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It is well known that a theory of the (i) Lorentz invariant and (ii) locally interacting (iii) two degrees of
freedom of a massless spin 1 particle, the photon, leads uniquely to electromagnetism at large distances.
In this work, we remove the assumption of (i) Lorentz boost invariance, but we still demand (ii) and (iii).
We consider several broad classes of theories of spin 1, which in general explicitly violate Lorentz
symmetry. We restrict to the familiar two degrees of freedom of the photon. We find that most theories lead
to nonlocality and instantaneous signaling at a distance. By demanding a mild form of locality (ii), namely
that the tree-level exchange action is manifestly local, we find that the photon must still be sourced by a
conserved charge with an associated internal symmetry. This recovers the central features of electromag-
netism, although it does not by itself impose Lorentz boost symmetry. The case of gravitation dramatically
improves the final conclusion and is reported in detail in our accompanying paper Part 2.
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I. INTRODUCTION

The basic structure of the fundamental interactions in
nature has a long and ongoing history. The modern
understanding is that the detailed structure of all the
interactions, including electromagnetism, the strong force,
the weak force, and gravitation all arise from the postulates
of quantum mechanics and local Lorentz invariance. This
occurs by introducing and applying these rules at large
distances to a particular set of particles: a single massless
spin 1 (photon), 8 massless spin 1 (gluons), 3 massive spin
1 (W/Z bosons), and a massless spin 2 (graviton), respec-
tively (e.g., see [1]).
Note that there is currently no known way of deriving the

existence of these particles from any low energy point of
view, they are in fact postulates (just as the leptons and
quarks must be postulated). It is sometimes suggested that
they arise from “gauge symmetry”, but this is not mean-
ingful because any theory can be rewritten in a gauge
invariant way by use of the Stueckelberg trick. Instead,
what one can say is that once these degrees of freedom are
postulated, along with the rules of Lorentz invariance and
locality, the ramifications are profound and currently match
observations in great detail.

In this paper (Part 1) and the accompanying paper [2]
(Part 2), we would like to explore to what extent one
actually requires the assumption of Lorentz boost invari-
ance in order to derive the basic structure of these
interactions. Our focus in this paper will be on the simplest
case of spin 1, which is relevant to electromagnetism.
Without the assumption of Lorentz symmetry, one might
wonder what is the starting point. We shall still assume
there is a (possibly preferred) frame that exhibits rotation
invariance, along with translation invariance in space and
time. In earlier work [3], some of us showed that this is in
some tension with locality and this issue will be studied in
greater generality here. Other works exploring Lorentz
violation include Refs. [4–17].
By imposing Lorentz invariance, it is well known that

there is a unique local theory of massless spin 1 photons,
coupled to some matter sector. Consistency with causality
and unitarity demands a massless photon propagates
precisely 2 degrees of freedom (helicities) and its leading
interactions with matter are of a uniquely specified form, up
to an overall coupling constant and charge assignments [1].
In this work, we will examine the consequences of

relaxing the assumption of Lorentz boost invariance.
Usually it is thought that without this principle the entire
structure of electromagnetism is completely changed.
However, by demanding a rather mild form of locality,
namely that there is no instantaneous signaling, we shall
examine which aspects remain. In short, we wish to know
how far the principle of no instantaneous signaling, without
demanding the full structure of Lorentz symmetry, can
take us in building this theory. Of particular interest, we
will concentrate on the need or otherwise for charge
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conservation. By the Noether theorem, this is equivalent to
examining the need or otherwise for an internal (Uð1Þ)
symmetry. To proceed we first generalize the standard
theory of electromagnetism in such a way as to remove the
assumption of Lorentz symmetry, and then determine what
is recovered upon requiring the theory be local. As we will
show, by projecting down to 2 degrees of freedom for the
photon, for reasons we shall explain, we still find that the
basic structure of electromagnetism is needed, including a
conserved charge, in order to avoid instantaneous signaling.
In Part 2 ([2]), we study the analogous case for spin 2,
which is relevant to gravitation, and examine the need for
the Lorentz boost symmetry itself.
Our paper is organized as follows: In Sec. II we discuss

locality in electromagnetism and its possible generaliza-
tions. In Secs. III, IV, and V we examine three distinct
classes of theories that deform electromagnetism. Finally,
in Sec. VI we discuss our results.

