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We revisit supersymmetric nonlinear sigma models on the target manifold CPN−1 and SOðNÞ=
SOðN − 2Þ ×Uð1Þ in four dimensions. These models are formulated as gauged linear models, but it is
indicated that the Wess-Zumino term should be added to the linear model since the hidden local symmetry
is anomalous. Applying a procedure used for the quantization of anomalous gauge theories to the nonlinear
models, we determine the form of the Wess-Zumino term, by which a global symmetry in the linear model
becomes smaller in the action than the conventional one. Moreover, we analyze the resulting linear model
in the 1=N leading order. Consequently, we find that the model has a critical coupling constant similar to
bosonic models. In the weak coupling regime, the Uð1Þ local symmetry is broken but supersymmetry is
never broken. In contrast to the bosonic case, it is impossible to find stable vacua in the strong coupling
regime as far as in the 1=N leading order. These results are straightforwardly generalized to the case of the
Hermitian symmetric space.
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I. INTRODUCTION

A nonlinear sigma model is regarded as a low-energy
effective field theory, where the relevant degrees of
freedoms are massless Nambu-Goldstone (NG) bosons
associated with broken global symmetries. Interestingly,
any nonlinear sigma model based on the coset manifold
is gauge equivalent to a linear model with a so-called
hidden local symmetry (see Ref. [1] and references cited
therein). Although the gauge fields for the hidden local
symmetry are redundant variables, dynamical vector
bosons may be generated by quantum corrections even
in four dimensions.
In supersymmetric field theories, Zumino first recog-

nized that the scalar fields of nonlinear models take their
values in a Kähler manifold and gave an explicit form of the
action for the Grassmann manifold [2]. More general
nonlinear realization for more general coset spaces was
extensively studied in Refs. [3–10], and general methods to
construct a nonlinear Lagrangian are provided. The char-
acteristic feature is that massless fermions appear as
supersymmetric partners of NG bosons. These NG bosons
and their fermionic partners are described by chiral super-
fields in four dimensions with N ¼ 1 supersymmetry.
Then, the target space must be the Kähler manifold, since
chiral superfields are complex.

Supersymmetric nonlinear sigma models with hidden
local symmetries were studied on some Kähler manifolds in
Refs. [11–14], and then were generalized by Higashijima-
Nitta about twenty years ago [15]. They showed that a
supersymmetric nonlinear sigma model is formulated as a
linear gauge theory, if its target manifold is the Hermitian
symmetric space. However, importantly, this is a classical
correspondence between both models.
Supersymmetric nonlinear sigma models were studied

in quantum field theories, and many interesting results
have been revealed in two dimensions [16–19]. However,
nonlinear sigma models are nonrenormalizable in four
dimensions. So, they are defined by the theory with
ultraviolet momentum cutoff as well as the Nambu–
Jona-Lasinio (NJL) model [20], or by some other non-
perturbative methods. Although supersymmetry increases
difficulties in analyzing the quantum dynamics, they seem
not to be physical but rather technical, similar to an
ambiguity of subtraction in the NJL model, and so they
are a relatively tractable problem.
Most crucially, a hidden local symmetry is generically

anomalous in supersymmetric nonlinear models in four
dimensions, since the symmetry acts on chiral superfields.
For example, let us consider the following Kähler potential
as a gauged linear model:

Kðϕ;ϕ†Þ ¼ ϕ†e2Vϕ −
2

g2
V;

where ϕiði ¼ 1;…; NÞ is a chiral superfield and V is a
Uð1Þ gauge vector superfield. The last term is a Fayet-
Illiopoulos (FI) term with a coupling constant g. The model
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has the global symmetry SUðNÞ and the local one Uð1Þ. In
order to see this model as equivalent to the CPN−1 model, it
has been thought that one has only to take ϕN ¼ 1 as a
gauge fixing condition [14,15]. Eliminating V by the
equation of motion, one may find the Kähler potential of
the CPN−1 model, the target manifold of which is para-
metrized by the remaining chiral superfields. However, the
important point is that the anomalous hidden local sym-
metry does not allow us to take an arbitrary gauge fixing
condition. In this example, Uð1Þ is anomalous, and so it is
impossible to transform to the CPN−1 model.
For one thing, we can avoid the anomaly problem by

