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We find that the recently developed kinetic theories with spin for massive and massless fermions are
smoothly connected. By introducing a reference-frame vector, we decompose the dipole-moment tensor
into electric and magnetic dipole moments. We show that the axial-vector component of the Wigner
function contains a contribution from the transverse magnetic dipole moment, which accounts for the
transverse spin degree of freedom (d.o.f.) and vanishes smoothly in the massless limit. As a result, the
kinetic equations, describing 4 d.o.f. for massive fermions, smoothly becomes the chiral kinetic equations
describing 2 d.o.f. in the massless limit. We also confirm the small-mass behavior of theWigner function by
an explicit calculation using a Gaussian wave packet.
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I. INTRODUCTION

In noncentral heavy-ion collisions, a large orbital angular
momentum (OAM) [1–3] as well as a very strong electro-
magnetic field [4–10] are generated. Part of the OAM is
transferred to the hot and dense matter or the quark-gluon
plasma in the form of vorticity fields [11–14] and leads to a
global spin polarization perpendicular to the reaction plane
[1,15–20]. The global spin polarization of Λ hyperons has
been observed by the STAR Collaboration in Auþ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV [21,22]; see, e.g.,
Refs. [23–25] for recent reviews. The interaction between
the strong magnetic field and fermion spin leads to the
chiral magnetic effect (CME) [26–28], which can probe the
topological fluctuation of quantum chromodynamics vac-
uum. The search for the CME is one of the major efforts in
experiments of heavy ion collisions; see, e.g., Refs. [29–34]
for reviews.
For massless fermions with definite helicity, the chiral

kinetic theory (CKT) is a useful tool to describe the chiral
effects in phase space [35–48]. The Lorentz invariance for
chiral fermions is proved to be nontrivial: the side-jump
effect appears to ensure the conservation of the total
angular momentum in binary collisions [49–51]. Recent

numerical simulation [52] shows that the side-jump effect
may provide a possible explanation of the puzzle of the
Λ’s local spin polarization [53,54].
In reality, all quarks have masses. Although the masses

of up and down quarks are small compared to the typical
temperature of the quark-gluon plasma, the mass of
strange quark is not. The massive strange quarks play an
essential role in the Λ’s spin polarization as well as in the
spin alignments of ϕ or K�0 mesons described by the 00
component of the spin density matrix [55–57]. Therefore,
a kinetic theory for massive fermions with spin, also
called the spin kinetic theory, is required to describe
the spin evolution of massive quarks in phase space.
Such a theory was constructed many years ago for non-
relativistic dilute spinful gases [58,59] and has recently
been formulated for relativistic Dirac fermions using the
covariant Wigner functions [60–64] and equal-time Wigner
functions [65]. It can also be constructed in the worldline
formalism [66,67].
However, there are fundamental differences between

symmetries of massive and massless fermions. In 1939,
Wigner proposed the concept of the little group [68], the
group that leaves a particle’s four-momentum invariant. For
a massive particle, the little group is the rotational group
Oð3Þ, which is associated with the spin in the particle’s rest
frame. Wigner also showed that the little group for the
massless particle is the two-dimensional Euclidean group
Eð2Þ. The rotational degree of freedom of Eð2Þ corresponds
to the helicity, while the 2 translational degrees of freedom
correspond to the gauge symmetry of the massless particle
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[68–70]. It can be proved that the Eð2Þ group can be
obtained as the infinite-boost limit or massless limit of the
Oð3Þ group [69]. However, how the kinetic theories for
massive fermions and massless fermions are connected
under such a limiting process is unclear. There are
proposals to make a smooth transition between the two
kinetic theories [61,62], but these proposals are based on
the assumption that the spin polarization or dipole-moment
tensor for massive fermions can be smoothly reduced to its
massless forms whenm → 0. This assumption has not been
justified.
In this paper, we propose a kinetic theory with spin in

the Wigner function formalism that can smoothly transit
between the massive and massless cases. The main idea is
to project out the transverse-spin contributions in the
kinetic theory and to show that they smoothly vanish in
the massless limit. In such a way, two of the four kinetic
equations in the massive case become irrelevant in the
massless limit, leaving the other two to constitute the CKT
that describes the vector- and axial-charge distributions.
The paper is organized as follows. In Sec. II, we briefly
review theWigner function formalism for massive fermions
up to the linear order in ℏ. Then in Sec. III, to connect
with the massless case, we introduce a reference frame in
the massive case. The dipole-moment tensor and spin-
polarization vector are expressed in terms of reference-
frame dependent quantities such as the fermion number
density, the magnetic dipole moment, and the axial-charge
density. In Sec. IV, the ensemble of particle states of the
Wigner function is replaced by the one-particle wave packet
state with finite momentum and space-time dispersion. In
this case, we derive explicit expressions for the fermion
number density, the magnetic dipole moment, and the axial-
charge density and obtain their small-mass behaviors. In
Sec. V, the Wigner-function components as well as the
kinetic equations are written in forms with mass corrections
explicitly singled out. Turning off the mass corrections, we
can recover the massless case smoothly. A summary of the
results is given in the final section.
Throughout this paper, we use the units c ¼ kB ¼ 1 but

keep the reduced Planck’s constant ℏ explicitly. The
electromagnetic potential is labeled by Aμ with the electric
charge being absorbed. This means that we can recover the
electric charge Q of the fermion by replacing Aμ → QAμ.
We consider the background spacetime to be Minkowskian,
but all the calculations can be similarly carried out in
curved spacetime as well (the kinetic theories for massive
and massless fermions in curved spacetime were studied in
Refs. [43,63]).

