the case of Next to
Maximal Helicity Violating (NMHV) one-loop hexagon
together with the prescription for treating one effective
particle contributions in the case of hexagons at arbitrary
loop order. Finally in Sec. IV we come with our conclusion.
The Appendixes contain explanation of notation together
with different details of our calculation of NMHYV hexagon
amplitude at one-loop.

II. HEXAGON PENTAGON OPE: ONE EFFECTIVE
PARTICLE STATES

Let us briefly remind the essential for our further dis-
cussion ideas and facts about the pentagon OPE (POPE)
approach and effective particle concept. For detailed dis-
cussion see [13—16] and [17-20]. Using duality between
amplitudes and (super)Wilson loops [3—8] one can recast

|

the problem of calculation of finite remainder function Rﬁ,k)
for the N'MHYV,,, amplitude3 into the problem of evaluation
of the ratios W, of vacuum expectation values of polygonal
lightlike Wilson loops [54,55]. The latter within pentagon
OPE approach are then decomposed into n — 3 successive
fluxes/squares [11-13]. The first essential ingredient for
building pentagon OPE expansion is given by the knowl-
edge of color flux tube excitation spectrum, which in N' =
4 SYM is known thanks to integrability for arbitrary values
of coupling constant g [56]. The second important ingredient
is supplied by transitions from one flux/square to another
and described by pentagon operators. The matrix elements of
the latter are also known at any coupling from the integrable
bootstrap [13], see further development in [14—18]

To be more specific, the renormalized* vacuum expect-
ation value of n polygonal super Wilson loop within
pentagon OPE approach is given by [17,18]:

(2.1)

W, = S ROIE)P(W)[W,)... PP, o ¥, )P, 5]0)edos TET P
¥,

where {7;,0;, ¢;} is a base of conformal ratios, parametrizing propagation of ¥; excitation (in general multiparticle) in ith
flux/square. The E;, p;, and m; denote energy,5 momentum and angular momentum (helicity) of ith excitation. The
transition probabilities from one flux to another P(W;|'¥;) are described by matrix elements of charged or super pentagon

operators introduced in [17]:

P =P+ Py + 2 %PPap + x*%PxPapc + 125 2P Pagco.

where y* is a Grassmann parameter transforming in the
fundamental representation of SU(4), R-symmetry group.
Py, .a, OF P for short is charged pentagon transition
transforming as kth antisymmetric product. Chalrged6
pentagon transitions contrary to ordinary uncharged pen-
tagon transitions P used to describe MHV amplitudes via
bosonic polygonal Wilson loops may produce states with
nonzero R-charge. For example, the creation amplitude
P,p(0]...) may produce scalar fields ¢,p out of the
vacuum, as the quantum numbers of the latter match those
of pentagon operator.

3See Appendix A for more details.

*See [13] for more details.

The energies of excitations are in one to one corres-
pondence with anomalous dimensions of corresponding single
trace GKP operators [57] Tr(ZD5 (’)D%Z), where Z is one
of three complex scalars in A =4 SYM, D, :n’iDM =
Dy + D5 is the light-cone covariant derivative and O is some
monomial constructed from {F,,y,¢} fields. It is also
assumed, that S; + S, > 1.

*When thought in terms of pentagon Wilson loops the charged
pentagons have additional fields insertions at their cusps and
edges compared to usual uncharged pentagons.

(2.2)

In a particular case of hexagon the pentagon OPE
expansion gives’ [18,20]:

rr Z 1 du,...du,, o r
W[é - m Sm/ (2z)" gyn X Hl[:F x Hr[nl«n 4
(2.3)

where u;, are rapidities of intermediate multiparticle states
and ry, r, are SU(4), charges of top and bottom pentagons
related to the particle content of the R¢ remainder func-
tion. In the NMHV case r|, r, are constrained, such that
ry + r, = 4 and as a consequence NMHV hexagon has five
different POPE components. The multiparticle flux tube
excitations are built from fundamental excitations given®
by gluon bound states, fermions, antifermions and scalars
[56]: {F,,w,y,¢}. The integrand in Eq. (2.3) has a
factorized form and consists from coupling dependent

[ry.72]

dynamical 114y, and form factor Tlgg"* parts. The matrix

1 /S,, is a symmetry factor.

¥Here, we suppressed SU(4), and projected Lorenz indexes of
fields.
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part HI[;;’P], which takes into account SU(4) structure of
flux excitations, is coupling independent.
The dynamical part has the form

. . 1
I — | | No—E(u;)t+ip(u;)o+im;¢p X | | ,
w i plig)e o g 1P uluy) P

(2.4)

where 7, 6 and ¢ are real parameters encoding all external
kinematical dependence (they parametn'ze three conformal

cross ratios u;, u,, uz on which er ] depends). They
also play the role of flux tube time, space and angle
coordinates respectively. In addition, the 7 variable para-
metrizes the measure of collinearity of two adjacent
amplitude momenta, such that the limit 7 — oo corresponds
to collinear configuration [11,13], see Appendix A for
more details P(u;|u;) in Eq. (2.4) are uncharged pentagon
transitions’ between different fundamental excitations and
u(u;) are corresponding measures. The expressions for
P(u;|lu;) and p(u;) are known for arbitrary values of
coupling constant and can be found in [13-16].

The form factor part contribution is obtained by express-
ing charged pentagon transitions in terms of uncharged
ones and is nontrivial only for NMHV hexagons. In our
case it is given by [18,20]:

H[V 1]

gs’l(rl—4)+sr2 r2—4) xHh YT (2.5)

where h(u;) are the so-called form factors, which are also
known for arbitrary values of the coupling constant [18].

