
 

Some nontrivial aspects of Poincaré and CPT invariance of flavor vacuum
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We study the explicit form of Poincaré and discrete transformations of flavor states in a two-flavor scalar
model, which represents the simplest example of the field mixing. Because of the particular form of the
flavor vacuum condensate, we find that the aforementioned symmetries are spontaneously broken. The
ensuing vacuum stability group is identified with the Euclidean group Eð3Þ. With the help of Fabri–Picasso
theorem, we show that flavor vacua with different time labels and in different Lorentz frames are unitarily
inequivalent to each other and they constitute a manifold of zero-flavor-charge states. Despite the
spontaneous breakdown of Poincaré and CPT symmetries that characterizes such vacua, we provide
arguments on the absence of Goldstone Bosons. We also prove that the phenomenologically relevant
oscillation formula is invariant under these transformations. In particular we prove that flavor oscillation
formula on flavor vacuum has the same form in all Lorentz frames, by means of general arguments, valid at
all energy scales.
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I. INTRODUCTION

The fundamental particles are usually classified, follow-
ing Bargmann and Wigner [1], in terms of unitary irre-
ducible representations of Poincaré group [2,3]. According
to this classification, particles and ensuing vacuum states
are characterized by their mass m and spin s (or helicity, in
the case of massless particles). In the case of particles
without a sharp value of mass (e.g., unstable particles),
such a classification can be regarded, at best, as an approxi-
mation [3]. In such cases the concept of sharp mass is
substituted with a finite mass-width distribution. Ensuing
variance is proportional to the inverse of particle half-life
due to time-energy uncertainty relation [4,5]. This picture
can also be explained in terms of a nontrivial vacuum
structure possessed by such systems [6].

In the context of quantum field theories (QFT) with
mixing, it was proposed in [7] that the physically relevant
Fock space is the one of states with definite flavor rather
than the one for mass eigenstates. These two spaces are
unitarily inequivalent to each other, and the flavor vacuum
is structurally similar to a BCS condensate. Such a pro-
posal, if realized in nature, will have important phenom-
enological consequences, which have been examined over
the years since its development [8], and pertain to both,
particle physics, specifically particle oscillations, in par-
ticular neutrinos [9–11], and cosmology [12], where it was
argued that the flavor vacuum condensate structure can
contribute to the dark energy of the Universe. It is worthy
of stressing that, as argued in [13], there are significant
differences between the respective neutrino oscillation
formulas in the flavor and mass eigenstate formalisms
that can lead to observable effects in a nonrelativistic
energy regime.
An important aspect of the flavor vacuum is its non-

standard Lorentz invariance properties. Indeed, within this
approach, preliminary study of the QFToscillation formula
in different Lorentz frames was undertaken [14] and
Lorentz violating effects, observable in principle, were
identified. We remark at this stage that Lorentz invariance
properties of the neutrino oscillation formula were studied
in a number of papers, e.g., [14–16]. In Ref. [15], the
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invariance of the standard oscillation formula [17], was
explicitly proved but only in the ultrarelativistic case.
However, it can be argued [7,8,18–20] that such a formula
should be regarded as a quantum-mechanical (QM)
approximation of a more fundamental QFT relation. In
particular QM behavior cannot grasp the nontrivial vacuum
structure whose observable effects are more important at
lower energies. It is this point which was deeply analyzed
within the framework of the flavor vacuum [7], where in
principle observable Lorentz-violating effects have been
identified, as mentioned above. We remark in passing
that low-energy neutrino phenomenology is becoming
increasingly important in understanding cosmic neutrino
background (CNB) and its potential cosmological impli-
cations [21,22], hence in this respect the potential cosmo-
logical effects of the flavor vacuum are quite relevant.
Within this QFT treatment of neutrino oscillations,

associated deformations of the Lorentz energy dispersion
relations were studied in Ref. [16]. Such a modification
of the dispersion relations for the flavor states can be
understood as an “environmental” effect of quantum-
gravitational degrees of freedom in a concrete model of
quantum gravity within the framework of string/brane
theory, the so-called D-foam model [23]. In this context,
the scattering between open strings, representing flavored
matter, and D0-branes, which are viewed as Poincaré-
symmetry-breaking point-like space-time defects, of quan-
tum-gravitational stringy nature, is modeled by an effective
theory, which entails the dynamical generation of mixing
via flavor vacuum condensates [24,25], in agreement with
the generic feature of the flavor vacuum [7], mentioned
previously. Such a vacuum structure can also be obtained
via algebraic, i.e., nonperturbative methods, in the case of
two [26] and three flavor [27] models with SUðnÞL ×
SUðnÞR ×Uð1ÞV chiral flavor symmetry. This nonpertur-
bative analysis shows that the structure of the flavor
vacuum emerges necessarily in that context.
In this connection we can also point out that Lorentz

violating effects implied by a fundamental string theoretical
dynamics characterize also the Standard Model extension
(SME) proposed by Colladay and Kostelecky [28]. In
the SME, CPT and Lorentz violating terms are explicitly
added to the Standard Model (SM) Lagrangian. At this
stage, we should also like to recall the work of [29],
according to which a violation of CPT necessarily implies
the violation of Lorentz invariance. Within such a frame-
work the neutrino oscillations were studied in [30] and
modified dispersion relations connected with an underlying
Planck scale physics were found. Following these develop-
ments, many authors dedicated their efforts to an under-
standing of both the theoretical and the phenomenological
implications of SME or SME-like scenarios (see, e.g.,
[31–33]). It can also be argued [34] that bounds on the
parameters of SME can be fixed through generalized
uncertainty principle [35].

It was recently pointed out [36] that flavor neutrino states
share a common feature with unstable particles, in the sense
that only their energy (mass) distribution has a physical
meaning and the width of this distribution is related to the
inverse of the oscillation length which can be again
deduced from time-energy uncertainty relation [36,37].
Furthermore, the latter result was recently generalized, in
a quantum mechanical context, to stationary curved space-
times [38].
It is worthwhile therefore to clarify the relation between

flavor states and unitary representations of Poincaré group.
This point was first tackled in Ref. [39], where it was
proposed to extend the Poincaré group so as to include an
internal SUð3Þ flavor symmetry in the Standard Model.
Because of Coleman–Mandula theorem [40], the extended
group can only be T3;1 ⋊ Oð3; 1Þ × SUð3Þ.
The aim of this paper is to study Poincaré and discrete

symmetries in a simple toy model that describes oscilla-
tions of a two flavor (A, B) scalar field doublet with mixing
[41,42]. In this context we propose yet another solution to
the apparent incompatibility of Poincaré symmetry on
flavor states, namely that the Poincaré symmetry is sponta-
neously broken on flavor vacuum [7,8,36,41,42]. So, in
particular, the Lagrangian symmetry does not leave vacuum
invariant and the residual symmetry is found to be Eð3Þ.
This spontaneous symmetry breakdown (SSB) is caused by
the complicated condensate structure of the flavor vacuum.
Here we do not specify the origin of this condensate, which
can be motivated by physics beyond SM as is done, e.g., in
Refs. [24–26]. This would, in turn, indicate the necessity
for a dynamical origin of mixing. The action of the broken
charges as symmetry generators on the vacuum, defines a
linear manifold of flavor-degenerate states, which represent
the flavor vacuum manifold. All points on such a vacuum
manifold represent unitarily inequivalent Fock spaces. With
the same reasoning we prove that CPT symmetry is also
spontaneously broken on the flavor vacuum, with the
residual symmetry being CP. In view of the theorem in
[29], then, the breaking of Lorentz symmetry by the flavor
vacuum can be attributed to the (spontaneous) breaking of
CPT symmetry in this approach.
As amain result, we prove, quite surprisingly, that such a

violation does not affect the phenomenologically relevant
flavor oscillation formula, which is demonstrated to be
Poincaré invariant. In fact, here we employ a wave-packet
approach for neutrino oscillations developed in Ref. [13],
which permits to treat this issue in a manifestly covariant
way. The same result can be derived for continuous time-
translations, T and CPT transformations.
The present paper is organized as it follows: in Sec. II we

discuss the incompatibility of irreducible representations of
the Poincaré group on flavor states. In Sec. III the canonical
quantization of flavor (scalar) fields is reviewed [41,42] and
we set up convention employed in the rest of the paper.
Here, unlike in Refs. [41,42], we use the invariant form of
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canonical commutation relations, which makes more evi-
dent eventual Lorentz violations. In Sec. IV Poincaré group
generators are explicitly constructed, in the flavor repre-
sentations, and SSB of time-translations and Lorentz boosts
is shown. Then, in Sec. V, the same procedure is repeated
for the case of discrete symmetries, showing that CPT is
broken on the flavor vacuum. Finally, in Sec. VI, con-
clusions and future perspectives are presented. For the
reader’s convenience we include two Appendixes that
complement more technical aspects from the main text.

