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We study microscopic operators describing the experience of an observer falling into the horizon of a
unitarily evaporating black hole. For a young black hole, these operators can be taken to act only on the
degrees of freedom in the black hole region: the soft—or stretched horizon—modes as well as the
semiclassical modes in the zone region. On the other hand, for an old black hole, the operators must also
involve radiation emitted earlier; the difference between the two cases comes from statistics associated with
the coarse graining performed to obtain the effective theory of the interior. We find that the operators
relevant for the interior theory can be defined globally as standard linear operators throughout the
microstates, which obey the correct algebra up to corrections exponentially suppressed in the ratio of
excitation energy to the Hawking temperature. We conjecture that the existence of such global operators is
required for the emergence of the semiclassical picture. We also elucidate the relation between the present
construction and entanglement wedge reconstruction of the interior.
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I. INTRODUCTION

Since the discovery of the thermodynamics of a black
hole [1,2], studying its physics has been driving our
understanding of spacetime and gravity at the fundamental
level. In particular, addressing the apparent contradiction
[3] between the thermodynamic aspects of a black hole and
the principles of quantum mechanics has led to many
important ideas, including black hole complementarity [4].
While we have found that the principles of quantum
mechanics prevail in the end [5,6], paradoxes still remain.
One of the latest forms of these is the difficulty of
reconciling unitary evolution of a black hole with the
existence of its interior [7].
The purpose of this paper is to study how operators

describing the interior of a unitarily evaporating black hole
can be constructed at the microscopic level. For a black hole
in asymptotically flat spacetime [or a small black hole in
anti–de Sitter (AdS) spacetime], we work in the framework
of Refs. [8,9]. This framework describes a black hole as a
state in which the hard modes—the modes relevant for
describing small objects around the black hole—are
entangled in a generic manner with the soft modes—the

degrees of freedom comprising themajority of the black hole.
This entanglement is generated by a strong, chaotic dynamics
near the horizon. We will also discuss an extension of the
framework to a large AdS black hole.
A black hole forms when the system-specific properties,

e.g., the details of the surface of a collapsing star, are
strongly redshifted due to gravity, so that the system
appears to be in a vacuum state at the semiclassical level.
This redshift makes the majority of the degrees of freedom
unobservable for a long time. These “hidden” degrees of
freedom, associated with the black hole, have an exponen-
tially large density of states [1] and are distributed mostly
near the horizon. While they are very soft when measured
in the asymptotic region, their intrinsic dynamical scale is
larger near the horizon due to gravitational blueshift,
reaching the string scale at the stretched horizon [4].
The dynamics in this region is chaotic [10,11] across all
low-energy species, giving generic entanglement between
the hidden degrees of freedom (soft modes) and the others
which can be used to describe small excitations around the
black hole (hard modes). In fact, this entanglement is the
origin [8] of the thermality of the black hole [2].
While the strong dynamics near the stretched horizon

cannot be described by a low-energy quantum field theory,
we expect that it is unitary, as implied by the AdS=CFT
correspondence [6]. The fact that this dynamics lies outside
the validity of the low-energy theory allows for avoiding
the conclusion of information loss [3] reached by semi-
classical calculation. The picture of the black hole interior
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can emerge through a coarse graining of the degrees of
freedom that cannot be physically resolved by an infalling
observer, whose consistency with black hole’s unitary
evolution is ensured by a specific entanglement structure
between the hard modes, soft modes, and early radiation [9].
In this paper, we analyze how the operators in the coarse-

grained, effective theory of the interior can be realized in
the original microscopic theory. We show that the con-
struction of these operators is not unique. In particular, we
find that the operators can be written without involving an
element outside the black hole region for a young black
hole, a black hole that is not yet maximally entangled with
the early radiation. On the other hand, for an old black hole,
radiation degrees of freedom must be involved, despite the
fact that the degrees of freedom describing a falling object
are not directly entangled with the early radiation. We study
how this happens both in the cases of a black hole in
asymptotically flat spacetime and a large black hole in AdS
spacetime. This analysis elucidates which features of the
analyses using a large AdS black hole may apply to a black
hole in asymptotically flat spacetime.
The construction described in this paper addresses all the

issues raised regarding the interior of a unitarily evaporat-
ing black hole [7,12–15]. In particular, we find that all the
operators relevant for the effective theory of the interior can
be represented as standard linear quantum operators at the
microscopic level, which obey the correct algebra up to
corrections exponentially suppressed in the ratio of excita-
tion energy to the Hawking temperature, which is typically a
very large number. We also argue that the construction
preserves spacetime locality at the semiclassical level.
The organization of this paper is as follows. In Sec. II, we

describe the framework of Refs. [8,9], highlighting features
relevant for our discussion. In Sec. III, we present our
analysis of interior operators for a black hole in asymp-
totically flat spacetime (or a small black hole in AdS
spacetime). We construct operators that play the role of
annihilation and creation operators in the effective theory of
the interior erected at a given time in a distant description.
We find that for a young black hole, these operators can be
chosen to act only on the hard and soft modes, while for an
old black hole, they must also involve early radiation.
In Sec. IV, which was added after the first version of this

paper was posted, in response to an intriguing paper by
Penington, Shenker, Stanford, and Yang [16], we perform a
similar analysis for a large AdS black hole. In this case, we
obtain a result resembling that of Ref. [16]: for an old black
hole, we can construct certain operators analogous to the
interior ones which act only on early radiation. These
operators, however, are not relevant for constructing the
effective interior theory erected at that time; as in the case
of a flat space black hole, operators relevant for such an
effective theory must involve both soft modes and early
radiation. A key to reconcile these two results and figuring
out the relation between our construction and entanglement

wedge reconstruction of the interior [17–19] is time
evolution, which we will discuss.
In Sec. V, we conclude with a discussion on the relation

between our findings and the emergence of semiclassical
spacetime. We conjecture that the existence of (approx-
imately) global operators is required for the emergence of
the semiclassical picture.
Throughout the paper, we focus on black holes in four-

dimensional spacetime that are not significantly rotating or
charged, although the restriction on specific spacetime
dimensions or on nonrotating, noncharged black holes is
not essential. We adopt natural units c ¼ ℏ ¼ 1, and lP
denotes the Planck length.

II. FLAT SPACE BLACK HOLE IN A
DISTANT DESCRIPTION

In this section and the next, we discuss a flat space (or a
small AdS) black hole using the framework of Refs. [8,9].
A key feature of the framework is that the thermal nature of
a black hole in a distant description can be viewed as arising
from entanglement between hard and soft modes of low-
energy quantum fields.1 Modes of a low-energy quantum
field in the zone region (also called the thermal atmosphere)

rs ≤ r ≤ rz ð1Þ

are decomposed into hard and soft modes; the hard modes
have frequencies ω and gaps among them Δω larger than

Δ ≈O

�
1

Ml2P

�
ð2Þ

as measured in the asymptotic region, while the soft modes
have ω≲ Δ. (The hard modes are those which the bulk
theory can discriminate individually at the quantum level.)
Here, rz ≈ 3Ml2P, and rs is the location of the stretched
horizon, given by

rs − 2Ml2P ∼
l2s
Ml2P

: ð3Þ

In a distant description, the classical spacetime picture is
applicable only outside the stretched horizon, and its
location is determined by the condition that the proper
distance from the mathematical horizon, r ¼ 2Ml2P, is of
order the string length ls.
While the frequencies of the soft modes are small as

measured in the asymptotic region, their intrinsic dynami-
cal scale is larger at a location deeper in the zone, due to
large gravitational blueshift. In particular, it is of order the
string scale near the stretched horizon, where a majority of