The matrix part contribution takes into account contrac-
tion of SU(4), indexes of each pentagon and in our case
takes the form of integral over auxiliary roots [58]:

1 K, 2 Kj
() dw dw
Tt K]'Kz'K’; /H s 11 11 (2.6)
y g(wh)g(w?)g(w?)
FWhw?) f(w?, W) f(whv) f(WP,s) f (W, 9)
(2.7)

where w; are auxiliary roots (rapidities) corresponding to
three nodes of SU(4) Dynkin diagram and {v;,s;, »;} are
rapidities for fermions, scalars and antifermions correspond-
ingly. In addition, g(w)=[T,_;(w;=w;)*[(w;—w;)*+1]
and f(w,v)=[T;;[(w;—v;)*+3]. The numbers of aux-
iliary rapidities K, K,, and K5 are found as the solution of
the following system of equations:

These functions depend only on types of fundamental
excitations, their spectral parameters and coupling constant g.

N'l/ - 2K1 + K2 - 5,,1’3 (28)
N¢+K1 —2K2+K3 :6r1_2 (29)
Nl/7 + K2 - 2K3 - 5,1.1, (210)

where N, Ny and Ny, are respectively the number of fer-
mions, scalars and antifermions in multi-particle excitation.

In the weak coupling regime the contributions of
different excitations scale as ¢*’e™™M, where N is the
total twist of corresponding multiparticle state and [ is
number of loops. For such expansion to be convergent
one has to consider only collinear enough configurations
with momenta corresponding to 7 > 1. The coefficients in
front of g?’e=™ could be compared with independently
computed expressions for amplitudes expanded in collin-
ear limit [14,15,48]. They can also serve as predictions
for such collinear limits [48,49]. On the other hand, one
can try to resum contributions of all possible flux tube
excitations contributing at a given loop order /. Together
with analytical continuation of the obtained resulttoz < 1
this should allow for a full reconstruction of the whole
kinematical dependence [16]. The possibility of such
resummation also implies means of getting POPE results
for R, remainder functions without any reference to
N = 4 Lagrangian and corresponding Feynman rules or
unitarity cuts.

To make such resummation possible one has to understand
the hierarchy of flux tube excitations in the weak coupling
regime. That is we need to know when and which excitation
starts to give contribution to perturbative expansion. The
useful hint comes from the structure of fermionic excitations,
which are usually separated into large w and small
fermions. The latter property is due to the fact that in terms of
Bethe rapidity the fermionic excitations are defined on two-
sheeted Riemann surface [15]. On one Riemann sheet the
fermion momentum is large, while on the other it is small.
When attached to another particle, small fermions v, i, act
as supersymmetry generators [59]. The action of iy pairs
(or derivatives D, ) creates SL(2) conformal descendants as
at weak coupling there is an enhancement of symmetry
from SU(4) to SL(2]4) [12,56,60].

The very useful notion for the purposes of pentagon
OPE resummation is provided by the concept of effective
particles [18,20]. By effective particle we will understand
a fundamental excitation together with arbitrary number
(“sea”) of small fermion (antifermion) excitations N,
(Ny,). Having more then one fundamental excitation
surrounded by the sea of small fermions/antifermions will
lead to more then one effective particle state. Integrating out
small fermion/antifermion rapidities together with auxiliary
SU(4) roots leads to the description of effective particles

This symmetry is exact only at one loop level, however the
same bookkeeping turns out to be useful also at higher loops.
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in terms of Bethe string complexes. In general, the effec-
tive particle (excitation) is described by three parameters:
the helicity or angular momentum of excitation a, its
descendant number n and SU(4), representation in which
it transforms. One can show that for the NMHV, amplitude
the contribution of one effective particle is sufficient for its
reconstruction both at tree and one-loop (LO and NLO)
levels. The account for two effective }i)articles is enough to
reconstruct two, three and four loops. ! So, we see that the
number of effective particles we should take into account
grows rather slowly with loop order.

To demonstrate our resummation technique in the next

section we will use Wéz’z] NMHV POPE component. In
this case, restricting ourselves with one effective particle
contributions, we should account for the following effec-

tive particles, transforming in the vector representation of
SU(4)g [20]:

(D:l,l’l = FZZWSWS (Il_/Sl//S)n’ Qg,n = Ful/_lsl/_/S (l/_/Sl//S)n’
Q) =p(pay,)". O =y (pw,)",

@), = g ()" (2.11)
In the case n =0 the above states are SL(2) conformal
primaries. Taking integrals over small fermion/antifermion
rapidities and auxiliary SU(4)g roots by residues the

expression for W[ﬁz.z] POPE component takes the form [20]:

d N
W =3 / O gratssina(otimady 221 () 4
0]
(2.12)

where dots denote multiple effective particle contributions
and the expressions for energies Eq (1), momenta pg(u),

. . 2]
angular momenta mgq, and integration measures yg, (u) of
effective particles can be found in Appendix B.

The first steps in the problem of resummation of series in
Eq. (2.12) were made in [20] at leading order. However, we
found that the method employed there is somewhat hard to
generalize to higher orders. So, in the following section we
are going to present an algorithm which should allow one to

|

[r1.72]

compute series representation for W '"* functions similar

to that for Wéz’z] (2.12) in terms of multiple polylogarithms
[61,62] of kinematical variables at any order of perturbation
theory. Presumably, the same algorithm should be also
applicable to other cases with n > 6 and contributions with
more effective particles. As an illustration for our method

we will consider LO and NLO contributions to W[Gn]
POPE component. In this case it is sufficient to consider
one effective particle contribution only. To compare the
results of pentagon OPE resummation with results for
hexagon amplitudes computed with other methods we
should recall that the usual way to package together all
helicity amplitudes is to use super Wilson loop [54,55]:

-
We = Wemnv + ﬂ}ﬂfﬂiﬂ?wg{\mzmv +.

