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We argue that the Landau-Hall states provide a suitable framework for formulating the Berezin-
Toeplitz quantization of classical functions on a Kähler phase space. We derive the star-products for
such functions in this framework and generalize the Berezin-Toeplitz quantization to matrix-valued
classical functions. We also comment on how this is related to different calculations of the effective
action for Hall systems.
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I. INTRODUCTION

In constructing a physical theory, as the basic postulate
we must start with the full quantum theory, obtaining the
classical theory as a suitable approximation for certain
regimes of parameters. But the a priori deduction of the
quantum version of the theory from experimental data is
quite difficult, mainly because we obtain data using
classical apparatus and hence our intuition is largely based
on classical physics. So we have the process of quantization
whereby classical observables, i.e., functions on a phase
space, are mapped to self-adjoint operators on a Hilbert
space. There are many quantization approaches developed
to deal with the inherent ambiguities associated with this
mapping due to operator ordering issues, self-adjointness
problems, etc. These include various correspondence prin-
ciples, geometric quantization, deformation quantization,
etc. The Berezin-Toeplitz (BT) quantization [1–4] is a
procedure for mapping a classical function Aðz; z̄Þ to an
operator by defining the matrix elements Aij of the
corresponding operator Â as

Aij ¼
Z
M

dV Ψ�
i Aðz; z̄ÞΨj: ð1Þ

Here M is a complex Kähler manifold with complex
coordinates zα, z̄α. Ψi are a complete set of coherent state
wave functions on M satisfying a holomorphicity con-
dition, and dV is the volume element for M. The function
Aðz; z̄Þ is known as the contravariant symbol for the

operator Â. As an example, if we consider a Kähler
manifold of the coset type, i.e., M ¼ G=H for a compact
Lie group G, with H being a suitable subgroup, the
coherent states are of the form

Ψk ¼
ffiffiffiffiffiffiffiffiffiffiffi
dim J

p
hJ; kjgjJ; wi ð2Þ

where hJ; kjgjJ; li denotes the ðk; lÞ-matrix element of the
group element g in a representation denoted as J. The state
jJ; wi is to be chosen as a state (or set of states) carrying a
specific representation of H.
Equation (1) describes the transition from a classical

function to an operator. The converse question is to obtain a
classical function given an operator. This is done by the
covariant symbol, which can be defined as

ðAÞ ¼ C
X
k;l

ΨkAklΨ�
l ð3Þ

where C is a factor depending on normalizations. For our
example of M ¼ G=H, C ¼ ð1= dim JÞ.
The contravariant and covariant symbols are not exact

inverses in the sense that if we start from Aðz; z̄Þ, construct
Akl using (1) and then use (2), the (A) so obtained is not
Aðz; z̄Þ. The exact inverse process would be to identify a
function Aðz; z̄Þ such that (1) holds where we are given Akl
as the input information. The answer to this is the diagonal
coherent state representation [5].
There are a couple of questions which arise naturally

given this layout of BT quantization. The first is: How do
we define a star product which realizes the operator algebra
at the level of the contravariant symbols? Explicit formulas
for the star product have been obtained before (see [4] for a
review), but we will argue that an easier approach involves
considering the coherent states as corresponding to the
lowest Landau levels of a quantum Hall problem [6–8].
This embedding of the problem in the larger framework
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transforms it to a field theory problem and gives a simple
way to write the star product.1

The second question we might ask is about the BT
quantization of matrix-valued classical functions. There are
situations where such functions, with a noncommutative
matrix algebra, can arise already at the classical level.
(Defining a classical field theory with nonabelian sym-
metries on a noncommutative space would be one exam-
ple.) Framing this question as a Landau problem, we can
give a definition and construct the corresponding star
product. The latter reduces to the matrix algebra at the
lowest order, as expected.
There is another somewhat nuanced issue on the

physics side of things which is clarified by this work.
For the quantum Hall states one can define an effective
action in terms of the external gauge fields which is
obtained by integrating out the fermion fields [10]. This is
standard procedure in the field theory and involves virtual
transitions between the lowest Landau level and the higher
levels [11]. On the other hand, one can just consider the
subspace of states in the lowest Landau level and calculate
an effective action [6]. This would involve the use of
covariant symbols for operators. The embedding of BT
quantization in the framework of the Landau problem
shows that the first procedure is identical to the use of the
contravariant symbol, clarifying the relation between
these two approaches.
What is outlined in the previous three paragraphs

summarize the key results of this paper. As for the rest
of this paper, in Sec. II, we consider the case of S2,
construct the star products and show consistency with the
expected asymptotic behavior. In Sec. III, we do the
analysis for matrix-valued functions. In the discussion,
we make more specific comments on the relevance to the
calculation of the effective action for the Hall problem.

