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In this work, we deal with vortices in Maxwell-Higgs or Chern-Simons-Higgs models that engender
long range tails. We find first-order differential equations that support minimum energy solutions which
solve the equations of motion. In the Maxwell scenario, we work with generalized magnetic permeabilities
that lead to vortices described by solutions, magnetic field, and energy density with power-law tails that
extend farther than the standard exponential ones. We also find a manner to obtain a Chern-Simons model
with the same scalar and magnetic field profiles of the Maxwell case. By doing so, we also find vortices
with the aforementioned long range feature, which is also present in the electric field in the Chern-Simons
model. The present results may motivate investigations on nonrelativistic models, in particular in the case
involving Rydberg atoms, which are known to present long range interactions and relatively long lifetimes.

DOI: 10.1103/PhysRevD.102.025017

I. INTRODUCTION

In high-energy physics, vortices are planar structures that
appear under the action of a complex scalar field coupled to
a gauge field under an Uð1Þ local symmetry [1,2]. The first
relativistic model investigated was the well-known Nielsen-
Olesen one [3], whose gauge field is controlled by the
Maxwell term. In this case, the vortex is electrically neutral
and engenders quantized flux. The equations of motion that
control the fields are of second order. To simplify the
problem, it was shown in Ref. [4] that, by using arguments
of minimal energy, one can find first-order equations that
are compatible with the equations of motion. Even though
the analytical form of the solutions remains unknown in
terms of known functions, one can estimate their behavior
out of their core, which is asymptotically dominated by an
exponential function.
A distinct possibility to investigate vortices is by

exchanging the Maxwell term with the Chern-Simons
one, as first investigated by Jackiw and Weinberg [5]
and by Hong et al. [6]. In this scenario, the vortex becomes
electrically charged, with quantized charge. A first-order
formalism may also be developed here, and as in the
Maxwell case, only the numerical solutions are found. In a
way similar to the Maxwell-Higgs vortices, one can show

that the Chern-Simons vortices present asymptotic behav-
ior that is also ruled by an exponential behavior.
In the above standard models, the first-order formalism

requires the potential to engender a fourth-order power in
the scalar field for the Maxwell case in Ref. [4] and a sixth-
order power for the Chern-Simons model described in
Refs. [5,6]. This means that one does not have the freedom
to choose a potential that leads to distinct features. A
possibility to circumvent this issue is by including extra
functions that depend on the scalar field, additionally to the
potential. For instance, in the Maxwell model, one may
consider a generalized magnetic permeability. In the Chern-
Simons scenario, the magnetic permeability cannot be
modified, since it would break gauge invariance, so one
can make use of a function that drives the dynamical term
of the scalar field. Over the years, several papers dealing
with vortices in generalized models appeared in the
literature making use of other types of generalizations,
such as the Born-Infeld dynamics and powers of the
dynamical term of the scalar field; see, e.g., Refs. [7–18].
This brings to light distinct features, such as uniform
magnetic field inside the structure, compact vortices, and
the existence of twinlike models, which are models that
support the very same localized solution with the same
energy density.
In the study of kinks in (1,1) dimensions, the standard

solutions such as the ones of ϕ4 and sine-Gordon models
engender exponential tail. For potentials with null classical
mass at the minima, the asymptotic behavior is controlled
by polynomial functions; see Refs. [19–24]. Since the tail
of the structure extends farther than the ones of the standard
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case, they are called long range kinks. Long range
structures may also arise in the study of nontopological
solitons, whose standard model only supports power-law
tails [25–27]. A similar behavior also arises in the study of
both topological and nontopological vortices in models
with nonminimal coupling [28].
In this work, we seek for vortex configurations that

exhibit long range tails in both Maxwell-Higgs and Chern-
Simons-Higgs scenarios. We first consider the Maxwell-
Higgs model in Sec. II, and then, by using a procedure that
we will introduce in Sec. III, we show how to obtain a
Chern-Simons-Higgs model that supports the same scalar
and magnetic field configurations of a Maxwell-Higgs one.
To illustrate the method, we take a model that supports
analytical solutions with polynomial tails in the Maxwell-
Higgs scenario, found in Ref. [29]. In this case, the Chern-
Simons model with the same scalar and magnetic fields
requires the addition of awkward functions in the Lagrange
density, so we also include a novel model that engenders
the long range behavior in both scenarios. We conclude the
work in Sec. IV.
Before starting the investigation, we emphasize that the

