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We analyze the entanglement entropy, in real space, for the higher-dimensional integer quantum Hall
effect on CP¥ (any even dimension) for Abelian and non-Abelian magnetic background fields. In the case
of v = 1 we perform a semiclassical calculation which gives the entropy as proportional to the phase-space
area. This exhibits a certain universality in the sense that the proportionality constant is the same for any
dimension and for any background, Abelian or non-Abelian. We also point out some distinct features in the
profiles of the eigenfunctions of the two-point correlator that underline the difference in the value of

entropies between v = 1 and higher Landau levels.
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I. INTRODUCTION

Entanglement has been used to explore properties of
quantum states in a variety of condensed matter systems.
Typically a system is divided into two subsystems and the
entanglement is calculated in terms of the von Neumann
entropy of the reduced density matrix of one of the
subsystems. For gapped two-dimensional systems, the
leading order contribution to the entanglement entropy is
proportional to the perimeter of the boundary separating
the two subsystems, in particular S = cL +y + O(1/L),
where L is the length of the boundary, c is a nonuniversal
coefficient and y is a universal quantity called topological
entanglement entropy [1].

Of particular interest among two-dimensional gapped
systems are the quantum Hall systems whose entanglement
entropy has been widely studied under different partitions.
Entanglement calculations have been used to characterize
various topologically ordered phases and further extract
information on the edge properties of such systems [2—8].
This is one of the key motivations for the study of
entanglement entropy in the context of quantum Hall effect.
For a real-space partition it was found that y = 0 for fully
filled integer quantum Hall states and nonzero for fractional
quantum Hall states. The entanglement entropy in the case of
integer quantum Hall states is amenable to analytical
calculations due to the fact that the many-body ground state
is given in terms of free fermions. The area-law entropy
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behavior for the two-dimensional integer quantum Hall
effect (QHE) was studied in different geometries analyti-
cally for v = 1 and numerically up to v = 5 in [2] and the
coefficient ¢ was identified in these cases. A general
mathematical theorem on the entropy area law for v = 1
is shown in [9].

In this paper we present a detailed analysis of the
entanglement entropy in the case of higher-dimensional
integer quantum Hall effect (any even dimension), in
particular quantum Hall effect on CP* [10-12]. For k=1
this reduces to the well-known case of QHE on S?> where
the magnetic field is created by a monopole at the center
[13]. The formulation of QHE on CP* for k > 1 displays
two interesting features: higher dimensionality and the
possibility of introducing both Abelian and non-Abelian
magnetic fields. In the latter case one deals with a many-
body system of free fermions with internal degrees of
freedom which is amenable to analytical calculations.

The paper is organized as follows. In Sec. II we give a
brief description of the integer quantum Hall effect on CIP%,
the corresponding spectrum and the Landau level wave
functions. In Sec. III we focus on the lowest Landau level
and derive analytical expressions for the entropy for
(a) arbitrary k and Abelian U(1) magnetic field and
(b) k=2 for U(1) x SU(2) non-Abelian magnetic field
with fermions in the triplet representation. The entropy is
expressed in terms of the eigenvalues of the two-point
correlation function. We perform a semiclassical calcula-
tion for the entropy and find that the area law as expressed
in terms of a “phase-space” area has the same coefficient ¢
for v =1 for any dimension and any Abelian or non-
Abelian background. In Sec. IV we derive analytical
expressions for the eigenvalues of the two-point correlator
for the first Landau level and the v =2 quantum Hall
system on S? and comment on how the different profiles

Published by the American Physical Society


https://orcid.org/0000-0003-3303-017X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.025016&domain=pdf&date_stamp=2020-07-21
https://doi.org/10.1103/PhysRevD.102.025016
https://doi.org/10.1103/PhysRevD.102.025016
https://doi.org/10.1103/PhysRevD.102.025016
https://doi.org/10.1103/PhysRevD.102.025016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

DIMITRA KARABALI

PHYS. REV. D 102, 025016 (2020)

account for the different values of ¢ in each case. We end
with a short discussion.

II. QUANTUM HALL EFFECT ON CP*

In this section we will give a brief description of the
Landau level states and wave functions for the quantum
Hall effect on CP¥, following a group theoretic analysis
developed in [10-12]. CP* is a 2k-dimensional manifold
which can be thought of as a coset space,

v SU(k+1)

CP* = e (1)
The Landau wave functions can be obtained as functions of
SU(k + 1) with specific transformation properties under
the U(k) subgroup. A basis for such functions is given by
the so-called Wigner D-functions, which are the matrices
corresponding to the group elements in the unitary irre-
ducible representations, namely

Dy r(9) = (J. L4lg

J.ra) )

where J denotes the representation and /,, r4 stand for two
sets of quantum numbers specifying the states within the
representation. On an element g € SU(k+ 1), we can
define left and right SU(k + 1) actions by

Lyg=Tay, Ryg=9gTx (3)
where T are the SU(k + 1) generators in the representation
to which g belongs. The left transformations correspond to
magnetic translations. There are 2k right generators of
SU(k + 1) which are not in U(k); these can be separated
intoT,;,7=1,2..., k, which are of the raising type and 7"_;
which are of the lowering type. These generate translations
while U(k) generates rotations at a point. The covariant
derivatives on CP¥ are given by