(2.13)
where Wy 1s the NMHV amplitude divided by Parke-
Taylor MHV factor. Here, the Grassmann variables 17‘;‘ are
Grassmann components of hexagon momentum twistors
(see Appendix A for more details) with upper index trans-
forming in the fundamental representation of SU(4), and
lower index labeling the edge of hexagon. The important
thing here is that these Grassmann variables are different
from those used within POPE framework (2.2). Nevertheless
there is a map from one set of Grassmann variables to
another [17]. In particular, it turns out that [17,20]:

W = i, (2.14)

where Wélm) is the Wg;ﬁﬁﬂv component from Eq. (2.13).

III. RESUMMATION TECHNIQUE

Before presenting the general algorithm for treating one
effective particle contributions in the case of hexagons, let
us first start with the particular example of hexagon NMHV
amplitude and then formulate the general prescription for
the resummation of one effective particle contributions to

hexagon Wilson loops in ' = 4 SYM. Up to one loop the

) 12,

expression for Wéll44 component takes the form ~:

1144 2,2 S S du —(la|4+2n+1)t+2uc+ia a+n
WO =W = 50 [ e e

a=—o00 n=0

(4 —u - r 4w 434 n)?

{1+ #2150 (u) + O(g") },

T4+ u+3)r(ja +n+ Dn!

(3.1)

"YFor MHV, amplitude one effective particle is sufficient for one-loop reconstruction [51] and combination of one and two effective
particles will be enough to reconstruct amplitude up to (including) five loops [18,20].

"2See Appendix B for the expression for WE’Z, which we expand up to one-loop order. We have also made change of variables
u — —iu, so that now the integration contour goes along imaginary axis. Also g = g3N./(167%).

026002-4



PENTAGON OPE RESUMMATION IN N =4 ... PHYS. REV. D 102, 026002 (2020)

where

NLO () — m 6 2 2 2

a,n

3 (I=lal+2u)* * |a|(1—lal +2u) ~ (1+|a|+2u)* |a|(1+ |a| +2u)

1
— 22|27 + ¥ 1) o (ldrt,,
2 2

+2a[np<o><|a\— )+‘I‘ <|”|2+3 > 290 (' |2+3—|-n+u>}
R e S ST R BNk

o0 (lal =1 gl +3 )(lal +3 ’
_Z|poy (a2

2[\1,(2 >+\p<2 - 290 (S
_ gl <|a|2+1 u)_tp(1><|“|2+1+ >+2‘P <|a|2+3+> 2 <|a|2+ +n+u>, (3.2)

Here ‘P(”)(z) are polygamma functions. To evaluate the above expression both at LO and higher we start with taking
residues in u-variable. To achieve this we first use reflection identities

la| — 1 ) 7 Cse (M—zzu)
r ) = ’ 33
< 2 rEH 4 u) >
\_P(n) <|Cl|2‘|' 3 _ M) _ (_1)nlp(n) (Lt _ |Cl|2‘|— 1> _ ﬂ(,in cot (w — ﬂu) (34)

to isolate singular terms into elementary functions with known Taylor expansions. It is also convenient to transform present
polygamma functions to the same argument as far as possible using the following recurrence relation

PO (z+1) =P(z) + (=1)"nlz™"". (3.5)

Note, that it is the general procedure when taking Mellin-Barnes integrals and was used already in the context of collinear
OPE in [48,49]. Now, taking residues at u = MT_I + k we get:

Wéll44 W61il44 +W61;44, (3.6)

where subscripts m and b denote what we will call main and boundary'® contributions. The latter are given by:

i) _ i ii(—l)H”k —(la|+2n+1)7+(|a|+2k—1)o+iagp
6m = kit ¢

k k
R a1+ T 06
) i io: (_kl‘iln:rk -Gt 1)et (k1) (n Z—‘k) (n+ k) {1+ 2O k) + O(gh)}, (3.7)
n=0 k=1 e ’
and
Wé{;44> _ i i (_;)!a+n —(la|+2n+1)r+(|al-1) 5+ta¢W{g }1250 4 O(g4>} (38)

“The boundary contributions start contributing from NLO order.
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where
~ 22 2 2(6+1) 2(6+1)
NLO(y =T 2 () - 1-5 —4
an ( ) 3 kz( k.O) (k+|a|)2+ k ( k,())+ k+|a| 9
— 29 (ja| +n+k+1) =20 (|a| +n+k+ 1)+ 7z)?
1 1
and
~NLO w0
Jan —46f—g+‘1‘ (1 4+ lal) +42(¥O(|a| +n +1) +7p)
— (YOI + a]) + 7£)* +2(¥O(lal + 1) + 7E) (6 — 7+ YO (Ja| + n + 1)). (3.10)
Introducing notations x = e™%, y = €%, z = e'? the above expressions take the form
W6ll}n44 ZZZ(_l)a+n+kxa+2n+1ya+2k—1(Za+Z—a)
a=1 n=0 k=0
at+n—+k at+n—+k
(T ) rsew o)
N koot (PR (nt+k FNLO(
+ YO (—1)rky {1+ @20 (k) + O(g*)} (3.11)
n=0 k=1 n
and
144) _ NSNS (L pyatnatanit ot a o ay [ EEY 27O
Wi = 33 (et (40 ) + 00) (3.12)
a=1 n=0

A. Leading order

To evaluate the sums left after taking residues in u it is convenient to introduce the following integral representations for

binomial coefficients':
") - 1/ (t+ 1) *ds (3.13)
k) 2xi lf]=1 ’ '

Then at leading order we have

© 00 a+n+k
W40 _ / dr /
6 D) P)Phetc 2,,, Ly

a=1 n=0 k=0
X xa+2n+1ya+2k—1 (Z + Z_a)[(tl + l)(tz + 1)]a+n+kt1—n—lt5k—1

-1 n+k
) > /|| ldtl/l ldt2x2n+1y2k—l[(tl +])(t2+])]a+n+kll—n—lt5k—l (314)
& 5]

Now, the series summation is straightforward and we get

W41 _ / t/ (L)1 +1)x
o S Jer e S+ U ) (1 + ) (6 + (T+ )1+ 6)y?)