II. ELECTROMAGNETISM AND
ITS GENERALIZATION

In order to describe the interactions involving massless
photons in a manifestly local way, it is convenient to use the
electromagnetic field Aμ ≡ ð−ϕ; AiÞ as a useful mathemati-
cal tool. Assuming Lorentz invariance, the leading inter-
actions are given by the usual Maxwell Lagrangian density
in the field representation

LEM ¼ −
1

4
FμνFμν þ Lint ð1Þ

where Fμν ¼ ∂μAν − ∂νAμ. Leading order interactions
require minimal coupling with an interaction term of the
form

Lint ¼ JμAμ ¼ JiAi − ρϕ ð2Þ

where ρ is the familiar charge density and Ji is the familiar
current density. Consistency demands that the current is
conserved ∂μJμ ¼ 0 with an associated conserved charge
Q ¼ R

d3xρ [18,19].
It is of course well known that this theory is local. This is

hidden in most gauges, such as Coulomb gauge, but is
manifest in Lorenz gauge where□Aμ ¼ Jμ. Then for a pair
of charged matter sources that undergo tree-level exchange
of photons, we can use this equation of motion to readily
obtain the tree-level exchange actionLex. Its value is half of
the interaction term and is given by

Lex ¼
Jμ
2

Jμ

□
¼ Ji

2

Ji
□

−
ρ

2

ρ

□
: ð3Þ

This result is clearly gauge invariant and therefore we know
it will be reproduced in any gauge, such as Coulomb. The
presence of the inverse □ wave operator makes it clear that

the dynamics is associated with retarded effects and
therefore avoids instantaneous-action-at-a-distance. This
is in contrast to an inverse ∇2 Laplacian operator that
would lead to long-range instantaneous effects, violating
locality. In Coulomb gauge, such inverse Laplacian oper-
ators appear in the equations of motion, but cancel out in
the final result [20,21].

A. Generalization

In this work we will assume a preferred frame that still
enjoys rotation invariance and translation invariance, but
we will not assume boost invariance. We will focus on the
lowest dimension operators allowed in the theory. In
particular, we will consider the most general quadratic
action for the electromagnetic field Aμ ¼ ð−ϕ; AiÞ. We also
allow for leading order (nonderivative) coupling to matter,
although we do not assume that the matter exhibits current
conservation, as that is something that is usually derived by
making use of locality and Lorentz symmetry. One of our
primary goals is to determine if current conservation is still
required without the assumption of Lorentz invariance.
First, we would like to emphasize again that our focus in

this work is to just deform away from the Lorentz invariant
case. So we are not intending to radically alter the power
counting of operators. This means that even though we do
not assume exact Lorentz symmetry, the units are essen-
tially the same with mass dimension: ½ϕ� ¼ ½Ai� ¼ M;
½Ji� ¼ M3; ½∂i� ¼ ½∂t� ¼ M. For instance, as long as one
assumes that the limiting speed of a particle is of the order
of the limiting speed of the photon, this suffices for the
usual power counting to organize into a hierarchy of
relevant operators in the usual fashion.
The most general rotationally and translationally invari-

ant action at leading order is then given by expanding out
the familiar terms in the Maxwell action, but then allowing
for various prefactor couplings, as follows