1Here and below, low-energy fields mean quantum fields
existing below the string scale 1=ls.
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the modes reside. (The distribution of the soft modes is
given by the entropy density that goes as the cubic power of
the blueshift factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2Ml2P=r

p
.) The dynamics of

the soft modes there, therefore, cannot be described by the
low-energy theory.2 It is this dynamics that is responsible
for unitarity of the Hawking emission process.
The quantity Δ in Eq. (2) is naturally taken to be

somewhat, e.g., by a factor of Oð10Þ, larger than the
Hawking temperature

TH ¼ 1

8πMl2P
: ð4Þ

Since Δ is the inverse timescale for single Hawking
emission, the uncertainty principle prevents us from speci-
fying the energy of the black hole better than that. Below,
we will assume that the energy (mass) of a black hole is
determined with this maximal precision. A superposition of
black holes of masses differing more than Δ can be treated
in a straightforward manner.
At a given time t, the state of the entire system—with the

black hole being put in the semiclassical vacuum state—is
given by

jΨðMÞi ¼
X
n

XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

cninajfnαgijψ ðnÞ
in
ijϕai: ð5Þ

Excitations on a black hole background will be discussed
later. In this expression, jfnαgi are orthonormal states of
the hard modes, with n≡ fnαg representing the set of all
occupation numbers nα (≥ 0). The index α collectively
denotes the species, frequency, and angular-momentum
quantum numbers of a mode, and En is the energy of the
state jfnαgi as measured in the asymptotic region (with
precision Δ).
jψ ðnÞ

in
i are orthonormal states of the soft modes entangled

with jfnαgi (and hence having energy M − En with
precision Δ). The density of states for the soft modes is
given by the Bekenstein-Hawking formula

SbhðMÞ ¼ 4πM2l2P: ð6Þ

Here, we have assumed that the density of hard-mode states
is negligible compared with that of the soft modes. This
implies that in runs over

in ¼ 1;…; eSbhðM−EnÞ: ð7Þ

Note that with this assumption, the total entropy of the
black hole is

ln
�X

n

eSbhðM−EnÞ
�
≈
AðMÞ
4l2P

; ð8Þ

where AðMÞ ¼ 16πM2l4P is the area of the black hole,
reproducing the standard interpretation of the Bekenstein-
Hawking entropy. The last factor jϕai in Eq. (5) represents
the set of orthonormal states representing the system in the
far region r > rz.
By the black hole vacuum, we mean that there is no

physical excitation identifiable at the semiclassical level.
This implies that any attribute a hard-mode state may have
is compensated by that of the corresponding soft-mode
states (within the precision allowed by the uncertainty
principle). In particular, this implies that soft-mode states
associated with different hard-mode states are orthogonal:

hψ ðmÞ
im

jψ ðnÞ
jn
i ¼ δmnδimjn : ð9Þ

We also take the states in the far region, jϕai, to be given by
those of Hawking radiation emitted earlier, i.e., emitted
from r ≈ rz to the asymptotic region before time t. Srad in
Eq. (5) is then the coarse-grained entropy of this early
radiation.
We take the state in Eq. (5) to be normalized:

X
n

XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

jcninaj2 ¼ 1: ð10Þ

We also assume that the ultraviolet dynamics near the
stretched horizon is chaotic, well scrambling the black hole
state [10,11]. In particular, we assume that the coefficients
cnina take generic values in the spaces of the hard and soft
modes. This implies that statistically

jcninaj ∼
1ffiffiffiffiffiffiffi
Stot

p ; ð11Þ

where

Stot ≡
�X

n

eSbhðM−EnÞ
�
eSrad ¼

�X
n

e−En=TH

�
eSbhðMÞeSrad :

ð12Þ
The standard thermal nature of the black hole is then
obtained upon tracing out the soft modes:

TrsoftjΨðMÞihΨðMÞj ¼ 1P
me

−Em=TH

×
X
n

e−En=TH jfnαgihfnαgj⊗ ρϕ;n;

ð13Þ

2Given that the dynamics is not dictated by the low-energy
theory, we may call these modes the stretched horizon degrees of
freedom instead of soft modes of low-energy fields near the
stretched horizon. In fact, the internal dynamics of these modes
are expected to be nonlocal in the spatial directions along the
horizon [10,11].
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where ρϕ;n are reduced density matrices for the early
radiation, whose n dependence is small and of order

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
eSbhðMÞp

. Note that in order to obtain the correct
Boltzmann factor, ∝ e−En=TH , it is essential that the coef-
ficients cnina take generic values across all low-energy
species, i.e., n runs over all low-energy species [9].
In a distant description, the system of a black hole and

radiation evolves unitarily with the state taking the form of
Eq. (5) at each moment in time. In particular, the entangle-
ment entropy between the black hole and radiation

SvNhardþsoft ¼ SvNrad ð14Þ

follows the Page curve [20], where SvNA is the von Neumann
entropy of subsystem A. Throughout the history of the
black hole, the number of hard modes is much smaller than
that of the soft modes. (Note that we are only interested in
states that do not yield significant backreaction on space-
time, which limits the number of possible hard-mode
states.) Furthermore, the coarse-grained entropies of the
soft modes and radiation are both of order M2l2P, except
for the very beginning and end of the black hole evolution.
We therefore have

ln dimHhard ≪ SbhðM − EnÞ; Srad ≈OðM2l2PÞ: ð15Þ

We stress that this relation holds both before and after the
Page time, at which the coarse-grained entropy of
the radiation becomes approximately equal to that of the
black hole.
Incidentally, by performing the Schmidt decomposition

in the space of soft-mode and radiation states for each n, the
state in Eq. (5) can be written as

jΨðMÞi ¼
X
n

XN n

in¼1

cnin jHnijSn;inijRn;ini; ð16Þ

where jHni, jSn;ini, and jRn;ini are states of the hard modes,
soft modes, and radiation, respectively, and

N n ¼ minfeSbhðM−EnÞ; eSradg: ð17Þ

This expression elucidates why the entanglement argument
for firewalls [7] does not apply here. The entanglement
responsible for unitarity has to do with the summations of
indices in (in fact, predominantly the vacuum index i0)
shared between the soft-mode and radiation states, while
the entanglement necessary for the interior spacetime (see
below) has to do with the index n. These two are
compatible because the number of terms associated with
the sum over n is much smaller than N n.
Let us now discuss excitations. A small excitation

composed of constituents with ω≳ Δ in the zone can be
described by annihilation and creation operators acting on
the hard modes

bγ ¼
X
n

ffiffiffiffiffi
nγ

p jfnα − δαγgihfnαgj; ð18Þ

b†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jfnα þ δαγgihfnαgj: ð19Þ

In particular, a small object falling from the far region into
the black hole, which has the characteristic size d in the
angular directions much smaller than the horizon, i.e.,
d ≪ Ml2P, can be described in this manner.
In a distant description, a small object falling into the

black hole is absorbed into the stretched horizon when it
reaches there, whose information will be later sent back to
ambient space by Hawking emission. This description,
however, is not useful for addressing the question of
what the falling object will actually see. Because of the
large discrepancy between the stationary frame and the
frame of the object, macroscopic time experienced by
the object is mapped to an extremely short time for a
stationary observer at the location of the object. In
particular, anything the object experiences inside the
horizon occurs almost “instantaneously” for a stationary
observer at r ¼ rs. Understanding an object’s experiences,
therefore, requires time evolution different from the
distant one, specifically an evolution associated with
the proper time of the object.