II. POINCARÉ GROUP REPRESENTATIONS
AND FIELD MIXING

In this section we briefly discuss the problem of con-
structing flavor states in connection with unitarily irreduc-
ible representations of Poincaré group. By using the
commutation relations (A15)–(A17) one can verify that
Poincaré group has two Casimir invariants [2,3]:

M2 ≡ PσPσ W2 ¼ WσWσ; ð1Þ

where

Wσ ¼ −
1

2
εμνρσJμν Pρ; ð2Þ

is the Pauli–Lubansky operator.
After Bargmann and Wigner [1], particle states are

usually assumed to belong to the unitary irreducible
representations of the Poincaré group [2,3,43]. It follows
that the two quadratic Casimir invariants act as a multiple of
the identity operator, on these states:

M2jk2; s; σi ¼ m2
σjk2; s; σi;

W2jk2; s; σi ¼ −m2
σsðsþ 1Þjk2; s; σi; ð3Þ

where σ indicates some quantum number (e.g., flavor), mσ

is the particle mass and s is its spin.1

Let us now consider the Lagrange density

LðxÞ ¼ ∂μφ
†
fðxÞ∂μφfðxÞ − φ†

fðxÞM2φfðxÞ; ð4Þ

where

φfðxÞ ¼
�
φAðxÞ
φBðxÞ

�
; M2 ¼

�
m2

A m2
AB

m2
AB m2

B

�
; ð5Þ

which describes the dynamics of two coupled (mixed)
scalar fields that wewill call flavor fields, in a close analogy
with the terminology used in quark and neutrino physics. A
pressing problem in the study of fundamental aspects of
flavor physics is the correct definition of flavor states

[7,8,19,20]. However, it is clear that these cannot be taken
as elements of irreducible representations of the Poincaré
group. This was already noticed, e.g., in Ref. [39]. The
argument for this is very simple: if this were not true we
should have2:

M2jkσ; σi ¼ m2
σjkσ; σi; σ ¼ A;B: ð6Þ

which is clearly false, because flavor states do not have a
definite mass.3

It thus seems that Poincaré symmetry is not compatible
with flavor mixing. One possibility would be to extend the
Poincaré group. For instance, in Ref. [39] it was proposed
to consider T3;1 ⋊ Oð3; 1Þ × SUðnÞ, where n is the number
of flavors involved. In sections to follow we propose and
discuss yet another possibility, namely we will quantize
flavor fields directly in the flavor space, where the vacuum
is manifestly Poincaré noninvariant and show that the
Poincaré symmetry is spontaneously broken in the sym-
metry breaking scheme

T3;1 ⋊ Oð3; 1Þ → Eð3Þ: ð7Þ

Here Eð3Þ denotes the three dimensional Euclidean group.
The present analysis does not investigate the actual

mechanism that is responsible for this SSB. A simple
dynamical model where such a SSB can naturally be
encountered is considered in Ref. [26]. There it is shown
that a necessary condition for dynamical generation
of fermion mixing, in models characterized by chiral
flavor symmetry, is the vacuum condensation of fermion-
antifermion pairs, which mix particles with different
masses and so, dynamical mixing generation requires a
mixing at level of vacuum. In that context, the Lorentz
symmetry is spontaneously broken by the presence of such
exotic condensates, via the SSB scheme:

T3;1 ⋊ Oð3; 1Þ × SUð2ÞL × SUð2ÞR ×Uð1ÞV
→ Uð1ÞV × Eð3Þ; ð8Þ

where L and R indicate the left and right components of
the chiral group, respectively, and V is the vector group.
The global Uð1ÞV invariance is related to the conservation
of total flavor charge. Here we believe that it is quite
feasible that a similar mechanism drives the SSB of
Poincaré symmetry also in the bosonic case. We stress
that, in this case, the physical vacuum must be necessarily
the flavor vacuum: otherwise, we cannot have dynamical

1Here, for simplicity, we assume the same spin for each σ.

2Here we do not consider the Pauli–Lubansky operator
because we limit to the case of scalar (spinless) fields.

3Strictly speaking, in QM one can construct an operator of the
form (6) but such operator cannot be interpreted as a mass
operator. In QFT this is impossible due to unitary inequivalence
of flavor and mass representation.
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mixing generation. This is a nonperturbative result, whose
details can be found in Ref. [26]. This has far reaching
phenomenological and theoretical consequences: correc-
tions to standard oscillation formula [13], modifications of
Casimir force [44], emergence of a natural contribution to
dark energy [12]. Moreover, in the following we show that
oscillation formula derived by means of flavor vacuum is
Poincaré invariant, whereas in the case of standard oscil-
lation formula this was only proved in the ultrarelativistic
limit [15]. The two formulas coincide in that regime.

III. FLAVOR FIELDS QUANTIZATION

Let us now consider a simple scalar model for flavor
oscillations described by the Lagrange density (4), which
can be diagonalized through the following transformation:

φfðxÞ ¼ UφmðxÞ; U ¼
�

cos θ sin θ

− sin θ cos θ

�
; ð9Þ

where tan 2θ ¼ 2m2
AB=ðm2

B −m2
AÞ. After this transforma-

tion, L becomes

LðxÞ ¼ ∂μφ
†
mðxÞ∂μφmðxÞ − φ†

mðxÞM2
dφmðxÞ; ð10Þ

where

φmðxÞ ¼
�
φ1ðxÞ
φ2ðxÞ

�
; M2

d ¼
�
m2

1 0

0 m2
2

�
: ð11Þ

The Lagrange density (10) describes two free scalar fields
with definite particle masses m1 and m2. They can be thus
expanded as:

φjðxÞ ¼
Z

d3k
2ωk;jð2πÞ3

½ak;je−iωk;jt þ b†−k;je
iωk;jt�eik·x;

j ¼ 1; 2; ð12Þ

where the annihilation and creation operators satisfy the
following commutation relations:

½ak;i; a†p;j� ¼ ½bk;i; b†p;j� ¼ 2ωk;ið2πÞ3δðk − pÞδij; ð13Þ

and annihilate the mass vacuum:

ak;jj0i1;2 ¼ bk;jj0i1;2 ¼ 0; ð14Þ

i.e., the ground state of the system. Note that, in contrast to
Refs. [41,42] we use the Lorentz invariant commutation
relations (13). We now expand flavor fields in a similar
way:

φσðxÞ¼
Z

d3k
2ωk;σð2πÞ3

½ak;σðtÞe−iωk;σ tþb†−k;σðtÞeiωk;σ t�eik·x;

σ¼A;B; ð15Þ

with ωk;σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þ μ2σ

p
and μσ are mass parameters which

have to be specified. From the mixing transformation (9) it
follows that4:

ak;AðtÞ ¼
Z

d3xeiðωk;At−k·xÞi∂0

↔
ðcos θφ1ðxÞ þ sin θφ2ðxÞÞ;

ð16Þ

and similarly for other operators. Explicitly, we find that

2
6664

ak;A

b†−k;A
ak;B

b†−k;B

3
7775¼

2
6664

cθρkA1 cθλkA1 sθρkA2 sθλkA2
cθλk�A1 cθρk�A1 sθλk�A2 sθρk�A2
−sθρkB1 −sθλkB1 cθρkB2 cθλkB2
−sθλk�B1 −sθρk�B1 cθλk�B2 cθρk�B2

3
7775

2
6664

ak;1

b†−k;1
ak;2

b†−k;2

3
7775;

ð17Þ

where cθ ≡ cos θ, sθ ≡ sin θ, and

ρkσj ¼ jρkσjjeiðωk;σ−ωk;jÞt; λkσj ¼ jλkσjjeiðωk;σþωk;jÞt;