II. WIGNER FUNCTION UP TO LINEAR
ORDER IN ℏ

We define the covariant Wigner function in an
external classical electromagnetic field or U(1) gauge field

as the Fourier transform of the two-point correlation
function,

Wðx; pÞ≡
Z

d4y
ð2πℏÞ4 e

− i
ℏp·yU

�
xþ y

2
; x −

y
2

�

× hΩj ˆ̄ψ
�
xþ y

2

�
⊗ ψ̂

�
x −

y
2

�
jΩi; ð2:1Þ

where the tensor product is defined as ½A ⊗ B�ij ¼ AjBi

with i ¼ 1–4 the Dirac index. Here, hΩjÔjΩi represents the
expectation value of the operator Ô on a given quantum
state jΩi, and the gauge link Uðxþ y

2
; x − y

2
Þ is defined in a

straight line,

U

�
xþ y

2
; x −

y
2

�
≡ exp

�
−
i
ℏ
yμ

Z
1=2

−1=2
dsAμðxþ syÞ

�
;

ð2:2Þ

with Aμ being the U(1) gauge potential. For a classical
background field, the gauge link is purely a phase factor
instead of an operator. In order to clearly display the
physical meaning of the Wigner function, it is advanta-
geous to decompose Wðx; pÞ in terms of 16 independent
generators of the Clifford algebra, f1; iγ5; γμ; γ5γμ; σμνg,
where 1 is the 4 × 4 unit matrix, γ5 ≡ iγ0γ1γ2γ3, and
σμν ≡ i

2
½γμ; γν�,

W ¼ 1

4

�
F þ iγ5P þ γμVμ þ γ5γμAμ þ

1

2
σμνSμν

�
: ð2:3Þ

According to the parities and properties under a Lorentz
transformation, the coefficients F , P, Vμ, Aμ, and Sμν are
called the scalar, pseudoscalar, vector, axial-vector, and
tensor components of the Wigner function. They are
identified as the densities of some physical quantities in
phase space [71]. For example, Vμ gives the fermion vector
current density, Aμ gives the axial current or spin density,
and Sμν gives the electric/magnetic dipole-moment density.
Applying the Dirac equation to the Wigner function, one

can derive the equation of motion for the Wigner function.
The Wigner-function equation of motion has analytical
solutions in some special cases, such as in a constant
electromagnetic field. In a general space-time dependent
electromagnetic field, the semiclassical expansion in the
reduced Planck’s constant ℏ provides a powerful method to
solve out the Wigner function order by order in ℏ. The
Wigner function at the lowest or zeroth order in ℏ is
independent of spin, while at the first order in ℏ, the
Wigner function contains the spin degrees of freedom. In
this paper, we only consider the Wigner function up to
OðℏÞ. The most general solution up to this order is given
in Ref. [61],
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F ¼ m

�
Vδðp2 −m2Þ − ℏ

2
FαβΣαβδ

0ðp2 −m2Þ
�
þOðℏ2Þ;

P ¼ ℏ
4m

ϵμναβ∇μ½pνΣαβδðp2 −m2Þ� þOðℏ2Þ;

Vμ ¼ pμ

�
Vδðp2 −m2Þ − ℏ

2
FαβΣαβδ

0ðp2 −m2Þ
�
þ ℏ

2
∇ν½Σμνδðp2 −m2Þ� þOðℏ2Þ;

Aμ ¼ nμδðp2 −m2Þ þ ℏF̃μνpνVδ0ðp2 −m2Þ þOðℏ2Þ;
Sμν ¼ m½Σμνδðp2 −m2Þ − ℏFμνVδ0ðp2 −m2Þ� þOðℏ2Þ; ð2:4Þ

where the dipole-moment tensor satisfies the following
constraint equation:

δðp2 −m2Þ
�
pνΣμν −

ℏ
2
∇μV

�
¼ Oðℏ2Þ; ð2:5Þ

with ∇μ ≡ ∂μ
x − Fμν∂pν. The spin polarization vector nμ

can be expressed by the dipole-moment tensor Σμν as
follows:

nμ ¼ −
1

2
ϵμναβpνΣαβ: ð2:6Þ

The undetermined functions V and nμ satisfy the general-
ized Boltzmann equation and the generalized Bargmann-
Michel-Telegdi (BMT) equation, respectively,

0 ¼ δðp2 −m2Þ
�
p ·∇V þ ℏ

4
ð∂α

xF̃μνÞ∂pαΣμν

�

− δ0ðp2 −m2Þℏ
2
Fμνp · ∇Σμν;

0 ¼ δðp2 −m2Þ
�
p ·∇nμ − Fμνnν −

ℏ
2
pνð∂α

xF̃μνÞ∂pαV

�
þ δ0ðp2 −m2ÞℏF̃μνpνp ·∇V: ð2:7Þ

We note that the solution in Eqs. (2.4), the constraint (2.5),
and the kinetic equations (2.7) are for massive fermions.
In the massless case, the Wigner function also has a formal
solution, and the corresponding chiral kinetic equations
up to OðℏÞ can be derived. In the rest part of this paper,
we will explicitly show that a smooth transition exists
between the massive results (2.4)–(2.7) and the correspond-
ing massless ones.