(4)

where r can be thought of as the radius of CPX. This is
consistent with the fact that the commutator of covariant
derivatives is the magnetic field. The commutators of RH
and R_; are in the Lie algebra of U(k); in the case of CP*
these correspond to constant magnetic fields. In particular
we can specify the background field by specifying the right
action of U(k) on the wave functions

feaqj{n;a<g) = (Tg>aﬁql{n,ﬂ(g>’ (5)

nk

mq’{n;a(g) (6)

kk2+2k‘11fn;a(g) = -

where the index m = 1, ..., dim J represents the state within
the SU(k + 1) representation J and therefore counts the
degeneracy of the Landau level. The first of these equations
shows that the wave functions W transform, under
right rotations, as a representation J of SU(k). (Tg)(,/,y are
the representation matrices for the generators of SU (k) in the
representation J and n is an integer characterizing the
Abelian part of the background field. a, f# label states within
the SU (k) representation J [which is itself contained in the
representation J of SU(k 4 1)]. The index «a in the wave
functions W,.,(g) characterizes the non-Abelian charge of
the underlying fermion fields.

In terms of D-functions, the correctly normalized wave
functions are given by

¥al9) = VN( mlglJ,a,n) = VND;a(9)  (7)

where N = dim J and the following orthogonality theorem
has been used

5mm’ 50:0/

[ Do) Dl () =0 ()

where du(g) is the Haar measure on SU(k + 1) normalized
to unity.

In the absence of a confining potential, the Hamiltonian
H for the Landau problem is proportional to the covariant
Laplacian on CP*, namely

1

HY =
4dm

(D./D_i + D_D;)¥ 9)

which apart from additive constants can be reduced to
the form >, R, ;R_;. Thus the lowest Landau level wave
functions satisty the holomorphicity condition

R_,¥ =0. (10)
The conditions (5), (6) and (10) completely fix the
representation J and therefore the degeneracy of the lowest
Landau level.

First we consider the lowest Landau wave functions for
the case of an Abelian background magnetic field. In that
case the state |J, n) corresponds to the singlet representa-
tion of SU(k) € SU(k+ 1) with a U(1) charge propor-
tional to n as specified in (6), namely R; = —n/2. These
can be thought of as the coherent states for CP¥, written
explicitly in terms of complex coordinates,

b g

iyip-if —

n! %Zil iz... Lk
N : 13 " "%
ll‘lz'lk'(}’l—s)' (l—i—Z'Z)E,

s=i+ir+-+i, 0<i;<n, 0<s<n (11)
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where z’s are holomorphic coordinates, z = x + iy. These
wave functions form a symmetric, rank n representation J
of SU(k + 1). The dimension of this representation, which
is also the lowest Landau level (LLL) degeneracy, is

. (nHtk)!
N =dimJ = 7 (12)
The volume element for CP* is
k! d?z,---d?
ST R (13)

(14z- ) T

We have chosen the normalization such that the total
volume, [ du, is 1.

In the case of a U(1) x SU(k) non-Abelian background,
it is convenient to label the irreducible representation
of SUk+ 1), by (p+1,q+1) corresponding to the
tensor [11]

ay...agyy...yy
Tb] ...b,61...6

z
= T;I] ! (14)
where p, ¢ indicate U(1) indices and [, /" indicate SU (k)
indices; namely a’s and b’s take the value (k + 1) and y’s
and &’s take values 1, ..., k.
The right hypercharge corresponding to (6) is

V/2k(k 4+ 1)Ry2 0 = —k(p —

The fact that n has to be an integer implies that (I — ") /k is
an integer, thus constraining the possible SU(k)g
representations J.

Further, as explained in detail in [11], the lowest Landau
level states correspond to ¢ = 0, [ = 0. So the LLL states
we consider correspond to the tensor 7° ! where p=n-— %
and I' = jk,j=1,2,....

Q) +1-1=-nk. (15

III. ENTANGLEMENT ENTROPY FOR v=1

In order to calculate the entanglement entropy we divide
the system into two regions, D and its complementary D€,
and define the reduced density matrix

pp = Trpc|GS)(GS| (16)

where |GS) is the many-body ground state of the system,

|GS) =TTy cnl0).
The entanglement entropy is defined as

S = ~Trpplogpp (17)

and is a measure of the entanglement between the two
subsystems.

We choose D to be the spherically symmetric region of
CP* satisfying z -z < R?. For CP' ~ §2, this region is a

polar cap centered around the north pole and bounded
by a latitude angle @, with R = tan0/2 via stereographic
projection.
The reduced density matrix pp, is related to the two-point
correlator C(r, r') [2,5]
C(r,7) = (GS|¥' (r)¥(7)|GS) (18)
where W(r) is the electron field operator and r, ' are
restricted to be inside the domain D. In particular, the
reduced matrix p;, can be written as a 2" x 2V matrix of a
block diagonal form

p =Qm dlag(/lm’ I lm) (19)

where 4,, are the eigenvalues of the two-point correlator
C(r, 7). The entanglement entropy is then given by

zN: A, logd,, + (1 =4,)log(1 =4,)]. (20)

m=1

For v =1,

= Zlym(z)cm (21)

m=1

where ¥,,(z) are the holomorphic wave functions dis-
cussed in the previous section and the index m counts the
degeneracy of the lowest Landau level. Using (18) and (21)
we find that