ðσ; jÞ ¼ ðA; 1Þ; ðB; 2Þ; ð18Þ

where

jρkσjj ¼
1

2

�
ωk;σ

ωk;j
þ 1

�
; jλkσjj ¼

1

2

�
ωk;σ

ωk;j
− 1

�
: ð19Þ

Note that (17) represents a canonical transformation
because

½ak;σðtÞ; a†p;ρðtÞ� ¼ ½bk;σðtÞ; b†p;ρðtÞ�
¼ 2ωk;σð2πÞ3δðk − pÞδσρ: ð20Þ

For future convenience, we write explicitly the inverse
transformation as:

ak;j ¼
X
σ¼A;B

JkjσðtÞak;σðtÞ; ð21Þ

where ak;j ¼ ½ ak;j b†−k;j �T , ak;σ ¼ ½ak;σ b†−k;σ �T , and
the matrix Jk has the form

4Here the time dependence of creation and annihilation
operators indicates that flavor fields are interacting fields.
Actually, this interacting model can be solved exactly, without
perturbation expansion.
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JkðtÞ≡

2
6664

cθρk1A cθλk1A −sθρk1B −sθλk1B
cθλk�1A cθρk�1A −sθλk�1B −sθρk�1B
sθρk2A sθλk2A cθρk2B cθλk2B
sθλk�2A sθρk�2A cθλk�2B cθρk�2B

3
7775

¼
�
Jk1AðtÞ Jk1BðtÞ
Jk2AðtÞ Jk2BðtÞ

�
; ð22Þ

and Jkjσ are 2 × 2 symmetric matrices.
Let us notice that we have not specified the mass

parameters μσ. The situation here is similar to the one
encountered in QFT in curved spacetime [45] where one
has an infinite set of creation and annihilation operators

related by a Bogoliubov transformation. In Ref. [44] it
was shown that different choices of μσ affect the strength
of the Casimir force between two plates. Typical choices
studied in literature [46] are μA ¼ m1, μB ¼ m2 and
μA ¼ mA, μB ¼ mB.
Therefore, one can define the flavor vacuum as the state,

which is annihilated by flavor annihilation operators at a
fixed time t5:

ak;σðtÞj0ðtÞiA;B ¼ bk;σðtÞj0ðtÞiA;B ¼ 0: ð23Þ

This is characterized by a boson-condensate structure in
terms of modes with definite mass:

A;Bh0ðtÞja†k;1ak;1j0ðtÞiA;B ¼ A;Bh0ðtÞjb†k;1bk;1j0ðtÞiA;B ¼ 2ð2πÞ3ðcos2θjλk1Aj2ωk;A þ sin2θjλk1Bj2ωk;BÞ; ð24Þ

A;Bh0ðtÞja†k;2ak;2j0ðtÞiA;B ¼ A;Bh0ðtÞjb†k;2bk;2j0ðtÞiA;B ¼ 2ð2πÞ3ðsin2 θjλk2Aj2ωk;A þ cos2 θjλk2Bj2ωk;BÞ; ð25Þ

A;Bh0ðtÞja†k;1ak;2j0ðtÞiA;B ¼ A;Bh0ðtÞjb†k;1bk;2j0ðtÞiA;B ¼ 2ð2πÞ3 sin 2θðλk�1Aλk2Aωk;A − λk�1Bλ
k
2Bωk;BÞ: ð26Þ

Shortly we will see that this structure is responsible for the
Poincaré and CPT symmetry breaking. In particular, the
exotic condensates (26), which mix particles and antipar-
ticles with different masses could represent a signature of a
fundamental dynamical symmetry breaking mechanism
that spontaneously breaks Poincaré symmetry and at the
same time generates mixing (see Refs. [26,27]) in the
fermion case. Note that all these condensates vanish for
ultrarelativistic modes (jk ≫ mσj and jk ≫ mσj). In this
regime, eventual effects of SSB should vanish. The same is
true also for θ ¼ 0.
Flavor states are defined as excitations over the flavor

vacuum, i.e.,

jak;σðtÞi≡ a†k;σðtÞj0ðtÞiA;B; jbk;σðtÞi≡ b†k;σðtÞj0ðtÞiA;B:
ð27Þ

The later are eigenstates of flavor charges

QσðtÞ ¼ i
Z

d3x∶φ†
σðxÞ∂0

↔
φσðxÞ

≔
Z

d3k
2ωk;σð2πÞ3

ða†k;σðtÞak;σðtÞ − b†k;σðtÞbk;σðtÞÞ;

ð28Þ

at fixed time6 t. In particular

QσðtÞjak;σðtÞi ¼ jak;σðtÞi; QσðtÞjbk;σðtÞi ¼ −jbk;σðtÞi:
ð29Þ

Although flavor charges are not conserved one can intro-
duce the total flavor charge:

Q ¼
X
σ

QσðtÞ; ð30Þ

which is conserved (½Q;H� ¼ 0) and which also satisfies
the relation

Qjak;σðtÞi ¼ jak;σðtÞi; Qjbk;σðtÞi ¼ −jbk;σðtÞi: ð31Þ

From (28) it is also clear that

QσðtÞj0ðtÞiA;B ¼ Qj0ðtÞiA;B ¼ 0: ð32Þ

We next proceed to discuss SSB of Poincaré symmetry in
this system.

IV. SPONTANEOUS POINCARÉ SYMMETRY
BREAKING

A. Spacetime translations

Let us start by considering spacetime translations, i.e.,
the subgroup T3;1 of the Poincaré group. The generator of
space translations has the usual form:

Pi ¼
X
σ¼A;B

Z
d3xðπ†σðxÞ∂iφσðxÞ þ π†σðxÞ∂iφ

†
σðxÞÞ;

i ¼ 1; 2; 3; ð33Þ

5Here and throughout we work in the Heisenberg
representation.

6Here normal ordering is taken with respect to j0ðtÞiA;B.
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so that

TðbÞ≡ exp ðib · PÞ ¼ exp ðibiPiÞ ¼ exp ð−ibiPiÞ; ð34Þ

and

TðbÞφσðt;xÞT−1ðbÞ ¼ φσðt;xþ bÞ: ð35Þ

By using the expansion (15), Pi can be rewritten as:

Pi ¼
X
σ¼A;B

Z
d3k

2ωk;σð2πÞ3
kiða†k;σðtÞak;σðtÞþb†k;σðtÞbk;σðtÞÞ:

ð36Þ

This is time independent and commutes with the flavor
charge, i.e., ½Pi;QσðtÞ� ¼ 0 at all times. One can also easily
check that

Pij0ðtÞiA;B ¼ 0; ð37Þ

and so

TðbÞj0ðtÞiA;B ¼ j0ðtÞiA;B: ð38Þ

In other words, flavor vacuum is invariant under space
translations.
The situation changes if one looks at time translations.

By using canonical commutation relations one can see that

ak;σðtÞ ¼
X
ρ¼A;B

ðfkσρðtÞak;ρð0Þ þ gkσρðtÞb†−k;ρð0ÞÞ; ð39Þ

b†−k;σðtÞ ¼
X
ρ¼A;B

ð−gk�σρ ðtÞak;ρð0Þ þ fk�σρ ðtÞb†−k;ρð0ÞÞ; ð40Þ

where

fkσρðtÞ ¼
1

ð2πÞ32ωk;ρ
½ak;σðtÞ; a†k;ρð0Þ�;

gkσρðtÞ ¼
1

ð2πÞ32ωk;ρ
½b−k;ρð0Þ; ak;σðtÞ�: ð41Þ

The explicit form of these functions is listed in Appendix B.
It is then clear that flavor vacuum is not time-independent.
To see this explicitly, let us write the Hamiltonian in the
normal-ordered form7:

H ¼
Z

d3xð∶π†
fðxÞπfðxÞ þ∇φ†

fðxÞ ·∇φfðxÞ

þ φ†
fðxÞM2φfðxÞ∶Þ: ð42Þ

Because the Hamiltonian is time independent, we can
expand it in terms of flavor creation and annihilation
operators at t ¼ 0:

H ¼
X
σ;τ

Z
d3k

2ωk;σð2πÞ3

× ½wk
στða†k;σð0Þak;τð0Þ þ b†k;σð0Þbk;τð0ÞÞ

þ ykστða†k;σð0Þb†−k;τð0Þ þ b−k;σð0Þak;τð0ÞÞ�; ð43Þ

where the coefficients are given in Eqs. (B7)–(B11). It is
now easy to verify that the Hamiltonian does not annihilate
the flavor vacuum, since

Hj0iA;B ¼
X
σ;τ

Z
d3k

2ωk;σð2πÞ3
ykστjak;σi ⊗ jb−k;τi ≠ 0;