III. REFERENCE-FRAME DEPENDENCE

The components of the Wigner function in Eqs. (2.4) are
obviously Lorentz covariant. The quantities Vðx; pÞ and
Σμνðx; pÞ have clear physical meanings of a fermion
number (vector charge) density and dipole-moment tensor,
respectively. Furthermore, in obtaining Eqs. (2.4), it is not
necessary to introduce any additional reference-frame

vector because one can always work in the comoving
frame of the massive particle. However, this is not the
case for massless fermions: the massless solutions in
Refs. [40–43] are inevitably reference-frame dependent.
Such a reference frame controls the way of decomposing a
four vector such as Vμðx; pÞ and Aμðx; pÞ into one part
parallel to pμ and the other part perpendicular to pμ. It also
controls the way of decomposing an antisymmetric tensor
such as Σμνðx; pÞ into an “electric” part and a “magnetic”
part. Thus, in order to find a smooth transition to the
massless fermions, we need to first introduce a reference
frame to the Wigner-function solutions for massive fer-
mions. We will achieve this by decomposing the dipole-
moment tensor into the “electric” and a “magnetic” parts. In
the Appendix A, we discuss an alternative, but equivalent,
way to introduce the reference frame.
It is well-known that the electromagnetic field tensor Fμν

can be decomposed into the electric field Eμ ¼ Fμνuν and
the magnetic field Bμ ¼ ð1=2ÞϵμναβuνFαβ as

Fμν ¼ Eμuν − Eνuμ þ ϵμναβuαBβ; ð3:1Þ

where uμ is an arbitrary timelike vector which is normalized
as uμuμ ¼ 1. The electric and magnetic field four vectors
are all spacelike, i.e., uμEμ ¼ uμBμ ¼ 0. Thus, in the
comoving frame of uμ, Eμ and Bμ only have the spatial
components, or they become three vectors. Such a decom-
position depends on the choice of uμ, but Fμν is indepen-
dent of uμ. Similar to Fμν, the dipole-moment tensor Σμν

can also be decomposed as

Σμν ¼ Eμuν − Eνuμ − ϵμναβuαMβ; ð3:2Þ

where Eμ ¼ Σμνuν andMμ ¼ −ð1=2ÞϵμναβuνΣαβ. Note that
both Eμ and Mμ depend on uμ, while Σμν does not. In the
comoving frame of uμ, we can identify Eμ as the electric
dipole moment and Mμ as the magnetic dipole moment,
respectively. Their physical meanings can be clearly seen
by contracting Fμν and Σμν,

−
1

2
FμνΣμν ¼ −EμEμ −MμBμ; ð3:3Þ
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which is the interaction energy of the dipole moments in the
electromagnetic field.
Due to the constraint (2.5), the electric dipole moment Eμ

is not an independent degree of freedom. Substituting
Eq. (3.2) into Eq. (2.5), up to OðℏÞ, we obtain

δðp2 −m2Þ
�
ðu · pÞEμ − pνEνuμ − ϵμναβpνuαMβ −

ℏ
2
∇μV

�
¼ 0: ð3:4Þ

Then contracting this equation with uμ, one obtains a
constraint for the electric dipole moment,

δðp2 −m2Þ
�
pμEμ þ ℏ

2
uμ∇μV

�
¼ 0: ð3:5Þ

Inserting Eq. (3.5) back into Eq. (3.4), we find a general
expression for the electric dipole moment,

Eμ ¼ ℏ
2ðu · pÞ ðg

μν − uμuνÞ∇νV

þ 1

u · p
ϵμναβpνuαMβ þ ðp2 −m2ÞCμ; ð3:6Þ

where Cμ is an arbitrary function, which should be non-
singular for on shell momentum with p2 ¼ m2. We demand
that uμCμ ¼ 0 because uμEμ ¼ 0. Inserting Eq. (3.6) back
into Eq. (3.2), we find that Σμν can be determined by Mμ,
V, and Cμ,

Σμν ¼ −
1

u · p
ϵμναβpαMβ þ

ℏ
2ðu · pÞ ðu

ν∇μ − uμ∇νÞV

þ ðp2 −m2ÞðuνCμ − uμCνÞ; ð3:7Þ

where we have used the Schouten identity,

uμϵναβγ þ uνϵαβγμ þ uαϵβγμν þ uβϵγμνα þ uγϵμναβ ¼ 0:

ð3:8Þ

In Eq. (3.7), we have an unspecified term, which depends
on Cμ. However, since the forms of the solutions (2.4)
do not change under the transformation with arbitrary
δΣμν [61],

Σμν → Σ0μν ¼ Σμν þ ðp2 −m2ÞδΣμν;

V → V 0 ¼ V −
ℏ
2
FμνδΣμν; ð3:9Þ

we can choose Cμ ¼ 0 without loss of generality. When the
electromagnetic field vanishes, all components of the
Wigner function are proportional to δðp2 −m2Þ, and thus,
the contribution from Cμ is zero by its prefactor ðp2 −m2Þ.