III. EFFECTIVE THEORY OF THE BLACK
HOLE INTERIOR

The effective theory describing the black hole interior
can be erected at each time t by coarse graining the soft
modes and radiation: the degrees of freedom that cannot be
resolved by a fallen object in the timescale available to it.
Suppose that the state of the system at time t (with the black
hole put in the semiclassical vacuum) is given by Eq. (5) in
a distant description. We can then define a set of coarse-
grained states each of which is entangled with a specific
hard-mode state:

kfnαg⟫ ∝
XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

cninajψ ðnÞ
in
ijϕai; ð20Þ

where we have used the same label as the corresponding
hard-mode state to specify the coarse-grained state, which
we denote by the double ket symbol. Note that the
meaning of the coarse graining here is that the state
kfnαg⟫ on the left-hand side corresponds to multiple
different microstates on the right-hand side, depending on
the state of the black hole and radiation represented by the
coefficients cnina.
Using Eq. (11), we find that the squared norm of the

(non-normalized) state on the right-hand side of Eq. (20) is
given by
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XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

jcninaj2¼
e−En=TH�P
me

−Em=TH

�

×

�
1þO

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eSbhðM−EnÞeSrad
p

��
ð21Þ

for generic black hole and radiation microstates. Here, the
second term in the square brackets represents the size of
statistical fluctuations over different microstates. Therefore,
the normalized coarse-grained state kfnαg⟫ is given for
generic microstates by

kfnαg⟫ ¼ eEn=2TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

e−Em=TH

r

×
XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

cninajψ ðnÞ
in
ijϕai; ð22Þ

up to a fractional correction of order 1=e#M
2l2P in the overall

normalization, where # is a number that does not depend
on MlP.
The state in the effective theory corresponding to the

state in Eq. (5) can be written in terms of the coarse-grained
states in Eq. (22) as

kΨðMÞ⟫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
me

−Em=TH
p X

n

e−En=2TH jfnαgikfnαg⟫;

ð23Þ

regardless of the values of cnina. This takes the form of the
standard thermofield double state in the two-sided black hole
picture [21,22], although jfnαgi here represent the states
only of the hard modes.We emphasize that in order to obtain
the correct Boltzmann-weight coefficients, ∝ e−En=2TH , it is
important that the black hole has soft modes with the density
of states given by eSbhðEsoftÞ and that the hard and soft modes
are well scrambled, giving cnina that take values statistically
independent of n. This coarse graining leads to the apparent
uniqueness of the infalling vacuum, despite the existence of
exponentially many black hole microstates.
One can now define the annihilation and creation

operators b̃γ and b̃†γ acting on the coarse-grained states as

b̃γ ¼
X
n

ffiffiffiffiffi
nγ

p kfnα − δαγg⟫⟪fnαgk; ð24Þ

b̃†γ ¼
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p kfnα þ δαγg⟫⟪fnαgk ð25Þ

at the level of the effective theory. The annihilation and
creation operators relevant for an infalling observer can
then be given by

aξ ¼
X
γ

ðαξγbγ þ βξγb
†
γ þ ζξγb̃γ þ ηξγb̃

†
γÞ; ð26Þ

a†ξ ¼
X
γ

ðβ�ξγbγ þ α�ξγb
†
γ þ η�ξγb̃γ þ ζ�ξγb̃

†
γÞ; ð27Þ

where bγ and b
†
γ are the operators in Eqs. (18) and (19), ξ is

the label in which the frequencyωwith respect to t is traded
with the frequency Ω associated with the infalling time,
and αξγ , βξγ, ζξγ , and ηξγ are the Bogoliubov coefficients
calculable using the standard field theory method. The
generator of time evolution in the infalling description is
then given by

H ¼
X
ξ

Ωa†ξaξ þHintðaξ; a†ξÞ: ð28Þ

This leads to the physics of a smooth horizon. The
existence of the operators aξ and a†ξ implies that there is
a subsector in the original microscopic theory encoding the
experience of an object after it crosses the horizon.
How can the operators b̃γ and b̃†γ be constructed at the

microscopic level? One way is simply to use Eq. (22) in the
expression in Eqs. (24) and (25):

b̃γ ¼
�X

m

e−Em=TH

�X
n

ffiffiffiffiffi
nγ

p
eðEn−þEnÞ=2TH

×
XeSbhðM−En− Þ

in−¼1

XeSbhðM−EnÞ

jn¼1

XeSrad
a¼1

XeSrad
b¼1

cn−in−ac
�
njnb

× jψ ðn−Þ
in−

ijϕaihψ ðnÞ
jn
jhϕbj; ð29Þ

b̃†γ ¼
�X

m

e−Em=TH

�X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p
eðEnþþEnÞ=2TH

×
XeSbhðM−Enþ Þ

inþ¼1

XeSbhðM−EnÞ

jn¼1

XeSrad
a¼1

XeSrad
b¼1

cnþinþac
�
njnb

× jψ ðnþÞ
inþ

ijϕaihψ ðnÞ
jn
jhϕbj; ð30Þ

wheren� ≡ fnα � δαγg andEn� are the energies of the hard-
mode states jfnα � δαγgi as measured in the asymptotic
region. These operators can play the role of annihilation and
creation operators in the space spanned by the coarse-grained
states. In particular, their matrix elements are

⟪fκαgkb̃γkfλαg⟫ ¼
ffiffiffiffi
λγ

q
δfκαgfλα−δαγg; ð31Þ

⟪fκαgkb̃†γkfλαg⟫ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λγ þ 1

q
δfκαgfλαþδαγg; ð32Þ

up to corrections of order 1=e#M
2l2P. It is important to notice,

however, that these operators do not satisfy the exact algebra
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of annihilation and creation operators at the microscopic
level. Indeed,

½b̃β; b̃†γ � ¼ δβγ

�X
m

e−Em=TH

�X
n

eEn=TH

XeSbhðM−EnÞ

in¼1

XeSbhðM−EnÞ

jn¼1

×
XeSrad
a¼1

XeSrad
b¼1

jψ ðnÞ
in
ijϕaihψ ðnÞ

jn
jhϕbj; ð33Þ

which is not the identity operator for β ¼ γ. It is only in the
space of coarse-grained states that these operators obey the
algebra of annihilation and creation operators:

⟪fκαgk½b̃β; b̃†γ �kfλαg⟫ ¼ δβγ; ð34Þ

⟪fκαgk½b̃β; b̃γ�kfλαg⟫ ¼ ⟪fκαgk½b̃†β; b̃†γ �kfλαg⟫ ¼ 0;

ð35Þ

which have corrections only of order 1=e#M
2l2P.

Can other microscopic operators be chosen as the
annihilation and creation operators in the effective theory?
One might think that any operators mapping a generic
microstate of kfnαg⟫ [i.e., a state in Eq. (22) with generic
cnina] to those of kfnα − δαγg⟫ and kfnα þ δαγg⟫ would
work as b̃γ and b̃†γ , respectively. This is, however, not the
case. Since a single coarse-grained state kfnαg⟫ corre-
sponds to many microstates, the state obtained by acting
such generic operators to a specific microstate, in particular
the state kfnαg⟫ involving the specific coefficients cnina
appearing in the state of the system in Eq. (5), may not have
appropriate inner products with the corresponding states
kfmαg⟫’s (fmαg ≠ fnαg) involving the same cnina. This
would mean that those microscopic operators do not serve
as annihilation and creation operators in the effective theory
erected on the state having these specific coefficients cnina.
As an example, consider the set of candidate operators

b̃γ ¼? c
X
n

ffiffiffiffiffi
nγ

p jfðn−ÞihgðnÞj;

b̃†γ ¼? c�
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p jgðnþÞihfðnÞj; ð36Þ

where c is a normalization constant, and

jfðnÞi ¼
XeSbhðM−EnÞ

in¼1

fnin jψ ðnÞ
in
i; jgðnÞi ¼

XeSbhðM−EnÞ

in¼1

gnin jψ ðnÞ
in
i

ð37Þ

with generic coefficients satisfying
P

in jfnin j2 ¼P
in jgnin j2 ¼ 1. This gives

⟪fκαgkb̃γkfλαg⟫ ¼ c
ffiffiffiffi
λγ

q
δfκαgfλα−δαγg

×O

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eSbhðM−EκÞeSbhðM−EλÞeSrad
p

�
;