ð44Þ

where j0iA;B ≡ j0ðt ¼ 0ÞiA;B. Note, however, that

A;Bh0jHj0iA;B ¼ 0 as it should. Therefore, the symmetry
under time translations is spontaneously broken since
the action and ensuing field equations are invariant under
time translations. By using Eq. (32) one can explicitly
verify that the state (44) carries the zero total charge, i.e.,

QHj0iA;B ¼ 0; ð45Þ

as we would expect from the conservation of Q. We see,
therefore, that flavor vacua at different times form a flavor
vacuum manifold:

j0ðtÞiA;B ¼ TðtÞj0iA;B; ð46Þ

where

TðtÞ≡ exp ðiHtÞ; ð47Þ

is the time-evolution operator. The flavor vacuum manifold
was introduced in close analogy with vacuum manifold
defined in the study of SSB in gauge theories. However,
here the different vacua are degenerate with respect to total
flavor charge and not to energy. In fact, the states repre-
senting the flavor vacuummanifold do not posses any sharp
value of energy—energy fluctuates (has a nontrivial vari-
ance) on each flavor vacuum [36], see also Eq. (50).
From Eqs. (44) and (46) we can also find that for

generic t

Hj0ðtÞiA;B ¼
X
σ;τ

Z
d3k

2ωk;σð2πÞ3
ykστjak;σðtÞi ⊗ jb−k;τðtÞi

≠ 0;ð48Þ

which completes our proof of the SSB of the time trans-
lation symmetry. We have thus proved that spacetime

7Normal ordering is defined with respect to flavor vacuum at
t ¼ 0.
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translation symmetry is spontaneously broken on flavor
vacuum. The residual vacuum symmetry is then T3, i.e., the
group of spatial translations.
In passing, we can also establish an analogue of the

Fabri–Picasso theorem [47] for the present situation. Let
us consider the square norm of Hj0iA;B:

kHj0iA;Bk2 ¼ A;Bh0jH2j0iA;B ¼
Z

d3xA;Bh0jHT00ðxÞj0iA;B

¼
Z

d3xA;Bh0jHHðxÞj0iA;B; ð49Þ

where T00ðxÞ and HðxÞ are the timetime component of
energy momentum tensor and Hamilton density, respec-
tively. Let us regulateH so that for a sufficiently large space
domain Ω of volume V we introduce HV ¼ R

Ω d3xHðxÞ.
By using the space-translation invariance of the vacuum
[cf. Eq. (38)], we find that

kHV j0iA;Bk2 ¼ A;Bh0jH2
V j0iA;B ¼ VA;Bh0jHVHð0Þj0iA;B;

ð50Þ

where V ¼ R
Ω d3x. If we now send V → ∞, we see that

(50) diverges unless limV→∞HV j0iA;B ¼ Hj0iA;B ¼ 0.
This would, however, be in contradiction with the sym-
metry breaking condition (44). Therefore, the mathematical
implementation of these ideas is rather delicate [48]. The
finite volume Hamiltonian HV induces a “finite time
translation,” TVðtÞ ¼ expðitHVÞ, which in turn gives rise
to a “shifted ground state,” ½j0ðtÞiA;B�V ¼ TVðtÞj0iA;B.
However, very much like the limit limV→∞HV does not
exist, the operator expðitHÞ is not well defined on the
flavor Fock space HfðτÞ (for any τ). As a consequence
[48]:

lim
V→∞A;Bh0j½j0ðtÞiA;B�V ¼ lim

V→∞A;Bh0j expðitHVÞj0iA;B ¼ 0:

ð51Þ

In other words, flavor Fock spaces at different times are
unitarily inequivalent.
The intuitive picture of spontaneous symmetry breaking,

based on the observation that a symmetry transformation
(44) does not leave the flavor vacuum state intact, suggests
high degeneracy of equivalent flavor vacuum states
j0ðtÞiA;B. Indeed, since the Hamiltonian H commutes with
the charge operator Q, so will a finite symmetry trans-
formation TðtÞ generated by H. It will therefore transform
the one flavor vacuum state into another with the same
flavor charge. Since the time-translation symmetry group is
continuous, we will find infinitely many degenerate flavor
vacuum states. On account of the fact that they are all
connected by symmetry transformations, they must be
physically equivalent and any one of them can serve as

a starting point for the construction of the spectrum of
excited flavor states. Let us consider, for example, the
flavor oscillation formula [42]:

Qσ→ρðt; t0Þ ¼ A;Bhak;σðt0ÞjQρðtÞjak;σðt0ÞiA;B: ð52Þ

One can easily verify that

Qσ→ρðt; t0Þ ¼ Qσ→ρðt − t0Þ; ð53Þ
i.e., flavor oscillations are invariant under time translations.
In fact,

A;Bhak;σðt0ÞjQρðtÞjak;σðt0ÞiA;B
¼ A;Bhak;σð0ÞjTðt − t0ÞQρð0ÞT−1ðt − t0Þjak;σð0ÞiA;B
¼ A;Bhak;σð0ÞjQρðt − t0Þjak;σð0ÞiA;B; ð54Þ

where we used the group property T−1ðt0ÞTðtÞ ¼ Tðt − t0Þ.
It is thus clear that the choice of time t0, which we use for
the construction of the (Heisenberg representation) state
space, is quite immaterial.
It can also be shown that unlike the transformations of

physical states, finite symmetry transformations TVðtÞ of
observables can be defined consistently in the V → ∞ limit
in theories that are sufficiently causal [47]. In the following
reasoning it will always be implicitly understood that the
large-V regulator should be properly employed according
to indicated lines whenever expectation values are to be
computed.

B. Proper Lorentz group

It is well known that the generator of proper Lorentz
algebra soð3; 1Þ can be expressed as [49]

Jμν ≡
Z

d3x∶ðxμT0ν − xνT0μÞ∶; μ; ν ¼ 0;…3: ð55Þ

Here Tμν is the energy-momentum tensor.
Let us start from its spatial part:

Jij ¼ −
X
σ

Z
d3x∶xiðπ†σðxÞ∂jφσðxÞ þ ∂jφ

†
σðxÞπσðxÞÞ

− xjðπ†σðxÞ∂iφσðxÞ þ ∂iφ
†
σðxÞπσðxÞÞ∶: ð56Þ

One can equivalently use the angular-momentum operators
Jk defined in Eq. (A12)

L≡ J ¼ −
X
σ

Z
d3x½π†σðxÞðx ×∇ÞφσðxÞ

þ φ†
σðxÞðx × ∇⃖ÞπσðxÞ�; ð57Þ

where we identified J with the orbital angular-momentum
vector L ¼ ðL1; L2; L3Þ because no extra spin contribution
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is present for scalar fields. In terms of annihilation and
creation operators we have:

L ¼
Z

d3k
2ωk;σð2πÞ3

½a†k;σðtÞðk ×∇kÞak;σðtÞ

þ b†k;σðtÞðk × ∇kÞbk;σðtÞ�; ð58Þ

One can easily verify that

½L; QσðtÞ� ¼ ½L; H� ¼ 0: ð59Þ

It is also not difficult to see that this operator annihilates the
flavor vacuum:

Lj0ðtÞiA;B ¼ 0: ð60Þ

In fact, we can always perform a unitary canonical trans-
formation which diagonalizes one of the components
of the angular momentum.8 For example, mimicking the
case of a free scalar field [50] we can perform the canonical
transformation

aplm;σðtÞ≡ ilp
Z

dΩpY�
lmðΩpÞap;σðtÞ; ð61Þ

bplm;σðtÞ≡ ilp
Z

dΩpY�
lmðΩpÞbp;σðtÞ; ð62Þ

where p ¼ jpj, Ylm are the spherical harmonics and Ωp is
the solid angle at fixed p. In this representation L3 has a
diagonal form:

L3 ¼
X
l;m;σ

Z
∞

0

dpmða†plm;σðtÞaplm;σðtÞ þ b†plm;σðtÞbplm;σðtÞÞ:

ð63Þ

From Eqs. (61), (62) it is evident that:

aplm;σðtÞj0ðtÞiA;B ¼ bplm;σðtÞj0ðtÞiA;B ¼ 0: ð64Þ

It follows that L3j0i ¼ 0. The same procedure can be
repeated for the other components. In the same way, by
defining the generator of rotations

RðϑÞ ¼ exp ð−iϑ ·LÞ; ð65Þ

one can verify that

RðϑÞj0ðtÞiA;B ¼ j0ðtÞiA;B; ð66Þ

which shows that flavor vacuum is rotationally invariant.