II. LANDAU PROBLEM ON S2

We consider the two-sphere S2 as a complex manifold
CP1. It can also be considered as SUð2Þ=Uð1Þ. This tells us
that the Riemann curvature tensor of S2 takes values in the
Lie algebra of Uð1Þ and that it is constant in a suitable
choice of frames. One can then consider an additional
background Uð1Þ field which is proportional to the
curvature and hence is constant on S2. Such a field would
be like the magnetic field of a magnetic monopole sitting at
the center if we consider the S2 as embedded in R3 in the
usual way. The Landau problem refers to the dynamics of a
charged particle in such a background field [6,12]. It is
described by the Hamiltonian

H ¼ −
D2

2m
ð4Þ

where Di is the covariant derivative on the sphere in the
background of the constant magnetic field, D2 being the
covariant Laplacian. (m is the mass of the particle.) This
can be phrased in terms of the generators of the group
SUð2Þ. Translation operators on the sphere in complex
coordinates correspond to the group generators R�, which
obey the SUð2Þ Lie algebra relations

½Rþ; R−� ¼ 2R3; ½R3; R�� ¼ �R� ð5Þ

where the third generator R3 corresponds to the Uð1Þ
generator. The Hamiltonian takes the form

H ¼ RþR− þ R−Rþ
4mr2

ð6Þ

the identification being D� ¼ iR�=r. Here r is a scale
factor corresponding to the radius of the sphere. Since
½Dþ; D−� ¼ 2B, where B is the magnetic field, we see, by
comparing this to the commutator for R�, that we need
R3 ¼ −n=2 on the states of interest, where n ¼ 2Br2. The
fact that n must be an integer to obtain unitary representa-
tions of SUð2Þ is just the standard Dirac quantization
condition.
The eigenfunctions of the Hamiltonian are then easy to

construct. Let g denote an element of the group SUð2Þ
in the fundamental representation, as a 2 × 2 matrix.
Explicitly, on a coordinate patch, we can parametrize g as

g ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z̄z

p
�

z̄ 1

−1 z

��
eiφ=2 0

0 e−iφ=2

�
ð7Þ

corresponding to complex coordinates z, z̄ for one coor-
dinate patch on S2, they are the coordinates defined by a
stereographic projection of S2; φ is the angular parameter
for which R3 is the translation operator.
We can define the left and right action of the group

generators on g by

Lag ¼ tag; Rag ¼ gta; a ¼ 1; 2; 3; ð8Þ

where ta ¼ 1
2
σa, σa being the Pauli matrices. The eigen-

functions of the Hamiltonian can be obtained in terms of
the representative of g in an arbitrary representation where
the eigenvalue for the action of R3 is fixed to be − n

2
.

Explicitly, they are given by

ΨðqÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 2qþ 1

p
DðqÞ

k;−n
2

DðqÞ
k;−n

2
¼

�
n
2
þ q; kjĝjn

2
þ q;−

n
2

�
ð9Þ

1The Landau-Hall framework is close to the formulation of
fuzzy spaces. For a discussion of BT quantization as applied to
matrix models relevant for M-theory, see [9].
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in terms of the standard notation for SUð2Þ eigenstates as
jj; mi. Here j ¼ n

2
þ q; q is a positive semidefinite integer

taking values 0,1,2, etc., corresponding to the various
energy levels. These wave functions are L2-normalized
with the standard Haar measure on the group,

Z
dμΨðqÞ�

k ΨðqÞ
l ¼ δkl ð10Þ

where dμ is the volume element for the group. For these
states, it is also easy to see that

RþR−Ψ
ðqÞ
k ¼ ðR2 − R2

3 þ R3ÞΨðqÞ
k ¼ ðqnþ qðqþ 1ÞÞΨðqÞ

k :

ð11Þ

Notice that the group generators La for the left action
defined by (8) commute with the Hamiltonian and so
the states in (9) are degenerate for all values of k for a
given j ¼ n

2
þ q. The degeneracy is therefore 2jþ 1 ¼

nþ 2qþ 1, for a given q. We may also note that ΨðqÞ
k are

not, properly speaking, functions on S2, since they have a
nontrivial transformation under R3. They are sections of a
Uð1Þ-bundle over S2.
It is useful to look at the lowest states in some detail.

These correspond to q ¼ 0, so − n
2

is the lowest
possible value for m, in the jj; mi notation, since j ¼ n

2
.

We thus have

R−Ψ
ð0Þ
k ¼ 0: ð12Þ

This is a holomorphicity condition on the lowest set of
eigenfunctions, corresponding to q ¼ 0. We may regard

Ψð0Þ
k as wave functions corresponding to coherent states for

the two-sphere. They can be obtained by straightforward
geometric quantization of the canonical structure [13]

Ω ¼ nω ¼ n
2
½−iTrðσ3g−1dgg−1dgÞ�: ð13Þ

Here ω is the Kähler two-form on S2 ¼ SUð2Þ=Uð1Þ. Thus
Ψð0Þ

k correspond to sections of the nth power of the
canonical line bundle of SUð2Þ=Uð1Þ. These lowest levels
could be obtained, via geometric quantization of (13),
without the need for the full set of eigenfunctions for the
Hamiltonian (6). They form an orthonormal basis for a
Hilbert space H0 of dimension nþ 1.
The Hilbert space H0 is the space of interest for us.