ð38Þ

⟪fκαgkb̃γb̃†γkfλαg⟫ ¼ jcj2ðλγ þ 1ÞδfκαgfλαgO
�

1

eSbhðM−EλÞ

�
;

ð39Þ

and there is no choice of c that can make both of these
relations compatible with the algebra in the effective theory.
The consideration above provides an argument for the

necessity of the dependence of the microscopic operators
b̃γ and b̃†γ on the state of the system, in particular cnina in
Eq. (5). This, however, still allows for operators other than
those in Eqs. (29) and (30).
Let us consider the operators

b̃γ ¼ c
X
n

ffiffiffiffiffi
nγ

p
eðEn−þEnÞ=2TH

XeSbhðM−En− Þ

in−¼1

XeSbhðM−EnÞ

jn¼1

×
XeSrad
a¼1

cn−in−ac
�
njna

jψ ðn−Þ
in−

ihψ ðnÞ
jn
j; ð40Þ

b̃†γ ¼ c
X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p
eðEnþþEnÞ=2TH

XeSbhðM−Enþ Þ

inþ¼1

XeSbhðM−EnÞ

jn¼1

×
XeSrad
a¼1

cnþinþac
�
njna

jψ ðnþÞ
inþ

ihψ ðnÞ
jn
j; ð41Þ

where c is a real number. Note that the combinations of
cnjna’s appearing here,

P
eSrad
a¼1 cmimac

�
njna

, are those in the
reduced density matrix for the hard and soft modes

TrradjΨðMÞihΨðMÞj

¼
X
m

X
n

XeSbhðM−EmÞ

im¼1

XeSbhðM−EnÞ

jn¼1

×
XeSrad
a¼1

cmimac
�
njna

jfmαgijψ ðmÞ
im

ihfnαgjhψ ðnÞ
jn
j; ð42Þ

so that they can be determined purely from the state in the
black hole region.
With this choice of b̃γ and b̃†γ , we obtain

⟪fκαgkb̃γkfλαg⟫ ¼ c

eSrad
P

me
−Em=TH

ffiffiffiffi
λγ

q
δfκαgfλα−δαγg;

ð43Þ
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⟪fκαgkb̃†γkfλαg⟫¼ c

eSrad
P

me
−Em=TH

ffiffiffiffiffiffiffiffiffiffiffiffi
λγþ1

q
δfκαgfλαþδαγg;

ð44Þ

and

⟪fκαgkb̃γb̃†γkfλαg⟫¼
�

c

eSrad
P

me
−Em=TH

�
2

ðλγþ1Þδfκαgfλαg

×

�
1þO

�
eSrad

eSbhðM−EλÞ

��
; ð45Þ

⟪fκαgkb̃†γ b̃γkfλαg⟫ ¼
�

c

eSrad
P

me
−Em=TH

�
2

λγδfκαgfλαg

×

�
1þO

�
eSrad

eSbhðM−EλÞ

��
; ð46Þ

up to corrections of order 1=e#M
2l2P. We thus find that for

eSrad ≪ eSbhðM−EλÞ ≈ eSbhðMÞ; ð47Þ

the second terms in the square brackets in Eqs. (45) and
(46) are negligible, so that the b̃γ and b̃†γ with

c ¼ eSrad
X
m

e−Em=TH ð48Þ

can play the role of the annihilation and creation operators
in the effective theory. In fact, we can show that these
operators also satisfy the required commutation relations
in Eqs. (34) and (35) when the condition in Eq. (47) is
satisfied, namely when the black hole is young.
On the other hand, if the black hole is old, i.e.,

eSrad ≫ eSbhðMÞ, then the second terms in the square brackets
dominate in Eqs. (45) and (46), jeopardizing the possibility
for the b̃γ and b̃†γ to serve as the annihilation and creation
operators in the effective theory for any choice of c.
Technically, this is because the factor obtained by acting
b†γ or bγ to kfλαg⟫

Xe
SbhðM−Eλ� Þ

iλ�¼1

XeSbhðM−EλÞ

jλ¼1

XeSrad
a¼1

XeSrad
b¼1

cλ�iλ�ac
�
λjλa

cλjλbjψ ðλ�Þ
iλ�

ijϕbi ð49Þ

is dominated by the a ¼ b terms if and only if the condition
in Eq. (47) is met, giving the state proportional to

Xe
SbhðM−Eλ� Þ

iλ�¼1

XeSrad
a¼1

cλ�iλ�ajψ
ðλ�Þ
iλ�

ijϕai ð50Þ

and hence to the kfλα � δαγg⟫ obtained using the specific
cnjna’s appearing in the state of the system. This shows how
the Page time can be relevant in the construction of the

interior operators, despite the fact that the hard-mode and
radiation states take a separable form as in Eq. (13)
throughout the history of the black hole.3 In fact, for an
old black hole, we do not see how one can construct the
appropriate annihilation and creation operators in the
effective theory using only the information in the black
hole reduced density matrix in Eq. (42).
Incidentally, a construction of b̃γ and b̃†γ involving only

radiation states is not possible. What allowed the con-
struction of operators in Eqs. (40) and (41) is the corre-
lations between the attributes of the hard and soft modes
coming from the constraints imposed on the black hole
vacuum state (the requirement that it does not have any
features associated with semiclassical excitations). Such
correlations do not exist between the hard modes and
radiation.
As discussed in Ref. [8], the effective theory of the

interior erected as above describes only a limited spacetime
region: the causal domain of the union of the zone and its
mirror region on the spatial hypersurface at t (the time at
which the effective theory is erected) in the effective two-
sided geometry. The black hole singularity may be regarded
as a manifestation of the fact that this theory is obtained by
coarse graining and hence represents a finite-dimensional,
nonunitary system. Specific operators used in Eqs. (26) and
(27), for example those in Eqs. (29) and (30), are selected
presumably because they correspond to observables which
classicalize within such a finite-dimensional system [9].
Locality seems to play a key role in this quantum-to-
classical transition.
The fact that an effective theory represents only a limited

spacetime region implies that the picture of the whole
interior, as described by general relativity, can be obtained
only by using multiple effective theories erected at different
times. This is the sense in which the global spacetime in
general relativity emerges from the microscopic description.

A. Relation to the work by Papadodimas and Raju

A construction of interior operators similar to the one
described here, based on the doubled Hilbert space struc-
ture, was considered in the well-known work by
Papadodimas and Raju [23–25]. While the mathematical
structures of the two are related (at the level of dividing the
system into two components), their physical implementa-
tions are different in several key aspects, leading to
different solutions to the firewall paradoxes [7,12,13].
In Ref. [23], the doubled Hilbert space structure was

obtained by coarse graining bulk fields (generalized
free fields in CFT) to separate the degrees of freedom
represented by one of the Hilbert space factors, which