We further define the projection operators,

Δμν ≡ gμν − uμuν; Ξμν ≡ gμν − uμuν þ phμiphνi

ðu · pÞ2 − p2
;

ð3:10Þ

where phμi ≡ Δμνpν. The operator Δμν projects a four
vector to the direction perpendicular to uμ, while the
operator Ξμν projects it to the direction perpendicular to
both uμ and pμ. Then, we define the transverse magnetic
dipole-moment vector as follows:

Mμ
⊥ ≡ ΞμνMν ¼ Mμ −

u · p
ðu · pÞ2 − p2

phμiA; ð3:11Þ

where A is defined as

A≡ −
M · p
u · p

; ð3:12Þ

and will be identified as the axial-charge density. Using A
andMμ

⊥, the dipole-moment tensor Σμν in Eq. (3.7) can be
put into the form,

Σμν ¼ u · p
ðu · pÞ2 − p2

ϵμναβpαuβA −
1

u · p
ϵμναβpαM⊥β

þ ℏ
2ðu · pÞ ðu

ν∇μ − uμ∇νÞV: ð3:13Þ

With the spin three-vector n in a specific frame, the
particle is called longitudinally (transversely) polarized if n
is parallel (perpendicular) to p. Any other polarization state
can be expressed as a superposition of a longitudinal
polarization state and a transverse one. Generalizing such
a three-dimensional decomposition to a four-dimensional
one, we can decompose the axial vector nμ as

nμ ¼ ðu · pÞuμ u · n
u · p

þ nkphμi þ nμ⊥; ð3:14Þ

where nμ⊥ ¼ Ξμνnν. In the comoving frame of uμ,
u · n=u · p is identified as the axial-charge density, nk is
the longitudinal spin polarization, and nμ⊥ is the transverse
spin polarization. Since nμ satisfies the constraint p · n ¼ 0,
nk can be expressed by

nk ¼
ðu · pÞðu · nÞ
ðu · pÞ2 − p2

: ð3:15Þ

Inserting Σμν into Eq. (2.6), we obtain another form of nμ,
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nμ ¼ pμAþ p2

u · p
Mμ þ ℏ

2ðu · pÞ ϵ
μναβpνuα∇βV

¼ pμAþ p2

ðu · pÞ2 − p2
phμiAþ p2

u · p
Mμ

⊥

þ ℏ
2ðu · pÞ ϵ

μναβpνuα∇βV: ð3:16Þ

Making a comparison between Eq. (3.14) and Eq. (3.16),
we find A ¼ u · n=u · p is the axial-charge density, while
the transverse polarization is

nμ⊥ ¼ p2

u · p
Mμ

⊥ þ ℏ
2ðu · pÞ ϵ

μναβpνuα∇βV: ð3:17Þ

In Sec. IV, we will show that the second term of nμ⊥ is
the OAM of a wave packet, also known as the side-jump

term [41,42,44,49]. This term remains in the massless
limit if we keep the wave packet description for massless
particles. We will also prove that Mμ

⊥ ∝ 1=m in a small-
mass limit, which agrees with our knowledge about
the magnetic moment and is divergent at the zero mass
limit. However, Mμ

⊥ always comes with p2 in nμ⊥, so its
contribution, p2Mμ

⊥ ∝ m, smoothly goes towards zero for
vanishing m.

IV. WIGNER FUNCTION FOR
A WAVE PACKET

In this section, we introduce the wave packet description
of a single particle state into the Wigner function. For
simplicity, we neglect the external electromagnetic field.
The Wigner function is then given by

Wðx; pÞ ¼
Z

d4q
ð2πℏÞ6

X
ss0

exp

�
i
ℏ
q · x

�
δ

�
p2 þ 1

4
q2 −m2

�
δðp · qÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����p0 þ 1

2
q0
����
����p0 −

1

2
q0
����

s

× θðp0Þūs
�
pþ 1

2
q

�
⊗ us0

�
p −

1

2
q

�
hΩjâ†

pþ1
2
q;s
âp−1

2
q;s0 jΩi: ð4:1Þ

Here we only keep the contribution from particles and neglect that from antiparticles. The discussion for antiparticles can be
similarly handled. The particle’s spinors are denoted as usðpÞ and ūsðpÞ with s denoting the spin state. The state jΩi is
assumed to take a wave packet form,

jΩi ¼ jp0; s0;þiwp ¼
1

N

Z
d3p0

ð2πℏÞ3 exp
�
−
ðp0 − p0Þ2

4σ2p
þ i
ℏ
p0 · x0

�
a†p0;s0

j0i; ð4:2Þ

where the normalization constant N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½σp=ðℏ

ffiffiffiffiffiffi
2π

p Þ�3
q

ensures the unit condition hΩjΩi ¼ 1 and p0μ ¼ ðEp0 ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p02 þm2

p
;p0Þ is the on shell four momentum. Such a wave packet is the Gaussian type with the center momentum

p0 and center position x0 at time t0. The spin state of the wave packet is labeled as s0 in a given spin quantization direction
n0. The momentum width of the wave packet is σp. In general, we assume the wave packet to be narrow enough in
momentum space so that σp ≪ jp0j. Thus, we can assume that the expectation value hΩjâ†

pþ1
2
q;s
âp−1

2
q;s0 jΩi vanish for a large

jqj ≫ σp. One can then treat q as a small expansion variable in Eq. (4.1) except for exp ðiq · x=ℏÞ and δðp · qÞ. Due to the
existence of exp ðiq · x=ℏÞ, q can be replaced by iℏ∇x; in this sense, the expansion in q is equivalent to the gradient
expansion. The leading and next-to-leading order terms in the Wigner function read