Given a function Aðz; z̄Þ on the classical phase space S2,
we can define an operator Â acting on H0 by its matrix
elements as

Akl ≡ hkjÂjli ¼
Z

dμΨð0Þ�
k Aðz; z̄ÞΨð0Þ

l ð14Þ

This correspondence of assigning an operator to the
function Aðz; z̄Þ is the Berezin-Toeplitz (BT) quantization
of Aðz; z̄Þ. If Â is taken as the given quantity, the function
Aðz; z̄Þ which leads to it via (14) is referred to as the
contravariant symbol for Â. Starting from the operator, one
can also define a covariant symbol which is a function on
the phase space S2, given by

ðAÞ ¼ Dð0Þ
k;−n

2
AklD

ð0Þ�
l;−n

2
: ð15Þ

Notice that the group elements are used in this definition,
not the correctly normalized wave functions.
The contravariant and covariant symbols are converses

of each other albeit in a qualified sense: In the first case
we start with the function Aðz; z̄Þ on S2 and define the
associated operator via (14). In the second case, we start
with the matrix elements of the operator and define a
function, namely (A), on S2. If we start from Aðz; z̄Þ and
define the operator and take its covariant symbol, in
general, we do not get back the function Aðz; z̄Þ.
The map Aðz; z̄Þ → ðAÞ is the Berezin transform [4].
We will see shortly that as n → ∞, (A) becomes the same
as Aðz; z̄Þ.
The construction of star products for the covariant

symbol is fairly simple [6,8]. The symbol for the product
of two operators, say A and B, is, by definition,

ðABÞ ¼ Dð0Þ
k;−n

2
AklBlpD

ð0Þ�
p;−n

2
: ð16Þ

We can insert δml ¼ Dð0Þ�
m;r D

ð0Þ
l;r into this expression and

simplify it as follows.

ðABÞ¼Dð0Þ
k;−n

2
AkmD

ð0Þ�
m;r D

ð0Þ
l;r BlpD

ð0Þ�
p;−n

2

¼Dð0Þ
k;−n

2
AkmD

ð0Þ�
m;−n

2
Dð0Þ

l;−n
2
BlpD

ð0Þ�
p;−n

2

þDð0Þ
k;−n

2
AkmD

ð0Þ�
m;−n

2
þ1D

ð0Þ
l;−n

2
þ1BlpD

ð0Þ�
p;−n

2
þ���

¼ðAÞðBÞ−1

n
Dð0Þ

k;−n
2
AkmR−D

ð0Þ�
m;−n

2
RþD

ð0Þ
l;−n

2
BlpD

ð0Þ�
p;−n

2
þ���

¼ðAÞðBÞ−1

n
R−ðAÞRþðBÞþ���

¼ðAÞ�ðBÞ ð17Þ

where we have used

Dð0Þ
l;−n

2
þ1 ¼

1ffiffiffi
n

p RþD
ð0Þ
l;−n

2
; Dð0Þ�

m;−n
2
þ1 ¼ −

1ffiffiffi
n

p R−D
ð0Þ�
m;−n

2
:

ð18Þ
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We have also used the fact that, since R−D
ð0Þ
k;−n

2
¼ 0, we can

write

Dð0Þ
k;−n

2
AkmR−D

ð0Þ�
m;−n

2
¼ R−

�
Dð0Þ

k;−n
2
AkmD

ð0Þ�
m;−n

2

�
¼ R−ðAÞ

ð19Þ

with a similar simplification for the symbol for B. It is clear
that the higher terms in (17) can be simplified in a similar
way and written in terms of Rs

−ðAÞRsþðBÞ for s > 1. For the
covariant symbol as we have defined it, the series termi-
nates, for finite n.
The construction of a star product for the contravariant

symbol is more involved. Here the question is to find a
product of the classical functions Aðz; z̄Þ and Bðz; z̄Þ such
that the BT quantization of the product gives the product of
the operators. The product of the BT quantized operators is
given by

AklBlm ¼
Z

dμΨð0Þ�
k Aðz; z̄ÞΨð0Þ

l

Z
dμ0Ψð0Þ�

l Bðz0; z̄0ÞΨð0Þ
m

¼
Z

dμdμ0Ψð0Þ�
k Aðz; z̄ÞPð0Þðg; g0ÞBðz0; z̄0ÞΨð0Þ

m

ð20Þ

where Pð0Þðg; g0Þ is the projection operator for the lowest
Landau level,

Pð0Þðg; g0Þ ¼
X
l

Ψð0Þ
l ðgÞΨð0Þ�

l ðg0Þ: ð21Þ

We denote the arguments as g and g0 for brevity, although
Pð0Þ is defined on the coset SUð2Þ=Uð1Þ, i.e., independent
of the Uð1Þ angle φ. If we consider similar projection
operators to the higher levels, we have, by completeness of
all the eigenstates of the Hamiltonian (4),

δðg; g0Þ ¼
X

ΨðqÞ
k ðgÞΨðqÞ�

k ðg0Þ
¼

X
q

PðqÞðg; g0Þ

¼ Pð0Þðg; g0Þ þ Pð1Þðg; g0Þ þ � � � ð22Þ

Our strategy will be to write Pð0Þðg; g0Þ in terms of δðg; g0Þ
and derivatives acting on δðg; g0Þ. Notice that the action
of RþR− on Pð0Þðg; g0Þ is zero, due to (12). We also have the
result