=3 W ()P, (2) (22)
m=1

where z, 7’ are restricted to be inside the domain D. The
diagonalization of C(z,7’) gives the result

A Cr.r )W Zw* (@) / ()
— i (2) (23)

where
= [ 1P (24)

The second line in (23) is due to the fact that since ¥, (z) are
holomorphic functions given in (11) the angular integration
over the spherically symmetric region D will give zero
unless m = [, namely [, ¥,,(Z')¥;(2)du(z') = 8

We now proceed to calculate the eigenvalues A and
subsequently the entanglement entropy for the case of an
Abelian and non-Abelian magnetic field backgrounds.
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A. CP* and Abelian magnetic field background

The lowest Landau level wave functions for CP* in the
case of an Abelian background magnetic field are given in
(11). The corresponding eigenvalues of the two-point
correlator are

Aiyigeeiy _/dlﬂ'm2 zk(r)lpiliz---ik(r)

_ (n+k)! /(lel)i‘(zzzz)iz - (Zez)™
il il (n=9)! Jp (147 - z)nthtt
Ladizy o &y (25)

T

where s =1i; +i, +---+1i;. We perform the angular
integration using the parametrization z; = X5;_; + iXy;,
where

x; = pcos(¢y),
= psin(¢;) cos(¢,),

sin(¢pr_n) cos(dp_1).
sin(¢a-1) (26)

and 0 < ¢y, ¢y, ..., porr < 7,0 < pyp_; < 2x. Using the
fact that in terms of this parametrization

Xop—1 = psin(¢y) sin(¢hy) - -
Xy = psin(¢y) sin(¢hs) - - -

221 - dPzy = p*Vdp sin(¢y )2 dep sin(¢h,)* P dep, - -
X Sin(pa—r ) dpor—rdpri—y (27)
and
[ Gingas = v Ak (28)
Iii+1)

we find, after doing the angular integrations, that

(n+k)! xsHk=l

A Eg;(ﬂ_s)!(Hk_l)!A s (29)

Lty

For each value of s = i; + i, + - - - + iy, the eigenvalue A,
has a degeneracy d; = (s +k—1)!/s!(k— 1)L
The expression for the entanglement entropy is then

(s+k—
S= ZM 1 [—2,log A, — (1—2,)log(1-4,)]. (30)

We will now evaluate the entanglement entropy using a
semiclassical approximation and relate this to the area of
the boundary of D. This is possible when the U(1) charge
n, which controls the dimensionality of the lowest Landau
Hilbert space, becomes very large.

Making a change of variables to t = x/(1 + x), the
expression for the eigenvalues A in (29) can be written as

/ d”erk—l (1 _ t)n—s
5)!
(B(tg:s +kon—s+1) (31)

(n + k)!
(s+k—1)(n-
B (n+k)!
C(s+k=1)(n-ys)!

Ay =

where o = R*/(1 + R?) and B(z;m;, m,) is the incom-
plete beta function. For large n this is amenable to a
semiclassical calculation as shown in [14]. We will follow
that derivation here. Equation (31) can be written as

. (n—l—k)' fo eF([)
/ls_(s—l—k—l)!(n—s)!L dre”™,
F(t)=(s+k—1)logt+ (n—s)log(l—1). (32)

The maximum of F(t) occurs at t* = (s+k—1)/(n+k—1).
Expanding F(t) around t* we find that e/ becomes a
Gaussian function centered around #*. In fact,

d*F (n+k-1)>°

ar|,  (i-s)(s+k—-1) (33)

which implies that the width of the Gaussian is very narrow
for all s. For small s the center of the Gaussian, t* ~ 0, falls
within the range of integration and we find that A, ~ 1. For
large s ~ n the center of the Gaussian, t* ~ 1 > 1, falls
outside the range of integration and therefore 4; ~ 0. The
middle of the transition occurs at s* such that r* = f,

namely
k—1 s*=ty(n+k—=1)— (k-1
skl ke )=l
n+k—1 n—s*=n+k-1)(1-1).

Expanding F(¢) around #, in (35) we find

F(t) = (n+k—=1)[tglogty + (1 — o) log(1 — 1)]
(n+k-1)

—m(t—to>2+"'. (35)

Using this expression we find that for large n,

to ) (I’L—l—k— 1)
eF(t) ~ eF(tU) / ex [_7 t — t 2:|
A 0 P 2t5(1 = 1) (1= to)
— F(n) to(1 = to) 36
N2t k-1 (36)

Substituting this in (32) and using Stirling’s formula
n! =+2zn(n/e)", we find that
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n+k 1
B k=1 2 (37)
for any t,. The value of t, is controlled by R, which
characterizes the size of the spherical domain D and the
above calculation shows that A, is significantly different
from O or 1 only for s such that the corresponding wave
functions are localized very near the boundary of the
entangling surface.
For large n we can define a variable y = s/(n + k— 1),
0 <y <1, and consider 4 as a continuous function of y.
From what we have seen before A - 1 asy - 0,1 — 0 as
y—>landi—1/2asy— s*/(n+k—1) = ty. In deriv-
ing a semiclassical expression for the entanglement entropy
we will also need to calculate the derivative of 1 at the
transition region, namely d’l ly—;,- For that we have to

calculate the difference A-,; —A-. For s =s* + i, the

maximum of F(¢) occurs at

s, +k—1 i
n+k—-1 n+k-1

[] = = to+€, (38)

where € = i/(n+k—1) < 1 for small i and large n. We
now expand F in (32) around #;, but because the peak has
been shifted beyond the upper limit of integration, (36) will
give an extra contribution proportional to e for small ¢,