Wðx; pÞ ¼ 1

ð2πℏÞ3 δðp
2 −m2Þθðp0Þ

X
ss0

½ūsðpÞ ⊗ us0 ðpÞ þ ℏUss0 · i∇x�fss0 ðx;pÞ; ð4:3Þ

where the distribution function is defined as

fss0 ðx;pÞ ¼
Z

d4q
ð2πℏÞ3 δ

�
q0 −

p · q
Ep

�
exp

�
i
ℏ
q · x

�
hΩjâ†

pþ1
2
q;s
âp−1

2
q;s0 jΩi: ð4:4Þ

The three vector Uss0 in Eq. (4.3) contains momentum derivatives of the spinors,

Uss0 ≡ 1

2
f½∇pūsðpÞ� ⊗ us0 ðpÞ − ūsðpÞ ⊗ ½∇pus0 ðpÞ�g; ð4:5Þ
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which represents a Berry connection in Dirac space, and its explicit form is calculated in Appendix B. With Eq. (4.2), we
can give the analytical form of the distribution function as

fss0 ðx;pÞ ¼ ð2πℏÞ3V0ðx;pÞδss0δs0s0 ; ð4:6Þ
where the Gaussian type distribution function V0ðx; pÞ is given by

V0ðx;pÞ ¼
8

ð2πℏÞ3 exp
�
−
ðp − p0Þ2

2σ2p
−
2σ2p
ℏ2

�
ðx − x0Þ −

p
Ep

ðt − t0Þ
�
2
	
: ð4:7Þ

One can read in the above form of V0ðx; pÞ, the center momentum p0 and the center position x0 þ ðt − t0Þp=Ep. Note that
the center position moves with the velocity p=Ep, reflecting the movement of the wave packet. Since we have
∇xV0 ∝ ½ðx − x0Þ − p=Epðt − t0Þ�V0, we can identify ðp ×∇xÞV0 ∝ ½p × ðx − x0Þ�V0 as the OAM of the wave packet.
Inserting fss0 ðx;pÞ in (4.6) into the Wigner function in (4.3), we derive the scalar component of the Wigner function by
taking the trace of W,

F ¼ 2

�
m −

ℏ
2ðEp þmÞ s0n0 · ðp ×∇xÞ

�
V0ðx;pÞδðp2 −m2Þθðp0Þ; ð4:8Þ

where n0 is the spin quantization direction, and the second term on the right-hand side is interpreted as a correction from the
spin-orbital coupling. Equation (4.8) is given in the lab frame with uμ ¼ ð1; 0; 0; 0Þ; a straightforward generalization to an
arbitrary frame gives

Vðx;pÞ ¼ 2

�
1 −

ℏ
2mðu · pþmÞ s0ϵ

μναβuμn0νpα∂xβ

�
V0ðx;pÞ: ð4:9Þ

Analogously, we can derive the axial-vector component of the Wigner function,

A0 ¼ 2s0p · n0V0ðx;pÞδðp2 −m2Þθðp0Þ;

A ¼ 2

�
s0mn0 þ s0

p · n0

Ep þm
p −

ℏ
2ðEp þmÞp ×∇x

�
V0ðx;pÞδðp2 −m2Þθðp0Þ: ð4:10Þ

Comparing with Eq. (3.14) with the reference frame taken as the lab frame uμ ¼ ð1; 0; 0; 0Þ, we obtain the axial-charge
distribution A and the transverse magnetic dipole moment as

Aðx;pÞ ¼ 2s0
p · n0

Ep
V0ðx;pÞ;

M⊥ðx;pÞ ¼
2

m

�
s0Ep

�
n0 −

p · n0

E2
p −m2

p

�
þ ℏ
2ðEp þmÞp × ∇x

�
V0ðx;pÞ: ð4:11Þ

Generalizing them to an arbitrary frame with a general uμ, we obtain

A ¼ −2s0
pαΔαβn

β
0

u · p
V0ðx; pÞ;

Mμ
⊥ ¼ 2

m

�
s0ðu · pÞΞμ

νnν0 þ
ℏ

2ðu · pþmÞ ϵ
μναβuνpα∂xβ

�
V0ðx; pÞ; ð4:12Þ

where the projection operators Δμν and Ξμν are defined in
Eq. (3.10). We see that the transverse magnetic dipole
moment consists of two parts: one is the particle’s spin s0n

μ
0

as the intrinsic degrees of freedom, and the other is from the
spatial derivative of the distribution that can be identified as
the OAM of the wave packet.