L ¼ 1

2
ðα _Ai

_Ai − β∂iAj∂iAj þ γ∂iϕ∂iϕþ 2ϵ _ϕ∂iAi

þ δ∂iAi∂jAj −m2
AAiAi þm2

ϕϕ
2Þ þ JiAi − ρϕ ð4Þ

where α, β, γ, ϵ, δ are parameters that generalize the
Maxwell Lagrangian. At dimension 4, one could add
other terms, like F½ψm�Ai∂iϕ; G½ψm�AiAi; H½ψm�ϕ2, where
F½ψm�; G½ψm�; H½ψm� are some functionals of the matter
fields denoted ψm, e.g., we could have a scalar field
φ ∈ ψm, and consider ∼φϕ2, or φ2ϕ2, etc. Such terms
can be added, however they will not be relevant for our
analysis. In particular, we will be interested in tree-level
interactions between the matter fields, due to photon
exchange, as a basic test of locality. In particular, these
other terms would be 3 or 4 point vertices, with 2 of the
interacting particles being the photon. This means they do
not contribute to the tree-level exchange between a pair of
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matter sources. So while those terms can be present in
theory, they cannot help to make the leading order
interaction between sources local. Thus our basic conclu-
sions will be unaffected by the addition of these other sorts
of terms.
In Eq. (4) one could set α ¼ γ ¼ 1, without loss of

generality, so as to canonically normalize the leading
kinetic term for Ai and ϕ, but we will keep the factors
of α and γ general in this analysis. Furthermore, one could
work in units in which β ¼ 1, which sets the speed of the
photon. Note we have also included mass termsm2

A andm2
ϕ

for the vector and scalar potentials, respectively. So in
addition to the strength of coupling (the fine-structure
constant), this appears as 7 parameters; but due to the
redundancy in α, β, and γ, there are only 7 − 3 ¼ 4 physical
parameters here. The Lorentz symmetry would require the
reduction in all these parameters down to just the mass,
with the usual convention α ¼ β ¼ γ ¼ δ ¼ ϵ ¼ 1 and
m2

ϕ ¼ m2
A.

Variation of the action gives the following classical
equations of motion

−ρ ¼ γ∇2ϕþ ϵ∂i
_Ai −m2

ϕϕ ð5Þ

Ji ¼ αÄi − β∇2Ai þ ϵ∂i
_ϕþ δ∂i∂jAj þm2

AAi ð6Þ

As mentioned, giving up Lorentz symmetry means it is far
from obvious whether one still requires a conserved
current. We can take a linear combination of first deriv-
atives of the above pair of equations in order to shed light
on current conservation. The following linear combination,
which we denote σ, parametrizes the breaking of current
conservation

σ ≡ ∂iJi þ _ρr ð7Þ

where ρr is the (rescaled) charge density ρr ≡ ðϵ=γÞρ. We
can use the equations of motion to express the possible
violation of current conservation directly in terms of the
vector potential Ai and ρr as

σ ¼
�
α −

ϵ2

γ

�
γ∇2

γ∇2 −m2
ϕ

��
∂iÄi

þ ½ðδ − βÞ∇2 þm2
A�∂iAi −m2

ϕ

_ρr
γ∇2 −m2

ϕ

: ð8Þ

In the Lorentz invariant case (α ¼ ϵ2=γ and δ ¼ β) and with
a massless photon (mA ¼ mϕ ¼ 0) all terms on the right-
hand side vanish, giving a conserved current σ ¼ 0.

B. Degrees of freedom

In the usual Lorentz invariant case, we know that the
degrees of freedom are determined by locality and whether

the photon is taken to be massless or massive, with
massless implying 2 degrees of freedom (helicities) and
massive implying 3 degrees of freedom (spin polariza-
tions). For the massive case, the third longitudinal polari-
zation plays a unique role and behaves quite differently at
high energies. While it is well behaved in the case of the
Abelian theory (assuming the current is conserved) it is
well known that it leads to strong coupling problems at high
energies in the non-Abelian theory. This requires a UV
completion in terms of the massless degrees of freedom
anyhow, as is the case in the well known Higgs mechanism
(e.g., see [22]).
In the non-Lorentz invariant case, which is our focus in