presence of vortices with long range tails in high-energy
physics may trigger further interest on this kind of
configuration, since the distinct tail may ultimately modify
the way they interact with one another, leading to a novel
collective behavior. This is the main motivation of this
work, and we think it can also attract interest to non-
relativistic models, in particular, to the case of the Gross-
Pitaevskii equation, which is appropriate to describe vortex
excitations in Bose-Einstein condensates [30,31]. An inter-
esting possibility relies on the use of Rydberg atoms, which
engender very large principal quantum numbers, long range
interactions, and relatively long lifetimes [32,33]. Another
possibility concerns the study of cold and ultracold hybrid
ion-atom systems [34].

II. MAXWELL-HIGGS MODEL

We consider a gauge field and a complex scalar field
coupled through an Uð1Þ local symmetry in (2,1) flat
spacetime dimensions, with metric ηαβ ¼ diagðþ;−;−Þ
and action S ¼ R

d3xL, where the Lagrange density is
taken with dimensionless fields and coordinates, in the
form

L ¼ −
1

4μðjφjÞFαβFαβ þDαφDαφ − VðjφjÞ: ð1Þ

Here, we have Dα ¼ ∂α þ iAα, Fαβ ¼ ∂αAβ − ∂βAα, and
the overline stands for complex conjugation. In this case,
μðjφjÞ denotes a generalized magnetic permeability. The
equations of motion of the fields φ and Aα associated to the
Lagrange density (1) are

DαDαφþ φ

2jφj
�
−
μjφj
4μ2

FαβFαβ þ V jφj

�
¼ 0; ð2aÞ

∂α

�
1

μ
Fαβ

�
þ 2ℑðφ̄DβφÞ ¼ 0; ð2bÞ

in which ℑðzÞ represents the imaginary part of z, and we
have used the notation μjφj ¼ dμ=djφj and V jφj ¼ ∂V=∂jφj.
Invariance of the Lagrange density (1) under spacetime
translations leads to the energy-momentum tensor

Tαβ ¼
1

μ
FαλFλ

β þ 2ℜðDαφDβφÞ − ηαβL; ð3Þ

where ℜðzÞ denotes the real part of z. In the case of static
configurations, we take A0 ¼ 0 knowing that the Gauss’s
law for our model, given by the temporal component of
Eq. (2), is compatible with this condition. This makes the
vortex be electrically neutral. We proceed in the inves-
tigation by taking

φ ¼ gðrÞeinθ and A ¼ θ̂

r
ðn − aðrÞÞ; ð4Þ

where r and θ are polar coordinates and n is the vortex
winding number. The functions gðrÞ and aðrÞ are mono-
tonic and must obey the boundary conditions

gð0Þ ¼ 0; að0Þ ¼ n;

lim
r→∞

gðrÞ ¼ 1; lim
r→∞

aðrÞ ¼ 0: ð5Þ

With this, the terms associated to the dynamics of each field
become

DαφDαφ ¼ −g02 −
a2g2

r2
ð6aÞ

−
1

4
FαβFαβ ¼ −

a02

2r2
; ð6bÞ

where the prime denotes the derivative with respect to r.
Furthermore, the magnetic field takes the form

B ¼ −a0=r; ð7Þ

and the magnetic flux Φ ¼ 2π
R
∞
0 rdrBðrÞ is quantized:

Φ ¼ 2πn: ð8Þ

The equations of motion (2) with (4) become

1

r
ðrg0Þ0 − a2g

r2
¼ −

μga02

4μ2r2
þ 1

2
Vg; ð9aÞ
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r
�
a0

μr

�0
¼ 2ag2: ð9bÞ

The energy density ρ≡ T00 can be calculated from the
energy-momentum tensor (3) and Eq. (4); it takes the form

ρ ¼ a02

2μr2
þ g02 þ a2g2

r2
þ VðgÞ; ð10Þ

where aðrÞ and gðrÞ are the solutions of the equations of
motion (9). These solutions, however, are not easy to
obtain, since one must solve second-order differential
equations that are coupled with one another. To simplify
the problem, we make use of the first-order formalism
developed in Ref. [18], which appears for the stressless
condition, Tij ¼ 0. In this case, we get the first-order
equations

g0 ¼ � ag
r

and −
a0

r
¼ �μðgÞð1 − g2Þ: ð11Þ

The pair of equations for the upper and lower signs is
related by a → −a. Here, the potential must be written as