considering nonanomalous hidden local symmetries in the
gauged linear model. Alternatively, one can add additional
chiral superfields coupled to the vector superfield in order
to cancel the anomaly. However, both methods are not
helpful for formulating the nonlinear sigma model based on
the Hermitian symmetric space.
In this paper, we will start with the supersymmetric

nonlinear sigma model, which includes only the chiral
superfields and so is a well-defined theory without the
anomaly. Then, we will rewrite the model by introducing an
auxiliary vector superfield and performing a Legendre
transformation. At this stage, the vector superfield is not
a gauge field, since the original Lagrangian is not gauge
invariant, and the path integral measure is not divided by
the gauge volume. Next, we will insert the Fadeev-Popov
determinant to the partition function by following the
technique used for the quantization of anomalous gauge
theories in Ref. [21], which is an extension of the method of
Ref. [22]. As a result, we obtain the gauged linear model
with a Wess-Zumino term which is equivalent to the
original nonlinear sigma model.
We should comment that the conceptual setting of the

above procedure is not new, because it is almost the same
strategy described by de Wit and Grisaru more than thirty
years ago [23]. In the case of the CPN−1 model, the chiral
superfields ϕi include a compensating field. They showed
that the anomaly can always be eliminated by adding
local counterterms constructed by using the compensator.
However, an advantage of our procedure is that it is obvious
which field is a compensator, while there are various options
in their arguments. Consequently, a Wess-Zumino term can
be uniquely determined in our procedure.
We will explicitly deal with CPN−1 and SOðNÞ=SOðN −

1Þ ×Uð1Þ models, but our results can be generalized
straightforwardly to other target manifolds, because these
models capture typical features of the models without or
with F-term constraint [15]. Both nonlinear models will be
formulated as anomalous gauged linear models. Impor-
tantly, the symmetry of the action in the gauged linear
model is different from a conventional symmetry due to
the effect of the Wess-Zumino term. For instance, we will
show that the action of the gauged linear model for the
CPN−1 model has the symmetry SUðN−1Þglobal ×Uð1Þlocal,

which is smaller than the conventional symmetry
SUðNÞglobal ×Uð1Þlocal. This is essentially the same result
as pointed out by de Wit and Grisaru in the discussion of
anomalies and compensators [23].
This paper is organized as follows: First, we will show

the details about the supersymmetric CPN−1 model. In
Sec. II A, wewill explain the quantum equivalence between
this model and an anomalous gauged linear model with a
Wess-Zumino term, which is derived from the Jacobian
factor for chiral superfields. In Sec. II C, we will calculate a
three-point vertex function given by triangle diagrams and
exactly determine the form of the Wess-Zumino term in the
theory including the momentum cutoff Λ. For renormaliz-
able theories, the Feynman integral for the triangle diagram
is expanded by the powers of 1=Λ, and only finite terms for
Λ → ∞ contribute to the anomaly [24]. Here, we will
provide an exact anomalous term depending on Λ, which
includes higher-power terms of 1=Λ. In Sec. II B, we will
discuss the fact that our model is defined on the whole
CPN−1 manifold. In Sec. II D, we will analyze the effective
potential of the linear model in the 1=N leading order. We
find that the model has the critical coupling, below which
the Uð1Þlocal symmetry is broken and supersymmetry is
unbroken. Remarkably, in contrast to the bosonic CPN−1

model [1], we will show that there is no stable vacuum
beyond the critical coupling in the 1=N leading order. In
Sec. II E, we will discuss the vector supermultiplet which is
dynamically generated but unstable as similar to the
bosonic case [1]. Interestingly, we observe that, when
approaching the critical point, the vector multiplet tends
to become massless. This behavior suggests the possibility
that the Uð1Þlocal symmetry is restored at the critical
coupling. Next, we will consider the SOðNÞ=SOðN − 2Þ ×
Uð1Þ model in Secs. III A and III B as an example of
the nonlinear model with F-term constraint. Although an
F-term is added to the model, the qualitative features are
unchanged. Finally, we will give concluding remarks in
Sec. IV. In the Appendix, we present details of the
calculation of Feynman integrals in the cutoff theory.