this work, the mapping between the mass of the photon and
its degrees of freedom is less clear. However, we will
choose to still project out the third, longitudinal mode. We
motivate this as follows: Suppose we consider the non-
Abelian theory. We know that if it is Lorentz invariant, then
we need to project out this mode to avoid unitarity
breakdown at high energies, as mentioned above. Let us
therefore suppose that we now break Lorentz symmetry, but
we do it relatively weakly. This implies that the previous
sharp arguments that there would be unitarity problems can
remain valid in this regime to some extent too. While the
boundary of what constitutes a “weak” breaking is impre-
cise, this does motivate us to project out the longitudinal
mode and only focus on the two transverse modes from
now on. We further note that all observational data is of
course consistent with there being only 2 degrees of
freedom of the photon [23].
We identify three distinct ways to project out the

longitudinal mode ∂iAi. We will discuss each of these in
detail in this paper; a very brief summary is: (A) set
∂iAi ¼ 0, (B) choose αγ ¼ ϵ2 and mϕ ¼ 0 so that Eq. (8)
fixes ∂iAi to be uniquely determined by the sources, and
(C) set ∂iAi ¼ f where f ¼ f½ψm� is a scalar function of
the matter fields and mϕ ¼ 0. We now systematically study
each of these theories and the corresponding tension with
locality.

III. THEORY A: COULOMB CONSTRAINT

In this section we consider a direct approach to having
only 2 degrees of freedom. We impose the analogue of
Coulomb gauge to directly eliminate the longitudinal mode

∂iAi ¼ 0 ð9Þ

which is a natural choice since it makes rotation symmetry
manifest. Note that since there is no gauge redundancy in
this presentation, this is a choice of theory, not merely a
choice of gauge. This can be implemented by adding a
Lagrange multiplier into the above theory λð∂iAiÞ2, which
enforces ∂iAi ¼ 0 on the equations of motion. Then the
δ∂iAi∂jAj term in the action does not contribute and so δ is
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no longer a parameter of the theory. Hence the number
of remaining physical parameters in this theory is
7 − 3 − 1 ¼ 3.
The equations of motion are

−ρ ¼ γ∇2ϕ −m2
ϕϕ ð10Þ

Ji ¼ ð□þm2
AÞAi þ ϵ∂i

_ϕ; ð11Þ
where □≡ α∂2

t − β∇2 is the wave operator. By forming
the above linear combination of charge and current den-
sities, it is simple to check that this theory demands that
current obeys

σ ¼ m2
ϕ

_ρr
γ∇2 −m2

ϕ

ð12Þ

which is in fact a nonlocal expression due to the inverse
Laplacian; we will return to this point shortly. This strongly
suggests that the corresponding theory will exhibit physical
nonlocality, and we will indeed see this is so. In these
theories, the Coulomb potential is nondynamical. It obeys a
constraint equation and we can readily solve for it as

ϕ ¼ −ρ
γ∇2 −m2

ϕ

: ð13Þ

We emphasize that this is an exact constraint equation. Its
validity does not rely upon building an effective field theory
with domain of validity only length scales large compared
to 1=mϕ. Instead we can use this constraint at both long and
short distances.

A. Enforcing locality

Now our goal is to check on locality in the theory, which
is highly nontrivial since ϕ is instantaneous and is nonzero
at finite distances. One basic test of locality is that the tree-
level exchange action between matter sources is local. To
obtain this we need to solve for the vector potential Ai. This
means we pick up the particular solution of the above
equations of motion and we ignore any homogeneous
solutions, which would be associated with photons propa-
gating from or to infinity. The solution for Ai can be written
formally in terms of the inverse wave operator as