VðgÞ ¼ μðgÞ
2

ð1 − g2Þ2 ð12Þ

to ensure the first-order equations (11) are compatible with
the equations of motion (9). We may also take advantage of
this formalism to use an auxiliary function Wða; gÞ such
that the energy density in Eq. (10) can be expressed in terms
of a total derivative, as

ρ ¼ 1

r
dW
dr

; with Wða; gÞ ¼ −að1 − g2Þ: ð13Þ

After integrating the above energy density, we get
E ¼ 2πjnj, which is the same for the standard Nielsen-
Olesen vortex [3]. For simplicity, from now on, we only
consider unit vorticity, n ¼ 1. Thus, one must use the
positive sign in the first-order equations (11).
In this paper, we are interested in find vortices with

polynomial tails, which we call long range vortices.
However, before going further, we review the asymptotic
behavior of the standard vortex (μ ¼ 1), which is described
by the first-order equations

g0 ¼ ag
r

and −
a0

r
¼ 1 − g2: ð14Þ

To see how the solutions behave far from the origin, we
look at the boundary conditions (5) and write aðrÞ ¼
0þ aasyðrÞ and gðrÞ ¼ 1 − gasyðrÞ. By substituting these
functions in the above first-order equations and linearizing
them, one can show that

aasy ≈ λ
ffiffiffiffiffi
2r

p
e−

ffiffi
2

p
r and gasy ≈ λ

e−
ffiffi
2

p
rffiffiffi

r
p ; ð15Þ

where λ is a constant that can be adjusted to fit the
numerical simulations. We then see these expressions
rapidly vanish as r increases due to the exponential factor.
The generalized magnetic permeability, however, has
allowed for the presence of different vortex configurations,
such as the compact vortices that we found in Ref. [15].
Since we are interested in long range vortices, we first

reproduce the analytical solutions found in Refs. [29,35], in
our model (1) with the magnetic permeability given by

μðgÞ ¼ 2sg2s−2j1 − g2sj1þ1
s

j1 − g2j ; ð16Þ

where s is a real parameter such that s ≥ 1. In this case, the
potential in Eq. (12) has the form

VðgÞ ¼ sg2s−2j1 − g2jj1 − g2sj1þ1
s; ð17Þ

and we must solve the equations in Eq. (11), which become

g0 ¼ ag
r

and −
a0

r
¼ 2sg2s−2ð1 − g2sÞ1þ1

s: ð18Þ

It supports the analytical solutions

aðrÞ ¼ 1

1þ r2s
and gðrÞ ¼ r

ð1þ r2sÞ 1
2s

: ð19Þ

Notice that the tail of these solutions is controlled by
aðrÞ ∝ r−2s and 1 − gðrÞ ∝ r−2s, which is a distinct behav-
ior from the exponential one found in Eq. (15). The
polynomial tail goes slower than the standard one to
the boundary value. This shows the long range character
of the vortex. The magnetic field (7) and energy
density (13) are

BðrÞ ¼ 2sr2s−2
ð1þ r2sÞ2 ; ð20aÞ

ρðrÞ ¼ 2ð1 − sr2s þ sr2s−2ð1þ r2sÞ1sÞ
ð1þ r2sÞ2þ1

s

: ð20bÞ

They can be integrated to give flux Φ ¼ 2π and energy
E ¼ 2π. Notice that both E and Φ do not depend on s, as
previously informed.
We now introduce a novel model that supports vortex

configurations with long range tails. It is given by the
magnetic permeability

μðgÞ ¼ 2g2j1 − g2jl−1; ð21Þ
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where l is a real parameter such that l ≥ 1. The case l ¼ 1
recovers the model investigated in Ref. [36], which
reproduces, using a generalized magnetic permeability,
the standard Chern-Simons solutions aðrÞ and gðrÞ [5,6],
whose tails are dominated by an exponential function,
similarly to the behavior in Eq. (15). So, for a general l, the
potential in Eq. (12) becomes