II. SUPERSYMMETRIC CPN − 1 MODEL

A. Anomalous gauged linear models

The supersymmetric CPN−1 model is defined by the
Lagrangian

L ¼
Z

d2θd2θ̄K0ðφ;φ†Þ; ð2:1Þ

where φiði ¼ 1;…; N − 1Þ are chiral superfields and K0 is
the Kähler potential given by

K0ðφ;φ†Þ ¼ 1

g2
log

�
1

g2
þ φ†φ

�
: ð2:2Þ
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As is well known, this Kähler potential provides the Fubini-
Study metric for the CPN−1 manifold, which is para-
metrized by the complex fields φi, φ�

i . The parameter g
is a coupling constant with the dimension of inverse mass.
The Kähler potential can be expanded at φ ¼ 0 as

K0ðφ;φ†Þ ¼ 1

g2
log

1

g2
þ φ†φ −

g2

2
ðφ†φÞ2 þ � � � ; ð2:3Þ

where the first term has no effect on the Lagrangian, and so
we find that the chiral field φ is canonically normalized
in Eq. (2.2).
By introducing an auxiliary vector superfield V, we can

change the Kähler potential into

K0
0ðφ;φ†; VÞ ¼ e2V

�
1

g2
þ φ†φ

�
−

2

g2
V; ð2:4Þ

where the last term is a FI D-term. The equation of motion
of V leads to

δK0
0

δV
¼ 2e2V

�
1

g2
þ φ†φ

�
−

2

g2
¼ 0

⇒ −2V ¼ log
1=g2 þ φ†φ

1=g2
: ð2:5Þ

Substituting this back into Eq. (2.4), we obtain the same
Kähler potential (2.2) for the CPN−1 model up to irrelevant
constant terms.
In Eq. (2.4), we perform a change of variables:

2V → 2V − iðλ − λ̄Þ; ð2:6Þ

φi → eiλφi; ð2:7Þ

φ̄i → e−iλ̄φ̄i; ð2:8Þ

where λ is a chiral superfield. Then, we find the Kähler
potential to become

Kðϕ;ϕ†; VÞ ¼ ϕ†e2Vϕ −
2

g2
V; ð2:9Þ

where ϕiði ¼ 1;…; NÞ are chiral superfields:

ϕi ¼ φiði ¼ 1;…; N − 1Þ; ϕN ¼ 1

g
e−iλ: ð2:10Þ

This Kähler potential gives a gauged linear model with the
global symmetry SUðNÞ and the local symmetry Uð1Þlocal.
If we take ϕN ¼ 1=g as a gauge fixing condition for
Uð1Þlocal, the Kähler potential (2.9) reproduces the expres-
sion (2.4), and then the first one [Eq. (2.2)], by eliminating
V. Hence, it was claimed that the supersymmetric CPN−1

model can be obtained from a gauged linear model.

However, it should be noticed that Uð1Þlocal is an
anomalous symmetry, and this anomaly is an obstruction
in proving the equivalence between the two models. In
order to include the anomaly, we have to deal with
contributions from path integral measures. The idea is
basically the same as the quantization of anomalous gauge
theory [21], although the original Lagrangian (2.1) is not
gauge invariant in our case.
At first, we introduce the auxiliary vector superfield V to

the partition function of the CPN−1 model:

Z ¼
Z

dφdφ† exp

�
i
Z

d8zK0ðφ;φ†Þ
�

¼
Z

dφdφ†dV exp

�
i
Z

d8zK0
0ðφ;φ†; VÞ

�
; ð2:11Þ

where the superspace coordinate is denoted by z¼ðx;θ; θ̄Þ,
and integration measures denoted by d8z ¼ d4xd2θd2θ̄.
In general, the V integration leads not only toK0 as a saddle
point, but also to higher-order quantum corrections.
However, in supersymmetric theories, we have no quantum
corrections, as proved by Higashijima-Nitta [25], and so
this is an exact rewriting.
Let us define the Fadeev-Popov determinant Δf½V� for

the gauge fixing condition f½V� ¼ 0:

Δf½V�
Z

dλdλ̄δðf½Vðλ;λ̄Þ�Þ ¼ 1; ð2:12Þ

where dλdλ̄ is a gauge invariant measure and Vðλ;λ̄Þ is a
gauge transformation of V:

2Vðλ;λ̄Þ ¼ 2V þ iðλ − λ̄Þ: ð2:13Þ

Inserting Eq. (2.12) into Eq. (2.11) and changing an
integration variable as V → Vð−λ;−λ̄Þ, the partition function
(2.11) is expressed in terms of the functional integral over λ,
λ̄ and the original fields:

Z ¼
Z

dφdφ†DVdλdλ̄ exp

�
i
Z

d8zK0ðφ;φ†; λ; λ̄; VÞ
�
;

ð2:14Þ

DV ≡ dVΔf½V�δðf½V�Þ; ð2:15Þ

where dV is assumed to be gauge invariant, and so DV
corresponds to a gauge invariant measure divided by the
gauge volume. The Kähler potential K0 is given by

K0ðφ;φ†; λ; λ̄; VÞ ¼ e2V
�
1

g2
eiλ̄e−iλ þ ðφ†eiλ̄Þðe−iλφÞ

�

−
2

g2
V: ð2:16Þ

SUPERSYMMETRIC NONLINEAR SIGMA MODELS AS … PHYS. REV. D 102, 025014 (2020)

025014-3



If we take the chiral superfields φ0 ¼ e−iλφ as integration
variables, the functional measure produces the Jacobian
factor derived from the relation [26,27]

δφ0
jðzÞ

δφkðz0Þ
¼ δkje

−iλðzÞ −D̄
2

4
δ8ðz − z0Þ: ð2:17Þ

Moreover, we change the variable from λ to ϕN ¼ e−iλ=g.
Since λ is a chiral field, we have a similar relation to
Eq. (2.17):

δϕNðzÞ
δλðz0Þ ¼ −i

1

g
e−iλðzÞ

−D̄2

4
δ8ðz − z0Þ: ð2:18Þ

So, in the partition function integrated over the new
variables, we have the Wess-Zumino term with the factor
N, in which N − 1 and 1 are coming from the measures of
φi and λ, respectively. Finally, we can rewrite the partition
function of the CPN−1 model as follows:

Z ¼
Z

dϕdϕ†DV exp

×

�
i
Z

d8zKðϕ; ϕ̄; VÞ þ iα½V;ϕN; ϕ̄N �
�
; ð2:19Þ

α½V;ϕN; ϕ̄N � ¼ −
N

16π2

Z
d4xd2θ logðgϕNÞWαWα

þ H:c:þOð1=Λ2Þ; ð2:20Þ

where the Kähler potential is given by Eq. (2.9). α½V;
ϕN; ϕ̄N � is the anomalous term generated by the Jacobian
factor. Λ is the ultraviolet cutoff parameter to regularize the
functional measure [26,27], in which the leading term is
given by the Wess-Zumino term for Uð1Þlocal.
Consequently, we show that the supersymmetric CPN−1

model is quantumly equivalent to the theory given by the
Kähler potential [Eq. (2.9)] and the F-term [Eq. (2.20)].
This F-term reduces the flavor symmetry to SUðN − 1Þ,
and so the action of this gauged linear model has the
symmetry SUðN − 1Þ ×Uð1Þlocal.