XZ
- {lz * (I4+1)(1 —|—t2)xy+z+ 14+ (141)1 +t2)xyz}- (3.15)

"“Here, the integration contour is actually going around z = 0.

026002-6



PENTAGON OPE RESUMMATION IN N =4 ... PHYS. REV. D 102, 026002 (2020)

Next, performing partial fractioning in #, variable and taking residues at 1, =0 and t, = —1 + m together with
122 2 2\2_ 422
subsequent residues in ¢ at t; = _% and 1| = i (zl;x ) Ay we get
X z 1
wilao _ X ( _ 316
6 y\z+ (y+xz)(x+yz) 142 (3.16)

in agreement with [20]. We would like to clarify the particular choice of points, at which residues over #; and 7, should be
taken. First, we know that in the limit x — 0, y — 0 the residue should be taken at the point #; = #, = 0 and so our points at
which we took residues should go to this particular point in this limit. And of course we may greatly benefit from numerical
checks for some particular values of Mandelstam variables to insure that we actually get the correct expression at the end.

B. Next to leading order

The integration procedure at next to leading order (NLO) and higher goes similar to the LO case. To illustrate our
technique let us consider several terms in NLO contribution. The results for the rest of terms could be found in
accompanying Mathematica notebook. The different terms in the main contribution at NLO can be written as

- o a+n+k\/a+n+k
Wélif“)[ an(k)] _ Z Z Z(_1)a+n+kxa+2n+1ya+2k—l (Za + Z—a)( > ( )fa.n (k)

a=1 n=0 k=0 n k
X X n+k n+k

+ Z Z(_])n+kx2n+1y2k—l < . > < . )fO,n(k) (317)
n=0 k=1

where f,,(k) are given by terms in the sum of Eq. (3.9). To calculate the latter it is convenient to express 1/k" and
1/(k 4 a)" factors in terms of polygamma functions as

= .[qJ(n—l)(Z) — W= (z 4 1)] (3.18)

1 yZ 11 n
P (z) :/ T8 Yy if a0, (3.19)
0 x—1
1] —x!
YO(z) = / dx —yg. (3.20)
0 1—x

For example following the above prescription for 1/(k + a) term, that is rewriting

1 1
k+a:‘P<0)(k+a+1)—‘l’(0)(k+a):A dx xire! (3.21)

and using the same integral representations for binomial coefficients as at LO we may again easily sum the geometric series
in a, n, and k and get

1 1 x(1+1)(1+1,)
Wil [—] — / d / dt / dt !
om |k+a 0 T et T e P+ T ) (U + )2 (6 + (L4 1) (1 + 6)x)%)

x {y n * n e } (3.22)
t (L4+n)(+n)xyxy+z 1+ (1 +0)(1+n)xyzx | '
Now, taking residues in #, at t, =0 and 1, = -1 + Wlﬁ)vle together with subsequent residues in #; at #; = — 11% and

12y ey (228 )P4y

pIEa we have

4
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magy | 1| 1 P 2 xyz(x = 1)(2xyz(1 +x1) + (1 + 2% +yx,)(1 +2%))
Wen [’Ha} _/ 1 2, {1+x2 pi(x.y.x1) (2 + (32 +yx) (x + y2)) (z + (v + x2) (x + yzx7))
222 +22(1 + y2x) +axy(1+ 2)(1 +xy)) }
(z+ (xz+yx))(x+y2))(z+ (v + x2) (x + yzx1))

(3.23)

where p;(x,y,x;) = \/ (1 + x* + y%x;)? — 4x%y%x,. Note, that the points at which residues were taken are deformations of
corresponding points we had at LO for x; = 1. Next, the integral in x; could be easily evaluated by rationalizing root in
p1(x,y,x;) with the following variable substitution

2x? 2
y —t y +t
As a result we get
Wen! . T 2y —log (I +x% 4+ = p(x.y)) —log (=1 = x* + y* + p(x.y))
"o lk+al  y(1+x?) 1+ x?
x 2xy3z>
+—"F——<-lo +log(=1 —y* —x(2x + x* —xy* + yz + x’yz — ¥z
y(1+x2+xyz){ g<1+x2 g(=1 =y —x( y:+y yz=y'z)
X 2xy?
+(1+x*+x X, +—— 1 —log| ——
@2 maptef+ ety {-oe(2)
+log(xy(=1 = x> +y%) = (1 + 2%’z + (=1 +2%)y°z + (2 + x(y + x2)) p(x, y))}, (3.25)

where p(x,y) \/ +x% +y?)? — 4x%y?
In the case of ¥ (n + k + a + 1) term we proceed essentially the same way. Indeed, using the integral representations

for ¥(1) and binomial coefficients as above, resumming geometric series in 7, a, k and taking residues in variables entering
integral representations for binomial coefficients we get

1 xxi(x + yz + xz%) log x,
WIS WO (n 4 k4 a+ 1 :/ dx ! : 3.26
om L e [ [ CE e [r) 320
The left integration over x; is straightforward and gives the following expression
2x(x+ yz +x2%)
WIS e (4 k4 a+1)] = T
om P ) 6(1+x2)(x%z+ (1 +y*)z+xy(1+22))
x . Xz . xy+x2z+y2z+xyz2>
- Liy(—x?) + Lip| = .
y(1+x?%) (=) y(?z4+ (1 +y)z+xy(1+22%)) 2( z
(3.27)

(1144)

As a final example of a term in the main contribution We m ) Jet us consider the case of (PO(n+k+a+1)+yp)