ﬂlo(l—to)

fo (n+k—1) 5
e —(t—1))"| ~ - 39
Lo [ e~ e e 60
Using Stirling’s formula and taking ¢ — 0 we find
dA Agryi — Ay
- = lim,_ Ly 7S
dyly—, €
n+k—1 1
—+ 0 —). 40
2mt(1 = 19) " (ﬁ) 40)

Figures 1 and 2 show plots of A, for different values of k
and t, = R*/(1 + R?).

We found in (30) that the expression for the entangle-
ment entropy is

(s+k=1)!
S 57
Z; sl(k—1)!

= —A;log A, — (1 — A;) log(1 — A). (41)

It is clear from the Figs. 1 and 2 that H, is nonzero only for
values of s very near the transition region where A = 1/2.
We can then expand H(A(y)) around the value 4 = 1/2,

2

-0+ @

HU) = i) + 5

1.0
0.8}
0.6
R=1
t_0=0.5
0.4r
0.2F
‘ 200 T 400 o 600 800 1000
FIG. 1. Plots of A, as a function of s for k = 1 (red), k = 5 (blue

dashed) and n = 1000 and R = 1.

R=0.75
t_0=0.36

200 400 600 800 1000

FIG. 2. Plots of A, as a function of s for k = 1 (red), k = 5 (blue
dashed) and n = 1000 and R = 0.75.

where

aH|  _dHdi|
dyly, didyl_yp
d’H dH d*) d*H [(d)\?
oy T et o\
&y ly—y, dhdy di \dy) |)—1)2
_ 4tk )
27Tt()(1 - lo) '

Since H has a narrow support around 4 = 1/2 it can be
approximated by the Gaussian

H(y) = Hoex PB{;@I (d> ()’—to)z}

(n+k—1) X 2
= log?2 e‘nlogmo(l-ro)(»‘_’U) )

(44)

We canrescale to s=y(n+k—1)and s* = to(n +k—1) —
(k — 1) to obtain the semiclassical Gaussian approximation
to H as
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1
ﬂ10g2t0(1—t0)
X(s+k—1—t0(n+k—1))2

n+k-—1

H;; =log2exp|—

(45)

Figures 3 and 4 show the validity of the Gaussian
approximation by comparing (45) to the exact expression
(41), (31).

We can now use (45) to analytically calculate the entropy
in (41) for large n by converting the sum into an integral
over the variable y,

s*k—l 1 (n+k— 1)
S~ log2 —_—(y—1y)?|d
M=% / eXp{ rlog2ig(i=1g) 0
k-1
~nk=z (k(il).ﬂ(log2)3/2 1o(1—1p)
ey 70g2) R (46)
(k-1 (1+RDF
0.7F
0.6F
0.5F
0.4F
0.3F
0.2F
0.1F
450‘ “ ‘5100‘ “ ‘550 660
FIG. 3. Plots of H, exact (red) and Gaussian approximation

(blue dashed) as a function of s for k=1 and n = 1000
and R =1.

0.7 F
0.6 F
0.5F
0.4¢F
0.3F
0.2F

0.1F

450 500 550 600

FIG. 4. Plots of H, exact (red) and Gaussian approximation
(blue dashed) as a function of s for k=5 and n = 1000
and R = 1.

The fact that the entropy is proportional to the entangling

area has to do with the fact that only wave functions

(1+R2)"
localized around the entanglement boundary with corre-
sponding eigenvalues A ~ 1/2 contribute to the entropy.
For k = 1 this agrees with the result found in [2]. In the
case of the QHE on the sphere the entangling surface is a
circle of perimeter L = 2z sin 0, where, based on the stereo-
graphic projection 2R/ (1 + R?) =sin@. Scaling the radius of
the entangling surface by /n/2 (for QHE on S? the
monopole charge, magnetic field and radius of the sphere

are related by n = 2Br?) we find the area law quoted in [2]

B V2(log2)3/?

T L=0204L. (47)

The normalized volume element (13), upon angular
integration can be written in terms of the radial variable
p defined in (26)

k' d221 -d? k ka_l dp
d =2k 48
K= (1 +7- Z)k+1 (1 +p2)k 1 +,02 ( )

where ¢, = dp/(1 + p?) is the vierbein along the radial
direction p. This defines the geometric area of the entan-
gling surface (with volume normalized to 1) to be

”1\ 1
Ageom = 2k e +RHF

volume which is proportional to the degrees of freedom
1S Vphase space = Z—f f dpu. This then defines a phase-space
surface area

On the other hand the phase-space

k-t N

Aphase space — WAgeom =2 (k — 1)' (1 + Rz)k . (49)

Scaling the entanglement entropy in (46) in terms of this
phase-space area we derive a universal expression valid in
all dimensions, with a proportionality constant independent
of k, namely

