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It is known that local, Lorentz invariant, unitary theories involving particles with spin 1 demand that the
matter sector they couple to are organized by internal physical symmetries and the associated charge
conservation, while spin 3=2 demands supersymmetry. However, the introduction of a spin 2 graviton does
not obviously demand new symmetries of the matter sector (although it does demand a universal coupling).
In this work we relax the assumption of Lorentz boost symmetry, while maintaining a basic notion of
locality that there is no instantaneous signaling at a distance. This extends and complements our
accompanying work in Part 1 on related issues for spin 1 particles in electromagnetism. In order to avoid
potential problems with longitudinal modes of the graviton, we choose to project them out, leaving only
two degrees of freedom. We study large classes of theories that a priori may violate Lorentz boost
invariance. By requiring the tree-level exchange action be local, we find that consistency demands that the
Lorentz boost symmetry must be satisfied by the graviton and the matter sector, and in turn we recover
general relativity at this order of analysis.
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I. INTRODUCTION

The form of the basic interactions of nature are well
known to be almost entirely dictated by the rules of
quantum mechanics and special relativity, where the latter
imposes (i) Lorentz symmetry and (ii) locality. In particu-
lar, there has been a large amount of work carried out over
several decades demonstrating from various points of view
the basic important conclusion: there is an essentially
unique theory of a single type of massless spin 2 particles
that is local, Lorentz invariant, and unitary with leading
order interactions at large distances: it is general relativity
(GR) [1,2] (while multiple massless spin 2 with subleading
interactions [3] can have problems with causality [4,5]).
Within the standard Lorentz invariant framework the only
way to “modify” gravity then is to introduce various types
of new fields, especially new light scalar fields. However,
the basic interactions of the graviton with itself and all other
matter species is specified uniquely in terms of a universal
coupling GN [6], plus possible higher dimension operators

that are unimportant at large distances (there can also be a
cosmological constant, but that is not our focus here).
While it is extremely powerful that Lorentz symmetry

demands that the graviton must couple universally, one
thing that we would like to note, however, is that at the
classical level this does not place any additional restrictions
on the matter sector. Let us elaborate on this as follows:
Recall that when one includes a massless spin 1 particle
into a theory and allows it to have leading order couplings
to matter, then it must couple to an exactly conserved
charge, associated with an internal [Uð1Þ] symmetry. We
emphasize that we are not referring to the (small) gauge
symmetry, which is only a redundancy to remove the
unphysical degrees in the field theory description of a
massless spin 1 particle, but we are referring to the global
subgroup of Uð1Þ. This, by the Noether theorem, is
associated with the conserved charge, and conversely,
generates a symmetry that acts nontrivially on states.
This actually imposes very significant constraints on the
matter sector. For example, it forbids the matter sector
coupled to it from being a single real scalar field; this
cannot couple to a photon with leading order interactions.
Similarly for multiple spin 1 we must impose some non-
Abelian symmetry on the matter sector and the spin 1
particles themselves. Again the consequences are signifi-
cant; for instance it implies that a red quark must have a
mass exactly equal to the mass of the blue quark; while this
requirement would not be necessary in the absence of
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gluons. Furthermore, when massless spin 3=2 particles are
introduced, they impose an even larger symmetry on the
entire theory, namely that of supersymmetry. A summary of
all this is provided in Table I.
On the other hand, if one considers some random matter

sector, and then couples it to the graviton, one finds that
(apart from possible gauge anomalies in chiral theories)
there are no additional constraints imposed on the matter
sector. For example, it can be trivially coupled to a real
scalar or red and blue quarks with different masses, etc. (It
does give rise to new BMS asymptotic symmetries [8,9],
but this again does not restrict the matter sector.) This may
point to a missed understanding of the underlying reason
for some symmetry in nature.
In this paper we would like to specify an underlying

physical (global) symmetry that is in fact demanded of the
graviton and matter sectors, which we usually just take for
granted; this will be the Lorentz boost symmetry itself.
This would be analogous to the following historical
development: early work on quarks culminated in noting
the need for the quarks to be organized by a global SUð3Þ
symmetry in order to be compatible with some observa-
tions. However, the underlying origin of the SUð3Þ sym-
metry remained obscure as it is easily deformable. Then
after QCD’s introduction of 8 massless interacting spin 1
particles, gluons, the color SUð3Þ symmetry became
demanded by consistency.
Similarly, in this work, we suggest that while the Lorentz

boost symmetry is easily deformable in the absence of the
spin 2 graviton, it is demanded when the graviton is

included. We emphasize that this is highly nontrivial and
is highly nonstandard. In contrast, it is sometimes said
that GR is simply the theory that arises from “gauging”
the Poincaré symmetry to general coordinate invariance.
But this is not meaningful, since general coordinate
invariance can always be implemented trivially through
the Stueckelberg trick. The key to gravitation is to actually
choose to introduce the spin 2 graviton and then search for
consistency with some overarching principles. To make
progress, we still need to invoke a very basic notion of
locality, namely that there is no instantaneous action at a
distance.
Wewill start with GR and then introduce deformations of

the Lorentz boost symmetry. We still maintain the idea of
translation and rotation invariance in a preferred frame. The
rotation invariance still allows us to organize particles by a
notion of spin, and so we can again build theories of spin 2.
This complements our accompanying work in Part 1
(Ref. [7]), in which we show how charge conservation is
demanded in electromagnetism, merely from locality,
although in that context Lorentz symmetry is easily
deformable [10–12]. This current work extends our earlier
work in Ref. [13], where we also built the tree-level
exchange action in a class of theories; but our present
work will begin with a more general starting point and
explore the possibilities more systematically. Other work
on violating Lorentz invariance in the context of gravitation
includes Refs. [14–24].
Our paper is organized as follows: In Sec. II, we recap

GR and then formulate its Lorentz deforming generaliza-
tions. In Secs. III, IV, V, and VI we systematically study
several classes of theories of spin 2 gravitons, and derive
the consequences of locality on each of them. In Sec. VII
we discuss and expand on our findings. Finally in the
appendix we present supplementary material.

II. GENERAL RELATIVITY AND ITS
GENERALIZATION

Let us first discuss locality in the context of general
relativity, before we discuss deformations of Lorentz boost
symmetry. Starting with the full Einstein-Hilbert action
(with vanishing cosmological constant), we can consider
fluctuations of the spin 2 gravitational field hμν around a
flat background (we use signature þ;−;−;− here) as
follows

gμν ¼ ημν þ κhμν: ð1Þ

Then we obtain the quadratic Lagrangian density

LGR ¼ Lkin þ Lint ð2Þ

where the graviton kinetic term is

TABLE I. Assuming Lorentz boosts: Different types of particles
and the known corresponding physical symmetries that are
needed in order for the matter sector to maintain Lorentz
symmetry, locality, and unitarity. To be clear, we are referring
to the physical global symmetries, which may be viewed as a
special subgroup of the gauge group. We are not referring to the
(small) gauge symmetries, which are just redundancies. In the last
line, it is indicated that the spin 2 graviton is usually not known to
enforce a new physical symmetry on the matter sector (it is
sometimes said that it enforces general coordinate invariance, but
this is another mere redundancy, and can be included simply by
means of the Stueckelberg trick). Without assuming Lorentz
boosts: Our accompanying work in Part 1 (Ref. [7]) showed that
for a single spin 1 with 2 d.o.f.we still need charge conservation
[and hence the associated Uð1Þ] in order to maintain locality. The
primary goal of this work is to study the spin 2 case with
2 d.o.f.and identify the required physical (global) symmetry from
its consistency, which we explain are the Lorentz boosts
themselves.