RþR−Ψ
ðqÞ
k ðgÞ ¼ ðqnþ qðqþ 1ÞÞΨðqÞ

k ðgÞ: ð23Þ

Using this result, we can eliminate Pð1Þðg; g0Þ from (22) and
write

δðg; g0Þ − 1

ðnþ 2ÞRþR−δðg; g0Þ

¼ Pð0Þðg; g0Þ þ
X∞
q¼2

�
1 −

qnþ qðqþ 1Þ
ðnþ 2Þ

�
PðqÞðg; g0Þ

ð24Þ

If we use this result for Pð0Þðg; g0Þ in (20) we can write
Aðz; z̄ÞPð0Þðg; g0ÞBðz0; z̄0Þ in terms of Aðz; z̄ÞBðz0; z̄0Þ and
products of derivatives of these functions, as we would
expect for a star product. This is the basic idea. To carry this
out to higher orders, we need to eliminate PðqÞ, q ≥ 2, at
least recursively. Therefore, more generally, we start by
writing Pð0Þ as

Pð0Þðg; g0Þ ¼
�
1þ

X
s

csRsþRs
−

�
δðg; g0Þ ð25Þ

for some constant coefficients cs. The key property we need

is that Rs
−Ψ

ðqÞ
k ðgÞ ¼ 0 for s > q, so we can recursively

define the coefficients cs to eliminate the contribution

of the higher levels in δðg; g0Þ ¼ P
ΨðqÞ

k ðgÞΨðqÞ�
k ðg0Þ. The

conditions we need are

�
1þ

Xq
s¼1

csRsþRs
−

�
ΨðqÞ

k ðgÞ ¼ 0: ð26Þ

It is easy to work out the action of RsþRs
− on the wave

functions,

RsþRs
−Ψ

ðqÞ
k ðgÞ ¼

�Ys
1

fðq; sÞ
�
ΨðqÞ

k ðgÞ

fðq; sÞ ¼ ½nðq − sþ 1Þ þ qðqþ 1Þ − sðs − 1Þ�:
ð27Þ

One can recursively calculate cs. The lowest two coeffi-
cients are

c1 ¼ −
1

fð1; 1Þ ¼ −
1

ðnþ 2Þ ;

c2 ¼
1

fð2; 2Þ
�

1

fð1; 1Þ −
1

fð2; 1Þ
�

¼ 1

2ðnþ 2Þðnþ 3Þ :

ð28Þ

Using (25) in (20), we get
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AklBlm ¼
Z

dμdμ0Ψð0Þ�
k Aðz; z̄ÞPð0Þðg; g0ÞBðz0; z̄0ÞΨð0Þ

m

¼
Z

dμΨð0Þ�
k Aðz; z̄Þ

�
1þ

X
s

csRsþRs
−

�
Bðz0; z̄0ÞΨð0Þ

m

¼
Z

dμΨð0Þ�
k Aðz; z̄ÞBðz; z̄ÞΨð0Þ

m þ
Z

dμ
X
s

ð−1ÞscsðRsþΨ
ð0Þ�
k Aðz; z̄ÞÞðRs

−Bðz0; z̄0ÞΨð0Þ
m Þ

¼
Z

dμΨð0Þ�
k Aðz; z̄ÞBðz; z̄ÞΨð0Þ

m þ
Z

dμ
X
s

ð−1ÞscsΨð0Þ�
k ðRsþAðz; z̄ÞÞðRs

−Bðz0; z̄0ÞÞΨð0Þ
m

¼
Z

dμΨð0Þ�
k ½Aðz; z̄Þ � Bðz; z̄Þ�Ψð0Þ

m ð29Þ

Aðz; z̄Þ � Bðz; z̄Þ

¼ Aðz; z̄ÞBðz; z̄Þ þ
X∞
s¼1

ð−1ÞscsðRsþAðz; z̄ÞÞðRs
−Bðz0; z̄0ÞÞ:

ð30Þ

In (29), in the second step, we did integration by parts to
move Rsþ to act on Ψð0Þ�

k Aðz; z̄Þ and then used the fact that
RþΨ

ð0Þ�
k ¼ 0. In this way we are able to isolate the product

of functions which, upon BT quantization, reproduces the
operator product. Notice that this is an infinite series even
for finite n, unlike the star product we defined on the
covariant symbols. The first two terms of this star product
can be written out, using (28), as

A � B ¼ ABþ 1

ðnþ 2Þ ðRþAÞðR−BÞ

þ 1

2ðnþ 2Þðnþ 3Þ ðR
2þAÞðR2

−BÞ þ � � � ð31Þ

This star product is different from what we found for the
covariant symbol. This is to be expected since the covariant
symbol is different from the contravariant symbol. How-
ever, notice that, in the large n limit,