VðgÞ ¼ g2j1 − g2jlþ1: ð22Þ

This potential is displayed in Fig. 1 for some values of l.
One can show that dmV=dgmjg¼1 ¼ 0 for m ¼ 0;…; ⌈l⌉,
where ⌈l⌉ denotes the ceiling function.
In this model, the first-order equations (11) take the form

g0 ¼ ag
r

and −
a0

r
¼ 2g2ð1 − g2Þl: ð23Þ

The above first-order equations admit the asymptotic
behavior

aasyðrÞ ≈ ðl − 1Þ−lþ1
l−1r−

2
l−1; ð24aÞ

gasyðrÞ ≈
1

2
ðl − 1Þ− 2

l−1r−
2
l−1: ð24bÞ

The above expressions show that the solutions exhibit a
polynomial tail that goes slower to their boundary values as
l increases. One may also verify that the magnetic field (7)
and the energy density (13) behaves asymptotically as

BðrÞ ≈ 2ðl − 1Þ− 2l
l−1r−

2l
l−1 ð25aÞ

ρðrÞ ≈ 4ðl − 1Þ−2ðlþ1Þ
l−1 r

−2ðlþ1Þ
l−1 : ð25bÞ

Thus, similarly to the solutions, both the magnetic field
and the energy density engender polynomial tails. As in the
previous model, the quantities that describe the vortex

present a power-law asymptotic behavior which shows the
long range behavior of the structure.
Differently from the previous model, here we were not

able to find the analytical solutions of the first-order
equations (23). So, we must use numerical procedures to
solve them for each l. In Fig. 2, we display the solutions
and the magnetic field BðrÞ for some values of l. We also
calculate the energy density numerically and show it in
Fig. 3. One can see that, for l > 1, all the quantities that
describe the vortex configuration take larger distances to

FIG. 1. The potential in Eq. (22) as a function of g, VðgÞ, for
l ¼ 1, 2, 3, and 4. The dashed line represents the case l ¼ 1, and
the thickness of the lines increases with l.

FIG. 2. The solutions (top) aðrÞ (descending lines) and gðrÞ
(ascending lines) of Eq. (23) and the magnetic field BðrÞ (bottom)
for l ¼ 1, 2, 3, and 4. The dashed lines represent the case l ¼ 1,
and the thickness of the lines increases with l.

FIG. 3. The energy density ρðrÞ associated to the solutions of
Eq. (23) for l ¼ 1, 2, 3, and 4. The dashed line represents the case
l ¼ 1, and the thickness of the lines increases with l.
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attain their boundary values when compared to the standard
case with exponential tails. Moreover, as l increases, the
tails get larger and larger.

III. CHERN-SIMONS MODELS

We now exchange the Maxwell term for the Chern-
Simons one in the Lagrange density (1). In this case, we
cannot include a factor depending on the scalar field
multiplying the Chern-Simons term, because it would
break gauge invariance. Nevertheless, as we have shown
in Ref. [18], we need generalized models to find vortices
with features that differ from the standard ones [5,6]. Then,
we consider the generalized class introduced in Ref. [37],
which includes a factor that modifies the dynamical term of
the scalar field

L ¼ 1

4
ϵαβγAαFβγ þ KðjφjÞDαφDαφ − VðjφjÞ: ð26Þ

The equations of motion associated to the above Lagrange
density are

DαðKDαφÞ ¼ φ

2jφj ðKjφjDαφDαφ − V jφjÞ; ð27aÞ

κ

2
ϵαβγFαβ þ 2K2ℑðφ̄DγφÞ ¼ 0; ð27bÞ

The energy-momentum tensor has the form

Tαβ ¼ 2KðjφjÞℜðDαφDβφÞ
− ηαβðKðjφjÞDλφDλφ − VðjφjÞÞ: ð28Þ

Here, we cannot take A0 ¼ 0 as in the Maxwell case
because this is not compatible with the equations of motion.
So, we take the fields in the form of Eq. (4) with their usual
boundary conditions, and A0 ¼ A0ðrÞ. One can show that
the magnetic field is B ¼ −a0=r and its associated flux is
given by Eq. (8). Here, we have an additional feature that
arises due to the presence of the temporal component of the
gauge field: the electric field, whose intensity is jEj ¼ jA0

0j.
In this case, the vortex is electrically charged, with charge
Q ¼ −Φ. For simplicity, we take unit vorticity, n ¼ 1.
From Eqs. (27), we get the following equations of motion:

1

r
ðrKg0Þ0 þ Kg

�
A2
0 −

a2

r2

�

þ 1

2

��
g2A2

0 − g02 −
a2g2

r2

�
Kg − Vg

�
¼ 0; ð29aÞ

a0

r
þ 2Kg2A0 ¼ 0; ð29bÞ

A0
0 þ

2Kag2

r
¼ 0: ð29cÞ

Also, the energy density is calculated from the compo-
nent T00 in Eq. (28) and takes the form