T
S~ 5 (log 2)3/2Aphase space (50)

B. CP? and non-Abelian magnetic field background

The derivation of the entanglement entropy in the case of a
non-Abelian background magnetic field is more involved.
As mentioned in Sec. II the LLL states form irreducible
representations of SU(k+ 1) of the form 7 % where
p=n-Land I'=jk.j=1,2,.... We will elucidate the
calculation of the entanglement entropy for the special case
of CP? with anon-Abelian magnetic field U(1) x SU(2) for
the lowest value of //,namely ' = k = 2and p = n — 1. The
derivation for other values of k and I’ follows similar ideas.
The dimension of this representation and therefore the
degeneracy of the corresponding LLL is [11]
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N:3n(n2+3)' (51)

Inidentifying the corresponding wave functions we consider
the states (m|g|w), where the states on the right are of the
form 72 with two up indices and transforming as the J=1
triplet representation of SU(2) € SU(3). [Since the lowest
allowed value for I is 2, based on (15) and following
comments, the doublet representation is not allowed for
CP2.] The corresponding group elements in the appropriate
representation can be constructed in terms of products of
elements of the 3 x 3 matrix g which forms the fundamental
representation of SU(3) and its conjugate g*. We need p
copies of g and two copies of g* to match the structure of the
T % representation. In terms of these matrices, choosing the
state |w) as explained above, we get

(iyias j1---jplol3 -+ 3iaf) ~ g 1%g Py, 5 - g3 (52)

where i, j = 1, 2, 3 and a, f = 1, 2. Within (52) there are
three distinct series, each one forming an SU(2) multiplet
under the left transformations, and all of them together
comprising the full v =1 lowest Landau level SU(3)
representation. The three such series are of the form:

Series 1

Wi ~ 9729 (913) (923)"(g33)" " (53)

where [ =0,...,mand m =0, ...,n — 1. For each m, (53)
form an SU(2) left representation with j = m/2. There are
2=1(m + 1) = n(n + 1)/2 such states.

Series 2

\pEi}})N(g*mgﬁﬂ +9%97)(913) (923)" " (g33)" "' (54)

For each m, (54) form an SU(2) left representation with
j=(m+1)/2. There are > 2~'(m+2)=n(n+3)/2
such states.

Series 3

3 (Y ok * *x0a m— n—l—m
lPEOr)ﬂ)N(g 72g P + g7 g% (g13) (923)" " (933)" "' (55)

For each m, (55) form an SU(2) left representation with
j=(m/2)+ 1. There are > 27'(m+3)=n(n+5)/2
such states.

Considering all three series together, the total number of
states are N = 3n(n + 3)/2 confirming the result in (51).
We now proceed to normalize the above wave functions. In
doing so we will use the fact that the elements g;3 can be
written in terms of the complex coordinates parametrizing
CP?, namely

Za

I3 = —F——,
BT T+z-2
1

RS

where 7 -z = 2121 + 7123

States, with the correct normalization within each series,
can be explicitly constructed by starting with the highest
weight state and applying the lowering operator J_ as
follows:

a=1,2,

(56)

J_g13 = g3, J_g3 =0,

J_g*Zi — _g*li’ J_g*li =0. (57)

1. Series 1 normalization

The highest weight state within this SU(2) multiplet is
the state of the form

[1.J) = C1g7%g* P (g13)™ (g33)" '™ (58)

where C; is the normalization factor to be determined. The
rest of the states are obtained by applying the lowering
operator J_ whose action is indicated in (57), namely

. J = 1) = Cig™*g (g13)" " (923) (g33)" ™" (59)

where [ =0, 1, ..., m. Using (58) and the fact that gilg=1
we find that

(g1 1 12(zi21)" ' (2022)!
Sy =P -] - (50)

p” +z.z]  (1+z-2)™!
The CP? volume element is du = %‘gi‘jz;% Using the
relation
/(ZlZl)_l(ZgZz):"d _ml(n41-1—m)! (61)
(1+z-2)"" (n+3)!

we find that the correctly normalized wave function is of
the form

() _ \/ (n+3)!
(Lmap) 200(m = D)!(m+2)(m+3)(n—1—m)!
x %9 (g13)" " (923)! (g33)" " (62)

where [ =0, 1, ...,m.

2. Series 2 normalization

The highest weight state within this SU(2) multiplet is
given by

7.7} = Ca(gg + 979" ) (913)" (g33)" '™ (63)

Acting with the lowering operator J_ as before we obtain
the rest of the states which are of the form
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. T=1)=C, {—l (g1%g™ + g7g"P)(g13)" " (g23)""!

(m =1+ 1)
m!

+ W(Q*Zag*iﬂ + %G ) (913)" " (923)" | (g33)" 1" (64)

where [ =0, 1, ...,m + 1. Using again the relation (61) we find the normalized wave functions to be of the form

(n+3)!

(Lmsap) 4 (m =1+ 1) (m+1)(m+3)(n+1)(n—1-m)!

% [_l(g*lag*Sﬁ 4 g*3ag*]/i)(gl3)m—l+l(923)1—1

+ (m =1+ 1)(g7g + g7 ) (913)" " (923)'}(g33)" '~ (65)

[=0,1,....om+ 1.