ðAÞ � ðBÞ − ðBÞ � ðAÞ ¼ 1

n
½RþðAÞR−ðBÞ − R−ðAÞ:RþðBÞ�

þOð1=n2Þ
¼ A � B − B � AþOð1=n2Þ: ð32Þ

The Poisson bracket is recovered for the star commutator
for both cases in the large n limit.
We now return to the relation between the contravariant

and covariant symbols. The Berezin transform for A is
given by

ðAÞ ¼ Dð0Þ
k;−n

2

�Z
dμ0Ψð0Þ�ðg0ÞAðz0; z̄0ÞΨð0Þ

l ðg0Þ
�
Dð0Þ�

l;−n
2

¼
Z

dμ0Pð0Þðg; g0ÞAðz0; z̄0ÞDð0Þ
k;−n

2
ðg0ÞDð0Þ�

k;−n
2
ðgÞ

¼ Aðz; z̄Þ þ
X
s

csRsþRs
−

�
ADð0Þ

k;−n
2
ðgÞ

�
Dð0Þ�

k;−n
2
ðgÞ

¼ Aðz; z̄Þ þ
X
s

csRsþ

�
ðRs

−AÞDð0Þ
k;−n

2
ðgÞ

�
Dð0Þ�

k;−n
2
ðgÞ

¼ Aðz; z̄Þ þ
X
s

csðRsþRs
−AÞDð0Þ

k;−n
2
ðgÞDð0Þ�

k;−n
2
ðgÞ

¼ Aðz; z̄Þ þ
X
s

csðRsþRs
−AÞ: ð33Þ

We have used (25) to obtain the third line of this equation,

and R−D
ð0Þ
k;−n

2
ðgÞ ¼ 0 to move to the fourth line. Further, we

have Dð0Þ
k;−n

2
ðgÞDð0Þ�

k;−n
2
ðgÞ ¼ 1 by the group property and

X
k

h
RsþD

ð0Þ
k;−n

2
ðgÞ

i
Dð0Þ�

k;−n
2
ðgÞ ∼Dð0Þ

k;−n
2
þsðgÞDð0Þ�

k;−n
2
ðgÞ

∼
�
−
n
2
j − n

2
þ s

�
¼ 0: ð34Þ

This was used in the last two steps. We see that, in the large
n limit, the two symbols will coincide. Further,

ðAÞ ¼ A −
1

ðnþ 2ÞRþR−Aþ � � �

¼ Aþ 1

ðnþ 2ÞΔAþ � � � ð35Þ

where Δ is the Laplace operator on S2. This result
is consistent with the theorem of Karabegov and
Schlichenmaier, quoted as theorem 7.2 in [4], although
our derivation is very different.
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III. BT QUANTIZATION FOR MATRIX-VALUED
FUNCTIONS

In the last section, the wave functions we used were
those for the Landau problem on S2 with an Abelian Uð1Þ
background field. In other words, they were sections of an
appropriate line bundle. The lowest set of such wave
functions, which were sections of a holomorphic line
bundle, were then used to define the BT quantization of
a function on S2. Generalizing, we can use the sections of a
suitably chosen vector bundle to define the BT quantization
of a matrix-valued function. Naturally, this will mean using
a background field corresponding to a nonabelian groupH,
the wave functions being those of a particle transforming
nontrivially according to some representation ofH [6]. We
will now work out an example of how this can be done
using CP2 ¼ SUð3Þ=Uð2Þ as the manifold of interest. The
group translation operators can be separated into Ra,
a ¼ 1, 2, 3, which are generators of SUð2Þ ∈ Uð2Þ ∈
SUð3Þ, R8 which is the generator for Uð1Þ ∈ Uð2Þ and the
remaining coset generators Rþi; R−i, i ¼ 1, 2. The last
set R�i are the translation generators for CP2, with the
Hamiltonian taken as

H ¼ RþiR−i

2mr2
: ð36Þ

The eigenfunctions are given by

ΨA;a ¼ ChAjĝjαi: ð37Þ

C is a normalization constant, we will discuss this below.
The index A labels states in the SUð3Þ representation to
be specified by the choice of jαi. We will consider a
combination of Uð1Þ and SUð2Þ background fields. Thus
the state jαimust be chosen so that it transforms according
to the required representation of SUð2Þ (equivalent to
specifying the SUð2Þ charges) and also carries the
required Uð1Þ charge. This means

Rajαi ¼ ðTaÞαβjβi
R8jαi ¼ −

nffiffiffi
3

p jαi: ð38Þ

ðTaÞαβ are the charge matrices for the coupling of the
particle to the constant SUð2Þ background field. In the
tensor notation TP

Q for SUð3Þ representations with P up-
indices and Q down-indices (where each index can take
values 1,2,3), the possible choices for the states jαi are
then of the form

jαi ¼ jP;Qi ¼ j33 � � � 3; 33…3; i1 � � � ili ð39Þ

This corresponds to q down-indices all set to 3, with an
additional l indices, each of which can take values 1,2

corresponding to the SUð2Þ spinors. There are also
n − ðl=2Þ þ q up-indices all set to 3. Thus this state
transforms as the spin-l=2 representation of SUð2Þ,
i.e., ðTaÞαβ are ðlþ 1Þ × ðlþ 1Þ matrices, and has the
R8 value

R8j33 � � � 3; 33…3; i1 � � � ili

¼ −
1ffiffiffi
3

p
�
n −

1

2
lþ q

�
þ 1ffiffiffi

3
p q −

l

2
ffiffiffi
3

p ¼ −
nffiffiffi
3

p ð40Þ

as required in (38). Notice that l should be an even
integer, to get an integer number of up-indices, so that we
must have integer spin representations for SUð2Þ.
(Ultimately, this is related to the fact that CP2 does not
admit a spin structure.) The eigenvalues of RþiR−i are
given by