Particle Symmetry demanded

Spin 1 Abelian (Uð1Þ)
Multiple Spin 1 Non-Abelian (SUðNÞ etc)
Spin 3=2 Supersymmetry
Spin 2 ? (This work: Lorentz boosts)
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Lkin ¼
1

2
ðηαβ∂αhμν∂βhμν − ημν∂μhð4Þ∂νhð4ÞÞ

þ ∂μhμν∂νhð4Þ − ∂μhμα∂νhνα ð3Þ

Here hð4Þ is the 4-dimensional trace hð4Þ ¼ ημνhμν. The
leading order interaction is Lint ¼ − 1

2
κhμνTμν, where Tμν is

the energy-momentum tensor and the coupling κ is related
to Newton’s gravitational constant κ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32πGN
p

.
Ignoring the backreaction, Tμν obeys the familiar equation

of local energy and momentum conservation ∂μTμν ¼ 0.
When broken up into components, this is

0 ¼ ∂iT0i þ _T00 ð4Þ

0 ¼ ∂jTij þ _T0i ð5Þ

As is well known, general relativity avoids instantaneous
action at a distance (as long as the source obeys the null
energy condition Tμνnμnν ≥ 0). This can be seen clearly by
operating in harmonic gauge ∂μh

μ
ν ¼ 1

2
∂νhð4Þ. Then the

equations of motion simplify to

□hμν ¼ −
κ

2

�
Tμν −

1

2
Tð4Þημν

�
ð6Þ

(with □ ¼ ∂2
t −∇2). As a basic test of locality we can

compute the tree-level exchange action from picking up the
particular solution hμν¼− κ

2□
ðTμν− 1

2
Tð4ÞημνÞ, which means

we ignore external gravitons. The corresponding tree-level
exchange action is half the interaction term − 1

4
κhμνTμν,

giving the result

8Lex

κ2
¼ Tμν

Tμν

□
−
Tð4Þ

2

Tð4Þ

□
ð7Þ

¼ Tij
Tij

□
−
T
2

T
□

þ T00

2

T00

□
− 2T0i

T0i

□
þ T00

T
□

ð8Þ

where in the second line we have broken up Tμν into
components (with T ≡ δijTij). This result is clearly local,
as it is given in terms of the inverse wave operator □, the
d’Alembertian, which has a retarded Green’s function. In
contrast, if we were to encounter inverse Laplacians, as we
shall see later in the paper, this would imply instantaneous
long ranged forces. This is a straightforward way to see that
the most leading order processes in GR are local. When
studying more general theories, examining the interaction
Lagrangian this way provides a field theoretic procedure
for diagnosing nonlocality.

A. Generalization

Our interest here is to not a priori assume boost
invariance. However, we will still assume rotation invari-
ance in a preferred frame. So it will be useful to decompose

the field hμν into components that transform as a scalar, a
vector, and a tensor under rotations, as follows

h00 ≡ ϕ; h0i ¼ hi0 ≡ ψ i; hij ð9Þ

where hij is associated with the polarizations of some spin
2 particle (graviton), and ϕ and ψ i are nondynamical fields
that will be useful tools to maintain locality (note that this ϕ
is related to the Newtonian potential ϕN by ϕ ¼ 2ϕN=κ).
We will use notation that the 3-trace is h≡ δijhij.
Now eq. (3) is comprised of dimension four terms in ϕ,

ψ i, and hij, quadratic in fields and derivatives, with
coefficients chosen to ensure Lorentz symmetry and
propagate only 2 physical degrees of freedom. We will
generalize the theory by inserting constant coefficients in
front of every term that we denote A;B;…; L, as
follows

L ¼ −2A _ψ i∂jhij þ 2B _h∂iψ i − C∂iϕ∂ihþD∂iϕ∂jhij

− E∂ih∂jhij − Fð∂iψ iÞ2 þ G∂jhij∂khik þH∂jψ i∂jψ i

−
I
2
_h2 þ J

2
∂ih∂ihþ K

2
_hij _hij −

L
2
∂khij∂khij þ Lint:

ð10Þ

Note that the GR limit can be written, without loss of
generality, as A ¼ B ¼ … ¼ L ¼ 1. There is one final
quadratic spatial derivative term allowed by rotation invari-
ance that could be included ∼ð∂iϕÞ2 (without making ϕ or
ψ i dynamical); this term is not part of GR and will not be
the focus of most of the paper; however we will return to
discuss it in Sec. VI. Also, a mixed temporal-spatial
derivative term ∼ _ϕ∂iψ i could be added, but can be readily
shown to lead to non-locality, and so it will be ignored
here. While quadratic temporal derivative terms
∼ð _ϕÞ2; _ϕ _h; ð _ψ iÞ2 lead to additional degrees of freedom
(which is not our focus; see next subsection) and so will be
set to zero.
One could also include Lorentz violating mass terms into

this action (see [25]), although current data suggests the
graviton is massless [26]. Furthermore, as we will mention
in the next subsection, by cutting down to 2 degrees of
freedom, mass terms generally lead to nonlocality. In the
first upcoming theory in Sec. III, we will go through the
details of mass terms in a subsection to in fact show that this
is the case. However, for simplicity, we will not go through
the full details in later sections. Finally, single derivative
terms can be eliminated by using the mass terms and field
re-definitions, generating dimension 5 operators that we
ignore.
In this more general case we write the interaction using

the notation
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Lint ¼ −
1

2
κhμνT μν ð11Þ

where T μν does not a priori have anything to do with the
conserved energy-momentum tensor Tμν. We can decom-
pose it into its scalar, vector, and tensor pieces, which we
denote as

T 00 ≡ ρ; T 0i ¼ T i0 ≡ pi; T ij ≡ τij ð12Þ

and we emphasize that a priori they need not be related
to energy density, momentum density, pressure or stress
(however, those connections will emerge later in the paper).
Note that more coefficients inserted in the interaction terms
could simply be absorbed into the sources by a redefinition
without loss of generality. In terms of parameters, we have
included a total of 12 new parameters (A;B;…; L), in
addition to the coupling strength of gravity κ. However, we
have yet to canonically normalize our fields. We have the
freedom to rescale our fields ϕ, ψ i and hij, to eliminate 3
parameters, as well as to re-scale our units to set the
graviton speed L to unity. So in fact we have at most 12 −
4 ¼ 8 physical parameters that characterize non-Lorentz
invariant deformations of general relativity.
There is one further consideration: in this framework the

trace of τij is another scalar, which exhibits some partial
degeneracy with the scalar source ρ. For the gravitational
field, there is a similar degeneracy in the meaning of the
scalars ϕ and the trace of hij, i.e., h. We can use this to
eliminate one more parameter in the action (10). In
particular, consider the following pair of transformations
of the sources and fields

τij → τij þ
�

E − J
2C −D

�
δijρ ð13Þ

ϕ → ϕ −
�

E − J
2C −D

�
h: ð14Þ

This leaves hμνT μν unchanged. Furthermore, the structural
form of the starting action eq. (10) is unchanged, except,
one has now mapped the coefficients of the ∂ih∂jhij term
(E → Ē) and the coefficient of the ∂ih∂ih term (J → J̄) to
be equal to one another Ē ¼ J̄ ¼ ð2CE −DJÞ=ð2C −DÞ,
which removes another parameter. This, along with the
ability to rescale the 3 kinds of fields and to set units for
length vs time, means the remaining number of parameters
is 12 − 4 − 1 ¼ 7.
Varying the Lagrangian in Eq. (10) gives the equations of

motion

κ̃ρ ¼ −C∇2hþD∂i∂jhij ð15Þ

κ̃pi ¼ B∂i
_hþH∇2ψ i − F∂i∂jψ j − A∂j

_hij ð16Þ

κ̃τij ¼ 2Bδij∂k _ψk − Iδijḧþ Kḧij − A∂ði _ψ jÞ
þD∂i∂jϕ − E∂i∂jh − Eδij∂k∂lhkl − Cδij∇2ϕ

þ G∂k∂ðihjÞk þ Jδij∇2h − L∇2hij: ð17Þ

where κ̃ ≡ −κ=2.
In general we do not need to necessarily have con-

servation of T μν in this framework, as we do in GR, given
in Eqs. (4), (5). We parametrize the breakdown of local
source conservation by functions σ and wi as follows