3This separation is not a statistical statement; i.e., it does not
receive exponentially small corrections from statistics. A similar
statement applies for a state of the form in Eq. (62) in the next
section.
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increase as the black hole evaporates. [Note that this coarse
graining is different from that discussed in Eqs. (20)–(22).]
In contrast, our hard modes are selected from the black hole
degrees of freedom by an energetic criterion, which thus
decrease as the evaporation progresses. These modes have
gaps larger than the Hawking temperature (instead of the
effectively continuous spectrum envisioned in Ref. [23]),
which plays an important role in the picture as we have seen
in this and the previous sections. This leads, for example, to
an entanglement structure different from that envisioned in
the earlier work; in particular, the hard-mode and radiation
states take a separable form throughout the history of the
black hole.
In Refs. [24,25], which are supposed to subsume the

earlier construction in Ref. [23], the “state dependence” of
the map between boundary operators and bulk local
operators was invoked to address the firewall paradoxes.
Problems of the state dependence—the frozen vacuum and
Born rule problems—were discussed in Refs. [14] and [15],
respectively. In our construction, interior operators do
depend on the microstate on which they are built, in the
sense that operators b̃γ and b̃†γ depend on cnina as shown in
Eqs. (29) and (30) and Eqs. (40) and (41). As discussed in
Ref. [9], however, the fact that our hard modes are selected
energetically (which is also the case in a large AdS black
hole as discussed in the next section) allows us to avoid the
problems in Refs. [14,15].
Specifically, consider the space HM of pure states in

which the energy E in a spatial region is bounded by
E < M, where M is sufficiently large that a typical state in
HM is a black hole state. We then consider the space of all
states that are obtained by acting appropriately smoothed
hard-mode (semiclassical) operators on any of the black
hole microstates in HM and have energies smaller than
M þ δE. This space, denoted by BδEHM, has dimension
eSbhðMÞþSexc , where Sexc is the entropy of the possible
semiclassical excitations. One can then show that a typical
state jψi in HMþδE can be written as

jψi ¼ sin θjψ exci þ cos θjψvaci ð51Þ

with

sin2θ ∼ e−ðδE=TH−SexcÞ: ð52Þ

Here, jψ exci and jψvaci are elements of BδEHM and its
complement HMþδE=BδEHM, respectively, and TH ¼
1=8πMl2P. Assuming that semiclassical excitations are well
within the Bekenstein bound [26,27], i.e., Sexc < δE=TH
with ðδE=TH − SexcÞ=Sexc≪1,4 and that a semiclassical
excitation has entropy of order a few or larger, we obtain

a few≲ Sexc <
δE
TH

⇒ sin2θ ≪ 1: ð53Þ

We thus find, unlike the claim in Ref. [15], that a state
having excitations over a semiclassical black hole back-
ground is atypical in the microscopic Hilbert space.
The direct application of the above analysis is limited to

the excitations outside the horizon, i.e., the states obtained
by acting b†γ ’s, which raise the energy of the state. On the
other hand, an object in the interior, excited by a†ξ’s,

involves operators b̃†γ , which lower the energy as measured
in the asymptotic region. This is reflected in the fact that the
infalling HamiltonianH in Eq. (28) does not commute with
the generator of time evolution in the distant description, so
that a positive energy excitation in the zone will develop
negative energy components “after passing the horizon.”
However, the conclusion that a semiclassically excited state
is atypical still persists if we focus only on excitations
thrown from the exterior, i.e., the states that can be obtained
by acting the infalling time evolution operator U ¼ e−iHτ

on the states considered in the previous paragraph,5 since
the operator U is approximately unitary over the relevant
timescale τ.
This implies that the Hilbert space for semiclassical

excitations,Hexc, built on each of the orthogonal black hole
and radiation microstates need not overlap significantly
with each other. This is indeed expected to be the case from
genericity consideration; we can show that states represent-
ing the same semiclassical excitation but built on different
orthogonal microstates A and B have overlap

AhΨðMÞjOðAÞ†
δE OðBÞ

δE jΨðMÞiB≈O

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eSbhðMÞeSrad
p e−δE=2TH

�
;

ð54Þ

where OðA;BÞ
δE are the operators that excite an appropriately

smoothed semiclassical mode of energy δE (either in a
distant or infalling frame). We find that this level of
suppression is sufficient for us to be able to treat the
microscopic Hilbert space as

H ≈Hexc ⊗ Hvac; ð55Þ

where the elements of Hvac cannot be discriminated as
quantum degrees of freedom in the semiclassical theory.
Note that this structure is different from that considered in
Refs. [14,15,23–25]. In particular, we can define global

4This assumption was also used implicitly in obtaining Eq. (8).

5This excludes certain configurations that are obtained by
sending signals from the second exterior in a genuinely two-sided
black hole. In the context of a collapse-formed black hole, such
configurations correspond to the states obtained by performing
highly fine-tuned and complicated operations to the soft modes
and/or radiation.
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operatorsO ¼ bγ , b
†
γ , aξ, a

†
ξ that act linearly throughout the

space of all semiclassical states built on each of the vacuum
microstates6

O ¼
XeSbhðMÞþSrad

A¼1

X
I

X
J

jΨðAÞ
I iOðAÞ

IJ hΨðAÞ
J j; ð56Þ

where I and J are the indices specifying semiclassical states
(regardless of the microstate), A runs over orthogonal

vacuum microstates of the form in Eq. (5), jΨðAÞ
I i is the

semiclassical state I built on microstate A, and OðAÞ
IJ is

the matrix element of the corresponding operator built on

A—bðAÞγ , bðAÞ†γ , aðAÞξ , aðAÞ†ξ —in the microscopic Hilbert
space. These global operators O obey the correct annihi-
lation and creation operator algebra up to corrections
exponentially suppressed in δE=TH, which is typically
huge for a small object falling into the black hole.
Finally, we have divided the system into three

components—the hard modes, soft modes, and radiation
—rather than two. This allows us to impose an energy
constraint in the black hole system, which is essential in
deriving the properties of operators in the effective theory
described above. It also elucidates a difference between
our construction and that of Refs. [23–25]; our effective
second-exterior operators b̃γ and b̃†γ are constructed as the
mirror of hard modes, while those in Refs. [23–25] as the
mirror of a system including early radiation. This makes,
for example, the vanishing of commutators between b̃γ=b̃

†
γ

and operators acting on early radiation not automatic.
We may, however, expect that any simple operation

performed on early radiation does not affect the black hole
interior, protecting locality at the semiclassical level.
This possibility has recently been studied in Ref. [28]
using the concept of computational complexity. These
authors have analyzed the problem for a state without an
energy constraint [a state of the form in Eq. (62) in the next
section]; here we discuss the issue using a state, Eq. (5), that
has a physically relevant form in our framework. Consider
the microscopic-level expression [see Eq. (22)] of a coarse-
grained state kfnαg⟫ built on microstate A

kfnαg⟫A ¼ eEn=2TH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

e−Em=TH

r XeSbhðM−EnÞ

in¼1

×
XeSrad
a¼1

cðAÞnina
jψ ðnÞ

in
ijϕai: ð57Þ

A general operation on early radiation can be expressed as a
quantum channel

E½kfnαg⟫AA⟪fnαgk� ¼
X
x

Exkfnαg⟫AA⟪fnαgkE†
x; ð58Þ

where Ex are Kraus operators that act on radiation as

Ex ¼
XeSrad
a¼1

XeSrad
b¼1

jϕaiEx
abhϕbj; ð59Þ

which satisfy
P

x E
†
xEx ¼ I.