RþiR−iΨ
ðqÞ
A;α ¼ ½C2ðSUð3ÞÞ−C2ðSUð2Þ−R2

8þ
ffiffiffi
3

p
R8�ΨðqÞ

A;α

¼
�
qnþq

�
qþ 2þ 1

2
l

��
ΨðqÞ

A;α: ð41Þ

The lowest state corresponding to q ¼ 0 obeys the

holomorphicity condition R−iΨ
ð0Þ
A;α ¼ 0. The degeneracy

of the states as given by the dimension of the representa-
tion is

N ¼ 1

2

�
nþ qþ 1 −

l
2

�
ðqþ lþ 1Þ

�
nþ 2qþ l

2
þ 2

�
:

ð42Þ

We now consider the normalization of these states. Wave
functions such as (37) arise for fields which carry the spin-l

2

representation of SUð2Þ, so that it can be coupled to the
appropriate SUð2Þ background. Denoting such a field by
ϕα, the action for the field may be taken as

S ¼
Z

dtdμ

�
iϕ�

α
∂ϕα

∂t − ϕαHαβϕβ

�
: ð43Þ

The appropriate normalization for the one-particle wave
functions should thus be

Z
dμΨðqÞ�

A;α Ψ
ðq0Þ
B;α ¼ δABδ

qq0 : ð44Þ

(There is summation over α in this equation.) With the
standard orthogonality relation for group elements in arbi-
trary representations, the normalized wave functions are

ΨðqÞ
A;α ¼

ffiffiffiffiffiffiffiffiffiffi
N

lþ 1

r
hAjĝjαi: ð45Þ
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The completeness relation for these states is

X
q;A

ΨðqÞ
A;αðgÞΨðqÞ�

A;β ðg0Þ ¼ δðg; g0Þδαβ: ð46Þ

We are now in a position to write down the BT
quantization of a matrix-valued function Aαβ as

ACD ¼
Z

dμΨð0Þ�
C;α ðgÞAαβΨ

ð0Þ
D;βðgÞ: ð47Þ

The integrand should be a function defined on CP2 and
hence invariant under the Uð2Þ subgroup for the integral to
be nonzero. This means that the nontrivial transformation of

Ψð0Þ�
C;α ðgÞ and Ψð0Þ

D;βðgÞ should be compensated by a suitable
transformation of Aαβ. Thus strictly speaking, already at the
classical level, we are not considering matrix-valued func-
tions, but sections of a suitable vector bundle.
The product of two operators defined as in (47) is

given by

ðABÞCF ¼ ACDBDF ¼
Z

dμdμ0Ψð0Þ�
C;α ðgÞAαβðgÞΨð0Þ

D;βðgÞΨð0Þ�
D;γ ðg0ÞBγδðg0ÞΨð0Þ

F;δðg0Þ

¼
Z

dμdμ0Ψð0Þ�
C;α ðgÞAαβðgÞPð0Þ

β;γðg; g0ÞBγδðg0ÞΨð0Þ
F;δðg0Þ ð48Þ

Pð0Þ
β;γðg; g0Þ ¼

X
D

Ψð0Þ
D;βðgÞΨð0Þ�

D;γ ðg0Þ: ð49Þ

As in the case of S2, we will now write this projection operator in terms of the Dirac δ-function as

Pð0Þ
β;γðg; g0Þ ¼

�
δβγ þ

X
s

csðRþi1Rþi2 � � �RþisR−isR−is−1 � � �R−i1Þβγ
�
δðg; g0Þ: ð50Þ

Acting on ΨðqÞ
B;γðg0Þ and integrating over g0, we see that cs should obey the conditions

ΨðqÞ
B;βðgÞ þ

Xq
s¼1

csðRþi1Rþi2 � � �RþisR−isR−is−1 � � �R−i1ÞβγΨðqÞ
B;γðgÞ ¼ 0: ð51Þ

To make this more concrete, we need to evaluate the coefficient of cs. It can be done recursively, with the result

X
s

csðRþi1Rþi2 � � �RþisR−isR−is−1 � � �R−i1ÞβγΨðqÞ
B;γðgÞ ¼

Ys
k¼1

hðq; kÞΨðqÞ
B;βðgÞ ð52Þ

where

hðq; kÞ ¼ ðq − kþ 1Þðnþ qþ kþ 1þ ðl=2ÞÞ: ð53Þ

Thus the coefficients cs are determined by

1þ
Xq
s¼1

cs
Ys
k¼1

hðq; kÞ ¼ 0: ð54Þ

With the expansion (50) for the projection operator, we find

ðABÞCF ¼
Z

dμdμ0Ψð0Þ�
C;α ðgÞAαβðgÞ

�
δβγδðg; g0Þ þ

X
s

csðRþi1Rþi2 � � �RþisR−isR−is−1 � � �R−i1Þβγδðg; g0Þ
�
Bγδðg0ÞΨð0Þ

F;δðg0Þ

¼
Z

dμΨð0Þ�
C;α ðgÞ½A � B�αβΨð0Þ

F;βðgÞ: ð55Þ
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We can now read off the star-product from this
equation as

½A � B�αβ ¼ AαγBγβ þ
X
s

ð−1ÞscsðRþisRþis−1 � � �Rþi1AÞαγ

× ðR−isR−is−1 � � �R−i1BÞγβ ð56Þ

As before we have done integrations by parts to move the
Rþ s to act on A, and used the fact that R−iΨ

ð0Þ
F;δ ¼ 0,

RþiΨ
ð0Þ�
C;α ¼ 0. Since A and B are defined on G ¼ SUð3Þ,

i.e., they carry nonzero charges under Uð2Þ, the action of
R�i should be considered as covariant derivatives.
It is straightforward to solve (54) using (53) to

write the coefficients cs for some low values of s, as we
did for the two-sphere. For q ¼ 1, 2, we can write
out (54) as

1þ c1hð1; 1Þ ¼ 0.