σ ≡ ∂ipi þ _ρr ð18Þ

wi ≡ ∂jτij þ _pr;i ð19Þ

where ρr ≡ ðA=DÞρ and pr;i ≡ ðA=HÞpi are conveniently
rescaled densities. When assuming Lorentz symmetry, as
is the underlying symmetry of general relativity, we
know T μν → Tμν, whose conservation ∂μTμν ¼ 0 implies
σ ¼ wi ¼ 0. But in general these may be nonzero in our
much larger class of theories that arise from not assuming
Lorentz boost symmetry. We can now use the equations of
motion to determine these possible violations of source
conservation as follows

κ̃σ ¼
�
B −

AC
D

�
∇2 _hþ ðH − FÞ∇2∂iψ i ð20Þ

κ̃wi ¼
�
2B−A−

AF
H

�
∂i∂j _ψ j þ

�
AB
H

− I

�
∂iḧ

þ ðJ −EÞ∂i∇2hþ ðG−LÞ∇2∂jhij þ ðD−CÞ∂i∇2ϕ

þ
�
K −

A2

H

�
∂jḧij þ ðG−EÞ∂i∂j∂khjk: ð21Þ

Note that in the GR limit all parameters can be set to A ¼
B ¼ … ¼ L ¼ 1 and so every term on the right hand side
of this pair of equations vanishes, ensuring conservation of
sources.

B. Degrees of freedom

The Lagrangian density in eq. (3) describes a graviton
with two degrees of freedom (helicities), which is ensured
by the presence of the familiar gauge redundancy: hμν →
hμν þ ∂ðμανÞ and the presence of constraints. This is
ordinarily understood as needed to describe the massless
spin 2 representation of the Lorentz group. In this work we
will deform away from Lorentz symmetry and then the
number of degrees of freedom is less clear. However, we
take the following guide: In the Lorentz invariant case, the
only way to have more than 2 degrees of freedom is to make
the graviton massive, which then introduces a total of five
degrees of freedom. However, the most longitudinal modes
appear to exhibit strong coupling problems at short
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distances. In the ghost free versions of massive gravity [27],
this occurs at the rather low scale ofΛ ∼ ðm2MPlÞ1=3, where
m is the graviton mass and MPl ¼ 1=

ffiffiffiffiffiffiffi
GN

p
is the Planck

mass [28]. For example, if the graviton mass m ∼H0,
where H0 ∼ 10−33 eV is today’s Hubble parameter, then
this strong coupling scale is the rather low Λ ∼ 10−13 eV. It
is generally believed that this requires a UV completion at
this rather low scale in terms of the massless theory
anyhow, returning then to just 2 fundamental degrees of
freedom in the graviton sector. Also, it has been argued by
some these longitudinal modes cause serious problems for
the consistency of even the low energy effective theory; that
there are potential problems from acausality [29–31],
although this is an ongoing discussion (for a review,
see Ref. [32]).
In our case of interest, we are deforming away from the

Lorentz symmetry. In this case it is less clear that the above
problems of strong coupling and/or acausality of the
longitudinal modes persist. However, we can focus our
attention in this work on small deformations of the Lorentz
symmetry, as we did in our accompanying work [7]. In this
case the potential problems with more degrees of freedom
are still a concern, so the most direct approach to avoid such
problems is to project out those additional degrees of
freedom, and still only build theories of the 2 helicities of
the graviton. Once this projection is made, it is relatively
straightforward to show that action at a distance would
occur if the graviton’s mass were nonzero, as we will
show in a subsection of Sec. III (similar to what we showed
explicitly in Ref. [7] in the analogous electromagnetic
case). So for the most part in this work, we shall set the
mass to zero. We note that recent measurements of gra-
vitational waves by LIGO [33] are consistent with zero
mass for the graviton as well as just 2 propagating modes.
While this is not a proof that such additional modes do not
exist, it does provide further motivation for our setup.
The generalized Lagrangian Eq. (10) breaks Lorentz

boost invariance, and now appears to contain 12 new free
parameters (though some could be eliminated by rescaling
the fields), and without imposing the gauge redundancy of
GR, carries additional degrees of freedom. Since we wish to
study theories with only two degrees of freedom, we must
put some constraints on the fields or parameters to cut down
to the desired two propagating modes. There appear to be
few ways to accomplish this: (A) Set ∂iψ i ¼ 0 ¼ ∂jhij, for
which the equations of motion imply the sources are con-
served (or at least a shifted version is); (B) Fix parameters
such that ∂iψ i and ∂jhij are directly determined by the
equations of motion; (C) Set ∂iψ i ¼ F 0, ∂jhij ¼ F i,
where F μ ¼ F μ½Ψm� are some nondynamical functions
of the matter fields Ψm and constructed to be consistent
with the equations of motion; (D) include an additional
term ∼ð∂iϕÞ2 in the action and demand the field is
transverse-traceless ∂ihij ¼ h ¼ 0. In each case, we shall
build the most general theory compatible with these starting

points and then demand the tree-level exchange action
be local.
Since we are not presupposing Lorentz symmetry, we do

not need to invoke gauge redundancy of GR in order to
describe physics in a manifestly local way. So any
restriction on the fields is not simply a “gauge choice,”
but a choice of theory; choices (A), (B), (C), and (D) are
different theories of spin 2 with two degrees of freedom
(although (A), (B), (C) will be connected to each other once
we restrict their parameters). We neither assume anything
about what physical quantities T μν represents, only than it
should be a nontrivial source and not overly constrained—it
is simply the symmetric source which couples to hμν. Only
a posteriori will we be able to identify the form that T μν

must take.

III. THEORY A: TRANSVERSE CONSTRAINT

We wish to apply essentially the same procedure as we
did with spin 1 [7]. We want to require the theory of
Eq. (10) be local and see whether we recover an interaction
like Eq. (8). In this section, we do this by cutting down to
two degrees of freedom by requiring the divergences of the
fields vanish.
In this section we directly remove any longitudinal

components of the gravitational fields. It is the analogue
of the Coulomb constraint in electromagnetism (∂iAi ¼ 0)

∂iψ i ¼ 0; ∂jhij ¼ 0 ð22Þ
Since we are not working in GR, we do not need to carry
around any gauge redundancy to make our assumed space-
time symmetries manifest (as we only wish to make
rotation invariance manifest, while gauge redundancy is
useful to make Lorentz symmetry manifest). So this
constitutes a choice of theory. In fact it may be imple-
mented by using a pair of Lagrange multipliers in the
action. In this theory, the equations of motion become

κ̃ρ ¼ −C∇2h ð23Þ

κ̃pi ¼ B∂i
_hþH∇2ψ i ð24Þ

κ̃τij ¼ −Iδijḧþ Kḧij − A∂ði _ψ jÞ − Cδij∇2ϕ

þD∂i∂jϕ − E∂i∂jhþ Jδij∇2h − L∇2hij ð25Þ

Note the parameters F and G no longer appear; the choice
Eq. (22) removes these terms from the (classical) theory.
Hence we are now down to 12 − 4 − 1 − 2 ¼ 5 physical
parameters relevant to our analysis.
The usual statement of conservation of sources is

∂μTμν ¼ 0. Using the above equations of motion in this
theory, we can write the zeroth component as

∂ipi þ _ρa ¼ 0 ð26Þ
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which is of the usual form (ρa ≡ ðB=CÞρ is a simple
rescaling of ρ, which is just a matter of convention).
Checking the other three components, these do not
immediately form a canonical conservation equation like
Eq. (26):

∂jτij þ _pr;i ¼
�
I −

AB
H

� ∂iρ̈

D∇2
þ E − J

D
∂iρ

þD − C
κ̃

∂i∇2ϕ: ð27Þ

A. Enforcing locality

From the previous equation it should be clear that we
must require AB ¼ IH in order for the sources themselves
to be local. It turns out we also need to enforce D ¼ C to
remove the Newtonian term from this otherwise modified
conservation law. The reason for this can be seen ahead in
Eq. (34); the Newton potential ϕ has a term in it ∝ ρ̈=∇4