Ai ¼
Ji þ ϵ ∂i _ρ

γ∇2−m2
ϕ

□þm2
A

: ð14Þ

Then we can determine the interaction Lagrangian only in
terms of sources as

Lex ¼
Ji
2

Ji
□þm2

A

þ ρ

2

�ðα − ϵ2 ∇2

γ∇2−m2
ϕ
Þρ̈ − β∇2ρþm2

Aρ

ð□þm2
AÞðγ∇2 −m2

ϕÞ
�

ð15Þ

where we have used the conservation law to replace ∂iJi
and dropped surface terms. The JiJi term is local since it is
only convoluted with a Klein-Gordon operator, which has a
retarded Green’s function.
On the other hand, there are ρρ terms that have the

inverse operator ðγ∇2 −m2
ϕÞ. This is a problem for locality,

as we explain: If we have a localized source ρ1 and another
localized source ρ2 (let us suppose they are each point
particles), then the second line of Eq. (15) tells us that if we
separate them a distance L≲ 1=mϕ, a change in 1 will
affect 2 immediately, due to the inverse ðγ∇2 −m2

ϕÞ
operator. Since we are deforming away from the Lorentz
invariant theory in which mϕ ¼ 0, we wish to consider
relatively small values of mϕ in this work, so this range
L≲ 1=mϕ can be rather large distances of interest. Hence,
this describes instantaneous interactions over finite
distances.
Since we are imposing locality in this work, we must

restrict the parameters of the theory to remove the above
phenomenon. Recall that the coefficients are all assumed to
be constants in this work, so to avoid overconstraining ρ,
and leading to a trivial theory, we must have that in the ρρ
term all the inverse Laplacians cancel out. The only way
this can happen is if

αγ ¼ ϵ2; mA ¼ 0; mϕ ¼ 0: ð16Þ

Then the interaction becomes

Lint ¼
Ji
2

Ji
□

−
β

γ

ρ

2

ρ

□
: ð17Þ

The precise form of Eq. (3) can be recovered exactly by a
simple rescaling ρ → ρ

ffiffiffiffiffiffiffiffi
β=γ

p
to remove the β=γ prefactor

in the second term. Thus, in this theory, locality requires
that mA ¼ mϕ ¼ 0 and we appear to recover electromag-
netism uniquely. We note, however, that this does not imply
Lorentz invariance, since the sources may themselves be
non-Lorentz invariant. For example, the sound speed of the
matter sector may be different than the speed of light. But
nevertheless the basic structure of electromagnetism is
recovered.

IV. THEORY B: CONSTRAINT FROM
EQUATIONS OF MOTION

In the previous section we cut down to two degrees of
freedom by manually imposing that ∂iAi vanishes. In this
section we arrange the theory so that the equations of
motion directly fix ∂iAi. This is done by imposing that the
coefficient of the ∂iÄi term in Eq. (8) vanishes, rendering
the longitudinal mode nondynamical. This requires

αγ ¼ ϵ2 and mϕ ¼ 0: ð18Þ
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Then Eq. (8) means that ∂iAi obeys the constraint

∂iAi ¼
σ

ðδ − βÞ∇2 þm2
A

ð19Þ

again cutting down to two degrees of freedom. In this
theory there are now 7 − 3 − 2 ¼ 2 physical parameters.
On the other hand, the current is completely unconstrained,
so there is significant freedom now allowed in the matter
sector.
With this constraint on ∂iAi the equations of motion

become

−ρ ¼ γ∇2ϕþ ϵ _σ

ðδ − βÞ∇2 þm2
A

ð20Þ

Ji ¼ ð□þm2
AÞAi þ ∂i

�
ϵ _ϕþ δσ

ðδ − βÞ∇2 þm2
A

�
ð21Þ

where as before □≡ α∂2
t − β∇2. The solutions are

ϕ ¼ −1
γ∇2

�
ρþ ϵ _σ

ðδ − βÞ∇2 þm2
A

�
ð22Þ

Ai ¼
Ji

□þm2
A

þ ∂i

ð□þm2
AÞ∇2

�
_ρr þ

ϵ2

γ σ̈ − δ∇2σ

ðδ − βÞ∇2 þm2
A

�
ð23Þ

which we use to write the interaction Lagrangian only in
terms of the sources ρ and Ji and the nonconservation
parameter σ as

Lex ¼
Ji
2

Ji
□þm2

A
þ ρ

2γ

�
−β∇2ρþm2

Aρ

ð□þm2
AÞ∇2

�

− _ρr

� ðδ − βÞ∇2σ þm2
Aσ

ð□þm2
AÞ∇2½ðδ − βÞ∇2 þm2

A�
�

−
σ

2

� ϵ2

γ σ̈ − δ∇2σ

ð□þm2
AÞ∇2½ðδ − βÞ∇2 þm2

A�
�

ð24Þ

using Eq. (7) to replace ∂iJi ¼ σ − _ρr and dropping surface
terms (recall in this section we set αγ ¼ ϵ2, which elim-
inates several terms).