Again, writing integral representations for polygamma functions and binomial coefficients as above, summing resulting
geometric series in 1, a, k and taking residues in variables entering integral representations for binomial coefficients we get

(1144)

W6m [( ()<n+k+a+1)+7E)2]

x(x+ yz +xz°%) 1 X
/dxl/ de (1—x)( 1—x2){(1+x2)(z+(y+xz)(x+yz))_(1+x2x1)(z+x1(y+xz)(x+yz))

— X2 XX
(1 +x2x3) (2 + x2(y + x2)(x + y2)) + (1 + x120) (2 + X162 (y + x2)(x +yz))} (3.28)
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Now, the integrations in x; and x, are straightforward and we finally obtain

W (WO (0 4k +a + 1) +yp)?]

nx(x + yz + xz%) xlog(1 + x?)(—=4logx + 3log(1 + x?))
6(1 +x*)(x*z+ (1 4+ y*)z+ xy(1 + %)) 2y(1 +x%)

_ Xz (v + x2)(x + y2) 2

N TR SICERT) °g<<z o P e yz>>2> log <z To 6T yz>>
XZ Z

a 2y(x%z + (1 +yH)z +xy(1 + 22)) log <z + (v +xz)(x+yz

)> log (z(z 4+ (y + x2)(x + yz2)))

N X Li < 1 ) Xz Li ( Z > (3.29)
i - i ) .
y1+x2) P\0+22) y@2z+ A +y)z+xv(1+22)  \y(1 +22) + z(1 + 22 +?)

The evaluation of boundary contribution goes similar to the main one. The different terms in the boundary contribution at
NLO can be written as

0 00 a-+n
W61;44 fa . Z Z a+nxa+2n+1ya—1 (Za + Z—a) ( )fa,n (330)

a=1 n=0 n

where f, , are given by terms in the sum of Eq. (3.10). Take for example the case with f, , = =0 (n +a+ 1)+ yg. Using
integral representations for polygamma function and binomial coefficient as before, resuming resulting geometric series in
a, n variables and taking integral for binomial coefficient by residues we get

W611144 WO (n+a+1)+yg]

/1d x2 { 1+ 2xyz+ 22 +x*(1 +2%) B x1 (1 +2xyzx; + 22 + 22 (1 + 2%)x;)
o T W0+ (1 + 2 +x02) 2+ 2 +42) (14 2%x7) (2 +x(y +x2)x,) (1 +x(x + y2)x)

}. (3.31)

The left integration in x; is straightforward and as a result we obtain

WO (04 a+1) +7g) = -

2xlog(1 + x?) Xz o (xy +z(1+ x2)> xlog(1 + x* + xyz)
y(1+x?) y(xy +z(1 + x%)) y(I+x%+xyz)
(3.32)

The results for all other terms both in main and boundary contributions could be found in accompanying Mathematica
notebook. Gathering all contributions and using symbols15 to simplify the resulting expression we finally get

X 1 Z
N _ ¥ < : N )
y\l+x*+xyz z+x(y+xz)

(1+x?)z (1+x*)(z+ (v +x2)(x +y2))
) 10g< z+ (v +xz)(x + yZ))) ]Og( ¥z >

X 2 1 + x2 1 x2
T L og2 — log? Alog2y + Lip[ —— | + Lip [~
+y<1+x2>{ o ToErTE ( Xy )+ gyt 12(1+x2>+ 12(1+x2)}

2 2
Xz b3 1+x
+ — —log%x —1lo 2< >—2102
y(z+(y+xz)(x—|—yz)){6 £ & X gy

w28 (L) e () (T> J (333)

'*See Appendix C for more details.
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(1144)
WBDS )NLO

which coincides with (R in agreement with

[63,64]. See Appendix A for notation.

C. Prescription for arbitrary order

The LO and NLO resummation for other NMHV
hexagon components16 goes similar to the case of

W61144 component. To see that the technique we used at
LO and NLO can be also used for resummation of one
effective particle contributions at higher loop orders it is

~ ANN

instructive to see the expressions for fAn-°(k) and f,,,
factors, which could be found in accompanying
Mathematica notebook. These expressions and those for
even higher loop orders can be easily obtained similar to
what we did at NLO. What is important to us here is the
particular structure of the terms in these factors. They are
precisely of the form we discussed before and can be
treated along the same lines. The contour integration over
variables coming from integral representations for binomial
|

coefficients are taken by residues at points, which are
deformations of corresponding points at leading order
by variables entering integral representations of poly-
gamma functions and simple fractions. The subsequent
series resummation is again the same as for LO and NLO.
Then we are left with definite integrals over rational
functions in remained variables. What is important is that
they are similar to parametric integrals (for example in
Feynman parameters) one typically encounters when evalu-
ating Feynman diagrams. There are different ways to
proceed now. One is to use direct integration which we
used at NLO. It should be possible as we know that the
result is expressible in terms of multiple polylogarithms
after all. Indeed, consider as a simple example the term
WG (n + k4 a + 1). Using the integral representations for
¥0G) and binomial coefficients as above, resuming geo-
metric series in n, a, k and taking residues in variables
entering integral representations for binomial coefficients
we get

1 xx; (x 4+ yz + xz%) log? x;
WM YO) (n 4 k4 a+1 _/ dx ! : 3.34
om [V ) o =D+ 22x)(z+x1(y + x2)(x + y2)) (3:34)
The left integration over x; is straightforward and gives the following expression
Ax(x + yz + xz°) 6x
WU ) (1 k- a+ 1)) = X _ Lis (—x2
o P e () ER T ) T
6 2 2 2
: zxz i Li4<_xy+x 4y Z—l—xyz)‘ (3.35)
y(x*z+ (1 +y)z+xy(1 +27)) b4

Next, it is easy to see, that similar technique is also applicable for one effective particle contribution to MHV hexagon.