(which is present even in the GR limit I ¼ K), and would
imply a nonlocal contribution to Eq. (27), unless we set
D ¼ C. Then the modified conservation equation becomes

∂jτij þ _pr;i ¼
E − J
D

∂iρ: ð28Þ

This appears to still violate source conservation. However,
as mentioned earlier, in this framework the trace of our
source τij is another scalar under rotations and is not
completely distinguishable from ρ. Without loss of general-
ity, we can write

τij ¼ τ̃ij þ
E − J
D

δijρ ð29Þ

Note that this is a special case of Eq. (13) with C ¼ D
and evidently maintains linear coupling to the graviton
hμνT μν ¼ h̃μνT̃

μν with ϕ̃ ¼ ϕþ hðE − JÞ=D. We then
insert this into the above equation to obtain

∂jτ̃ij þ _pr;i ¼ 0 ð30Þ

Hence for all intents and purposes, the sources are con-
served, though it is not apparent when written in terms of
the original variable τij. Alternatively we can simply make
the canonical definition that occurs in GR, namely E ¼ J
[which in fact can be done without loss of generality, as
discussed below Eqs. (13), (14)], however, for complete-
ness we do not impose this condition here. Having made
these choices

AB ¼ IH; C ¼ D ð31Þ

we can find the inhomogeneous solutions (ignoring
external gravitons) of the equations of motion (23)–(25)
with the conditions (31) to obtain

h
κ̃
¼ −ρ

D∇2
ð32Þ

ψ i

κ̃
¼ pi

H∇2
þ B
DH

∂i _ρ

∇4
ð33Þ

ϕ

κ̃
¼ −τ

2D∇2
þ 3I − K

2D2

ρ̈

∇4
þ Eþ L − 3J

2D2

ρ

∇2
ð34Þ

hij
κ̃

¼ τij
□

þ ð∂i∂j − δij∇2Þτ
2□∇2

þ B
I

∂ði _pjÞ
□∇2

þ δij
2D

½ðEþ L − JÞ∇2 þ ðI − KÞ∂2
t �ρ

□∇2

þ ½ðK þ IÞ∂2
t þ ð3J − 3E − LÞ∇2�∂i∂jρ

2D□∇4
ð35Þ

where

□≡ K∂2
t − L∇2: ð36Þ

We then use these solutions to eliminate the fields from
the interaction Lagrangian and integrate by parts in the
action to replace all divergences using the conservation
equations (26) and (28). The tree-level exchange action
− 1

4
κhμνT μν then becomes

8Lex

κ2
¼ τij

τij
□

−
τ

2

τ

□
þ ρ

2
½2a5∇2∂2

t þ a6∇4 þ a7∂4
t �

ρ

□∇4

− 2pi

�
a3∇2 þ a4∂2

t

□∇2

�
pi þ ρ

�
a1∇2 þ a2∂2

t

□∇2

�
τ ð37Þ

where a1 ¼ ðE − J þ LÞ=D, a2 ¼ ðI − KÞ=D, a3 ¼ L=H,
a4 ¼ ð−K þHI2=B2Þ=H, a5 ¼ð2JKþEð3I−KÞ−3IJ þ
Lð2I−K−2B2=HÞÞ=D2, a6 ¼ ð2ð2J −EÞL− 3ðE− JÞ2 −
L2Þ=D2, and a7 ¼ ðI2 þ 4IK − K2 − 4B2K=HÞ=D2. The
first two terms are clearly local, but the other terms contain
nonlocal pieces which we wish to eliminate. These terms
cannot be combined further to cancel the nonlocalities,
without placing unphysical restrictions on the sources. So
the coefficients must be constrained to make interactions
local. In each nonlocal term, this can be accomplished by
requiring the coefficient of the ∂2

t pieces vanish, so that the
Laplacians cancel, leaving only an inverse box operator.
In particular, the ρτ term requires I ¼ K, then the pipi

term requires B2 ¼ HK (which implies A ¼ B), and the ρρ
term requires E ¼ ðJ þ LÞ=2. Enforcing these three new
conditions

I ¼ K; B2 ¼ HK; E ¼ ðJ þ LÞ=2 ð38Þ
on the coefficients gives

8Lint

κ2
¼ τij

τij
□

−
τ

2

τ

□
þ a1ρ

τ

□
− 2a3pi

pi

□
þ a6

ρ

2

ρ

□
ð39Þ

where a1 ¼ ð3L− JÞ=ð2DÞ, a3 ¼ L=H, and a6 ¼ ð−3J2 þ
18JL − 11L2Þ=ð4D2ÞÞ. This is now completely local and
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has a similar form to the GR action Eq. (8). We are left with
five unspecified coefficients, D, H, J, K, and L.
This is almost of the form of (8), except for 3 differing

prefactors: a1, a3, a6. It can almost be put into identical
form by a rescaling of sources ρ and pi. However that
would leave 1 residual parameter left over (we do not
rescale τij here because the τijτij and ττ terms are already
canonical). Moreover, we said that our sources are not quite
conserved. This can all be fixed by expressing the exchange
action in terms of the conserved source τ̃ij [from Eqs. (29),
(30)], giving

8Lint

κ2
¼ τ̃ij

τ̃ij
□

−
τ̃

2

τ̃

□
þ L
D
ρ
τ̃

□
−
2L
H

pi
pi

□
þ L2

D2

ρ

2

ρ

□
ð40Þ

(or, equivalently, setting E ¼ J). We can then re-scale ρ →
ρðD=LÞ and pi → pi

ffiffiffiffiffiffiffiffiffiffi
H=L

p
, and identifying that ρ; pi; τ̃ij

obey the same conservation laws as T00; T0i; Tij, respec-
tively, we obtain the GR action in its exact form.
Furthermore, when using τ̃ij (or equivalently, setting
E ¼ J), we have ∂μT μν ¼ 0. We therefore recover GR
exactly to this order of analysis.

B. Including mass terms

So far we have not included mass terms in our starting
action Eq. (10). However, rotation invariance allows one to
include 5 different types of mass terms

Lm ¼ −
1

2
m2

1ϕ
2 −m2

2ϕh−
1

2
m2

3h
2 −

1

2
m2

4ψ iψ i −
1

2
m2

5hijhij:

ð41Þ

Since we are projecting down to 2 degrees of freedom and
not assuming Lorentz invariance, then a priori, all 5 are in
fact allowed. The analogous terms were included in our
Part 1 paper (Ref. [7]) on electromagnetism, although in
that case only 2 terms are allowed.
However, just like in the electromagnetic case, they all

lead to nonlocality. One can see this as follows: We are
interested in deforming away from GR in which all the
masses are zero So lets consider the situation in which the
masses are small. We can then begin by operating in a
regime of length scales L ≪ 1=m, so that we can be sure
the corrections from masses are irrelevant and the above
constraints from locality still apply. This leads to the usual
conservation laws, as we showed above (with the linear
shift on τij if E ≠ J). By then including finite corrections
from the masses, the conservation laws now become

∂ipi þ _ρr ¼ ðm2
1
_ϕþm2

2
_hÞðA=DÞ ð42Þ

∂jτ̃ij þ _pr;i ¼ m2
2∂iϕþm2

3∂ihþm2
4 _ψ iðA=HÞ: ð43Þ

At leading order in the masses, we know that ϕ;ψ i; h are all
nonlocal (even in the GR limit); see Eqs. (32)–(34). This

means that if we insert this into the above pair of continuity
equations, the right hand sides will be nonlocal if any of the
m1;…; m4 are nonzero. This means the sources are non-
local and hence the theory is nonlocal, unless

m1 ¼ m2 ¼ m3 ¼ m4 ¼ 0: ð44Þ

Our only remaining consideration then is Lm ¼
− 1

2
m2

5hijhij. To understand its consequences, we can just
note that it has a similar structure to the already present
term in the action ΔL ¼ − 1

2
L∂khij∂khij ¼ 1

2
hijðL∇2Þhij

(plus boundary term). Hence the consequences of this mass
term are equivalent to the replacement:

L → L −
m2

5

∇2
ð45Þ

in the existing results. By making this replacement in
Eq. (40) we are immediately led to nonlocal terms due to
the inverse Laplacian. Hence we also need

m5 ¼ 0 ð46Þ

along with all the other masses vanishing too, as described
above. A similar analysis applies to mass terms in the other
upcoming theories too, but we suppress the details for
simplicity and will ignore the masses for the remainder of
the paper.