3. Series 3 normalization
The highest weight state in series 3 is given by

) = C3g g% (g13)" (g33)" ™ (66)

Every other state in this multiplet is constructed as before by applying [ times the lower operator J_, producing

m!
-0 =G (m = l) 929 (923) (913)" "
m! sla K26 | 2a x1p m—I+1 I-1
—lﬁ(g g7+ 99" ) (913) (923)
m!
+1IU(1-1) mﬂ“a@m)m_lﬂ(g%)l_z (g33)"~" " (67)
where [ = 0,1, ...,m + 2. Using (61) we find the normalized wave functions to be of the form

e _ (n+3)!
(Lm:af) 20(m—1+2)!(m+1)(m+2)(n+1)(n+2)(n—1-m)!
X [I(1=1)g" g P (g13)" 2 (g23)' 72 = l(im = 1+ 2)(g"" g™ + g"*g"') (g913)" " (g3)"™!
+ (m =1+ 1)(m—1+2)g%g% (913)" " (923)] (g33)"~""™. (68)

|
[=0,1,....om+2. where the eigenvalues A are defined
The analog of the two-point correlator (22) carries now
non-Abelian indices and is given by

ah d r’ ZTAG ‘PAb ) (69) A= za:/Dle\;a<r)\PA.a(r)dﬂ(r)~ (71)

where we have denoted collectively the left indices by
A= (l,m) and the right (non-Abelian) indices by
a = (ap). The diagonalization of C,;,(r,r’") gives

In deriving this we used the fact the wave functions (62),
(65), (68) are orthogonal to each other.
We find that there are three distinct expressions for A’s,
one for each of the SU(2) multiplets described above. After
Z / Cop(r, )W, () dy' = 295, (r) (70)  performing the angular integration in (71) using (27) and
(28) we find
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20— (n+3)! /R2 dx o
‘ (s+3)!(n—1-1s)! (1 +x)"*4 '
1(2) _ (n+3)' ke dx xs+2+s+1xs+3
s+ (n=1=5)(n+1 1+ x)"t s+3 '
(
3) (n + 3)! R dx . 2(S + 1) o St 1 43
ﬂ = ) _N NS R 72
GrDn-1=-9)nsDn+2) x| T2 ¥ Tyt (72)

with the corresponding degeneracy s + 1, s + 2 and s + 3. As R?> — oo, lﬁl) — 1 confirming the correct normalization for
the wave functions.

The expression for the entanglement entropy for the non-Abelian lowest Landau level states for CP?> can now be
written as

=

-1
S=S s+ DHY + (s +2)HP + (s + 3)HY)
=0

g = log/lgl) -(1- /1§-I>) log(1 — ﬂﬁ’)) (73)

©

with the 1)’s given in (72).
We will now show that A)’s in (72) can be related to the Abelian ones in (31) making a semiclassical calculation of (73)
similar to the Abelian case. Making a change of variables to # = x/(1 + x) as before we find that (72) can be written as

(1) (n + 3)! /to +3 —s5—1
Ay’ = drt (1 — )",
(s+3)(n—s—-1)!Jo (1-1)
3)! 1 26513(1 = p)n—s-1
2) — (I’l + ) /O dt ts+2(1 _ t)n—m—l _ ( ) ,
(s+2)!(n=s—=1)!(n+1)Jo s+3
3)! 1 2ts+2 1—1¢ n—s—1 2ts+3 1—1¢ n—s—1
/1(3) — (n + ) / 0 dt |:[s+l (1 _ t)n—s—l _ ( ) 4 ( ) . (74)
(s+Dln=s=1(n+1)(n+2) ) s+2 (s +2)(s+3)
Comparing these to the Abelian CP* values (31) which we denote by A(A®) we find the following relations,
(1) Ab)
Asp=n = /1£+1,k:3’
2@ _nt3 2 (v
sk=2 T n—+1 s+1k=2 " n—-|-1 s+1,k=3>
3 2 3 2
o " + 3 (ab) (n+3) (b (Ab) (75)

S AL — .
k=2 n+1 s+1.k=1 <n+ 1)(n+2) s+l,k:2+(n+1)<n+2) s+1,k=3

At the large-n limit the non-Abelian eigenvalues A for k =2 coincide with the Abelian ones for k =1, 2, 3
correspondingly,

1 Ab 2 Ab 3 Ab
'12,):2 = ’1§+1),k:3’ ’12,12:2 ~ ’1< ) = ’12,13:2 ~ ’1< : =1 (76)

Similarly, at the large-n limit, the non-Abelian entropy (73) becomes a multiple of the Abelian one in (46)

—

S=> s+ DH", + (s + 2HC, + (s +3)HT)_]

©
(=)

=

1
Ab Ab Ab
~ [(s + 1)H£+1?k=3 + (s + 2)H£+1>,k=2 + (s + 3>H§+1),k=1]

s=0
R3
~ 3}’13/27[(10g 2)3/2 m = 3S(Ab) (77)
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The overall factor of 3 relating the non-Abelian entangle-
ment entropy to the Abelian one above has to do with
the fact that each lowest Landau state is an SU(2) triplet,
dimJ = 3. Although the calculation of the entropy in
the case of a non-Abelian background was explicitly
done for CP? and the triplet representation, one expects
a more general statement to hold. In the large-n limit
the degeneracy of the LLL in a case of a non-Abelian
background is [10,11]