Let us now consider the matrix element of this state
between coarse-grained states kfκαg⟫ and kfλαg⟫ built on
microstate B and C, respectively. This gives

B⟪fκαgk E½kfnαg⟫AA⟪fnαgk� kfλαg⟫C

¼ e2En=TH

�X
m

e−Em=TH

�
2

δfκαgfnαgδfλαgfnαg

×
X
x

� XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

XeSrad
b¼1

cðBÞ�nina
Ex
abc

ðAÞ
ninb

�

×

� XeSbhðM−EnÞ

jn¼1

XeSrad
c¼1

XeSrad
d¼1

cðAÞ�njnc
Ex
cdc

ðCÞ
njnd

�
: ð60Þ

We thus find that the condition for the coarse-grained states at
the semiclassical level—and hence the interior—not to be
affected by any measurement made by a remote observer is

eEn=TH

�X
m

e−Em=TH

� XeSbhðM−EnÞ

in¼1

XeSrad
a¼1

XeSrad
b¼1

cðAÞ�nina
Ex
abc

ðBÞ
ninb

¼ qxUx
AB ð61Þ

for all n ¼ fnαg,A,B, and x, up to exponentially suppressed
corrections. Here,Ux

AB are the elements of (arbitrary) unitary
matrices Ux acting on the space of microstates, and qx are
numbers satisfying

P
x jqxj2 ¼ 1. This is morally the con-

dition for the simplicity of the measurement and pseudor-
andomness of Hawking radiation discussed in Ref. [28],
which we expect to be satisfied under assumptions similar to
those adopted there. Assuming this is true, our framework
preserves locality at the semiclassical level; i.e., any observer
performing a simple operation on early radiation cannot
remotely affect the black hole interior.7

6These operators can be easily extended to linear operators
throughout the whole microscopic Hilbert space. It is simply that
they then cannot be interpreted as annihilation and creation
operators outside the space of semiclassical states built on each
vacuum microstate.

7If an observer performs an operation with superpolynomial
complexity, he or she can affect the state of the black hole at the
semiclassical level; in fact, they can even create a firewall state.
Even in this case, however, the black hole quickly “repairs” itself
and recover the smooth horizon in a timescale of order the
scrambling time [8,9].
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IV. LARGE ADS BLACK HOLE

After the original submission of this paper,8 an interest-
ing paper by Penington, Shenker, Stanford, and Yang
appeared [16] which discusses related issues. In particular,
these authors adopted the same machinery as that used here
to construct interior operators in Eqs. (40) and (41), which
they referred to as the Petz map following the terminology
used in quantum information science.
The models employed in Ref. [16] are analogous to a

large AdS black hole, which is distinct from a flat space or
small AdS black hole. For a large AdS black hole, there are
modes whose wavelengths in the angular directions are
smaller than the horizon radius and yet which have
frequencies smaller than the Hawking temperature, since
the inverse Hawking temperature is (much) smaller than the
horizon radius, 1=TH ≪ rþ. Here, TH ¼ 3rþ=4πl2 is the
Hawking temperature, and rþ and l are the horizon and
AdS radii, respectively. This is in contrast to the case of a
flat space or small AdS black hole, in which 1=TH ¼ 4πrþ,
so a mode having a wavelength in the angular directions
smaller than the horizon radius necessarily has a frequency
larger than TH.
Let us see what happens if we apply the construction in

the previous section to these modes (1=rþ ≪ ω,Δω≲ TH),
which we call “relatively harder” (but still soft) modes.
Since the uncertainty in energy (∼TH) is larger than the
frequencies of these modes, their states jfnαgi need not be
correlated with the states jψ ii of the other, “relatively
softer” (soft) modes (ω≲ 1=rþ) as in Eq. (5). Specifically,
the state of the system with the black hole put in the
semiclassical vacuum can be written as

jΨðMÞi ¼
XeSh
n¼1

XeSbhðMÞ

i¼1

XeSrad
a¼1

cniajfnαgijψ iijϕai; ð62Þ

where eSh (≪ eSbhðMÞ) is the dimension of the Hilbert space
for the harder modes, SbhðMÞ ¼ πð2l2M=lPÞ2=3 is the
density of states for the softer modes (≈ that of the black
hole), and jϕai represents states of the auxiliary system to
which the AdS system is coupled at the boundary.9 Note
that jfnαgi and jψ ii here represent the states of the harder
and softer soft modes, rather than hard and soft modes. For

simplicity, we set all the hard modes to be on their ground
states; these modes will be considered later.
We can now define the normalized coarse-grained states

along the lines of Eq. (20):

kfnαg⟫ ¼
ffiffiffiffiffiffi
eSh

p XeSbhðMÞ

i¼1

XeSrad
a¼1

cniajψ iijϕai: ð63Þ

The statistical errors for the normalizations are fractionally

of order 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eSbhðMÞeSrad

p
∼ 1=eSsys ; here and below, we

denote contributions of order 1=e#Sbhþ#0Srad simply by
1=eSsys . We then find that the softer-mode states that are
entangled with different harder-mode states have nonzero
overlaps

⟪fκαgkfλαg⟫ ¼ O

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eSbheSrad
p

�
for fκαg ≠ fλαg; ð64Þ

although they are small, of order 1=eSsys. This is in contrast
to the soft mode states entangled with the hard-mode states
in Secs. II and III, whose overlaps were virtually zero as
in Eq. (9).
These small overlaps allow us, after the Page time, to

choose “b̃γ and b̃†γ operators” for the harder soft modes
which act only on the auxiliary system, i.e., early radiation.
Consider operators

b̃γ ¼ eShþSbh
XeSh
n¼1

ffiffiffiffiffi
nγ

p XeSbh
i¼1

XeSrad
a¼1

XeSrad
b¼1

cn−iac
�
nibjϕaihϕbj; ð65Þ

b̃†γ ¼ eShþSbh
XeSh
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nγ þ 1

p XeSbh
i¼1

XeSrad
a¼1

XeSrad
b¼1

cnþiac
�
nibjϕaihϕbj:

ð66Þ

This leads to

⟪fκαgkb̃γkfλαg⟫ ¼
ffiffiffiffi
λγ

q
δfκαgfλα−δαγg; ð67Þ

⟪fκαgkb̃†γkfλαg⟫ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λγ þ 1

q
δfκαgfλαþδαγg; ð68Þ

and

⟪fκαgkb̃βb̃†γkfλαg⟫¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λβþδβγ

q ffiffiffiffiffiffiffiffiffiffiffiffi
λγþ1

q
δfκαgfλα−δαβþδαγg

×

�
1þO

�
eSbh

eSrad

�
δfκαgfλαg

�
; ð69Þ

⟪fκαgkb̃†βb̃γkfλαg⟫¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λβ−δβγ þ1

q ffiffiffiffi
λγ

q
δfκαgfλαþδαβ−δαγg

×

�
1þO

�
eSbh

eSrad

�
δfκαgfλαg

�
; ð70Þ

8The original version of this paper was submitted such that it
would appear in an earlier announcement (submitted on 26 Nov
2019 14∶02:29, EST). The appearance, however, was delayed due
to a moderation by arXiv administration, which resulted in a
larger arXiv number.

9For simplicity, here we have assumed that the energy gaps
between different jϕai’s are smaller than of OðTHÞ, the precision
with which the black hole mass is specified. To see the finiteness
of the temperature in the auxiliary system (Hawking radiation),
we need to include states of the auxiliary system with energy gaps
larger than TH.
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⟪fκαgkb̃βb̃γkfλαg⟫ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λβ − δβγ

q ffiffiffiffi
λγ

q
δfκαgfλα−δαβ−δαγg;

ð71Þ

⟪fκαgkb̃†βb̃†γkfλαg⟫ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λβ þ δβγ þ 1

q

×
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λγ þ 1

q
δfκαgfλαþδαβþδαγg; ð72Þ

where we have omitted contributions suppressed by 1=eSsys.
In order for the operators in Eqs. (65) and (66) to play the
role of the annihilation and creation operators, the second
terms in the square brackets in Eqs. (69) and (70) must be
negligible, which is the case if

eSbh ≪ eSrad ; ð73Þ

i.e., the black hole is old. With Eq. (73), the algebra of
annihilation and creation operators, Eqs. (34) and (35), is
indeed satisfied.
The operators for the harder modes constructed in this

way, however, are not relevant in erecting an effective
theory of the interior. This is because the majority of the
states obtained by “exciting” a given vacuum microstate by
these operators correspond simply to other vacuum micro-
states, i.e., states with different soft-mode configurations.
One might think that there are some rare “excitations”
generated by acting these operators on some microstate
which can meaningfully be considered as being thrown into
the black hole. Such excitations, however, are quickly
thermalized before hitting the stretched horizon. In fact,
they are nothing other than exponentially rare statistical
fluctuations of the thermal soft-mode gas, which do not
represent a semiclassical object falling into the black hole.
This picture is consistent with the analysis of Ref. [29] in
which it was shown that excitations having energy δE ≪ TH
do not significantly affect relevant correlation functions in
the bulk.
We therefore end up with the situation similar to the case

of a flat space black hole. A semiclassical object falling into
the black hole is described by hard modes, which have
frequencies ω and their gaps Δω larger than Δ determined
by the black hole temperature