A. Enforcing locality

As before the JiJi term is local, but there are nonlocal
terms in ρρ, σσ, and ρσ cross term. To avoid overconstrain-
ing the sources, the only way to eliminate the nonlocality in
ρρ is by requiring mA ¼ 0. Furthermore, due to the inverse
Laplacian in the σσ term, we also need to either (i) set
σ ¼ 0, and then enforcing these conditions the interaction
becomes identical to Eq. (17), or (ii) set σ ∝ ∇2f, where f

is some local function, and then the Laplacians get
canceled. This leads to Eq. (17) plus an additional term
∝ f2; we will return to this in the next section, and then in
the discussion we will explain why even this is not actually
a real modification of electromagnetism.

V. THEORY C: GENERALIZED CONSTRAINT

In the previous theory we chose parameters in a special
way such that ∂iAi is rendered nondynamical by the
equations of motion. There exists a natural generalization
of the form

∂iAi ¼ f; where f ¼ f½ψm� ð25Þ

is some scalar (under rotations) function of the matter fields
ψm. We do not a priori assume that f have any particular
form, so we use the notation f ¼ f½ψm� to indicate it is a
function of some of the matter fields. Nevertheless, we will
later find that self-consistency and locality restrict f to be a
particular function of the current Jμ. However, Eq. (8) will
in general make ∂iAi dynamical by an equation of the form

∂iAi ¼
σ

□̃
þ… ð26Þ

where the contractions in both □̃ and σ ∼ ∂μJμ, compli-
cated by the α;…; δ we’ve put into the theory, will include
some nonunit coefficients as in Eqs. (7) and (8). The most
general way to consistently set ∂iAi to be nondynamical is
if we force the wave operator to cancel between numerator
and denominator here; i.e., σ ¼ □̃f so that the boxes
cancel.
We impose this condition consistently by identifying f

as the longitudinal part of Jμ as follows. First, we decom-
pose the current into its curlfree and divergencefree parts

Jμ ¼ Mμν∂νf þ Jμ⊥ ð27Þ

where Jμ⊥ is a conserved current (∂μJ
μ
⊥ ≡ 0) and Mμν is a

matrix that may involves spatial deriatives. Then (26) can
be written

∂iAi ¼
Mμν∂μ∂νf

□̃
þ… ð28Þ

and we need the coefficients in the contractions to be the
same in order for the boxes to cancel out and leave ∂iAi
nondynamical. That is, from Eq. (8)

Mμν∂μ∂νf ¼ □̃∂iAi −m2
ϕ

ϵ

γ

_ρ

γ∇2 −m2
ϕ

ð29Þ

where
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□̃ ¼
�
α −

ϵ2

γ

�
γ∇2

γ∇2 −m2
ϕ

��
∂2
t þ ðδ − βÞ∇2 þm2

A: ð30Þ

Then in order to fix ∂iAi we require mϕ ¼ 0 and
Mμν∂μ∂ν ¼ □̃. Since we must set mϕ ¼ 0, we are left
with 7 − 3 − 1 ¼ 3 parameters here.
To satisfy Mμν∂μ∂ν ¼ □̃ we take Mμν to be