ρ ¼ 1

4

a02

r2g2KðgÞ þ
�
g02 þ a2g2

r2

�
KðgÞ þ VðgÞ: ð30Þ

The equations of motion (29) are of second order. To
simplify the problem, we follow the first-order formalism
developed in Ref. [18] to obtain

g0 ¼ ag
r

and −
a0

r
¼ 2g

ffiffiffiffiffiffiffi
KV

p
: ð31Þ

The potential, however, cannot have an arbitrary form
because the above equations must be compatible with the
equations of motion (29). One can show that the functions
KðgÞ and VðgÞ are constrained to obey

d
dg

� ffiffiffiffiffiffiffiffi
V
g2K

s �
¼ −2gK: ð32Þ

The above equation allows us to write the potential as

VðgÞ ¼ 4g2KðgÞ
�Z

dggKðgÞ
�

2

; ð33Þ

in which an integration constant always arise in the process,
since we are dealing with an indefinite integration. For a
general KðgÞ, the first-order equations (31) become

g0 ¼ ag
r

ð34aÞ

− a0

r
¼ −4g2KðgÞ

Z
dggKðgÞ ð34bÞ

such that one must choose KðgÞ and the integration
constant to get solutions compatible with the boundary
conditions (5). In this case, the energy density is given by

ρ ¼ 1

r
dW
dr

; where Wða; gÞ ¼ 2a
Z

dggKðgÞ: ð35Þ

By integrating this energy density, we get energy

E ¼ 2πjWða ¼ 0; g ¼ 1Þ −Wða ¼ 1; g ¼ 0Þj: ð36Þ

So, the function KðgÞ and the integration constant that
arises in the process also modifies the energy of the vortex.
The simplest example is the standard case, KðgÞ ¼ 1,

investigated in Refs. [5,6]. In this situation, to develop the
Bogomol’nyi procedure [4], one must take the jφj6 poten-
tial, given by

VðgÞ ¼ g2ðv2 − g2Þ2; ð37Þ
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where v is the symmetry breaking parameter. To ensure that
the first-order equations (34) support solutions compatible
with the boundary conditions in Eq. (5), we set v ¼ 1. By
doing so, the model is governed by

g0 ¼ ag
r

and −
a0

r
¼ 2g2ð1 − g2Þ: ð38Þ

As one knows, the analytical solutions of these equations
remain unknown. The energy density is written as in
Eq. (35) with W ¼ aðg2 − 1Þ. So, from Eq. (36), one
has the energy E ¼ 2π.
We note here that the first-order equation for aðrÞ in both

Maxwell-Higgs and Chern-Simons-Higgs models has the
form

−
a0

r
¼ fðgÞ; ð39Þ

which is always solved with g0 ¼ ag=r. Notice that B ¼
−a0=r only depends on fðgÞ; this allows us to find models
in both scenarios with the same solutions and magnetic
field. For fðgÞ ¼ μðgÞð1 − g2Þ, we get the Maxwell-Higgs
model with the presence of the generalized magnetic
permeability μðgÞ. On the other hand, comparing the above
equation with Eq. (34b), we see that for fðgÞ ¼
−4g2KðgÞ R dg2gKðgÞ we obtain the Chern-Simons case.
This means that one may relate both models. In particular,
for a known fðgÞ, one can show that the Chern-Simons-
Higgs model is obtained through

KðgÞ ¼ fðgÞ
2g2

�
−
Z

dðg2Þ fðgÞ
g2

�
−1
2

: ð40Þ

One must be careful with this integration, because the
integration constant must be properly chosen to make
the above function be non-negative in the interval where
the solution gðrÞ exists, i.e., g ∈ ½0; 1�, as stated in the
boundary conditions (5). Moreover, it must also lead to
non-negative finite energy. In this case, the potential can be
calculated from the right equation in (31) and Eq. (39); it is
simply given by

VðgÞ ¼ 1

4

f2ðgÞ
g2KðgÞ ; ð41Þ

and the functionWða; gÞ in Eq. (35), involved in the energy,
is calculated in terms of fðgÞ as