- nk
N ~dim] . (78)

The corresponding phase-space volume in this case is
V phase space = dim J Z—f f dp and the corresponding phase-
space surface area is

Aphase space — n:2 k! geom
w1 2dimJ R
2 .
(k= D11+ R2F

(79)

=n

Expressed in terms of the phase-space surface area the
overall coefficient in the expression for the entanglement
entropy is the same for any Abelian or non-Abelian
background at large n,

T
S~ 5 (log 2)3/2Aphase space* (80)

IV. HIGHER LANDAU LEVELS

In this section we will consider the entropy for higher
Landau levels focusing in particular on some of the
differences in the behavior of the eigenvalues 1 between
the lowest Landau level ¢ = 0, the first excited Landau
level ¢ =1 and the case of v =2 where both levels are
filled. We will only consider the k£ = 1 case, QHE on the
sphere. Similar features apply for higher k.

The wave functions for the gth Landau level are of the
form

®),(9) = VN(J.m|g|J. n) (81)

where J =n/2+ ¢ and dimJ =n +2g+ 1. The state
|/, n) is not the lowest weight state of the J representation.
The lowest weight state is the LLL state with n — n + 24.
The g = 1 states can therefore be generated by the action of
R, on the LLL states with n — n + 2. In the case of the
sphere the representation of the fi,-—operators is of the form

0

R_= e(lﬁua % ’
B

>

*
+ —€upUy
afta 8uﬁ ’

) I o 0
R3 - ZE |:_uaa—ua + Uy (9u(*,] (82)

a

where

Uu, =

\/114——zz<i> (83)

The R-operators satisfy the SU(2) algebra

N

[R.,R_] = 2R;. (84)

Based on the argument above the correctly normalized
wave functions of the ¢ = 1 Landau level are

q=1 __ (I’l+ 1)' D s, n+2—s
Y =vn+3 73!(’1_1_2_S)!R+(u1u2 )
(n+1)!
= 3y ————
nE sl(n+2—s)!

(85)

[—(n+2)ZZ“‘ N 57" ]
VI+z2)? /0 +z2)]

The corresponding eigenvalues of the two-point correlator
are now of the form

A= _ (n+3)!
(n+2)s!(n+2-s)!

« /Rz dx(lf;)m (n+2—s)x—sP  (86)

Changing variables to x = (l—it) as before we can rewrite the

eigenvalues as
- 3)! 2) [t 2
ié‘]—l) _ (n+ ) (I’l+ )/ Odtts—l(l _t)n—erl f— 8 )
si(n+2-5)! Jo n+2
(87)

The eigenvalue 247" as a function of s is similar to A{~")

away from the transition region, but it displays a distinct
steplike pattern around the transition s = ty(n + 2), as
shown in Figs. 5 and 6. The reason for this has to do with
the fact that the wave functions (85) have a node. Since they
are generated by the action of R, on the LLL wave
functions of monopole charge n + 2 they are necessarily
orthogonal to them. Since the LLL wave functions are
nonzero and have no node, orthogonality requires that the
first level Landau wave functions must have a node. Higher
Landau level wave functions acquire more nodes and one
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Plot of ingl) as a function of s for k = 1, n = 1000 and

300 350 400 450

FIG. 6. Plotof A" as a function of s for k = 1, n = 1000 and
R =0.75.

expects more steps around the transition region for the
corresponding eigenvalues A. In fact based on the obser-
vation that the gth level states can be written, up to
normalization, as f?fﬂLLL,n — n+2q) one can argue
that the wave functions will have ¢ nodes and the profile of
the corresponding 4 will display ¢ distinct steps. A similar
steplike pattern was observed in [15] for the higher Landau
edge density functions for circular samples.

One can try to repeat the semiclassical analysis we did
before for the first Landau level. Equation (87) can be
written as

(n+3)(n+2) [ Sl 2
A = si(n+2—-ys)! A i ()[t n—i—Z] ’
F(t)=(s—1)logt+ (n—s+1)log(l —1). (88)

The maximum of F(¢) occurs at #* = (s — 1)/n. Expanding
F(t) around ¢* we find that e’ becomes a Gaussian function
of narrow width centered around ¢*. In fact,

d*F n3

W,*:_(n—s—l-l)(s—l)' (89)

Around the transition region the main contribution of the
integral comes from the range of s around s* such that
t* = ty, namely

_s*—l

n

*

:to :>S*:t0n+1, n—S*+1:n(1—t0).