Δ ≈O

�
rþ
l2

�
: ð74Þ

Assuming that the energy of the black hole system
(comprising the hard and soft modes) is specified with
maximal precision of order Δ, the state of the entire system
is given by Eq. (5), where jfnαgi and jψ ðnÞ

in
i represent the

states of the hard modes and the corresponding (both harder
and softer) soft modes, respectively. We note, however,
that the expression for the density of states now takes the

form appropriate for a large AdS black hole, SbhðMÞ ¼
πð2l2M=lPÞ2=3.
As in the flat space case, the mass and entropy of the

black hole can be viewed as being carried by the soft
modes. To see this, we note that the local temperature of
these modes in the bulk is given by

T locðrÞ ¼
THffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 −
r3þ
l2r

q ¼ 3rþ

4πl2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 −
r3þ
l2r

q ; ð75Þ

and the stretched horizon is located at r ¼ rs with

rs − rþ ∼
rþl2s
l2

: ð76Þ

Here, ls is the string length. By integrating their entropy
and energy densities, ∼NT locðrÞ3 and ∼NT locðrÞ4, from the
stretched horizon toward the exterior, we find

S ∼ N
Z

∞

rs

T locðrÞ3
r2drffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 −
r3þ
l2r

q ∼
r2þ
l2P

; ð77Þ

Eloc ∼ N
Z

∞

rs

T locðrÞ4
r2drffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2 −
r3þ
l2r

q ∼
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s
l2 −

r3þ
l2rs

q ; ð78Þ

where N is the number of low-energy species and we have
used the relation l2s=N ∼ l2P and

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþðrs − rþÞ

p ∼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2s
l2 −

r3þ
l2rs

q : ð79Þ

These indeed reproduce parametrically the entropy of the
black hole and the mass M measured at the stretched
horizon, Eloc, where most of the modes are located. The
internal dynamics of the soft modes near the stretched
horizon is expected to be nonlocal below the AdS length
scale l in the directions along the horizon.
The construction of operators of an effective theory of

the interior goes as in Sec. III. Suppose that the state of the
system with the black hole put in the semiclassical vacuum
is given by Eq. (5) at time t. The annihilation and creation
operators for the infalling modes, aξ and a

†
ξ in Eqs. (26) and

(27), can then be constructed by bγ and b
†
γ in Eqs. (18) and

(19) and b̃γ and b̃†γ in Eqs. (29) and (30). If the black hole
is young, i.e., if it is not maximally entangled with the rest
of the system, then the operators b̃γ and b̃†γ can be taken to
act only on the soft modes as in Eqs. (40) and (41) with
Eq. (48). This option, however, is not available if the
black hole is old. The erected effective theory describes
the physics in the causal domain of the equal-time hyper-
surface at t in the emergent effective two-sided black hole
geometry.
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Finally, we emphasize that the discussion at the end of
Sec. III leading to Eq. (55) carries over to the case of a large
AdS black hole. Specifically, the overlap sin θ between a
state in which hard modes are excited by b†γ ’s and a typical
state of the same energy (within uncertainty of order
TH ∼ rþ=l2) is given by

sin2θ ∼ e−ðδE=TH−ShardÞ; ð80Þ

where δE and Shard are the energy and coarse-grained
entropy of the hard-mode excitation, respectively.
Therefore, assuming that the hard-mode excitation is well
within the Bekenstein bound, we obtain

a few≲ Shard <
δE
TH

⇒ sin2θ ≪ 1: ð81Þ

Given that the infalling time evolution operator U ¼ e−iHτ

is approximately unitary over the relevant timescale, this
translates into the statement that the states which have
semiclassical objects falling inside the horizon occupy
only a negligible fraction of the microscopic Hilbert space.
As discussed in Sec. III, this allows us to treat the
microscopic Hilbert space as

H ≈Hexc ⊗ Hvac; ð82Þ

where Hexc and Hvac are the Hilbert space of the effective
semiclassical theory and that for the vacuum microstates,
respectively. In particular, physically relevant operators in
the semiclassical theory—bγ , b†γ , aξ, and a†ξ—can be
globally defined as linear operators at the microscopic
level, which obey the correct annihilation and creation
operator algebra in the space of the semiclassical states up
to corrections suppressed by e−δE=TH.

A. Relation to entanglement wedge
reconstruction and islands

Recently, there has been significant progress in under-
standing the interior of a black hole using holographic
entanglement wedge reconstruction [17–19]. According to
these analyses, operators acting on early radiation are
sufficient to reconstruct a portion of the black hole interior
after the Page time. On the other hand, we have seen that in
order to erect the effective theory of the interior at any given
time in a distant description, the interior operators must act
on the soft-mode degrees of freedom in addition to the early
radiation. How can these two statements be reconciled?
A key to understand this issue is time evolution. In

general, entanglement wedge reconstruction assumes that
we know the time evolution operator of the holographic
theory, i.e., that of a system comprising the boundary
theory and any auxiliary theory coupling to it. In addition,
the analyses referred to above assume that the information

leaked from the boundary theory—representing the bulk
with a black hole—to the auxiliary system—a system
storing Hawking radiation—is effectively irreversible.
These imply that given a state at some time t, we can
adopt the following strategy to reconstruct the interior.
Since a hard mode object that had fallen before some time
tw (< t), as well as the soft modes entangled with it, would
be fully mixed into the black hole, and their information is
emitted in radiation through time evolution, we can in
principle represent (a portion of) the interior spacetime
describing the fate of the object on radiation at time t. If we
have a complete knowledge about the radiation state at t,
then t − tw is of the order of the information retention time,
but if we lack a part of the knowledge, then t − tw is larger.
This explains why the interior portion of the entangle-

ment wedge of radiation in the work of Refs. [17–19]
emerges as an island: the region disconnected from that
supporting the radiation. We can indeed check the con-
sistency of this understanding at the level of precision
including the coefficients of terms enhanced by the
logarithm of the black hole mass or entropy.
For concreteness, let us consider a black hole in four-

dimensional asymptotically flat spacetime. Suppose that
the state is given at a boundary (≈ Schwarzschild) time t
after the Page time. The state of the radiation then
represents the r≳ rz portion of this equal-time hypersur-
face, where rz is the location of the edge of the zone, and
we denote the spacetime point ðt; rzÞ by A; see Fig. 1. Now,
given this radiation state at time t, we can determine the
state of hard mode excitations that had fallen into the
stretched horizon before tw if t − tw is of the order of the
scrambling time or larger [10,11]. (The required t − tw
becomes larger if the amount of information carried by the
excitations is large.) Since the black hole information is
contained in the soft modes, however, we expect that this
time, t − tw, is larger than the signal propagation time
between the r ¼ rs (point B in Fig. 1) and the edge of the
zone r ¼ rz (point A):

t − tw ≳ 4Ml2P lnðMlPÞ þOðMl2PÞ: ð83Þ

Note that the radiation state at t cannot determine a hard
mode excitation at time tw unless it is hitting the stretched
horizon, since the relevant hard modes will not be
scrambled by the time t. In other words, hard mode
operators away from the stretched horizon cannot be
represented on the radiation at time t.
The fact that hard modes falling before tw are fully