M0ν ¼
�
α −

ϵ2

γ

�
δ0ν ð31Þ

Mij ¼
�
δ − β þm2

A

∇2

�
δij ð32Þ

and use Eq. (27) to write ρ and Ji in terms of f and Jμ⊥. We
will do this substitution in the end, but in the interest of
clarity we choose to do the calculation in terms of ρ and Ji.
Then with the imposed constraint ∂iAi ¼ f and mϕ ¼ 0

the equations of motion are

−ρ ¼ γ∇2ϕþ ϵ _f ð33aÞ

Ji ¼ ð□þm2
AÞAi þ δ∂if þ ϵ∂i

_ϕ: ð33bÞ

These have the particular solutions

ϕ ¼ −ρ − ϵ _f
γ∇2

ð34Þ

Ai ¼
Ji þ ∂ið−δf þ ϵ

γ
_ρþϵf̈
∇2 Þ

□þm2
A

ð35Þ

where □≡ α∂2
t − β∇2 as before. Similarly to the previous

sections, we can then use these to rewrite the interaction
Lagrangian in terms of the sources and f,

Lex ¼
Ji
2

Ji
□þm2

A
þ ρ

2γ

�ðα − ϵ2=γÞρ̈ − β∇2ρþm2
Aρ

ð□þm2
AÞ∇2

�

− _ρr

�
□̃0f

ð□þm2
AÞ∇2

�
−
□̃0f
2

�−δf þ ϵ2

γ
f̈
∇2

□þm2
A

�
ð36Þ

where □̃0 is the linear operator of Eq. (30) with mϕ ¼ 0.
The first line of (36) is identical to Eq. (15). In the second
line there are several additional terms involving f.

A. Enforcing locality

As in the previous sections, the ρρ terms require αγ ¼ ϵ2

and mA ¼ 0 to be local. Then the interaction becomes

Lex ¼
Ji
2

Ji
□

−
β

γ

ρ

2

ρ

□

− ðδ − βÞ_ρr
f
□

−
1

2
ðδ − βÞf

�
αf̈ − δ∇2f

□

�
ð37Þ

which is entirely local but allows for additional terms that
do not appear in Eq. (3).
Now using the fact that f is related to Jμ by Eqs. (27) and

the locality conditions αγ ¼ ϵ2, mA ¼ 0, we have

Ji ¼ ðδ − βÞ∂if þ J⊥i ð38Þ

ρ ¼ ρ⊥ ð39Þ

Note that one could invert this to write f explicitly in terms
of Jμ as f ¼ ð∂μJμÞ=ððδ − βÞ∇2Þ. However, it is also useful
to view this the other way around: the theory is effectively
specified by some scalar function f ¼ f½ψm� and a con-
served current Jμ⊥, which determines the current Jμ that
sources Aμ by the above pair of equations.
We can then write the interaction as

Lex ¼
J⊥i
2

J⊥i
□

−
β

γ

ρ⊥
2

ρ⊥
□

−
1

2
ðδ − βÞf2 ð40Þ

Thus after enforcing locality in this case we do not simply
recover electromagnetism, but we have an additional term
controlled by the function f that parametrizes a particular
way in which current is not conserved.

VI. DISCUSSION

A. Current conservation

One may wonder what is the significance of this final
term that allows for the current to no longer be conserved,
and is parametrized in terms of the arbitrary scalar function
f. Let us describe this with an example: Suppose that
among the various contributions to the matter there includes
some real scalar φ ∈ ψm, with f ¼ gφ2=2. Then the photon
appears to be coupled to a real scalar with current

Jμ ¼ gðδ − βÞδμiφ∂iφþ Jμ⊥ ð41Þ

(where g is some coupling). This is certainly very unusual,
since we are used to the idea that real scalars cannot couple
to photons at leading order; that instead, scalars must be
organized into pairs related by charge conjugation, etc.
However, there are 2 important observations we would like
to make.
The first is that even though ∂μJμ need not vanish,

Eq. (39) reveals locality has required that the charge density
ρ is simply given by ρ ¼ ρ⊥, with ∂μJ