Wða; gÞ ¼ −a
fðgÞ

2g2KðgÞ : ð42Þ

Let us consider the standard case, KðgÞ ¼ 1, investigated in
Refs. [5,6]. As we have commented before, in this case, one
gets the potential in Eq. (37) with v ¼ 1 to match the

boundary conditions (5). We can substitute this in Eq. (31)
or use Eq. (34) to obtain the first-order equations (38).
Comparing this with Eq. (39), one can show that
fðgÞ ¼ 2g2ð1 − g2Þ. By using Eq. (40), we get KðgÞ ¼
j1 − g2j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − 2g2 þ g4

p
and the potential VðgÞ ¼ g2j1−

g2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − 2g2 þ g4

p
. Notice there is an integration constant,

C, in these expressions. Nevertheless, KðgÞ has singular-
ities for C < 1, which we avoid here, and the potential is
V-shaped for C > 1. So, we take C ¼ 1, which recovers the
standard case,KðgÞ ¼ 1, and is the only choice that leads to
a smooth potential.
Now, we use the procedure to obtain a Chern-Simons

model that engenders the same analytical solutions in
Eq. (19). For s ¼ 1, the functions involved in the model
lead to infinite energy, so we only consider s > 1, for which

KðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 1Þ

2

r
g2s−4j1 − g2sj1þ1

s

HðgÞ ; ð43aÞ

VðgÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2s3

s − 1

r
g2s−2j1 − g2sj1þ1

sHðgÞ; ð43bÞ

with H2ðgÞ ¼ j1 − g2s−22F1ð−1 − 1
s ; 1 −

1
s ; 2 −

1
s ; g

2sÞj,
where 2F1ðα; β; λ; zÞ denotes the hypergeometric function
of parameters α, β, and λ and argument z. Also, we have
chosen the integration constant C ¼ 2s=ðs − 1Þ to obtain a
simpler expression. The function Wða; gÞ in the energy
density that appears in Eq. (35) is given by Eq. (42), which
leads to

Wða; gÞ ¼ −
ffiffiffiffiffiffiffiffiffiffi
2s

s − 1

r
aHðgÞ: ð44Þ

So, for s > 1, the energy is given by Eq. (36) and has the
form E ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s=ðs − 1Þp

. Notice that, even though the
procedure works, it leads to exotic potentials, with the
presence of a hypergeometric function.
We carry on with the investigation and use the same

method to get a Chern-Simons model that supports the
same solutions aðrÞ and gðrÞ of the Maxwell-Higgs model
that we have introduced with the magnetic permeability
(21). In this case, these solutions obey first-order equa-
tions (23) and their associated magnetic field, all of them
displayed in Fig. 2. Thus, we have fðgÞ ¼ 2g2ð1 − g2Þl.
As we remarked below Eq. (21), the case l ¼ 1 leads to

solutions with exponential tails with a form similar to the
one found in Eq. (15), since both aðrÞ and gðrÞ are exactly
the same of the standard Chern-Simons model [5,6], for any
well-defined KðgÞ. Note, however, that here, differently
from the Maxwell-Higgs model described by the magnetic
permeability (21), we have the presence of an electric field
due to a nonvanishing temporal gauge component such that
both of them depend on the form of the function KðgÞ.
Since the purpose of our paper is to deal with long range
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vortices, we do not discuss the case l ¼ 1with detail, using
it only to compare the new solutions to the standard ones.
To obtain the function KðgÞ, which controls the dynami-

cal term of the scalar field in the Lagrange density, one
must use Eq. (40). It leads to

KðgÞ ¼
ffiffiffiffiffiffiffiffiffiffi
lþ 1

2

r
j1 − g2jlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αþ ð1 − g2Þlþ1
p : ð45Þ

Notice there is an integration constant α that appears in the
process. It must be non-negative to ensure the above
function is real. As we have shown in Eq. (41), KðgÞ
determines the potential, which is given by

VðgÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2

lþ 1

r
g2j1 − g2jl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ ð1 − g2Þlþ1

q
: ð46Þ

The function Wða; gÞ in Eq. (42) associated to the energy
has the form

Wða; gÞ ¼ −
ffiffiffi
2

p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αþ ð1 − g2Þlþ1

lþ 1

s
; ð47Þ

which makes the energy in Eq. (36) be given by

E ¼ 2
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffi
αþ 1

lþ 1

r
: ð48Þ

The potential in Eq. (46) has a set of minima located at
g ¼ 1 and at the origin, regardless the value of α.
Nevertheless, as we will show in this paper, the case
α ¼ 0 is special, so we deal with it later. First, we take
α > 0. In this situation, we have dmV=dgmjg¼1 ¼ 0 for
m ¼ 0;…; ⌈l − 1⌉.
As we have used the method in Eq. (40) to find the