scrambled in the black hole allows us to avoid the energy
constraint of the form of Eq. (5) for these modes, as well as
the modes entangled with them, and hence to construct
corresponding operators of the effective theory at time tw
acting on the state of radiation at time t. These operators,
however, cannot describe the future of the zone at tw
because hard modes there are not scrambled. A similar
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construction also works for effective theories before tw.
This implies that if the scrambling time is as small as the
signal propagation time, then we can reconstruct bulk
operators in the region denoted by Erad in the figure. In
3+1 dimensions, this indeed reproduces the entanglement
wedge of the radiation system given in Ref. [17].10 In dþ 1
dimensions (d > 3), the scrambling and signal propagation
times are different, and t − tw must be taken as the
scrambling time. We can, however, still check that the
scrambling time obtained in Ref. [17] is indeed larger, by a
factor of ðd − 1Þ=2, than the corresponding signal propa-
gation time between the stretched horizon and the location
where Hawking radiation is extracted.
In our view, entanglement wedge reconstruction of the

interior using only radiation degrees of freedom describes a
collection of (a portion of) spacetime regions associated
with effective interior theories that could be erected in the
past, specifically at times earlier than the scrambling time
before t. This leads to some issues (though not necessarily

problems) from the viewpoint of actually constructing
operators describing the interior. First, since the
reconstruction involves time evolution backward in time,
the expressions for the bulk operators in terms of boundary
operators are highly complicated, and the reconstructed
operators are extremely fragile; i.e., a small deformation
of boundary operators destroys the success of the
reconstruction. More importantly, the reconstruction does
not provide operators in the interior region that are relevant
for describing the fate of an object that is located in the zone
region at the time when the state is given.
This can be seen in Fig. 1. In terms of the ingoing

Eddington-Finkelstein coordinate v ¼ tþ r�, where r� ¼
rþ 2Ml2P ln½ðr − 2Ml2PÞ=2Ml2P� is the tortoise coordinate,
point B is 8Ml2P lnðMlPÞ earlier than point A. Namely, the
entanglement wedge of the radiation (at time t) describes
only the

v < vB ¼ vA − 8Ml2P lnðMlPÞ þOðMl2PÞ ð84Þ

portion of the interior spacetime. On the other hand, to
describe the future of a falling object that is in the zone at
time t (segment CA in the figure), we need the portion

v > vC ¼ vA − 4Ml2P lnðMlPÞ þOðMl2PÞ; ð85Þ

and the two regions in Eqs. (84) and (85) do not overlap. In
order to erect an effective theory that is capable of
describing future evolution of such an object, we need
to use operators that act both on the soft modes and
radiation (or, equivalently, on radiation at a sufficiently later
time), as discussed in this paper.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have shown that operators describing
the experience of an observer falling into the horizon can be
constructed without contradicting the unitary evolution of
the black hole. The choice of these operators at the
microscopic level is not unique. In particular, for a young
black hole, we can choose them to act only on the degrees
of freedom that are directly associated with the black hole:
the hard and soft modes. On the other hand, for an old black
hole, the operators must also act on radiation emitted
earlier. The difference between the two cases comes from
the statistics associated with the coarse graining performed
to obtain the effective theory of the interior. We have also
discussed relation between the present construction and
entanglement wedge reconstruction of the interior described
in Refs. [17–19].
Before concluding, let us discuss the origin of the coarse

graining from a slightly different perspective. From general
considerations, we know that the dimension of the Hilbert
space describing semiclassical physics in the interior region,
eSint , is much smaller than the number of independent black
hole or radiation microstates: Sint ≪ Sbh ∼ Srad (except

FIG. 1. Radiation of a state given at time t can represent the
hard modes hitting the stretched horizon at or before tw (< t) and
the soft modes entangled with them, through time evolution. This
allows us to construct the effective interior theory erected at tw
whose operators act only on radiation at t; these operators,
however, cannot describe the future of the zone at tw, since the
radiation cannot represent hard modes there nor the soft modes
entangled with them. A similar construction works for effective
theories erected at times earlier than tw, implying that we can
reconstruct the spacetime region denoted by Erad, which repro-
duces the entanglement wedge of the radiation at time t. This
region, however, cannot describe the fate of a falling object
located in the zone at time t (segment CA), which occurs in the
future of C (shaded). To construct an effective theory describing
(a part of) this region building on the state at time t, we need
operators that act both on the soft modes and radiation (in
addition to those acting on the hard modes).

10For simplicity, here we have ignored the stretching inside the
horizon because it is not relevant for our discussion.
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possibly at the very beginning and end of the black hole
evolution). This implies that to erect an effective theory of the
interior, wemust find very special degrees of freedomwithin
those of the black hole and/or radiationwhich are relevant for
describing the semiclassical physics in the interior spacetime.
How can such degrees of freedom be selected?
One way to identify these degrees of freedom is to utilize

a subset of semiclassical modes in the exterior of the
horizon. The relevant degrees of freedom are then those
entangled with these exterior modes, as they allow us to
construct operators satisfying the correct annihilation and
creation operator algebra up to errors of order e−Ssys. This,
however, does not necessarily lead to the picture of semi-
classical interior spacetime. In particular, for a large AdS
black hole we can apply this procedure to exterior modes
whose wavelengths are smaller than the horizon size,
finding operators that satisfy the correct algebra for each
microstate. These operators, however, cannot be extended
to linear operators defined throughout the microstates if the
frequencies of the modes are smaller than the Hawking
temperature. In other words, the Fock spaces built by acting
these operators on each microstate significantly overlap
with each other.
At first sight, this seems to force us to embrace state

dependence of the interior operators in the sense of
Refs. [23–25], since it means that the same operator has
multiple interpretations. This is, however, not the case if we
adopt the view, as we did in this paper, that in a distant
description the black hole microstates are represented by
the configurations of the soft modes. In this case, exciting a
given vacuum microstate by these operators corresponds
simply to obtaining other vacuum microstates; a “creation
operator” viewed from one vacuum microstate can be
viewed as an “annihilation operator” (or a superposition
of annihilation and creation operators) from the viewpoint
of another vacuum microstate.
By definition, the physics at the semiclassical level

should not depend sensitively on the microstate of the
black hole or early radiation. This implies that the operators
discussed above are not relevant in constructing the theory
of the interior at the semiclassical level. The relevant

operators are those that act on the modes having frequ-
encies larger than the Hawking temperature—the hard
modes—and the degrees of freedom entangled with them.
We have shown that the Fock spaces built by these
operators on each of the orthogonal vacuum microstates
have overlaps exponentially suppressed in the ratio of the
energy of semiclassical excitation, Eexc, to the Hawking
temperature TH. We can therefore define these operators
consistently throughout the microstates up to corrections of
e−OðEexc=THÞ. These corrections should be viewed as an
intrinsic ambiguity of the semiclassical theory.
We conjecture that the emergence of semiclassical phys-

ics, in fact, requires the existence of operators that can be
applied globally on a set of microstates with (approximately)
invariant meaning, as we have found here. This allows us
to view the microscopic Hilbert space as a direct product of
the form Hexc ⊗ Hvac as far as these operators—or observ-
ables constructed out of these operators—are concerned.
Semiclassical theories are those describing the physics
associated with the Hexc factor, which is insensitive to the
microscopic physics occurring in the Hvac part.
We think this is one of the main lessons we have learned

from the paradoxes raised regarding the interior of an
evaporating black hole. It is our hope that the picture
presented in this paper sheds light on how quantum gravity
works at the most fundamental level.
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