IV. THEORY B: CONSTRAINT FROM
EQUATIONS OF MOTION

We now wish to explicitly allow nonconservation of
T μν. We do this by using the full equations of motion
(15)–(17) before gauge-fixing to again write conservation
equations of the form of Eqs. (26) and (28) which we
explicitly allow be nonzero functions, σ and wi. In this
theory ∂iψ i and ∂jhij will be fixed in terms of σ and wi.
We can then solve the equations of motion in this theory to
write the interaction Lagrangian just in terms of sources,
and find for general σ and wi the only way this theory can
be local is if σ and wi vanish, recovering conservation of
T μν. In that case we again uniquely recover GR by
enforcing locality. However, if we allow σ and wi
themselves to be derivatives of some local functions,
we find locality requires the theory reduce to GR with
some additional terms.
Returning to the theory with all 12 unknown coefficients,

we use the general equation for the nonconserved scalar
source Eq. (20) and impose BD ¼ AC in order to be able to
use this to fix ∂iψ i to

∂iψ i ¼
κ̃σ

ðH − FÞ∇2
: ð47Þ
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In the next section, we will generalize this condition [see
ahead to Eq. (67)], but for the sake of clarity, we will make
this simplification here as it will not affect our qualitative
results. Similarly, we use the general equation for the
nonconserved vector source Eq. (21) and impose C ¼ D
and I ¼ K ¼ A2=H in order to fix ∂jhij to

∂jhij ¼
κ̃

ðG − LÞ∇2

�
2E − J −G

2Gþ J − 2E − L
∂iq
∇2

−
A
H
∂i _σ

∇2

þ J − E
D

∂iρþ wi

�
ð48Þ

where for convenience we have defined

q≡ ∂jwj −
A
H

_σ þ J − E
D

∇2ρ: ð49Þ

By requiring that the equations of motion fix ∂iψ i and
∂jhij, and hence cut down to 2 degrees of freedom, the
number of unknown coefficients has been reduced by
enforcing

A ¼ B; C ¼ D; I ¼ K ¼ A2=H: ð50Þ

This means the number of parameters is down to 12 − 4 −
1 − 4 ¼ 3 in the (classical) theory. On the other hand, the
sources are described by 2 arbitrary functions σ and wi; so
there is considerable freedom in the theory.

A. Enforcing locality

Similar to the previous section, we solve the equations of
motion to obtain the inhomogeneous solutions for ϕ, ψ i and
hij. These results are somewhat complicated and are
reported in Appendix A. We then use these to write the
exchange action only in terms of the sources, integrating by
parts to replace divergences using the definitions of q, σ,
and wi. Doing this, the tree-level exchange action may be
written in terms of the sources T μν (built out of ρ; pi; τij)
and the nonconservation parameters σ and wi. We find it
has the form

8Lex

κ2
¼ τij

τij
□

−
τ

2

τ

□
þ L
D
ρ
τ

□
−
2L
H

pi
pi

□
þ4A

H
pi

_wi

□∇2

þρ

2

�
b1∇2þb2∂2

t

□∇2

�
ρþ 2wi

G−L

�
G∇2−K∂2

t

□∇4

�
wi

þσ

�
b3∇4þb4∇2∂2

t þb5∂4
t

□∇6

�
σþρ

�
b6∇2þb7∂2

t

□∇4

�
_σ

þ∂iwi

�
b8∇2þb9∂2

t

□∇6

�
∂jwjþρ

�
b10∇2þb11∂2

t

□∇4

�
∂iwi

−
A
H
τ

_σ

□∇2
þ τ

∂iwi

□∇2
þ _σ

�
b12∇2þb13∂2

t

□∇6

�
∂iwi

ð51Þ

where the coefficients b1; b2;…b13 are given in
Appendix A. The first 4 terms have the same form as
Eq. (8) and are clearly local.
The wiwi and σσ terms involve inverse Laplacians. If the

functions σ and wi are general functions, then the theory is
immediately nonlocal. The most direct way to avoid this
problem is to impose that they vanish, i.e., σ ¼ wi ¼ 0.
This means the theory readily reduces to GR as it now
becomes similar in structure to the previous Theory (A). It
only requires one additional constraint on parameters to
remove the nonlocal part of the ρρ term.
However, if we suppose that σ and wi are not general

functions, but are instead given in terms of spatial deriv-
atives of other local functions, then there is a possibility to
cancel the inverse Laplacians and maintain locality. We find
that the necessary condition to obtain a local action is that σ
and wi can be expressed in terms of local functions f and gi
as follows

σ ¼ ðF −HÞ∇2f ð52Þ

wi ¼ðG − LÞð∇2gi þ ∂i∂jgjÞ þ
A
H
ðF −HÞ∂i

_f ð53Þ

where the prefactors, (F −H) and (G − L) are for conven-
ience (as expanded on later), but could be reabsorbed into f
and gi if desired. By inserting this into the exchange action
(51), we find that the action becomes local with just one
more condition required to eliminate the nonlocal ρρ term,
namely b2 ¼ 0. We choose E ¼ J for simplicity of pre-
sentation, though it is not required, and then the action
simplifies into the following form

8Lint

κ2
¼ τ̃ij

τ̃ij
□

−
τ̃

2

τ̃

□
þ L
D
ρ̃
τ̃

□
−
2L
H

p̃i
p̃i

□
þ L2

D2

ρ̃

2

ρ̃

□

þ 2ðF −HÞf2 − 2ðG − LÞgigi ð54Þ

where the sources with the tilde overbar indicate that they
are conserved in the usual sense, i.e., if we form T̃ μν out of
them, then we have ∂μT̃

μν ¼ 0. They are related to our
original sources by

τij ¼ τ̃ij þ ðG − LÞ∂ðigjÞ ð55Þ

pi ¼ p̃i þ ðF −HÞ∂if ð56Þ

ρ ¼ ρ̃: ð57Þ

We note that if we set f ¼ gi ¼ 0, this recovers exactly
the result of the previous section in Eq. (40), which we
already remarked is equivalent to GR under a rescaling of
sources.
On the other hand, for nonzero f and/or gi our result for

the exchange action in Eq. (54) clearly differs from the
result in GR due to the presence of these new ultra-local
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terms on the 2nd line, which have no GR analogue. We
shall return to discuss these terms in Sec. VII, where we
will explain how these are in fact consequences of purely
decoupled sectors, and do not actually represent a mean-
ingful modification of GR.