Let us now analyze the transformation properties of the
flavor vacuum under the Lorentz boosts.9 The generator of
a boost along the lth axis is

Kl ¼
Z

d3x∶ðx0T0l − xlT00Þ∶: ð67Þ

This can also be written as

Kl ¼ x0Pl −
Z

d3xxlH: ð68Þ

In our case:

Kl ¼
�
x0

Z
d3x∶ðπ†

fðxÞ∂lφfðxÞ þ ∂lφ†
fðxÞπfðxÞÞ∶

−
Z

d3xxl∶ðπ†
fðxÞπfðxÞ þ∇φ†

fðxÞ ·∇φfðxÞ

þ φ†
fðxÞM2φfðxÞÞ∶

�
: ð69Þ

We can now rewrite (69) in terms of flavor creation and
annihilation operators (17). By noticing that in the mass
basis this is just the sum of boost generators for the two
massive fields φ1 and φ2 (cf. e.g., Ref. [52]), we get

Kl ¼ −i
X
j¼1;2

Z
d3k

2ωk;jð2πÞ3
∶a†k;jΩk

j
∂
∂kl ak;j∶ ð70Þ

¼ −i
X

σ;ρ¼A;B

Z
d3k

2ωk;σð2πÞ3
∶a†k;σðtÞΩk

σρðtÞ
∂
∂kl ak;ρðtÞ

þ a†k;σðtÞΩk
σρ;lðtÞak;ρðtÞ∶; ð71Þ

where we have introduced the matrices

Ωk
j ¼ ωk;jI2; Ωk

σρðtÞ ¼ ωk;σ

X
j¼1;2

Jk†jσ ðtÞJkjρðtÞ;

Ωk
σρ;lðtÞ ¼ ωk;σ

X
j¼1;2

Jk†jσ ðtÞΩk
j

∂
∂kl J

k
jρðtÞ; ð72Þ

and I2 is the 2 × 2 identity matrix. The explicit form of
Ωk

σ ðtÞ and Ωk
σ;iðtÞ is not very illuminating and we do not

report it here. We only notice that these are nondiagonal
matrices.

8These cannot be diagonalized simultaneously, because of the
SOð3Þ commutation relations.

9Note that here, as in Ref. [51] for unstable particles, flavor
states have a definite momentum. This is important to remark,
because for states that are not energy eigenstates boost and
momentum translation are not equivalent.
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A generic boost can be thus expressed in the form:

UðLÞ ¼ exp

�
−i

X3
l¼1

ξlKl

�
; ð73Þ

where LðξÞ indicates the Lorentz boost transformation:

xμ → x0μ ¼ Lμ
νðξÞxν: ð74Þ

Now, for flavor fields we can write

UðLÞφσðxÞU−1ðLÞ ¼ φσðx0Þ; ð75Þ

i.e., φσ behaves as a scalar under Lorentz boost. From
Eq. (15) we get:

UðLÞφσðxÞU−1ðLÞ ¼
Z

d3k
2ωk;σð2πÞ3

× ½ak;σðt0Þe−ikx0 þ b†k;σðt0Þeikx
0 �:

ð76Þ

Here and in the following we formally use the notation Lk
to indicate Lj

μkμ (j ¼ 1, 2, 3), respectively. This equation
should be actually written in the form:

UðLÞφσðxÞU−1ðLÞ ¼
Z

d4k
ð2πÞ4 ð2πÞδ

4ðk2 − μ2σÞθðk0Þ½ak;σðt0Þe−ikx0 þ b†k;σðt0Þeikx
0 �: ð77Þ

Performing the change of variables [49]: k → k0 ¼ L−1k, we have:

UðLÞφσðxÞU−1ðLÞ ¼
Z

d4k
ð2πÞ4 ð2πÞδ

4ðk2 − μ2σÞθðk0Þ½aLk;σðt0Þe−ikx þ b†Lk;σðt0Þeikx�: ð78Þ

By integrating over k0 we find:

UðLÞφσðxÞU−1ðLÞ ¼
Z

d3k
2ωk;σð2πÞ3

½aLk;σðt0Þe−ikx þ b†Lk;σðt0Þeikx�: ð79Þ

Therefore, by comparing with Eq. (15) we find

UðLÞak;σðtÞU−1ðLÞ ¼ aLk;σðt0Þ; ð80Þ

UðLÞbk;σðtÞU−1ðLÞ ¼ bLk;σðt0Þ: ð81Þ
To find the explicit form of these operators, in terms of the ones at time t, we can employ canonical commutation relations
to get:

UðLÞak;σðtÞU−1ðLÞ ¼ aLk;σðt0Þ ¼
X
ρ¼A;B

1

2ωLk;ρð2πÞ3
ð½aLk;σðt0Þ; a†Lk;ρðtÞ�aLk;ρðtÞ − ½aLk;σðt0Þ; b−Lk;ρðtÞ�b†−Lk;ρðtÞÞ; ð82Þ

and similar relations hold also for the other operators.10 These are analogous to Eqs. (39)–(40). If we now look at flavor-
vacuum transformation properties under boosts we have

j0ðt0; ξÞiA;B ¼ UðLÞj0ðtÞiA;B

¼ exp

�
−
X3
l¼1

ξl
X

σ;ρ¼A;B

Z
d3k

2ωk;σð2πÞ3
∶a†k;σðtÞΩk

σρðtÞ
∂
∂kl ak;ρðtÞ þ a†k;σðtÞΩk

σρ;lðtÞak;ρðtÞ∶
�
j0ðtÞiA;B: ð83Þ

We see immediately that j0ðt0; ξÞiA;B ≠ j0ðtÞiA;B and hence the flavor vacuum is changed under the action of Lorentz boosts,
while the action and ensuing field equations stay unchanged. In other words, the Lorentz boosts symmetry is spontaneously
broken on flavor vacuum. By varying ξ, we generate a flavor vacuummanifold of unitarily inequivalent states, as in the case
of flavor vacua at different times, which we analyzed in Sec. IVA. In fact, since

10Note that commutators at different times are c-numbers.
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½Kl;Q� ¼ 0; ð84Þ
all states defined in (83) correspond to zero total flavor
charge. Same considerations as in the time-translation case,
based on Fabri–Picasso theorem and the large-V regulari-
zation, can be repeated here in the same way.
From the above discussion it is clear that only rotational

symmetry SOð3Þ, whose generators are given by Eq. (65) is
a symmetry of the flavor vacuum. This result, together with
the one of the previous section, tells us that the flavor
vacuum symmetry group is the Euclidean group Eð3Þ, as
stated in Sec. II. The quadratic Casimir of this group are
[43] P2 ≡ P · P and J · P, which now substitute P2 andW2.
It is worthy of remarking that similar results were derived in
the case of unstable particles [6,53], which strengthens
even more the analogy between flavor mixing and unstable
particles proposed in Ref. [36]. Note that the flavor vacuum
manifold has together 4 flavor flat directions (i.e., direc-
tions along which the total flavor charge remains zero)
corresponding to the number of broken generators. In
particular, the flavor vacuum manifold M ¼ fj0ðt; ξÞiA;B;
ðt; ξÞ ∈ R4g is isomorphic to the quotient space ðT3;1 ⋊
Oð3; 1ÞÞ=Eð3Þ. Note that dimension of the quotient space,
i.e., dim½ðT3;1 ⋊ Oð3; 1ÞÞ=Eð3Þ� is correctly 10 − 6 ¼ 4.
Let us also observe that there are no energy flat directions
on M. Indeed, from the Fabri–Picasso theorem
[cf. Eq. (50)] we see that the variance of the energy is
infinite at any point on the vacuum manifold M, which in
turn prohibits the existence of energy flat directions onM.
Note that such a divergence is basically an infrared problem
(large-V problem) and it can be controlled by means of an
appropriate regularization scheme. This argument indicates
that there should be no Goldstone modes present in the
theory, since these are normally associated with gapless
fluctuations along flat energy directions.
So, while the chargeQAðtÞ does not fluctuate on the state

j0ðt; ξÞiA;B ∈ M, the fluctuations of E are on the very same
state unbounded. This complementarity between E and QA
fluctuations on M might also be viewed as a direct
manifestation of flavor-energy uncertainty relations [36].11