Indeed, from [51] we have

o]
Z du MHYV non—gluoni
Wg/IHV,NLO — 2 /2 .x2n+2y2u//l0n ,non guonw(u) +
Tl ’

+ x2 MHV non— gluomc(u)}

’

where

N o du 2n+a u —a\ [, MHV gluonic
D3 [ gy )

ﬂ](;/frI;IV,gluoniC(u) _

IL;/{lI;IV,non—gluonic ( l/t) _

Taking residues in u =5+ k, k > 0 we get

E+u)’(n+1)(a+n+2)

7 (3.36)

(=D)*"T(E —u) T(n + u+ 9)>
E—w)@+ul(n+ )(a+n) Tty ° (3.37)
(=)' T(§—u)  Tntutg+1)’ (3.38)

Tu+4+1)

"*The starting expressions for our resummation algorithm similar to Eq. (3.1) can be obtained from the results of [20].
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0o 00 k+n
MHV ,NLO 211+2 2k ( 1
=2
W Z ZX I’l + 1) (

n=0 k=1

_|_

=ln

g

ii 2t2taydkta(za | pma)(_ 1)a+k+n<a+z+k> <a+:+k>

Staring from this expression for WI:[HV’NLO we may follows

the same steps as for NMHV hexagon in previous sub-
section. Namely, we use integral representation for binomial
coefficients, express simple fractions 1/k, 1/(n+ 1),
1/(k+a),1/(n+ a+ 1) in terms of polygamma functions
and introduce integral representations for the latter. Now
summing geometrical series in a, n and k variables we
continue with taking residues in variables entering integral
representations for binomial coefficients. The left integra-
tions in variables entering integral representations of poly-
gamma functions are then more or less straightforwardly
taken in terms of multiple polylogarithms [61,62]. The same
technique should be also applicable for the resummation in
the case of polygonal Wilson loops with n > 6, see [52,53]
for tree level resummation in this case. We also think that the
presented technique should be applicable to the resumma-
tion of contributions from several effective particles. How-
ever, to be on the save side here we state the algorithm for
the resummation of one effective particle contributions to
hexagons only, but for arbitrary loop order of weak coupling
expansion. The necessary steps are given by
(1) Following [20] write down the one effective particle
contribution to hexagon POPE component you are
interested in and expand it in coupling constant up
to required loop order. For example, Appendix B
contains corresponding expression in the case of

W[Gm] component.

(2) Take residues in rapidity of effective particle. It is
convenient to first use reflection identities (3.3) and
(3.4) to isolate singular terms with known Taylor
expansions. It is also useful to transform present
polygamma functions to the same argument as far as
possible using Eq. (3.5).

(3) Transform the obtained summand to the form of a
product of binomial coefficients with simple frac-
tions. For binomial coefficients write down integral
representations as in Eq. (3.13). In the case of simple
fractions express the latter in terms of polygamma
functions using Eq. (3.18) and eventually write
down integral representations for polygamma func-
tions present.

(4) Sum the series present. Now, they are all of geo-
metric progression type and could be easily
summed.

1
% [kn+1) (k+ta)(ntatl)

] + boundary terms (3.39)

I

(5) Take residues in variables entering integral repre-
sentations for binomial coefficients.

(6) Take integrals in variables entering integral repre-
sentations of polygamma functions. These are in-
tegrals from rational functions and are frequently
encountered in the calculation of multiloop Feyn-
man diagrams. In particular, they appear in the
process of direct integration over Feynman param-
eters. When, the latter integrals satisfy criterion of
linear reducibility [65,66] one can come with an
algorithmic way of expressing required integrals in
terms of multiple polylogarithms [61,62]. In our case
there are could be also roots from quadratic poly-
nomials present. The latter however may be ration-
alized with variable change, see for example [67].

IV. CONCLUSION

In this paper we presented an algorithmic approach for
computing one effective particle contributions to hexagon
scattering amplitudes applicable at in principle arbitrary
order of perturbation theory. The approach reduces the
problem of evaluation of integral over effective particle
rapidity and sums over effective particle helicity and
descendant number to the problem of evaluation of inte-
grals over rational functions, otherwise known as periods,
in terms of multiple polylogarithms [61,62]. If the latter
integrals satisfy the criterion of linear reducibility [65,66],
then there is an algorithmic way for taking such integrals.
In the problem at hand, the integrals may also contain roots
of quadratic polynomials. The latter however could be also
treated in algorithmic way [67]. At the same time it should
be noted that there are several different ways to treat
mentioned integrals over rational functions at the end. In
the present paper we used direct integration The other way
is for example to use first integration by parts to reduce
these integrals to so called master integrals. The latter could
be integrated using a bunch of available techniques such as
Mellin-Barnes representation, direct integration, or differ-
ential equations. So, what we actually did is turned the
problem of evaluating POPE series into the problem of
evaluating integrals over rational functions in terms of
multiple polylogarithms, for which we have much more
experience. The presented approach has also the potential
for the generalization both for higher point scattering
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amplitudes and contributions with more then one effective
particle and will be the subject of one of our future papers.
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APPENDIX A: THE REMAINDER FOR
NMHV4 SUPERAMPLITUDE

The R,(f) remainder function is defined to all orders of
perturbation theory as the ratio of N\MHV,, and MHV,,
amplitudes:

(A1)

In NMHYV case k = 1. From now on we will drop the (k)
superscript and stick with NMHV¢ case only. Note, that
due to universal (independent from particles helicities)
structure of IR divergences the remainder function is IR
finite. In addition, it is also dual conformal invariant.