V. THEORY C: GENERALIZED CONSTRAINT

There exists a third distinct option to cut down to
2 degrees of freedom by combining the approaches
of the previous two sections. In Sec. III we set
∂iψ i ¼ ∂jhij ¼ 0. One might wonder whether there is a
way to similarly “gauge-fix” the fields without forcing the
divergences to vanish. However, if we arbitrarily declare
∂iψ i ¼ F 0 and ∂jhij ¼ F i whereF μ are some functions of
the matter fields Ψm, this will not in general be consistent
with the equations of motion which give something of the
form of Eqs. (47) and (48) (or more general if fewer
constraints on the coefficients A;…; L). In this section we
find a general form of F μ ¼ F μ½Ψm� consistent with the
equations of motion and use this to cut down to 2 degrees of
freedom of the graviton.
Returning to the full equations of motion (17), without

any conditions on the coefficients we can write

∂iψ i ¼
κ̃σ

ðH − FÞ∇2
þ ðBD − ACÞ
DðH − FÞ∇2

�
κ̃ _ρ

C
− ∂i∂j

_hij

�
ð58Þ

which immediately fixes ∂iψ i in terms of the sources and
∂jhij. So it only remains to fix ∂jhij. Similarly to the
previous sections we can obtain a general expression for wi
that parametrizes vector source violation. As before, we
must set D ¼ C to eliminate the Newtonian term. We can
then solve for ∂jhij as

∂jhij ¼ Mij

�
−ϵ

∂j _σ

∇2
− α

∂jρ̈

∇2
− λ

∂jρ

D
þ wj

�
ð59Þ

where the matrix valued differential operator Mij is

Mij ≡ 1

□1

�
δij −

□2

□1 þ□2

∂i∂j

∇2

�
ð60Þ

with a pair of wavelike operators, defined as

□1 ≡ γ∂2
t þ δ∇2; □2 ≡ α∂2

t þ β∇2: ð61Þ
In the above set of equations we have defined some
convenient collections of the coefficients A;…; L

α≡ 2ðA − BÞ2
F −H

þ A2

H
− I; δ≡G − L; γ ≡ K −

A2

H
;

β≡ J þG − 2E; ϵ≡ 2ðA − BÞ
F −H

þ A
H
; λ≡ E − J:

ð62Þ

Now the issue is that, despite appearances, ∂jhij is still
dynamical, since it is given in terms of an inverse wavelike
operator contained in the denominator of the definition of
Mij. In order to make ∂jhij actually nondynamical and
thereby cut down to 2 degrees of freedom, we need to either
(i) make □1 not involve time derivatives, i.e., set γ ¼ 0.
However this would simply return us to the basic structure
of Theory (B) of the last section.
So instead we need to (ii) make the□1 wavelike operator

cancel out. For the σ and wi terms in Eq. (59), this will
occur if they are chosen to be proportional to □1 þ□2,
which we parametrize as follows

ϵσ ¼ ð□1 þ□2Þs1 ð63Þ

wj ¼ ð□1 þ□2Þ
∂js2
∇2

ð64Þ

where s1 and s2 are scalars. Note that here we have needed
to enforce that the wi term is proportional to the gradient of
a scalar s2 in order for the cancellation to occur. This leaves
only the ρ terms in Eq. (59) as a possible source that would
generically make ∂jhij dynamical. Since ρ is a physical
source, imposing any conditions on it would overconstrain
the theory, so the only option is to set

−α∂2
t þ λ∇2 ¼ ω½ðαþ γÞ∂2

t þ ðβ þ δÞ∇2� ð65Þ

where ω is a constant of proportionality [this means −α ¼
ωðαþ γÞ and λ ¼ ωðβ þ δÞ]. This procedure has now
completely fixed ∂jhij and ∂iψ i to the following non-
dynamical values

∂jhij ¼ κ̃
∂i

∇2

�
s2 − _s1 −

ωρ

D

�
ð66Þ

∂iψ i ¼ κ̃
ð□1 þ□2Þs1
ϵðH − FÞ∇2

þ κ̃ζ
½_s2 − ̈s1 −

_ρ
D ðωþ 1Þ�

∇2
ð67Þ

where ζ ≡ ðA − BÞ=ðH − FÞ.

A. Enforcing locality

As in the previous sections, we now rewrite the exchange
action just in terms of the sources, with their nonconser-
vation parametrized now by s1 and s2 as defined by
Eqs. (63) and (64). The result contains many nonlocal
terms, whose structure is sketched in Appendix B. The
necessary conditions for the nonlocal terms to vanish are
α ¼ 0, γ ¼ 0 and a condition relating J to L, G, and ω. We
can summarize these conditions as
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K ¼ A2

H
; I ¼ K þ 2ðA − BÞ2

ðF −HÞ ;

J ¼ Lð1þ 2ω − ω2Þ þ 2Gω2

ð1þ ωÞ2 : ð68Þ

However we find that for generic s1 and s2 it is
impossible to obtain locality. This is not surprising, given
the form of Eq. (66) in which ∂jhij would be nonlocal itself
(even if ω ¼ 0). Therefore we require

s2 ¼ _s1 þ∇2s3 ð69Þ

where s3 is some local scalar function. When inserted into
the action, we find that everything is now local. The sources
pi and τij are once again not directly conserved, due to σ
and wi being nonzero. Nevertheless, similar to the previous
Theory (B), we can readily relate them to conserved
sources τ̃ij; p̃i, as

τij ¼ τ̃ij þ ðδþ βÞδij½χ _s1 þ ∂i∂js3� þ Pij½s3� ð70Þ

pi ¼ p̃i þ
β þ δ

ϵ
∂is1 ð71Þ

ρ ¼ ρ̃ ð72Þ

where Pij½s3�≡ ωðδþ βÞ½∂i∂j − δij∇2�s3 is an identically
conserved quantity, which is useful to fully diagonalize
the system, and χ ≡ 1 − A=ðHϵÞ (note that if A ¼ B,
then χ ¼ 0).
The final result for the tree-level exchange action is then

found to be exactly of the familiar GR terms, plus a pair of
ultralocal terms. For simplicity, we mention the A ¼ B and
E ¼ J form of the ultralocal terms, which are

8ΔLex

κ2
¼ 8H2ðG − LÞ2

A2ðF −HÞ s21 − 2ðG − LÞð∂is3Þ2: ð73Þ

In fact this is related to the result of Theory (B) in Eq. (54),
with the identifications

f ¼ 2HðG − LÞ
AðF −HÞ s1; gi ¼ ∂is3: ð74Þ

So again we almost recover GR, except for a pair of
additional terms, which we discuss in Sec. VII.

VI. THEORY D: TRANSVERSE-TRACELESS

In this section, for completeness, we will discuss the one
final term that we could have added to the generalized
action (10) that is compatible with rotation invariance,
namely

ΔL ¼ −
1

2
Mð∂iϕÞ2: ð75Þ

This term is not present in the GR action and hence we did
not study it previously in this paper. But for the sake of
completeness, let us examine this briefly now.
Although one could perform a more general analysis, we

will use this extra term to focus on a qualitatively new way
of cutting down to 2 degrees of freedom. We will impose
the transverse-traceless “gauge” choice

∂ihij ¼ 0; h ¼ 0: ð76Þ

In fact these choices are in some sense the most natural
way to cut down to 2 degrees of freedom starting with
the symmetric polarization matrix hij, while the fields ϕ
and ψ i are nondynamical. As is well known, in GR the
transverse-traceless gauge is not a gauge that is allowed
in general as it must be violated inside of matter.
However, by deforming away from GR with the term
in Eq. (75), it now becomes possible to implement this
gauge fixing both inside and outside of matter, as we
will explore here. This makes this final choice special,
because by imposing the transverse-traceless conditions
everywhere, this theory cannot recover GR in any
nontrivial limit.
Having imposed the transverse-traceless constraint, we

can solve for the fields in complete generality without
needing to restrict any of the 13 parameters
A;B;…; L;M. However, the parameters E, G, I, J will
not appear in the classical equations of motion; this leaves
us with 13 − 4 − 4 ¼ 5 parameters that affect interactions
at tree-level.
The solutions are readily found to be

ϕ

κ̃
¼ −

ρ

M∇2
ð77Þ

ψ i

κ̃
¼

�
δij þ

�
F

H − F

� ∂i∂j

∇2

�
pj

H∇2
ð78Þ

hij
κ̃

¼ 1

□

�
τij −

�
Cδij −D

∂i∂j

∇2

�
ρ

M
þ A
H

∂ði _pjÞ
∇2

−
�

2

H − F

��
Bδij −

AF
H

∂i∂j

∇2

� ∂k _pk

∇2

�
: ð79Þ

By taking the trace and divergence of this final expression
for hij, and demanding that it is transverse-traceless, we
obtain the pair of equations for the sources