As in the case of time-translation, we can now show that
different states in the flavor vacuum manifold are physi-
cally equivalent. In other words, flavor oscillations can be
equivalently described in every Lorentz frame. Let us
consider a flavor wave packet:

jaσðyÞi≡
Z

d3k
2ωk;σð2πÞ3

e−ikyfðkÞak;σðy0Þj0ðy0ÞiA;B;

ð86Þ

and suppose that the momentum space distribution fðkÞ is
Lorentz invariant. Therefore:

ja0σðyÞi≡UðLÞjaσðyÞi ¼ jaσðy0Þi; ð87Þ

as one can derive from Eqs. (80), (81). Covariant oscillation
formula should be written as:

J μ
σ→ρðx − yÞ ¼ haσðyÞjJμρðxÞjaσðyÞi; ð88Þ

where JμρðxÞ are the flavor currents defined as [42]

JμρðxÞ≡ iφ†
ρðxÞ∂μ

↔
φρðxÞ: ð89Þ

Clearly, Eq. (52) can be obtained by taking μ ¼ 0 and
integrating on space variables.
In the primed Lorentz frame Eq. (52) reads

ha0σðyÞjJμρðx0Þja0σðyÞi ¼ haσðy0ÞjJμρðx0Þjaσðy0Þi
¼ J μ

σ→ρðx0 − y0Þ: ð90Þ

Therefore, the flavor oscillation formula in the primed
Lorentz frame is the same as in the unprimed one. This
shows, once more, that Poincaré (and Lorentz) symmetry
breaking on the flavor vacuum, which leads to nonzero
vector current vacuum expectation values (89), has no
direct consequences on flavor oscillations. Thus, Poincaré
invariance breaking contributions to QFT oscillation for-
mula as reported in [14] are mere artifacts of the non-
covariant formalism (oscillations in time) used in that work.
As we have seen above, another important feature of the

Poincarè/Lorentz SSB via the dynamical flavor conden-
sates is the apparent absence of any Goldstone bosons, as
discussed above. Thus the spectrum of the flavor vacuum
remains the same as the mass eigenstate one, and we have
no extra massless modes. This situation is to be contrasted
with the standard lore of nonflavored QFT. Indeed, it has
been suggested in [54], that, in gauge theories with Lorentz
SSB, in the sense of a vector gauge boson acquiring a
vacuum expectation value, the massless U(1) photon plays
the role of such a Goldstone boson. In the current, non-
gauge, context, although the flavor currents (89) acquire
nonzero vacuum expectation values (90) in terms of the

11In fact, for any label time τ there exists QσðτÞ such that
QσðτÞj0ðτ; ξÞiA;B ¼ 0 [cf. Eq. (32)] but ½QσðtÞ; H� ≠ 0. Let us
now consider the flavor-energy uncertainty relations [36]

ΔEΔQσðtÞ ≥
1

2

���� dhQσðtÞi
dt

����; ð85Þ

where ΔQσ and ΔE are standard deviations of charge and energy,
respectively evaluated on j0ðτ; ξÞiA;B flavor vacuum at the fixed
label time (e.g., τ ¼ 0). Because Qσð0Þj0ð0; ξÞiA;B ¼ 0 we have
that ΔQσðtÞjτ→0 ¼ 0. The right-hand side (rhs) of (85) equals
zero only for θ ¼ 0 orm1 ¼ m2, i.e., for the nonmixing case. This
is, however, trivial situation since in this case j0iA;B ¼ j0i1;2 and
hence no symmetry breaking is present. On the other hand, for
θ ≠ 0, the rhs of (85) is nonzero, while on the left-hand side (lhs)
ΔQσðtÞjt→0 ¼ 0, implying ΔE → ∞.
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flavor vacuum, nonetheless, as we explained above, they
are not associated with any Goldstone bosons.

V. DISCRETE SYMMETRIES

Until now we did not consider the discrete symmetries.
However, they have to be included in a complete study
of Lorentz group properties of flavor operators. Moreover,
in the current literature, Lorentz symmetry breaking is
often discussed in parallel with CPT symmetry breaking
[28–30], because the CPT theorem strongly depends on the
assumption of Lorentz invariance [2].
In this section we study the behavior of flavor annihi-

lation and creation operators under parity, charge conju-
gation and time reversal. This will be done by considering

discrete symmetries both separately and in different rel-
evant combinations. We will see that time reversal is
spontaneously broken and as consequence also CPT is
not a symmetry of the flavor vacuum.

A. Parity

The parity transformation of the flavor scalar fields is
given by:

PφσðxÞP−1 ¼ ησ;Pφσðx̃Þ; ð91Þ

where P is the unitary parity operator and x̃ ¼ ðt;−xÞ. We
choose the intrinsic parity to satisfies jησ; P j2 ¼ 1. By using
the explicit expansion (15), we find:

PφσðxÞP−1 ¼
Z

d3k
2ωk;σð2πÞ3

½Pak;σðtÞP−1e−iωk;σ t þ Pb†−k;σðtÞP−1eiωk;σ t�eik·x

¼ ησ; P

Z
d3k

2ωk;σð2πÞ3
½ak;σðtÞe−iωk;σ t þ b†−k;σðtÞeiωk;σ t�e−ik·x: ð92Þ

Consequently, transformations of creation and annihilation operators satisfy the following relations:

Pak;σðtÞP−1 ¼ ησ; Pa−k;σðtÞ; Pbk;σðtÞP−1 ¼ η�σ; Pb−k;σðtÞ; ð93Þ

Pa†k;σðtÞP−1 ¼ η�σ; Pa
†
−k;σðtÞ; Pb†k;σðtÞP−1 ¼ ησ; Pb

†
−k;σðtÞ: ð94Þ

It can be checked that the explicit form of P satisfying above relations reads (see also Ref. [50])

P ¼ exp

�
i
π

2

Z
d3k

2ωk;σð2πÞ3
½ða†−k;σðtÞak;σðtÞ þ b†−k;σðtÞbk;σðtÞÞ − ησ; Pða†k;σðtÞak;σðtÞ þ b†k;σðtÞbk;σðtÞÞ�

	
: ð95Þ

By inspection we see that the flavor vacuum is invariant
under parity transformation, i.e., up to an irrelevant phase
factor we have

Pj0ðtÞiA;B ¼ j0ðtÞiA;B: ð96Þ

As a simple consequence we get that

Pjak;σðtÞi ¼ ja−k;σðtÞi; ð97Þ

and flavor charges (28) remain invariant, i.e.,

½P;QσðtÞ� ¼ 0: ð98Þ

B. Charge conjugation

The charge conjugation transformation of the flavor
scalar fields is given by

CφσðxÞC−1 ¼ ησ; Cφ
†
σðxÞ; ð99Þ

where C is the unitary charge conjugation operator. Again,
our convention is jησ; C j2 ¼ 1. Once more, by using the
explicit expansion (15), we find:

CφσðxÞC−1 ¼
Z

d3k
2ωk;σð2πÞ3

½Cak;σðtÞC−1e−ikx þ Cb†k;σðtÞC−1eikx�

¼ ησ; C

Z
d3k

2ωk;σð2πÞ3
½a†k;σðtÞeikx þ bk;σðtÞe−ikx�: ð100Þ

Transformations of creation and annihilation operators follow:
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Cak;σðtÞC−1 ¼ ησ; Cbk;σðtÞ; Cbk;σðtÞC−1 ¼ η�σ; Cak;σðtÞ; ð101Þ

Ca†k;σðtÞC−1 ¼ η�σ; Cb
†
k;σðtÞ; Cb†k;σðtÞC−1 ¼ ησ; Ca

†
k;σðtÞ: ð102Þ

From this, the explicit form of C reads

C ¼ exp

�
i
π

2

Z
d3k

2ωk;σð2πÞ3
½ðb†k;σðtÞak;σðtÞ þ a†k;σðtÞbk;σðtÞÞ − ησ; Cða†k;σðtÞak;σðtÞ þ b†k;σðtÞbk;σðtÞÞ�

	
; ð103Þ

which shows that the flavor vacuum is invariant under charge conjugation, i.e.,

Cj0ðtÞiA;B ¼ j0ðtÞiA;B: ð104Þ

Consequently, a flavor state (27) transforms as

Cjak;σðtÞi ¼ jbk;σðtÞi; ð105Þ

while flavor charge (28) reverses its sign

CQσðtÞC−1 ¼
Z

d3k
2ωk;σð2πÞ3

ðb†k;σðtÞbk;σðtÞ − a†k;σðtÞak;σðtÞÞ ¼ −QσðtÞ; ð106Þ

as expected.