Chern-Simons model, the solutions aðrÞ and gðrÞ and the
magnetic field are the same of the Maxwell case; see Fig. 2.
However, we are now dealing with a vortex in the Chern-
Simons scenario, so we also have the presence of A0, which
gives rise to an electric field, EðrÞ. It also modifies the
energy density, which now depends on KðgÞ as one can see
in Eq. (35). Since we only know the numerical solutions,
we estimate the asymptotic behavior of these quantities
using the results for the tail of aðrÞ and gðrÞ in Eq. (24)
substituted in Eqs. (29b), (29c), and (35):

A0ðrÞ ≈
ffiffiffiffiffiffiffiffiffiffi
2α

lþ 1

r �
1þ 1

2α
ðl − 1Þ−2ðlþ1Þ

l−1 r−
2ðlþ1Þ
l−1

�
ð49aÞ

jEðrÞj ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 1Þ

α

r
ðl − 1Þ−3lþ1

l−1 r−3lþ1
l−1 ð49bÞ

ρðrÞ ≈ 2

ffiffiffiffiffiffiffiffiffiffi
2α

lþ 1

r
ðl − 1Þ− 2l

l−1r− 2l
l−1: ð49cÞ

Thus, all of these quantities present a polynomial tail that is
controlled by l, with l ∈ ð1;∞Þ. An interesting feature is
that A0 tends to a non-null constant, such that A0 →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2α=ðlþ 1Þp

for r → ∞.
An interesting case for positive α is α ¼ l, as it leads to

vortices with fixed energy in Eq. (48), E ¼ 2
ffiffiffi
2

p
π, regard-

less the value of l. The function KðgÞ, the potential VðgÞ,
and the other involved quantities can be calculated straight-
forwardly by taking α ¼ l in Eqs. (45)–(49). The potential
can be seen in Fig. 4 for some values of l. We then turn our
attention to A0, which gives rise to an electric field, EðrÞ.
They can be calculated from Eqs. (29b) and (29c) and are
displayed in Fig. 5. From the graphic of A0, one can see
that, for l → ∞ and r → ∞, A0 →

ffiffiffi
2

p
. We also plot the

energy density (35) in Fig. 6.
We now deal with the special case, α ¼ 0. In this case,

we get from Eqs. (45) and (46) that

KðgÞ ¼
ffiffiffiffiffiffiffiffiffiffi
lþ 1

2

r
j1 − g2jl−12 ; ð50aÞ

VðgÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2

lþ 1

r
g2j1 − g2j3lþ1

2 : ð50bÞ

The above potential is displayed in Fig. 7 for some
values of l. One can show that dmV=dgmjg¼1 ¼ 0 for
m ¼ 0;…; ⌈ð3l − 1Þ=2⌉. We note here that l ¼ 1 recovers
the standard Chern-Simons model [5,6], which arises for
KðgÞ ¼ 1 and VðgÞ ¼ g2ð1 − g2Þ2 and engender solutions
with exponential tails in a similar form of Eq. (15).
To calculate the energy for a general l, one can show the

auxiliary function Wða; gÞ in Eq. (42) has the form

Wða; gÞ ¼ −
ffiffiffiffiffiffiffiffiffiffi
2

lþ 1

r
að1 − g2Þlþ1

2 : ð51Þ

The energy of the solutions in this scenario is given by
Eq. (36), which leads to E ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðlþ 1Þp

. Notice

FIG. 4. The potential VðgÞ in Eq. (46) with α ¼ l, for l ¼ 1, 2,
3, and 4. The dashed line represents the case l ¼ 1, and the
thickness of the lines increases with l.
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this result is different from the energy obtained in the
Maxwell-Higgs model, which is constant, as one can find
below Eq. (13).
As stated before, even though the solutions and magnetic

field are the same of Fig. 2, here we have novel features.
The function A0 can be calculated from Eq. (29b), and the
intensity of the electric field jEj ¼ jA0

0j can be calculated
from (29c). The energy density can be calculated from

Eq. (35). Since we only know the numerical solutions, we
estimate the asymptotic behavior of these quantities using
the results for the tail of aðrÞ and gðrÞ in Eq. (24):