0 ¼ τ þ ð2A − 6BÞ
ðH − FÞ∇2

∂k _pk þ
�
D − 3C

M

�
ρ ð80Þ
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0 ¼ ∂iτij þ _pr;i þ
�
D − C
M

�
∂iρ

þ
�
AðH þ FÞ − 2BH

HðH − FÞ
� ∂i∂k _pk

∇2
: ð81Þ

For locality, we need the sources to obey local continuity
type equations. In this work, we will not impose overly
constraining conditions on ∂kpk, and hence we need the
inverse Laplacian terms in Eqs. (80), (81) to vanish, so

A ¼ 3B; F ¼ −H=3 ð82Þ

(which again shows this is disconnected from GR where
A ¼ B and F ¼ H).
With these conditions, we can then form the tree-level

exchange action. There are a number of terms, but for
simplicity, we here report on only the terms that are
proportional to ð∂ipiÞ2; these are found to be

8Lð∂ipiÞ2
κ2

¼ −
∂ipi

2H

�
A2

H
∂2
t − K∂2

t þ L∇2

� ∂jpj

□∇4
: ð83Þ

This is clearly nonlocal and so it must vanish to avoid
instantaneous action at a distance. We can make the piece
∝ ∂2

t =ð□∇4Þ vanish, by setting K ¼ A2=H. However, to
make the piece ∝ 1=ð□∇2Þ vanish, we would require

L ¼ 0: ð84Þ

This means the graviton speed would have to vanish. This
is an extreme way to build a local theory, by preventing any
finite speed propagation altogether. Such a theory is of little
interest and we do not pursue it further. Hence we conclude
that our starting point with the new term that deviates from
GR in Eq. (75) is unacceptable.

VII. DISCUSSION

In this work we have imposed locality on theories
involving spin 2 particles (gravitons), without assuming
Lorentz boost symmetry. In Theories (A), (B), and (C) we
have recovered the form of the leading tree-level exchange
action of GR, although in both Theories (B) and (C), there
were additional terms (while Theory (D) was a trivial
theory in the end).

A. Additional terms

In the most general version of Theory (B), we found we
could have an arbitrary scalar function f and an arbitrary
vector function gi which parametrize different ways of
violating source conservation; see Eqs. (55), (56) [and in
Theory (C) we can have arbitrary scalar functions s1 and s3;
see Eqs. (70), (71), while no such terms were allowed in
Theory (A)]. Such additional terms are quite analogous to
the additional term that arises in our accompanying paper

on electromagnetism [7]. We can understand them in a
similar fashion as follows.
First, let us return to the regular GR action for the

graviton, plus conserved sources ∂μT̃
μν ¼ 0, and a pair of

additional terms, as follows

L¼ Lkin −
κ

2
hμνT̃

μν þ κ̃2ðF− 1Þf2 − κ̃2ðG− 1Þgigi: ð85Þ

These additional terms are evidently completely decoupled
sectors, expressed in terms of functions f and gi, whose
prefactors are for convenience. Since the regular GR action
exhibits gauge invariance, we can make any gauge choice
we desire. To illustrate the connection to our earlier
theories, it is useful to make the following gauge choices

∂iψ i ¼ −κ̃f; ∂jhij ¼ κ̃gj: ð86Þ

We can use these conditions to construct the identity
κ̃2f2 ¼ −ð∂iψ iÞ2 − 2κ̃f∂iψ i, as well as a similar identity
for κ̃gigi, and then the action can be written (after an
integration by parts on the second term)

L¼Lkin−
κ

2
hμνT μν − ðF− 1Þð∂iψÞ2þðG− 1Þ∂jhij∂khik

ð87Þ

where the source is identified as

T μν ¼ T̃ μν þ δT μν ð88Þ

where δT μν are additional nonconserved pieces, precisely
those of the form identified earlier in Theory (B) and (C) in
Eqs. (55), (56) and (70), (71) (here we are taking the special
case E ¼ J ¼ H ¼ L ¼ 1 for simplicity of presentation),
i.e., δT ij ¼ðG−1Þ∂ðigjÞ, δT 0i ¼ðF−1Þ∂if, and δT 00¼0.
We note that this identity is useful because it allows us to
break up the decoupled sectors into 2 pieces: one piece that
goes into the final terms of Eq. (87) and another piece that
goes into a shift in T μν. With this identification the action in
Eq. (87) becomes precisely a rewriting of Theory (B) and
(C), in the special case: A ¼ B ¼ C ¼ D ¼ E ¼ H ¼
I ¼ J ¼ K ¼ L ¼ 1, general F, G, and nonconserved
sources provided by arbitrary f (∝ s1) and gi (∝ ∂is3).
Since our starting point to construct this was manifestly
local in Eq. (85), it is obvious from this point of view that
Theory (B) should allow for this local construction. This
provides a nonperturbative proof that the contributions
from f and gi, which were seen to decouple at the level of
the tree-level exchange action in Eq. (54), in fact persists as
an exact statement, because the starting action (85) shows
they are completely decoupled sectors. In this sense, these
“corrections” to GR that appeared in Theory (B), and
related corrections that appeared in Theory (C), do not
constitute physical modifications at all.
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B. Lorentz symmetry

In this work, we did not a priori assume anything about
the structure of the sources T μν. However by imposing the
most basic notion of locality, that we do not have
instantaneous action at a distance when coupling to a spin
2 particle (graviton), we have shown that a necessary
condition is that it is conserved ∂μT̃

μν ¼ 0 (we only need to
comment on T̃ μν here, rather than the full T μν, as the
differences are only associated with redefinitions and/or
irrelevant decoupled sectors, as discussed above).
Now one can explore the ramifications of needing the

sources to exhibit local conservation of this variety. First,
we have assumed in this work that the laws of physics
exhibit translation invariance (see more about relaxing that
assumption below). As is well known, this implies the
conservation of the energy-momentum tensor by the
Noether theorem. However, it is important to emphasize
that by itself this only means there is an object with mixed
indices that is conserved, i.e.,

∂μTμ
ν ¼ 0: ð89Þ

So naturally there are 4 conserved currents, labelled with
index ν here. And so there are 4 conserved quantities,
which are the familiar total energy and total momentum

E ¼
Z

d3xT0
0; Pi ¼

Z
d3xT0

i: ð90Þ

Such quantities do not rely on the existence of Lorentz
invariance and so they exist even in nonrelativistic con-
densed matter systems involving fluctuations around a
translationally invariant medium. In ordinary circumstances
this mixed index energy-momentum tensor cannot be lifted
to any symmetric object. For example, consider the
following theory of 2 coupled scalars

Lφ ¼
X2
n¼1

�
1

2
_φ2
n −

1

2
c2nð∇φnÞ2

�
− λφ2

1φ
2
2: ð91Þ

The theory is non-Lorentz invariant if c1 ≠ c2. It does have
translation invariance and so it has a conserved energy-
momentum tensor (really, just a matrix)

T0
0 ¼

X2
n¼1

_φ2
n − Lφ; Ti

j ¼ −
X2
n¼1

c2n∂iφn∂jφn − δijLφ

ð92Þ

T0
i ¼

X2
n¼1

_φn∂iφn; Ti
0 ¼ −

X2
n¼1

c2n _φn∂iφn: ð93Þ

There is no way to make this symmetric and conserved on
both indices. Note that T0

i is not proportional to Ti
0, as it

would be in the Lorentz invariant case when all the cn are

equal and can be factorized. Put differently, there is no
universal Minkowski metric inverse ημν that one can use to
raise the ν index and build a symmetric and conserved
tensor.
However, what we have identified in this work is that in

order to preserve a primitive form of locality, the graviton
(associated with a symmetric hμν) must couple to a con-
served symmetric object T̃ μν. In order for such an object to
even exist in a nontrivial theory we therefore need more
than just translation symmetry. We in fact need an addi-
tional symmetry, which is that of boost invariance [34].
Related details were laid out by us earlier in Ref. [13], but
we can briefly illustrate this point here. From the asymp-
totic past to the future, translation symmetry ensures the
mixed energy-momentum tensor of classical point particles