1þ c1hð2; 1Þ þ c2hð2; 1Þhð2; 2Þ ¼ 0: ð57Þ

where the relevant hðq; kÞ are given as

hð1; 1Þ ¼
�
nþ 3þ 1

2
l

�
; hð2; 1Þ ¼ 2

�
nþ 4þ 1

2
l

�
;

hð2; 2Þ ¼
�
nþ 5þ 1

2
l

�
: ð58Þ

The star-product from(56) can thus be written more
explicitly as

½A � B�αβ ¼ AαγBγβ þ
1

ðnþ 3þ 1
2
lÞ ðRþiAÞαγðR−iBÞγβ

þ 1

2ðnþ 3þ 1
2
lÞðnþ 4þ 1

2
lÞ

× ðRþiRþjAÞαγðR−jR−iBÞγβ þ � � � : ð59Þ

Once again, it is useful to see how this differs from what
is obtained for the covariant symbol. The latter is defined
from the matrix elements of the operator as

ðAÞαβ ¼
X
C;D

Dð0Þ
C;αðgÞACDD

ð0Þ�
D;α ðgÞ: ð60Þ

Using (47), we can now write

ðAÞαβ ¼
X
C;D

Dð0Þ
C;αðgÞ

�Z
dμ0Ψð0Þ

C;γðg0ÞAγδðg0ÞΨð0Þ
D;δðg0Þ

�
Dð0Þ�

D;α ðgÞ

¼
Z

dμ0Pð0Þ
α;γðg; g0ÞAγδðg0ÞDð0Þ

D;δðg0ÞDð0Þ�
D;α ðgÞ

¼ AαβðgÞ þ
X
s

csðRþi1Rþi2 � � �RþisR−isR−is−1 � � �R−i1ÞαγAγβ

¼ AαβðgÞ −
1

ðnþ 3þ 1
2
lÞ ðRþiR−iAÞαβ þ � � � ð61Þ

where we have used (50) and the results

R−iD
ð0Þ
D;δðgÞ ¼ 0;h

Rþi1Rþi2 � � �RþisD
ð0Þ
D;δðgÞ

i
Dð0Þ�

D;α ðgÞ ¼ 0 ð62Þ

for reasons similar to what was stated after (34). We see that the covariant and contravariant symbols agree in the large n
limit. Equation (61) is our matrix generalization of the theorem 7.2 in [4].
The star-product for the covariant symbols was obtained in [6] as

ðAÞαγ � ðBÞγβ ¼
�
ðAÞαγðBÞγβ −

1

n
R−iðAÞαγRþiðBÞγβ

�
þO

�
1

n2

�
: ð63Þ

The star-commutators for the contravariant symbols can be obtained from (59) as

½A � B − B � A�αβ ¼ ½AB − BA�αβ þ
1

n
½ðRþiAÞαγðR−iBÞγβ − ðRþiBÞαγðR−iAÞγβ� þ � � � ð64Þ

The analogous commutator for the covariant symbols is given by (63) as
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½ðAÞ � ðBÞ − ðBÞ � ðAÞ�αβ ¼ ½ðAÞðBÞ − ðBÞðAÞ�αβ −
1

n
½R−iðAÞαγRþiðBÞγβ − R−iðBÞαγRþiðAÞγβ� þ � � � : ð65Þ

There is a difference of the ordering of the matrix products
in the second term, so these are not identical even to first
order in 1=n.

IV. THE ONE-PARTICLE FIELD THEORY

The BT quantization emerges in a completely natural
way when we try to quantize a single-particle problem in
the language of quantum field theory and then restrict to
one, say the lowest, level. Degeneracy of this level is
important to obtain the matrix structure of the operator, and
holomorphicity of the one-particle wave functions for this
level is important for constructing the star-products. Thus
effectively a suitable version of the Landau problem
becomes the paradigm for BT quantization. We have
already mentioned the action for the field theory for this
case, namely, (43). The field operators may be expanded in
terms of eigenfunctions of the Hamiltonian as

ϕα ¼
X
C

að0ÞC Ψð0Þ
C;α þ

X
C0;q¼1

aðqÞC0 ΨðqÞ
C0;α

ϕ†
α ¼

X
C

að0Þ†C Ψð0Þ�
C;α þ

X
C0;q¼1

aðqÞ†C0 ΨðqÞ�
C0;α ð66Þ

where the second set of terms refers to the higher energy

levels. aðqÞC , aðqÞ†C are the annihilation and creation operators
for the particle represented by ϕα.
Now consider a one-particle operator B̃, which can be

lifted to the field theory as

B̂ ¼
Z

dVϕ†B̃ϕ: ð67Þ

B̃ is, in general, a function of the coordinates, but it may
contain derivatives as well. Using the mode expansion for
the fields, the operator B̂ takes the form