C. Time reversal

The time reversal transformation of the flavor scalar fields is given by:

TφσðxÞT−1 ¼ ησ; Tφσð−x̃Þ; ð107Þ

where T is the antiunitary time reversal operator. We employ the convention for the phase jησ; T j2 ¼ 1. By using the explicit
expansion (15), we find:

TφσðxÞT−1 ¼
Z

d3k
2ωk;σð2πÞ3

½Tak;σðtÞT−1eiωk;σt þ Tb†−k;σðtÞT−1e−iωk;σ t�e−ik·x

¼ ησ; T

Z
d3k

2ωk;σð2πÞ3
½ak;σð−tÞeiωk;σ t þ b†−k;σð−tÞe−iωk;σ t�eik·x: ð108Þ

Transformations of creation and annihilation operators follow:

Tak;σðtÞT−1 ¼ ησ; T a−k;σð−tÞ Tbk;σðtÞT−1 ¼ η�σ; T b−k;σð−tÞ; ð109Þ

Ta†k;σðtÞT−1 ¼ η�σ; T a
†
−k;σð−tÞ Tb†k;σðtÞT−1 ¼ ησ; T b

†
−k;σð−tÞ: ð110Þ

Let us note in this connection that for flavor A we can explicitly write

Tak;AðtÞT−1 ¼ ησ; T a−k;Að−tÞ

¼ ησ; T
X
ρ¼A;B

1

2ωk;ρð2πÞ3
ð½a−k;σð−tÞ; a†−k;ρðtÞ�a−k;ρðtÞ − ½a−k;σð−tÞ; bk;ρðtÞ�b†k;ρðtÞÞ; ð111Þ

where on the second line the result is phrase in terms of operators a−k;ρðtÞ and b†k;ρðtÞ at original time t. Commutators
involved are just c-numbered functions due to a quadratic nature of our model system. Similar relations hold for the other
operators and flavor B. If one now looks at flavor vacuum transformation properties
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j0ðtÞiTA;B ¼ Tj0ðtÞiA;B; ð112Þ

one finds that time-reversal symmetry is spontaneously
broken. This could also be seen by looking at flavor charge
(28) transformation:

TQσðtÞT−1 ¼
Z

d3k
2ωk;σð2πÞ3

ða†k;σð−tÞak;σð−tÞ

− b†k;σð−tÞbk;σð−tÞÞ ¼ Qσð−tÞ; ð113Þ

i.e., ½QσðtÞ; T� ≠ 0 in a nontrivial way (they neither
commute or anticommute). This implies that

QσðtÞTj0ðtÞiA;B ¼ QσðtÞj0ðtÞiTA;B ≠ 0; ð114Þ

whileQσðtÞj0ðtÞiA;B ¼ 0. This shows that the time-reversal
symmetry is spontaneously broken.
Once more, we notice that oscillation formula for our

toy-model system is left unchanged by time reversal
transformation. In fact, from Eq. (52), we have

Qσ→ρð−tÞ ¼ hak;σð0ÞjQρð−tÞjak;σð0Þi
¼ hak;σð0ÞjTQρðtÞT−1jak;σð0Þi ¼ Qσ→ρðtÞ;

ð115Þ

where we used that

T−1jak;σð0Þi ¼ jak;σð0Þi: ð116Þ

D. CP and CPT symmetry

From the previous considerations it is evident that CP is
an exact symmetry in the flavor representation12:

CPj0ðtÞiA;B ¼ j0ðtÞiA;B: ð117Þ

However, from Eq. (112), it follows that CPT symmetry is
spontaneously broken on the flavor vacuum:

j0ðt;ΘÞiA;B ¼ Θj0ðtÞiA;B; ð118Þ

where Θ≡ CPT. This is a consequence of the trans-
formation law of creation and annihilation operators:

Θak;σðtÞΘ−1 ¼ ησbk;σð−tÞ; Θbk;σðtÞΘ−1 ¼ η�σak;σð−tÞ;
ð119Þ

Θa†k;σðtÞΘ−1 ¼ η�σb
†
k;σð−tÞ; Θb†k;σðtÞΘ−1 ¼ ησa

†
k;σð−tÞ:

ð120Þ

where ησ ≡ ησ; Cησ; Pησ; T . This implies the charge trans-
formation:

ΘQσðtÞΘ−1 ¼
Z

d3k
2ωk;σð2πÞ3

ðb†k;σð−tÞbk;σð−tÞ

− a†k;σð−tÞak;σð−tÞÞ ¼ −Qσð−tÞ:

By repeating the same reasoning as in Sec. IV we obtain for
the flavor current

J μ
σ→ρðxÞ ¼ J μ

σ̄→ρ̄ð−xÞ; ð121Þ

i.e., flavor oscillations are CPT invariant.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the nontrivial behavior of
flavor states with respect to Poincaré and C, P and T
symmetry and we argued that flavor states are not com-
patible with Poincaré symmetry. Instead of extending
Poincaré, as proposed in Ref. [39], we show that the flavor
Fock space constructed à la Refs. [7,8,41,42], naturally
leads to Poincaré SSB, with the residual symmetry of the
vacuum state being Eð3Þ. This SSB is caused by the
nontrivial flavor condensate structure [see Eqs. (24)–
(26)], which, however, becomes phenomenologically insig-
nificant for ultrarelativistic modes and also for mixing
angle θ ¼ 0.
In order to demonstrate our point, we analyzed the

properties of flavor creation and annihilation operators
under Poincaré and discrete symmetry transformations, in a
toy-model describing a flavor scalar doublet with mixing.
Moreover, we have defined flavor vacuum manifold as the
set of flavor-degenerate states (all with zero-flavor charge).
We have provided explicit examples of flavor vacua at label
times, and in different Lorentz frames. With the help of the
Fabri–Picasso theorem we showed that the respective flavor
Fock spaces are unitarily inequivalent. We also proved that
time-reversal and CPT symmetries are spontaneously
broken, while CP symmetry is exact, in our two-flavor
case, as expected. However, this type of SSB of Poincaré
and CPT symmetry does not imply the presence of any
Goldstone bosons or Poincaré or CPT violating effects in
the flavor oscillations formula, which is of phenomeno-
logical interest. This is, in our knowledge, the first general
proof of Lorentz invariance of flavor oscillation formula:
Lorentz invariance of standard oscillation formula was only
proved in the ultrarelativistic case [15], where it coincides
with Eq. (88).
Nonetheless, we should remark at this stage that the

flavor-vacuum energy term, associated with the Lorentz-
and CPT-violating flavor condensate, might have other
nontrivial phenomenological consequences, when the model
is properly extended to cosmology. Indeed, it is known [12],
that the nonperturbative condensate of flavor-vacua leads to

12This is not true for the three flavor case, where CP symmetry
can be explicitly broken because of a complex phase in the mass
matrix.
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novel contributions to dark energy. Our current work points
to the fact that such contributions break spontaneously the
Lorentz and CPT symmetries of the Universe ground state.
It would then be interesting to study the effects of such
flavor-induced Lorentz- and CPT-violating effects [cf. the
vector vacuum expectation value (89)] on the early Universe,
such as their imprint on cosmic microwave background,
inflationary perturbations, etc.
It should be stressed that our analysis is related to the

problem of dynamical mixing generation [24–27]. In fact,
in such a context one can explain the origin of Poincaré and
CPT symmetry breaking together with the origin of field
mixing. In this direction, another interesting possibility is
that such a mechanism, when properly extended to chiral
fermions, could lead, through the Lorentz- and CPT-
violating flavor-vacuum chiral condensates, to phenomena
like the chiral magnetic effect [55] in quantum chromo-
dynamics: the Lorentz violating condensate on flavor
vacuum can act as a finite temperature background, where
a current J is dynamically generated in regions with an
external magnetic field. We reserve a further detailed study
of such speculative issues for a future work.
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APPENDIX A: BASIC STRUCTURE OF THE
POINCARÉ GROUP