T μ
νðx; tÞ ¼

X
n

vμnpn;νδ
3ðx − xnÞ ð94Þ

is conserved, with vμn ≡ ð1; vnÞ and pn;ν ≡ ðEn;pnÞ (we
emphasize that so far this does not rely on Lorentz
symmetry). Now in order to build a symmetric conserved
quantity, we must be able to “push” the ν index upstairs.
For this to produce a symmetric object, and hence be
conserved on both indices, we need

vn ¼
∂En

∂pn
∝
pn

En
ð95Þ

where in the first equality we have just used Hamilton’s
equation and in the second step we have specified the
necessary condition for the symmetric conserved tensor to
exist, where the proportionality constant must be universal
for all particles. The general solution of this differential
equation can be put in the formE2

n ¼ p2
nc2 þm2

nc4, where c
is a universal constant andmn (themass) arises as an allowed
constant of integration. Hence we have arrived at the
dispersion relation required for Lorentz symmetry, and the
full theory is indeed Lorentz invariant at this order we are
working. We can then identify T̃ μν ¼ Tμν, as it is the only
conserved symmetric 2-index tensor. This recovers GR at
this leading order.
Furthermore, the existence of now a symmetric 2 index

conserved current allows for the existenceofmore conserved
quantities. In particular, one can now build a 3 index current:

Θμν;λ ≡ xμTνλ − xνTμλ ð96Þ

By taking its divergence, and using ∂λTμλ ¼ 0, this is
conserved

∂λΘμν;λ ¼ 0 ð97Þ

if and only if Tμλ is symmetric. Hence there are more
conserved quantities, namely
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Lμν ≡
Z

d3xΘμν;0: ð98Þ

This is the familiar angular momentum tensor of Lorentz
invariant theories. Since Lμν ¼ −Lνμ is antisymmetric, it is
made out of 6 conserved quantities. 3 are the usual angular
momentum (which follow trivially from our original
assumptions of rotations in a preferred frame), but there
are 3 more: these are the 3 conserved quantities associated
with Lorentz boosts. Alternatively, by a kind of reverse
Noether theorem, these 3 new conserved quantities generate
the 3 Lorentz boost symmetries.

C. Future directions

In future work, we are interested in extending our analysis
by relaxing other space-time symmetries, including time-
translation symmetry. This may have potential applications
to cosmology, including claimed modifications of GR that
may address the cosmological horizon problem [35]. Other

interesting questions include the consequences of more
degrees of freedom in the analysis, and exploring to what
extent strong coupling problems in the UVoccur, as they do
in the known Lorentz invariant case.
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APPENDIX A: SUPPLEMENTARY DETAILS
FOR THEORY B

After solving for the inhomogeneous solutions of the
equations of motion (17), with the conditions of Eqs. (47)
and (48), we find

ϕ

κ̃
¼ −τ

2D∇2
þ E − 3J þ L

2D2

ρ

∇2
þ 2A2∂2

t þHð4E − 2G − 3J þ LÞ∇2

2DHð2E − 2G − J þ LÞ
q
∇6

−
2A

DðF −HÞ
_σ

∇4
þ A2

D2H
ρ̈

∇4
ðA1Þ

ψ i

κ̃
¼ pi

H∇2
þ AðGþ J − E − LÞ

DHðG − LÞ
∂i _ρ

∇4
þ F
HðH − FÞ

∂iσ

∇4
þ A
HðG − LÞ

_wi

∇4
þ A
HðL −GÞ

∂i _q
∇6

þ A2

H2ðL −GÞ
∂iσ̈

∇6
ðA2Þ

hij
κ̃

¼ τij
□

−
δij
2

τ

□
þ ∂i∂jτ

2□∇2
þ A
H

∂ði _pjÞ
□∇2

þ E − J þ L
D

δij
2

ρ

□
þ LðL − 3JÞ −GðJ þ LÞ þ EðGþ 3LÞ

2ðG − LÞ
∂i∂jρ

□∇2

þ Kð2J þG − 2E − LÞ
2ðG − LÞ

∂i∂jρ̈

□∇4
−

2A
HðG − LÞ

∂i∂j _σ

∇6
þ K∂2

t −G∇2

G − L

∂ðiwjÞ
□∇4

þ δij
2

q
□∇2

þ Gð2G − 2Eþ JÞ þ 3ðG − 2Eþ JÞL − L2

2ðG − LÞð2G − 2Eþ J − LÞ
∂i∂jq

□∇4
þ Kð4E − 3G − 2J þ LÞ
ðG − LÞð2G − 2Eþ J − LÞ

∂i∂jq̈

□∇6
ðA3Þ

h
κ̃
¼ q

ð2G − 2Eþ J − LÞ∇4
−

ρ

D∇2
ðA4Þ

The coefficients in the exchange action Eq. (51) are found to be

b1 ¼ −
L½−2E2 þ 2ELþ Lð−2G − 3J þ LÞ þ 4GJ�

D2ð2E − 2G − J þ LÞ ; b2 ¼
2A2½E2 − 2ELþ 2LðGþ JÞ − 2GJ − L2�

D2Hð2E − 2G − J þ LÞ ;

b3 ¼
2FL

FH −H2
; b4 ¼

A2½ð3F þHÞð2E − 2G − JÞ þ LðF þ 3HÞ�
2H2ðF −HÞð2E − 2G − J þ LÞ ; b5 ¼

−A4

H3ð2E − 2G − J þ LÞ

b6 ¼
ALð−4Eþ 6Gþ J − 3LÞ
DHð2E − 2G − J þ LÞ ; b7 ¼

−2A3ðE − 2Gþ LÞ
DH2ð2E − 2G − J þ LÞ ; b8 ¼

−2Eþ 2Gþ J
2E − 2G − J þ L

þ 2G
G − L

−
1

2

b9 ¼
A2

H

�
1

2E − 2G − J þ L
þ 2

G − L

�
; b10 ¼ −

Lð4E − 2G − 3J þ LÞ
Dð2E − 2G − J þ LÞ ; b11 ¼ −

2A2½3E − 2ðGþ JÞ þ L�
DHð2E − 2G − J þ LÞ

b12 ¼
Að−2Eþ 2Gþ J − 3LÞ
Hð2E − 2G − J þ LÞ ; b13 ¼

−2A3

H2ð2E − 2G − J þ LÞ ðA5Þ
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APPENDIX B: SUPPLEMENTARY DETAILS FOR THEORY C

The form of the exchange action that includes nonlocal parts in Theory (C) is found to take the following form

Lnon;local

κ2
¼ cpp1pi

p̈i

□∇2
þ cρρ1ρ

ρ̈

□∇2
þ cρρ2ρ

ρ
⃜

□∇4
þ cρτρ

̈τ
□∇2

þ cρf1ρ
f
…

□∇2
þ cρf2ρ

∂5
t f

□∇4
þ cτf1τ

f
…

□∇2

þ cτf2τ
∂5
t f

□∇4
þ cρg1ρ

g̈
□∇2

þ cρg2ρ
g
⃜

□∇4
þ cτgτ

g̈
□∇2

þ cff1f
f
⃜

□∇2
þ cff2f

∂6
t f

□∇2
þ cfg1f

g
…

□∇2

þ cfg2f
∂5
t g

□∇4
þ cgg1g

g̈
□∇2

þ cgg2g
g
⃜

□∇4
ðB1Þ

The 17 coefficients cpp1; cρρ1;…; cgg2 are relatively complicated functions of the coefficients A;B;…L. We do not present
the full details of the coefficients here for the sake of brevity.
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