B. Global structure and inhomogeneous coordinates

We have started from the action (2.2) of the CPN−1

model and then have rewritten its partition function as that
of the linear model (2.19). In the action (2.2), φi’s denote
local affine coordinates of the CPN−1 manifold, and so this
coordinate patch does not cover CPN−1.
First, let us reconfirm that the partition function given by

the Kähler potential (2.2) is defined on the whole manifold,
while the action is represented by the local coordinates. For
simplicity, the coupling constant is set to be 1. φi are local
coordinates in a patch, which is expressed by U0. In the
case of φk ≠ 0, we can introduce an affine coordinate
system in the coordinate patch Uk:

φ0
k ¼

1

φk
; φ0

i ¼
φi

φk
ði ≠ kÞ: ð2:21Þ

Importantly, the N coordinate patches Uiði ¼ 0;…; N − 1Þ
cover the CPN−1 manifold.
Under the coordinate change (2.21), the Kähler potential

(2.2) is transformed to

K0ðφ;φ†Þ ¼ K0ðφ0;φ0†Þ þ fðφ0Þ þ f�ðφ0�Þ; ð2:22Þ

where fðφÞ is the holomorphic function fðφ0Þ ¼ − logφ0
k.

Since both holomorphic and antiholomorphic terms vanish
in the action after supercoordinate integration, the action
has the same expression with respect to the coordinates φ0

i.
Accordingly, the partition function given by Eq. (2.2) can
be defined on the whole of the CPN−1 manifold, if the
measure is invariant under the coordinate change.
Thus, it is clear that the nonlinear model is defined on the

whole manifold by using inhomogeneous coordinates. Let
us remember that, in the linear model, ϕiði ¼ 1;…; N − 1Þ
are related to the coordinates φi, and then ϕN is given by the
gauge transformation parameter λ. According to Eq. (2.21),
to move from U0 to Uk, we have only to transform the
superfields as

ϕ0
k ¼

ϕ2
N

ϕk
; ϕ0

i ¼
ϕNϕi

ϕk
ði ≠ kÞ: ð2:23Þ

It is easily seen that the action is unchanged under this
transformation. Consequently, the linear model is also
defined on the whole CPN−1 manifold.
Here, it should be emphasized that ϕN is merely a

redundant field, or in other words a compensating field
[23], which is irrelevant to a coordinate system for CPN−1:
ϕN ¼ e−iλ=g. If there is no anomalous term in Eq. (2.19),
ϕiði ¼ 1;…; NÞ may be interpreted as homogeneous coor-
dinates for CPN−1, and ϕN ¼ 0may represent a hyperplane
at infinity in the CPN−1. In the present case, ϕN is not equal
to zero due to a logarithmic singularity of the anomalous
term (2.20). However, this is not a problem for including
the hyperplane at infinity in the model, because the trans-
formation (2.23) makes it possible for us to change
coordinate patches and to include the whole manifold. It
is noted that, on the contrary, the coordinate transformation
(2.23) is a breakdown for ϕN ¼ 0.

C. Exact anomalous terms in cutoff theories

The CPN−1 model in four dimensions is nonrenormaliz-
able, and it is regarded as a low-energy effective field
theory with an ultraviolet cutoff. So, we have to evaluate
the anomalous contribution in the gauged linear model by
keeping the cutoff finite. In this section, we consider the
cutoff dependence of the anomalous term by calculating the
triangle diagram.
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First, we consider the vacuum functional:

eiΓ½V� ¼
Z

dϕdϕ† exp

�
i
Z

d8zKðϕ; ϕ̄; VÞ
�
: ð2:24Þ

Since Uð1Þlocal is anomalous, Γ½V� is not gauge invariant
due to the triangle diagram. On the other hand, since the
partition function (2.19) is gauge invariant, the anomaly
from the gauge transformation of Γ½V� is canceled by the
gauge transformation of α½V;ϕN; ϕ̄N �:

δα½V;ϕN; ϕ̄N � ¼ −δΓ½V�: ð2:25Þ

Therefore, α½V;ϕN; ϕ̄N � can be determined by solving this
equation for given δΓ½V�.
Here let us explain in detail the calculation of δΓ½V� in

the cutoff theory. The Lagrangian for the chiral spinor is
given byZ

d2θd2θ̄ϕ†e2Vϕ ¼ iΨ̄=∂PRΨþ vμΨ̄γμPRΨþ � � � ; ð2:26Þ

wherewe have used four-component notation for the spinor,
and vμ denotes a vector field inV.PR is a projection operator
on the right-handed fermion field: PR ¼ ð1þ γ5Þ=2. The
famous two triangle diagrams contribute to the three-point
vertex function of vμ [24]:

Γð3Þ
μνρðk1; k2Þ≡ −N

Z
d4k

ið2πÞ4
�
tr

�
1þ γ5

2

1

−=k − =a
γμ

1

−=k − =aþ =k1
γν

1

−=k − =a − =k2
γρ

�

þ tr

�
1þ γ5

2

1

−=kþ =a
γρ

1

−=kþ =aþ =k2
γν

1

−=kþ =a − =k1
γμ

��
; ð2:27Þ

where N component fermions yield the factor N. As in the NJL model, this integral is divergent, and so we introduce the
ultraviolet cutoff Λ after Wick rotation. It is noted that the cutoff is different from the previous one in Eq. (2.20), and there is
no simple relation between them. The four-vector aμ is introduced due to arbitrariness of the momenta carried by internal
lines.
More precisely, we can introduce two four-vectors aμ and bμ independently to each triangle diagram. In this case, we

have to choose aμ ¼ −bμ to avoid nonchiral anomalies for all three currents as explained in Ref. [24]. Actually, the charge
conjugation matrix C satisfies C−1γμC ¼ −γμT , and we have

tr

�
1

−=k − =a
γμ

1

−=k − =aþ =k1
γν

1

−=k − =a − =k2
γρ

�
¼ −tr

�
1

=kþ =a
γρ

1

=kþ =aþ =k2
γν

1

=kþ =a − =k1
γμ

�
:

So, the traces which contain no γ5 in Eq. (2.27) cancel to each other if a momentum variable is flipped in one diagram:
kμ → −kμ. Therefore, only the traces involving γ5 are left, and this justifies a choice of aμ ¼ −bμ.
Now, we evaluate the anomaly term δΓ½V�, which corresponds to the Fourier transformation of the divergence of

Eq. (2.27)1:

ðk1 þ k2ÞνΓð3Þ
μνρðk1; k2Þ ¼ 4Niϵνμλρ

Z
k2≤Λ2

d4k
ð2πÞ4

� ðkþ aÞνk2λ
ðkþ aÞ2ðkþ aþ k2Þ2

−
−ðkþ aÞνk1λ

ðkþ aÞ2ðkþ a − k1Þ2
�
: ð2:28Þ

These integrals can be calculated straightforwardly by picking up antisymmetric parts on the two indices ν, λ. Combining
the denominator by the Feynman parameter technique, we perform the k integration by using the formula in the Appendix.
Then, if one rotates back to the Minkowski space, the resulting function is given by

iðk1 þ k2ÞνΓð3Þ
μνρðk1; k2Þ ¼ −

N
8π2

ϵνμλρ

Z
1

0

dxfaνk2λgð−ðaþ xk2Þ2;−a2 − 2xa · k2 − xk22Þ

þ aνk1λgð−ða − xk1Þ2;−a2 þ 2xa · k1 − xk21Þg; ð2:29Þ

1In general, a simple momentum cutoff breaks gauge invariance, and this is a well-known problem, for example, as seen in dealing
with vector mesons in the NJL model [20]. In the NJL model, a conventional gauge invariant form of vertex functions was used to avoid
an ambiguity of mass subtraction. There are many other prescriptions proposed to deal with gauge invariance in cutoff theories. Here, we
use arbitrariness in the choice of the momentum shift in the loop integral in order to ensure gauge invariance. As an alternative, you may
define the model in the gauge invariant way by higher-derivative kinetic terms as in Ref. [28]. In any case, qualitative features are
unchanged.
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where gðp2; m2Þ is defined by Eq. (A6). This is the exact
result for the anomalous vertex function in the cutoff
theory.
Suppose that the currents for the μ, ρ directions are

conserved; we then have to choose a ¼ k1 − k2, as
explained in Ref. [24]:

iðk1 þ k2ÞνΓð3Þ
μνρðk1; k2Þ ¼ −

N
4π2

ϵνμλρk1νk2λfðk1; k2Þ;
ð2:30Þ

where fðk1; k2Þ is given by

fðk1; k2Þ ¼
1

2

Z
1

0

dxfgð−ðk1 − ð1− xÞk2Þ2;