If there are many particles in the system, the calculation
of the Wigner function in the wave packet representation
is straightforward: we first calculate the each particle’s
Wigner function, and then sum over all particles to obtain
the total Wigner function. At equilibrium, this can also be
achieved by replacing jΩi with the thermal state.
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It can be easily verified that the small-mass behaviors of
V, A, and Mμ

⊥ are

V ¼ Oðm−1Þ þOð1; m; � � �Þ;
A ¼ Oð1Þ þOðm;m2; � � �Þ;

Mμ
⊥ ¼ Oðm−1Þ þOð1; m; � � �Þ: ð4:13Þ

In the next section, we will show that, in the Wigner
function and the kinetic equation, the divergent parts of V
andMμ

⊥ at m → 0 will either be canceled or be suppressed
by a factor m2.

V. CONNECTION BETWEEN MASSIVE AND
MASSLESS KINETIC EQUATIONS

For massless fermions, only the vector and axial-vector
components of the Wigner function are relevant to the
kinetic equations. In this section, we focus on these
components and show how to smoothly reproduce the
massless formula from the massive ones from Eq. (2.4). We
also show how to recover the CKT in the massless limit
from the kinetic equations for massive fermions.

A. Wigner function components

Using the transverse part of the magnetic moment Mμ
⊥

and the axial-charge distribution A, the axial-vector com-
ponent of Wigner function is obtained by substituting
Eq. (3.16) into the axial-vector component in Eq. (2.4),

Aμ ¼
�
ðu · pÞuμ þ ðu · pÞ2

ðu · pÞ2 −m2
phμi

�
Aδðp2 −m2Þ

þ ℏ
2ðu · pÞ ϵ

μναβpνuαð∇βVÞδðp2 −m2Þ

þ ℏF̃μνpνVδ0ðp2 −m2Þ þ m2

u · p
Mμ

⊥δðp2 −m2Þ:

ð5:1Þ

In the massless limit, we find that the last term vanish
because Mμ

⊥ ∝ m−1, while the remaining parts agree with
the massless result in Refs. [40–43].
On the other hand, inserting the dipole-moment tensor

(3.7) into the vector component of the Wigner function in
Eq. (2.4) gives

Vμ ¼ pμVδðp2 −m2Þ þ ℏF̃μνpνAδ0ðp2 −m2Þ þm2
ℏ

u · p
F̃μνMνδ

0ðp2 −m2Þ

−
ℏ
2
δðp2 −m2Þϵμναβpα∇ν

�
1

u · p
Mβ

�
; ð5:2Þ

where we have used the Schouten identity (3.8). It is not easy to see the small-mass-behavior of the last term, so we choose
to rewrite it using the following relation:

ϵμναβpα∇ν

�
1

u · p
Mβ

�
¼ −

1

u · p
pμuρϵναβρpα∇ν

�
1

u · p
Mβ

�
−

p2

u · p
uρϵβρμν∇ν

�
1

u · p
Mβ

�

−
1

u · p
uρpαϵ

αβρμpν∇ν

�
1

u · p
Mβ

�
−

1

u · p
uρpαpβϵρμνα∇ν

�
1

u · p
Mβ

�
; ð5:3Þ

which can be proved using the Schouten identity (3.8). Since the spin polarization nμ satisfies the generalized BMT
equation, i.e., the second equation in Eq. (2.7), we obtain the following kinetic equation for the magnetic moment by
replacing nμ with Eq. (3.16):

δðp2 −m2Þpν∇ν

�
1

u · p
Mμ

�
¼

�
1

u · p
FμνMν −

1

m2
pμðpν∇νAÞ

�
δðp2 −m2Þ þOðℏÞ: ð5:4Þ

Inserting the above relation and Eq. (5.3) into Eq. (5.2), we obtain

Vμ ¼ pμṼδðp2 −m2Þ þ ℏF̃μνpνAδ0ðp2 −m2Þ

−
ℏ

2ðu · pÞ ϵ
μναβuνpαð∇βAÞδðp2 −m2Þ

þm2

�
ℏ

2ðu · pÞ ϵ
μναβuν

�
∇α

�
1

u · p
Mβ

��
δðp2 −m2Þ þ ℏ

u · p
F̃μνMνδ

0ðp2 −m2Þ
	
; ð5:5Þ

where we have redefined the distribution as
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Ṽ ≡ V þ ℏ
2ðu · pÞ ϵ

αβρσuαpβ∇ρ

�
1

u · p
Mσ

�
: ð5:6Þ

In the massless limit, Vμ in Eq. (5.5) smoothly reproduces
the result in Refs. [40–43]. We note that Mμ

⊥ ∝ m−1 and
V ∝ m−1 so that Ṽ seems to be divergent for small m.
However, the divergent part of V cancels exactly that of
Mμ leaving a finite Ṽ in massless limit. In fact, taking a
Gaussian wave packet as an example, as shown in Sec. IV,
we obtain

Ṽ ¼ 1

2

�
1þ ℏ

2ðu · pÞðu · pþmÞ s0ϵ
μναβuμn0νpα∂xβ

�
× V0ðx;pÞ; ð5:7Þ

which is regular in m → 0 limit, where we have assumed a
constant uμ and vanishing electromagnetic field for sim-
plicity and V0ðx;pÞ is the distribution for the considered
wave packet given in Eq. (4.7).