μ
⊥ ¼ 0. And so we

still have that
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Q ¼
Z

d3xρ ð42Þ

is a conserved charge. Hence no matter how we modify
electromagnetism by giving up boost invariance, locality is
still enough to preserve the need for a conserved charge. By
the reverse form of the Noether theorem, we then need the
underlying theory to carry a physical internal symmetry.
Recall that of course the Noether theorem does not rely on
Lorentz invariance, but only an action principle, which we
are sticking to in this work. We know this must be an
Abelian symmetry, since there is a single conserved charge
present. Hence there must be some Uð1Þ. (We emphasize
that we are not referring to the (small) “gauge” part of the
Uð1Þ, which is a redundancy, but the global subgroup
that is generated by the conserved charge.) This can be
embodied by complex fields in any concrete choice of the
visible matter sector ψv ∈ ψm that go into forming
Jμ⊥ ¼ Jμ⊥½ψv�, such as by the introduction of Dirac fields.
(In the case of complex scalars, one should view this result
as applying at leading order in the coupling g, since at
second order in the coupling one would need to introduce
the quartic term g2jΦj2A2, as is well known). This is our
primary finding.
The second observation is that this result is valid beyond

just the tree-level leading order interaction. To explain this,
suppose we consider the following action

L ¼ −
1

4
FμνFμν þ AμJ

μ
⊥ −

1

2
ðδ − 1Þf2 ð43Þ

where we have just added to the standard electromagnetic
action a completely decoupled sector ψd ∈ ψm, parame-
trized by some function f ¼ f½ψd�. This theory has exactly
the form of electromagnetism, plus a decoupled piece,
and therefore the field Aμ now enjoys the usual gauge
redundancy Aμ → Aμ þ ∂μα. We can use this to make the
following gauge choice

∂iAi ¼ f ð44Þ

which is precisely of the form imposed in Theory (C), but
in this case it is simply allowed by the regular gauge
invariance, as opposed to specifying a particular theory.
One can then manipulate the above term by writing
− 1

2
f2 ¼ 1

2
ð∂iAiÞ2 − fð∂iAiÞ. Upon insertion into the action

of Eq. (43) we see that we recover exactly the form of
Theory (C), with α ¼ β ¼ γ ¼ ϵ ¼ 1, mϕ ¼ mA ¼ 0, gen-
eral δ, and a current given exactly as in Eq. (38). This

proves that the contribution that provided a nonconserved
part of the current density was actually from a decoupled
sector ψd, while only a conserved current can couple to the
photon and be part of the visible sector ψv. Note that any
form of f ¼ f½ψd� is allowed if it only depends on
decoupled degrees of freedom.
On the other hand, if f ¼ f½ψv� is a function of some of

the visible sector degrees of freedom, then it cannot be
completely arbitrary; it must not spoil the conserved
charge. For instance, if f ¼ f½ψ �, where ψ ∈ ψv is a
Dirac field that carries electric charge, then we can have
special choices of f, such as f ¼ gψ̄ψ which respects the
Uð1Þ symmetry and hence is compatible with charge
conservation. While arbitrary f ¼ f½ψv� is not allowed.

B. Outlook

In this work we have considered broad classes of theories
of interacting spin 1 particles, which exhibit rotation and
translation invariance in a preferred frame, but not Lorentz
boost invariance. We have found that by imposing that there
is no instantaneous signaling, the theory always collapses
to the basic structure of Maxwell’s electromagnetism.
Charge must still be conserved and in fact any non-
conserved parts of the current density were only associated
with decoupled sectors.
We note that while this recovers the central striking

features of electromagnetism, the requirement of current
conservation ∂μJ

μ
⊥ ¼ 0, despite appearances, does not

imply Lorentz symmetry. In fact it is very easy to allow
many different sound speeds in the matter sector (e.g., [5]).
In accompanying work [2] we study gravitation in a similar
framework and show that in this case the Lorentz boost
symmetry can be emergent. This will generalize the earlier
work of Ref. [3].
Other possible work is to apply our arguments to

multiple self-interacting massless spin 1. It would be
interesting to see if the principle of no instantaneous
signaling is enough to once again recover Yang-Mills
theory, as it does in the Lorentz invariant case (e.g., see [1]).
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