Using momentum twistors Z; = (4;, 4;,n;) [68] and
splitting the R¢ remainder function into even and odd
parts we have [63,64]:

Re = RE" + R, (A2)

where

[13456] + [12346]
2

[12456] + [12345]
i 2

[23456] + [12356]
2

even __
R6 —

V(ulﬁ Up, M3)

(”2y usz, Ml)

(uz, uy, us), (A3)

17
and

RO — ([12346] — [13456))V (1. 1. u3) + ([12456]
— [12345))V (uy, us, uy) + ([23456]

— [12356])‘7(1/!3,”1,”2). (A4)
V and V are scalar functions, which depend only on (dual)
conformal cross ratios and coupling constant g. [abcde] is
dual conformal invariant (five-bracket) defined as

Tt is convenient to define different set of arguments for V,
which however can be expressed through uy, u,, us [64]. Since
we are actually will be interested only in V function we will not
write them here.

5*((ijkl)n,, + cyclic permutation)

kI = ey Gkt (kbmi) (imi ) (i)

(AS)

with four-brackets (ijk/) being defined through bosonic
components of momentum twistors Z; = (4;, ;) as
(ijkl) = eapcpZf ZBZ{ZP = det(Z,Z;24Z,).  (AO)

The expansion of functions V and V in coupling constant
reads

V(ur,up,uz) =1+ 2(292)1‘/“)(”1, Uy, U3) (A7)
=1

V(uy,up, u3) = 2(292)1‘7(1)(”1, ur, uz).  (A8)

=1

All information about helicity content of the remainder
function is contained in [abcde] rational functions, which
are all loop exact. The coupling constant dependence is
through V and V functions only. Note also, that due to the
six term identity

[23456] — [13456] + [12456] — [12356] 4 [12346]

—[12345] =0 (A9)
at leading order we have
RLO = [12345] + [12356] + [13456],  (A10)

which is [1,2) BCFW representation of normalized tree
level six point amplitude.

Dual conformal cross ratios for six point functions can be
conveniently written in terms of dual variables'® as

x2.x2 X2, x%
— . _ *13X46 _ o Xads
- - £ - - )
u = xz x2 U, =w x2 x2
14X36 25741
2 .2
X3 X,
uy =u =32, (A1)
X36X52
2 (j=ljk=1k)

Using the relation x the latter could be also

Jk T (j=1j){k=1.k)
written in terms of four-brackets

~(1236)(3456) (1234)(1456)

YT 356)(1346) U (1245)(1346)°
~(1256)(2345)

W= 23] (2356) (A12)

xp; = (Z{:’ po)? with p; standing for momentum of ith
particle and sum being understood in cyclic sense.
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At next-to-leading order V) function is given by:

VO (uy, uy, u3) = % (Z Lip(u;) + (log(uy)
=1
+ log(u3)) log(uz)

”2
—1og<u1>log<u3>—g), (A13)

while V() =0, i.e., there is no contribution to Rél)Odd

at NLO.

As an illustration of our summation method we have

chosen a particular component Réll44> of Rg remainder

function proportional to #,7;#74%4 Grassmann monomial.
At NLO it is given by
2Rél HANLO - 2RG O binans
= g*([13456] + [12346])1,, e
+ g% ([12456] + [123453])

V) (v,w,u)

|’11’11'74’14
(A14)

The coefficients in front of V() (v, w, u) and V() (w, u, v)
are then given by:

([13456] 4 [12346))

"71 MiMala

__ (1356)(3456) (1236) (2346)

= 1345)(1456)(1346) | (1234)(1346) (1246)" 1Y)
([12456] + [12345]) "71711'74'74

__ (1256)(2456) (1235)(2345)

= 1245) (1456)(1246) | (1234)(1345)(12a5)°  A10)

([13456] + [12346])

y() (w,u,v).

At LO this leads to

RLO _ (2345)(1235) (3456) (1356)
& b = 12341 (1345)(1245) | (1345)(1456)(1346)"
(A17)

In collinear OPE approach the kinematics for six
point amplitude is parametrized by three real parameters:
7,0, ¢. Dual conformal cross ratios u, v, w as well as
all (abcd) invariants are then expressed via these para-
meters using explicit parametrization of hexagon momen-
tum twistors (here we use notation from the main text
x=eT,y=¢%7=c?):

7 yz 20 2 xZ1/?
Z, 1 0 0 0
Z -1 0 0 1
= (A18)
Zy 0 1 -1 1
Zs 0 1 0 0
Zs 0 y"z‘l/2 x~ 17120

For example for dual conformal cross ratios we get:

Z

xy + (14 x% + y?)z + xyz? (A19)
2
y2z
v = A20
(1+x2)(xy + (1 + x> +y*)z + xyz?) (420)
2
X
- A21
v 1+ x2 ( )

while the coefficients in front of VU (v,w,u) and
V) (w, u, v) functions take the form

x*z(x + yz)

|7/1'11'74"I4 = (

—xz = X7 = x2y2) (x%y + xz + ¥z + xy*z + x2y7?)

—xz(xy’z + x2yz?)

+
y(xy + z + x22) (x%y + xz + ¥z + xy?z + x2y7?)

x’z

([12456] + [12345])] =

373

Mmmninans

In this parametrization the limit x — O (large 7) describes
regime when momenta p; and pg are becoming collinear.