We note that the reference-frame four vector uμ can
generally be a local vector in phase space, i.e., uμ can be a
function of fxμ; pμg. Especially, if we take uμ ¼ pμ=m, we
would have Mμ ¼ nμ=m and A ¼ 0, so Aμ and Vμ in
Eqs. (5.1), (5.5) recover their forms in Eq. (2.4).

B. Kinetic equations

In the previous subsection, we have discussed the vector
and axial-vector components of the Wigner function. Since
these components can smoothly recover their forms in the
massless case, it is natural that the corresponding kinetic
equations (2.7) can reproduce the CKTwhenm → 0. In this
subsection, we explicitly show this.
In order to separate the kinetic equation for the axial-

charge density A, we first contract the generalized BMT
equation (2.7) with uμ and then substitute nμ with the
expression in Eq. (3.16). After a long but straightforward
calculation and using the Schouten identity (3.8), we finally
arrive at

0 ¼ ðpμ∇μAÞδðp2 −m2Þ þ δ0ðp2 −m2Þ
�

ℏ
u · p

F̃μνuμpνðpα∇αVÞ
�

þ δðp2 −m2Þ
�
ℏ
2
ϵμναβpν

�
∇μ

uα
u · p

�
ð∇βVÞ þ

ℏ
2ðu · pÞpμuνð∂xαF̃μνÞð∂α

pVÞ
�

− δðp2 −m2Þ m2

ðu · pÞ2
�
ðp ·∇uμ − FμνuνÞMμ þ ℏ

2
ϵμναβð∇μVÞuν∇αuβ

�
: ð5:8Þ

Since Oðℏ2Þ terms are truncated throughout this paper, one can replace V in the above equation with Ṽ. Meanwhile, the
kinetic equation for the distribution Ṽ can be derived from the generalized Boltzmann equation in Eq. (2.7) by substituting
the dipole-moment tensor Σμν with the expression (3.7). However, a simpler way is to directly act∇μ on the reference-frame
dependent Vμ in Eq. (5.5). Properly using the Schouten identity (3.8) and the properties of delta functions,

xδ0ðxÞ ¼ −δðxÞ;
xδ00ðxÞ ¼ −2δ0ðxÞ; ð5:9Þ

we derive the kinetic equation for Ṽ as follows:

0 ¼ ðpμ∇μṼÞδðp2 −m2Þ þ δ0ðp2 −m2Þ
�

ℏ
u · p

F̃μνuμpνðpα∇αAÞ
�

þ δðp2 −m2Þ
�
ℏ
2
ϵμναβpν

�
∇μ

uα
u · p

�
ð∇βAÞ þ

ℏ
2ðu · pÞpμuνð∂xαF̃μνÞð∂α

pAÞ
�

þ δðp2 −m2Þm2

�
ℏ
2
ϵμναβ

�
∇μ

uν
u · p

��
∇α

�
1

u · p
Mβ

��
−

ℏ
2ðu · pÞ uμð∂xαF̃μνÞ

�
∂α
p

�
1

u · p
Mν

��	

þ δ0ðp2 −m2Þm2
ℏ

u · p
F̃μνuμ

�
pα∇α

�
1

u · p
Mν

��
: ð5:10Þ

In the massless limit, Eqs. (5.8) and (5.10) agree exactly with the results in Refs. [40–43]. Due to the chiral symmetry,
equations for A and Ṽ have dual forms in the massless case. However, the mass corrections in Eq. (5.8) and (5.10) have very
different forms.
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As we have discussed in Sec. III, A and Mμ
⊥ are two

independent variables in describing spin polarization of
massive fermions. Now we have the kinetic equation for A
in (5.8). The kinetic equation for Mμ

⊥ can be derived from
the generalized BMT equation (2.7) by substituting nμ with
the expression (3.16). The resulting equation is compli-
cated, which we would not show here. This equation is,
however, always accompanied with m2 factor and becomes
redundant in the massless limit. As a result, the kinetic
equations, which describe the 4 spin d.o.f. of massive
fermions, reduce to chiral kinetic equations describing 2
spin d.o.f. of massless fermions.

VI. SUMMARY

We show how to smoothly connect the kinetic theories
with the spin degree of freedom for massive and massless
fermions. The Wigner-function components and the kinetic
equations are expressed in a reference-frame dependent
form. The reference frame is introduced as the freedom to
decompose the dipole-moment tensor into an electric
dipole-moment vector and a magnetic dipole-moment
one. Meanwhile, the spin polarization is decomposed into
an axial-charge distribution, a longitudinal polarization,
and a transverse polarization. Here, a longitudinal (trans-
verse) vector refers to the one that is parallel (orthogonal) to
the three momentum in the reference frame. The axial-
charge distribution is obtained by projecting the spin
polarization onto the direction of the reference frame four
vector. We find a straightforward relation between the
longitudinal polarization and the axial-charge distribution.
Thus, a minimum set of functions for describing massive
fermions is the fermion distribution Vðx; pÞ, the axial-
charge distribution Aðx; pÞ, and the transverse part of the
magnetic dipole-moment Mμ

⊥ðx; pÞ. By carefully calculat-
ing these functions through theWigner function in the wave
packet representation, we find their small-mass behaviors:
V ∼Oðm−1Þ, Mμ

⊥ ∼Oðm−1Þ, and A ∼Oð1Þ.
With these small-mass behaviors, we can extract the

mass corrections in the vector and axial vector components
of the Wigner function as well as their corresponding
kinetic equations. By turning off the mass corrections, we
can smoothly recover their forms in the massless case.
Therefore, the CKT can be obtained by a smooth transition
from the kinetic theory for massive fermions with spin. We
note that the collision terms are not included in this paper,
which are reserved for a future work. We expect that the
side-jump effect can also arise naturally in the collision
terms for massive fermions following the same line when
taking the massless limit.
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study [72].