A0ðrÞ ≈
ffiffiffiffiffiffiffiffiffiffi
2

lþ 1

r
ðl − 1Þ−lþ1

l−1r−lþ1
l−1 ð52aÞ

jEðrÞj ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðlþ 1Þ

p
ðl − 1Þ− 2l

l−1r− 2l
l−1 ð52bÞ

FIG. 5. The temporal component of the gauge field A0ðrÞ (top)
and the intensity of the electric field jEðrÞj (bottom) associated to
the Chern-Simons model described by the potential in Eq. (46)
with α ¼ l, for l ¼ 1, 2, 3, and 4. The dashed lines represent the
case l ¼ 1, and the thickness of the lines increases with l.

FIG. 6. The energy density ρðrÞ associated to the Chern-
Simons model described by the potential in Eq. (46) with
α ¼ l, for l ¼ 1, 2, 3, and 4. The dashed lines represent the
case l ¼ 1, and the thickness of the lines increases with l.

FIG. 7. The potential VðgÞ in Eq. (50b) for l ¼ 1, 2, 3, and 4.
The dashed line represents the case l ¼ 1, and the thickness of the
lines increases with l.

FIG. 8. The temporal component of the gauge field A0ðrÞ (top)
and the intensity of the electric field jEðrÞj (bottom) associated to
the Chern-Simons model described by the potential in Eq. (50b)
for l ¼ 1, 2, 3, and 4. The dashed lines represent the case l ¼ 1,
and the thickness of the lines increases with l.
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ρðrÞ ≈
ffiffiffiffiffiffiffiffiffiffi
2

lþ 1

r
ðlþ 3Þðl − 1Þ−3lþ1

l−1 r−3lþ1
l−1 : ð52cÞ

So, as l increases, these quantities get a larger tail, which
shows the long range behavior of the vortex. We then use
the numerical solutions of (23) and plot A0 and the intensity
of the electric field jEj in Fig. 8. The energy density from
Eq. (35) is shown in Fig. 9. Notice that the behavior of this
case (α ¼ 0) is different from the one in Eq. (49). The tail of
the aforementioned quantities is larger here, as the powers
of r are smaller in the case α > 0.

IV. CONCLUSION

In this work, we have investigated the presence of
vortices with a long range behavior in Maxwell-Higgs
and Chern-Simons-Higgs models. We have used the
formalism developed in Ref. [18] to find a manner to
calculate the energy without knowing the explicit solutions
and first-order equations that are compatible with the
equations of motion that dictate the form of the field.
Considering a pair of solutions aðrÞ and gðrÞ, associated

to a vortex with magnetic field BðrÞ that obey a specific
class of first-order differential equations, we have devel-
oped a method to find Maxwell and Chern-Simons models
that support them. This allows us to make a connection
between the two aforementioned scenarios. One must be
careful, though, since the Chern-Simons model brings an

extra degree of freedom, the electric field, when compared
to the Maxwell case.
By using the above procedure, we have found novel

vortex configurations that support polynomial tails. As one
knows, the standard vortex considered in each scenario in
Refs. [3,5,6] engenders a tail that dies out exponentially.
Since our vortices go slower to their boundary conditions,
we called them long range vortices. The presence of long
range vortices has specific interest: they describe localized
excitations that attain distinct collective behavior, when
compared to standard vortices. In this sense, they lead to
scenarios that are different from the standard situation and
may foster the study of long range vortices in the case of
nonrelativistic systems like the Bose-Einstein condensates,
which are known to support vortex excitations. Another
issue of interest concerns the problem examined in
Ref. [38], connecting conformal quantum mechanics mod-
els and equations of the Korteweg-de Vries hierarchy. It
suggests inquiring about the possibility to relate vortices
with long range tails to models that admit analytic solutions
in the form of vortices with exponentially dying tails.
Moreover, the above results motivate us to investigate other
systems, with relativistic or nonrelativistic matter, to find
new systems and solutions that engender the novel long
range behavior that we have found in the present work. In
the nonrelativistic case, in the case of Bose-Einstein
condensates with Rydberg atoms, for instance, one knows
that atoms with very large principal quantum number
engender long range interactions and relatively long life-
times, and this can be used to process quantum information
and may induce the presence of vortices with long range
tails. Since the experimental and theoretical studies are now
bringing these possibilities into play, the search for models
that support long range excitations is a topic of current
interest [32–34,39–44].
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