The LO contribution to the remainder function in terms
of collinear OPE variables reads:

1
RLO =z < - . (A23
6 |'71'71’74'74 y Z+(y+xz)(x+yz) 1+x2 ( )

Within collinear OPE approach one actually computes
not the reminder function Ry itself, but another finite

_|_
(=7 = x*2)(xy + z + x%2)

(=z = x%2)(=xz — ¥z — x*yz?)’ (A22)

function Wg of the same dual conformal invariants, which
is related to Ry as

We

Re = aory
WYY

(A24)

where WMHY — RMHVIABDS = Here RMHV is MHV
remainder function and W2PS is known function of cusp
anomalous dimension
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2
T
-+ o)

Fcusp(g) = 492 3

(A25)

and dual conformal invariants u;:
BDS
We > (uy, uy, us)

_ exp{rwj(g) (Liz(uz) —Lis(1 = ;) = Lip(1 — u3)

+log?(1 — uy)

— log(u,) log(u3)

2
+log(u; /us) log(1 —uy) + E) } (A26)

At NLO RMHY =1 and we are left with the following
relation between collinear OPE result and the NMHV
remainder function:

W (1144) NLO
Réll44>.NLO _ ( 6 )) ’ (A27)

WéBDS(u, w, v

where it is assumed that Wé“44>/W6BDS should be
expanded up to O(g?).

APPENDIX B: MEASURES, ENERGIES,
AND MOMENTA

The expression for charged pentagon component Wéz’z]
considered in the main body of the paper written in terms of
a sum over effective particles contributions is given by [20]:

22 Z / du Ea, u)t+ipg u)6+1m¢(/) 2, 2](11)

(s3] [o's) d . e | e
— 2 ; / Z_Z e_Eff(M)T+1Paf&(u)6+ta¢ﬂ£l%;12]. ff(u)7

(B1)

where energies and momenta of effective particles have the
form

Egn(u) =2n 4 1+ |a] + 4g(QM - <5);

Pan(u) = 2u — 4g(QM - &) (B2)
Here, infinite matrices Q and M are given by [15]:

Q;; =6;(-1)"i M= [T+ K],

Kij = 2j(—1)/6+D Awthif,-sz)jjl(th)' (B3)

Up to NLO we have

—4g°¢(3)
24 7t
-2+ 915

@M:<

The infinite vectors ¢, and &5, are build from Bethe string
describing effective part1cle transformmg in vector repre-
sentation of SU(4) and labeled by helicity a and descend-
ant number n. This way we get [20]:

i)

+§%<‘C%
» (B5)

+Zw(
)

> +0(g"), (B4
—-44°¢(3)

eff ~eff

eff —k

=
i o5
<

+3 ( |a|2+1 )) (B6)
where [15]:
Ka(u) = (kg1 () ka0(ut), ...),
KV/S(M) (KV/SI Kyg,20 -+ )’
Ro(u) = (Ko i (u).Ran(u), ...),
’?1//5(”) = (Kn//b 1, K 1/15 2+ ) (B7)

with (J;(z) are Bessel functions)

Ko j(1) = /()mt((;l%l)h(zgt) (Jo(2gt) — cos(ut)elU-)),

(B8)
(B9)
C(=DPA+(=D) g
st = G ()
(=)A= (=) g\
Rys.j = 2 <x(u)> : (B10)
Here x(u) is Zhukovsky variable x(u):%(qu

. al—(-=1)¢

ViZ=4g) and f,(j. @) = 1(1 = =)
The measures for effective particles are also built on the
basis of their Bethe string representations and are given

by [20]:
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22)eff 4 M, ,(u) eff

e —Y fa,O(u)fa,O(_ )e Pan

where

(), (BI1)

expj, (1) =exp[—

2(kg)" - QM- k55, +2 (RS, ) - QM- RS
(B12)

log (fao(u) = / wt(ef’i])uo(zm 1)

1 1 G
X |:§J0(291) —|—§ - e¥—l“f:| (B13)
and (X9 = x(u — ia/2))
(u) "
M = Mo x2H+al+1])
a,n(u) F(I’l+ ) |a|+n+1 H
(B14)
1 1
xl1+al xli=lall g[1-+lal) _ g2
xltlel \/ [1-la] 92\/ i+l
(315)

APPENDIX C: SIMPLIFYING W'
WITH SYMBOLS
To compare the result of pentagon OPE resummation'? for

W61144 with the known results from generalized unitarity
and bootstrap [63,64] we need to simplify our expression.
The most convenient way to do it to use symbols [69—71], in
particular the Mathematica package PolyLogTools [ 72]. In fact,
we only need the following two symbols:

log(x)log(y) > x®y+y ® x.

It can be found in accompanying Mathematica notebook.

Note, that symbol mapping is blind to constants”” and satisfy
the relations

a1Q®..Qa4; Q.. Q0a,=a10..08a;Q ...

®a,+a,®..04a,;®...0a, (C3)

G®..d'®..Qa,=na;Q..0a4Q®...8a,).
(C4)

To simplify consideration we will consider the simpli-
fication of the difference of the our resulting expression
with [63,64]. In the case of 1 loop NMHVy amplitude
contrary to the case of 1 loop MHV amplitude [51] the
resulting expressions contain rational factors in front of
dilogarithms and logarithms. The latter after partial fraction
in x variable are given by

x B Xz
pl_(l—l—xz)y’ pz_y(xy+z+zx2)’

B x B Xz
p3_y(1+x2+xyz)’ Cy(xy+zHx22) (2 -1)

o .xZ3 - X
B o) (@1 P o @-1)

Xz

p7:y(xy+z+xzz+yzz+xyzz)' (©5)

The usage of symbol map with PolyLogTools package reduces
to the application of just three commands SymbolMap,
SymbolExpand and SymbolFactor together with the
simplification of symbol entries with Mathematica command
FullSimplify. Using symbol map for the considered
difference it easy to show that coefficients in front of p; and
p7 rational factors are equal to zero, while the coefficient in
front of p, equal to the coefficients in front of p3, p, factors
and minus coefficient in front of ps. Taking into account
found functional identities and using again partial fractioning
in x variable it is easy to see that the coefficient in front of pg in

the expression for WéllM) also cancels. This finishes the

proof of equivalence of our and [63,64] results.

*The constants could be fixed by comparing expressions at
some fixed kinematical point.
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