APPENDIX A: AN ALTERNATIVE WAY TO
INTRODUCE uμ IN Vμ AND Aμ

In Sec. III, we introduce the reference frame by decom-
posing the dipole-moment tensor into the electric and
magnetic components. In this Appendix, we adopt an
alternative way to introduce the reference frame.
In Ref. [63], general forms of Vμ andAμ up toOðℏÞ have

been derived,

Vμ ¼ δðp2 −m2Þ
�
pμf þ ℏ

2u · p
ϵμνρσuν∇ρnσ

�

þ ℏF̃μν

�
nν − uν

p · n
p · u

�
δ0ðp2 −m2Þ; ðA1Þ

Aμ ¼ nμδðp2 −m2Þ þ ℏF̃μνpνfδ0ðp2 −m2Þ; ðA2Þ

where the reference-frame vector uμ is introduced
when solving one of the equations of motion for the
Wigner-function components (see, e.g., Refs. [60–63]):
ðℏ=2Þð∇μAν −∇νAμÞ ¼ ϵμνρσpρVσ þOðℏ2Þ. Here, f is
the vector charge density, which is identical to V in the
main text atOð1Þ but can differ from V atOðℏÞ. In fact, Vμ

and Aμ in Eqs. (A1) and (A2) are equivalent to those in
Eq. (2.4) because the solutions are invariant under trans-
formations (3.9) and nμ → nμ þ ðp2 −m2Þδnμ; f → fþ
ℏF̃μνuμδnν=u · p. Substituting Eqs. (A1) and (A2) into
the relation (see, e.g., Refs. [60–63]) mSμν ¼ ðℏ=2Þ×
ð∇μVν −∇νVμÞ − ϵμνρσpρAσ þOðℏ2Þ, we obtain

Sμν ¼ m½Σμνδðp2 −m2Þ − ℏFμνfδ0ðp2 −m2Þ� þOðℏ2Þ:
ðA3Þ

In the above, we have defined the dipole-moment tensor as

Σμν ¼ −
1

u · p
ϵμναβpαMβ þ

ℏ
2ðu · pÞ ðu

ν∇μ − uμ∇νÞf;

ðA4Þ

where

Mμ ¼ 1

m2

�
ðnμ − pμAÞp · u −

ℏ
2
ϵμναβpνuα∇βf

�
; ðA5Þ

A ¼ u · n
u · p

¼ −
M · p
u · p

: ðA6Þ
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Comparing to Eq. (3.16) and noticing that f ¼ V þOðℏÞ,
we realize that Mμ we defined here is the magnetic dipole
moment, and the reference-frame vector uμ is equivalent to
the one introduced in the main text. From Eq. (A5), we can
reexpress nμ in terms of M and A. By substituting nμ into
Eqs. (A1) and (A2), after some algebra, we recover
Eqs. (5.1) and Eq. (5.5), but with

Ṽ ≡ f −
ℏ

ðu · pÞ2 F̃
μνuμMν: ðA7Þ

APPENDIX B: MOMENTUM-DERIVATIVE OF
WAVE FUNCTIONS

In this Appendix, we will calculate the Berry connection
Uss0 ¼ 1

2
f½∇pūsðpÞ�⊗ us0 ðpÞ− ūsðpÞ⊗ ½∇pus0 ðpÞ�g. Since

we are considering massive fermions, we can express the
wave function usðpÞ as a Lorentz boost of the wave
function in the rest frame us;rf ,

usðpÞ ¼ Λpus;rf : ðB1Þ

In this way, all the momentum dependence is embedded in
the transformation matrix Λp. The explicit form of Λp is
well-known and can be found in many textbooks,

Λp ¼ 1ffiffiffiffi
m

p
� ffiffiffiffiffiffiffiffiffi

p · σ
p

0

0
ffiffiffiffiffiffiffiffiffi
p · σ̄

p
�
; ðB2Þ

where σμ ≡ ð1;σÞ and σ̄μ ≡ ð1;−σÞ. After complicated
but straightforward calculations, we obtain the following
relation:

Δp ≡ ð∇pΛpÞΛ−1
p ¼ 1

2m

�
γ0γ −

1

EpðEp þmÞpðp · γ0γÞ
�

−
i

2mðEp þmÞp × γ5γ0γ: ðB3Þ

Then the momentum derivatives of the wave functions
usðpÞ and ūsðpÞ are given by

∇pusðpÞ ¼ ΔpusðpÞ;
∇pūsðpÞ ¼ −ūsðpÞΔp: ðB4Þ

The Berry connection now takes the following form:

Uss0 ¼ −
1

2
½ūsðpÞΔp ⊗ us0 ðpÞ þ ūsðpÞ ⊗ Δpus0 ðpÞ�:

ðB5Þ
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