(90)
We now evaluate the integral in (88) by expanding the
integrand around f,. In expanding (¢ — s/(n + 2))? around
to we find that the large-n contribution comes from the

(t—t9)? term. The constant and linear term in ¢ are
suppressed by powers of n,

2
fr()
0 n-+2
fy n
NF(tO) - t_tz t_tz
e [“exp |3t (- 02 1= 10)

Fly) _VE _))32
= fl )4n\/ﬁ(2t0(1 to))*/*. (1)

Substituting this in (88) and using Stirling’s formula
n! = \2zn(n/e)", we find that

1
W =2 (92)

independent of #, which is of course what is expected.
Although the semiclassical treatment above is sufficient
to capture the value of A(¢=") at the transition point, the

. =1) . . . .
evaluation of H§q ) is more involved since it cannot be

approximated by a simple Gaussian due to the steplike

pattern for A(4=1). H§q=1> will remain approximately flat in
the steplike region, so higher derivatives around s* will be
important to capture the correct behavior around the
transition region. Figures 7 and 8 display the plots of

HE"ZI) around A = 1/2 based on the numerical evaluation

0.7
0.6
0.5
0.4
0.3
0.2

0.1

F 450 7500 550 600
FIG. 7. Plot of H,(;qzl) as a function of s for n = 1000 and
R=1.
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FIG. 8. Plot of Hﬁqzl) as a function of s for n = 1000 and
R = 0.75.

of the exact expressions in (41) and (87). This clearly shows
a deviation from the Gaussian distribution (see also
Fig. 13). As a result the entropy for the first Landau level
is larger than the entropy of the LLL even though the
number of states are approximately the same at large n
(n+1 states for ¢ =0 and n + 3 states for g =1). A
numerical evaluation of the entropy shows that it obeys an
area law and it gives

§a=1 = 1,65 5@=0), (93)
When both ¢ =0 and g =1 levels are filled, namely
v = 2, the situation is more involved as there are overlaps

between the wave functions of different Landau levels. In
particular,

R? B
Sy = / w0 ()W ()
0

= s+1,s’s!(n_s)g (s+1D)(n+1-y)

« [Tk AR o

y1t2
The two-point correlator now is given by

n+2

C(r.r') = SZH;‘Pio(F)‘P?(r’) + ; ()5 () (95)

and
Jeen e =, 5 ) o)
(96)

where 1°, ! are the eigenvalues we derived earlier for the
lowest and first Landau level and 64 is the overlap in (94).

There are 2n + 4 eigenvalues for the two-point correlator
given by /1(1),;1?,/1,1”2, where s =0, ...,n and

o A VO =28 + 48
s T 2 :

97)

The interesting feature here is that once both Landau levels
are included the steplike pattern in the profile of A!
disappears. The profile of the new A* resembles that of
A0 but shifted with respect to A°; see Figs. 9 and 10. As a
result the corresponding entropy per mode H¥, where

Hy =2 logJi = (1-17)log(1-27)  (98)

are Gaussian distributions each centered around the value
of s for which 1* = 1/2 as shown in Figs. 11 and 12.
Figure 13 shows a comparison between H@=% H(@=1) and
H*=2) which explains the differences in the values of the
corresponding entropies, namely

1.0

0.8+

0.6+

0.4f

0.2t

450 500 550 600

FIG. 9. Plots of A" (red to the right), 7~ (blue to the left) as

functions of s for n = 1000 and R = 1, compared to A° (dashed,
center).

1.0

0.8F

0.6

0.4}

300 350 400 250
FIG. 10. Plots of At (red to the right), 7~ (blue to the left) as
functions of s for n = 1000 and R = 0.75, compared to A0

(dashed, center).
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FIG. 11. Plots of B (red to the right) and A~ (blue to the left)
as functions of s for n = 1000 and R = 1.

o /\/\

0.4

0.2f

450 ‘ ‘500‘ ‘ 550 600
FIG. 12. Plot of HT 4+ H™ as function of s for n = 1000 and
R=1.

§¢=2) > §lg=1) > gl=1), (99)

A numerical evaluation of the entropy for the v = 2 case
gives

§¢=2) = 1.76 S¥=1), (100)

This agrees with the result in [2].

V. DISCUSSION

In this paper we have analyzed the entanglement entropy
for fully filled v =1 higher-dimensional quantum Hall
effect on CP* for Abelian and non-Abelian magnetic fields.
The analytical calculation is based on a semiclassical

0.6
0.4F
0.2+
660
FIG. 13. Plots of H*=" (black, dashed), H¢=Y (red, dotted)

and H»=2) (blue, solid) as functions of s for n = 1000 and R = 1.

analysis and we have showed that the entropy satisfies
the area law. In fact the entropy as expressed in terms of a
phase-space entangling surface area has the same propor-
tionality constant for all higher dimensions irrespective of
the Abelian or non-Abelian nature of the background
magnetic field. It will be interesting to see if a similar
universal formula can be obtained for higher Landau levels.

In the presence of edge degrees of freedom the entan-
glement entropy for the two-dimensional integer quantum
Hall effect develops subleading logarithmic contributions
[6] It has been shown in the two-dimensional v = 1
quantum Hall effect that when the edge boundary intersects
the boundary of the entangling surface there is an additional
logarithmic contribution whose coefficient is determined
by the central charge of the gapless edge modes [7,8]. In the
context of higher-dimensional quantum Hall effect we have
previously analyzed the analogs of higher-dimensional
chiral Abelian and non-Abelian droplets, the edge spectrum
and corresponding effective actions [11]. It would be
interesting therefore to extend the analysis of the entangle-
ment entropy to these cases where the entangling surface
and edge boundary overlap in higher dimensions and
calculate the corresponding subleading corrections to the
area law for the entanglement entropy.

Similar considerations for higher Landau levels in both
two and higher dimensions are also worth pursuing.
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