In order to fix the notation and the conventions, we
briefly review the main features of Lorentz and Poincaré
group, following Ref. [43]. Given the Minkowski space
ðR4; ds2Þ where ds2 is the indefinite quadratic form:

ds2 ¼ gμνdxμdxν; ðA1Þ

and g ¼ diagð1;−1;−1;−1Þ is the metric tensor.
The homogeneous Lorentz group is the set of trans-

formations which leave unchanged the quadratic form
(A1). This definition can be expressed from the relation:

gμνΛ
μ
λΛν

σ ¼ gλσ: ðA2Þ

Because of the symmetry of the metric tensor these are 10
independent constraints. Therefore, the Lorentz group has
six parameters. If in Eq. (A2) we put λ ¼ σ ¼ 0 we find the
condition

ðΛ0
0Þ2 −

X3
i¼1

ðΛi
0Þ2 ¼ 1; ðA3Þ

and then, ðΛ0
0Þ2 ≥ 0, i.e., Λ0

0 ≥ 0 or Λ0
0 ≤ 0. Considering

only the transformations continuously connected with the
identity we must choose only the first condition. Moreover

ðdetΛÞ2 ¼ 1: ðA4Þ

Becausewe are limiting ourselves to transformations that are
continuously connected with the identity, we must consider
only the case detΛ ¼ 1. These two choices define theproper
orthochronous Lorentz group SOþ

↑ ð3; 1Þ. If these restric-
tions are dropped (e.g., when discrete P and T symmetries
are included) one speaks about the full Lorentz group.
The spatial part of Eq. (A2) can be rewritten as the

condition

R−1 ¼ RT; ðA5Þ

that defines the group of Oð3Þ matrices. The condition on
the determinant is fulfilled by SOð3Þ matrices which thus
define a three parameters subgroup of the proper Lorentz
group. A second large (3-parametric) class of Lorentz
transformations consists of the so-called Lorentz boosts
(or special Lorentz transformations). These represent class
of rotationfree Lorentz transformation. The Lorentz boosts
do not form a group—successive boosts along nonparallel
directions do not yield a boost, but the combination of a
boost and spatial rotation. For instance, a Lorentz boost
along the x axis is of the form:

L1 ¼

2
6664
cosh ξ sinh ξ 0 0

sinh ξ cosh ξ 0 0

0 0 1 0

0 0 0 1

3
7775: ðA6Þ

This represents the transformation between an inertial
frame and another inertial frame, moving along the x axis
with velocity v ¼ c tanh ξ. The parameter ξ is known as
rapidity and since −c ≤ v ≤ c one has that −∞ < ξ <
þ∞, so the full Lorentz group, which is indicated with
SOð3; 1Þ, is noncompact. One can also prove that a general
Lorentz transformation within SOþ

↑ ð3; 1Þ can be decom-
posed in terms of boosts and rotations as:

Λ ¼ Rðα; β; 0ÞL3ðξÞRðϕ; θ;ψÞ−1; ðA7Þ
where the rotation matrix are written in terms of Euler’s
angles.
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The inhomogeneous Lorentz group or Poincaré group,
includes also spacetime translations, whose group is
indicated with T3;1. It can be thus indicated as T3;1 ⋊
Oð3; 1Þ (or ISOð3; 1Þ≡ T3;1 ⋊ SOð3; 1Þ for transforma-
tions continuously connected with the identity). A generic
Poincaré transformation can be written as:

x0μ ¼ Λμ
νxν þ bμ: ðA8Þ

Therefore the Poincaré group is a ten parameters group.
Let us now consider an infinitesimal transformation, to

determine the Lie algebra associated with the Poincaré
group ISOð3; 1Þ. First we take into account spacetime
translations. An infinitesimal translation can be written as

TðδbÞ ¼ I þ iδbμPμ: ðA9Þ

As known Pμ is the four momentum operator. An infini-
tesimal Lorentz transformation can be written as

ΛðδωÞ ¼ I −
i
2
δωμνJμν; ðA10Þ

where δωμν is an antisymmetric matrix (has six independent
parameters). We have seen that, considering only the spatial

indexes, these transformations coincides with SOð3Þ ele-
ments. An infinitesimal rotation can be written as

RðδθÞ ¼ I − iδϑkJk: ðA11Þ
We are then led to do the following identifications:

δϑk ¼ εklmδωlm; εlmkJk ¼ −Jlm; k; l; m ¼ 1; 2; 3:

ðA12Þ

In the same way a Lorentz boost can be written as

ΛðδξÞ ¼ I − iδξkKk; ðA13Þ

identifying

δξm ¼ δω0m; Km ¼ J0m; m ¼ 1; 2; 3: ðA14Þ

One can thus derive the Poincaré algebra:

½Pμ; Pλ� ¼ 0; ðA15Þ

½Pμ; Jλσ� ¼ iðPλgμσ − PσgμλÞ; ðA16Þ

½Jμν; Jλσ� ¼ iðJλνgμσ − Jσνgμλ þ Jμλgνσ − JμσgνλÞ: ðA17Þ

APPENDIX B: TIME EVOLUTION OF FLAVOR LADDER OPERATORS

We here report the explicit form of the functions fkσρ and gkσρ introduced in Eq. (41). By using Eq. (17) we get:

fkAAðtÞ ¼ cos2θ
ωk;1

ωk;A
ðjρkA1j2eiðωk;A−ωk;1Þt − jλkA1j2eiðωk;Aþωk;1ÞtÞ

þsin2θ
ωk;2

ωk;A
ðjρkA2j2eiðωk;A−ωk;2Þt − jλkA2j2eiðωk;Aþωk;2ÞtÞ; ðB1Þ

fkBBðtÞ ¼ sin2 θ
ωk;1

ωk;B
ðjρkB1j2eiðωk;B−ωk;1Þt − jλkB1j2eiðωk;Bþωk;1ÞtÞ

þ cos2 θ
ωk;2

ωk;B
ðjρkB2j2eiðωk;B−ωk;2Þt − jλkB2j2eiðωk;Bþωk;2ÞtÞ; ðB2Þ

fkσρðtÞ ¼
sin θ cos θ

ωk;ρ

X2
j¼1

ð−1Þjωk;jðjρkσjjjρkρjjeiðωk;σ−ωk;jÞt − jλkσjjjλkρjjeiðωk;σþωk;jÞtÞ σ ≠ ρ; ðB3Þ

gkAAðtÞ ¼ 2ieiωk;At

�
cos2θ

ωk;1

ωk;A
jρkA1jjλkA1j sinðωk;1tÞ þ sin2θ

ωk;2

ωk;A
jρkA2jjλkA2j sinðωk;2tÞ

�
; ðB4Þ

gkBBðtÞ ¼ 2ieiωk;Bt

�
sin2θ

ωk;1

ωk;B
jρkB1jjλkB1j sinðωk;1tÞ þ cos2θ

ωk;2

ωk;A
jρkB2jjλkB2j sinðωk;2tÞ

�
; ðB5Þ

gkσρðtÞ ¼
sin θ cos θ

ωk;ρ

X2
j¼1

ð−1Þjþ1ωk;jðjρkσjjjλkρjjeiðωk;σ−ωk;jÞt − jλkσjjjρkρjjeiðωk;σþωk;jÞtÞ σ ≠ ρ: ðB6Þ

At t ¼ 0 we have fσρð0Þ ¼ δσρ and gσρð0Þ ¼ 0 as we would expect. Moreover, the functions wk
σρ and ykσρ introduced in

Eq. (43), read:
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wk
AA ¼ ω2

k;1 þ ω2
k;2 þ 2ω2

k;A þ cos 2θðω2
k;1 − ω2

k;2Þ
4ωk;A

; ðB7Þ

wk
BB ¼ ω2

k;1 þ ω2
k;2 þ 2ω2

k;B − cos 2θðω2
k;1 − ω2

k;2Þ
4ωk;B

; ðB8Þ

wk
σρ ¼ ykρσ ¼

sin 2θðω2
k;2 − ω2

k;1Þ
4ωk;ρ

σ ≠ ρ; ðB9Þ

ykAA ¼ ω2
k;1 þ ω2

k;2 − 2ω2
k;A þ cos 2θðω2

k;1 − ω2
k;2Þ

4ωk;A
; ðB10Þ

ykBB ¼ ω2
k;1 þ ω2

k;2 − 2ω2
k;B − cos 2θðω2

k;1 − ω2
k;2Þ

4ωk;B
: ðB11Þ

Note that when there is no mixing wk
σσ ¼ ωk;σ and the other coefficients go to zero, as expected.
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