B̂ ¼
X
k;l

að0Þ†C BCDa
ð0Þ
D

þ
X

ðq;q0Þ≠ð0;0Þ;C;D

Z
dVΨðqÞ�

C B̃Ψðq0Þ
D aðqÞ†C aðq

0Þ
D

BCD ¼
Z

dVΨð0Þ�
C B̃Ψð0Þ

D ð68Þ

(Here we are using the simpler case of an Abelian back-
ground field to illustrate the main point.) If we consider
dynamics restricted to the lowest level, i.e., higher levels

with ðq; q0Þ ≠ ð0; 0Þ are unoccupied, aðqÞC will annihilate the
relevant set of states and B̂ effectively reduces to the first

term. Further, if the wave functionsΨð0Þ
C for the lowest level

define coherent states, derivatives appearing in B̃ can be
replaced in terms of conjugates of the holomorphic co-
ordinates. Thus Bkl takes the form

BCD ¼
Z

dVΨð0Þ�
C Bðz; z̄ÞΨð0Þ

D ð69Þ

for some function Bðz; z̄Þ on M. We now see that, for one-
particle states restricted to the lowest level, the matrix
elements of the field theory operator B̂ are given by Bkl
as in (69) or as in (1). Thus we get to the BT quantization
of a function Bðz; z̄Þ on M from the field theory defined
by (43). Although we illustrated this relation with the
Abelian background, it is clear that a similar result will hold
for a matrix-valued one-particle operator B̃αβ and a corre-
sponding matrix-valued function Bαβðz; z̄Þ.
The one-particle quantum mechanical calculation of the

effective action in [11] uses the single-particle sector of
the field theory we have outlined. From what is said
above, this is equivalent to using the BT quantization for
operators restricted to the lowest Landau level, with the
star-product as in (31). The calculations in [11] are done
for the plane, rather than S2, and the notation is different,
so it may be useful to outline the points of contact in some
more detail. In the second reference of [11], the authors
give a definition of an operator Â for the lowest Landau
level as

Â ¼
Z

d2z
π

e−z̄zez̄a
† j0iAðz; z̄Þh0jeza ð70Þ

where a, a† are the standard creation and annihilation
operators. (The notation has been changed to agree with
our conventions.) Notice that this is equivalent to

Apq ¼
Z

d2z
π

Ψ�
pAðz; z̄ÞΨq; Ψq ¼

zqffiffiffiffiffi
q!

p e−
1
2
z̄z ð71Þ

Since Ψq is the coherent state wave function for the lowest
Landau level on the plane, we see that this is equivalent to
using the contravariant symbol Aðz; z̄Þ for the operator.
The star-product is then worked out and used to obtain the
effective action for perturbations. Another, closely related,
way to write this definition of the operator, which is used
in the first reference in [11], is

Â ¼
X
m;n

ð−iÞnim
m!n!

ðπ†Þnπm∂n
z̄∂m

z Aðz; z̄Þjz¼a;z̄¼a† ð72Þ
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where π† is the operator raising the Landau level by one
and the ordering in the last expression is to keep a†’s to the
right. Notice that, the matrix elements of this in the lowest
Landau level will only involve the m ¼ n ¼ 0 term.
(π† and π are the analogs of R� in our formulas.) A
straightforward projection of a product to the LLL can be
made as hpjÂ B̂ jqi. This will need simplification of
products like πmðπ†Þk in the middle, a procedure which
obviously corresponds to projecting out the higher Landau
levels in terms of derivatives with respect to z, z̄. The final
results are similar to ours, albeit for the plane.
By contrast, the calculations in [6,7] use the covariant

symbol and the star-product as in (17). The starting point is
the effective action

Seff ¼
Z

dtTr

�
P0

�
iU† ∂U

∂t − U†HintU

��

¼
Z

dttr

�
ðP0Þ �

�
iðU†Þ � ∂ðUÞ

∂t
− ðU†Þ � ðHintÞ � ðUÞ

��
: ð73Þ

Here the entire action is written in terms of the LLL. P0 is
the occupancy matrix equal to 1 for occupied states and
zero for the others; eventually P0 can be set to 1 for all
states in the LLL, for ν ¼ 1. U denotes a unitary matrix
(which is ðnþ 1Þ × ðnþ 1Þ for S2). Such a unitary trans-
formation is the most general form of time-evolution
keeping entirely within the LLL. Hint is the interaction
part of the Hamiltonian, and the unperturbed Hamiltonian

has been set to zero for the LLL. In the second line of (73)
we have written the expression using the covariant sym-
bols. It is now straightforward to use the star-product as
given in (17) to simplify the action, keeping derivatives up
to any desired order. In the case of a non-Abelian back-
ground field (for higher dimensional manifolds), the
symbols in (73) are still matrices, of a (smaller) dimension
determined by the representation of the subgroup H, say
ðlþ 1Þ × ðlþ 1Þ for the example of CP2. Standard matrix
products for the symbols are taken as understood with a
final trace as well (denoted by tr). The star-products
can still be simplified using a generalization of (17).
For more details, we refer the reader to [6]. Needless to
say, in all these cases, the action for perturbations is the
same, namely, an appropriate Chern-Simons action, for
large n.
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