− k21 þ 2ð1− xÞk1 · k2 − ð1− xÞk22Þ
þ gð−ðð1− xÞk1 − k2Þ2;
− ð1− xÞk12 þ 2ð1− xÞk1 · k2 − k22Þg: ð2:31Þ

This result is expressed in terms of the chiral current
Jμ ≡ ψ̄ σ̄μψ ¼ Ψ̄γμPRΨ:

∂νhJνðxÞi ¼ −
N

32π2
ϵνμλρFνμf

�
−i

∂⃖
∂x ;−i

∂⃗
∂x

�
Fλρ: ð2:32Þ

The expansion in powers of 1=Λ is evaluated as

∂νhJνðxÞi ¼ −
N

32π2
ϵνμλρFνμFλρ þ N

96π2Λ2
ϵνμλρFνμ

□Fλρ

þOð1=Λ4Þ; ð2:33Þ

where the first term agrees with the conventional chiral
anomaly.2

Since the operator f consists of space-time derivatives,
we can easily provide δΓ½V� in the supersymmetric model.
Finally, from δΓ½V� and Eq. (2.25), the resulting anomalous
term can be obtained as

α½V;ϕN; ϕ̄N � ¼ −
N

16π2

Z
d4xd2θ logðgϕNÞWαf

×

�
−i

∂⃖
∂x ;−i

∂⃗
∂x

�
Wα þ H:c: ð2:34Þ

This is an exact result for Eq. (2.20) including all orders
of Λ.

D. Effective potentials in the 1=N leading order

Now that the CPN−1 model is formulated as the con-
sistent linear model, we can consider the effective potential
of this model in the 1=N expansion. In the Wess-Zumino
gauge, the scalar components are the D-term −D of the
vector superfield V and the first component of ϕN . As in
Ref. [29], we take negative sign convention for the D-term
of V. The F-term of ϕN is irrelevant to the effective
potential.
In order to perform the 1=N expansion, we define the

coupling g2 by

g2 ≡ G
N
; ð2:35Þ

and we study the limit of large N with fixed G. This is a
conventional choice used in the CPN−1 model. Moreover,
since gϕN should be of order 1 for the anomalous term to be
leading order, the vacuum expectation value of ϕN should
be defined as

hϕNi≡
ffiffiffiffi
N

p
z; ð2:36Þ

where z is a fixed complex number in the 1=N expansion.
Substituting these component fields into Eq. (2.34), we

can calculate an anomalous contribution to the effective
action:

α½V;ϕN; ϕ̄N � ¼ −
N

16π2

Z
d4x logðGjzj2ÞDf

×

�
−i

∂⃖
∂x ;−i

∂⃗
∂x

�
D: ð2:37Þ

For constant D, the operator f becomes 1, and so a
quadratic term of D is generated in the effective potential.
We notice that for constant Wα, higher-order correction

terms may arise from other diagrams (square, pentagon,
and so on) in the superpotential as

logðgϕNÞΛ3F

�
WαWα

Λ3

�
; ð2:38Þ

where Fð� � �Þ denotes a certain function. If we expand it in
the power series of WαWα=Λ3, since the constant fields
are included as WαWα ¼ θθD2 þ � � � and logðgϕNÞ ¼
logðGzÞ þ � � �, the quadratic and higher powers do not
contribute to the effective potential. So, Eq. (2.37) leads to
an exact result of the anomalous effective potential.
Consequently, we can provide the effective potential in

the leading order in the 1=N expansion:

2According to calculations in Sec. 22 of Ref. [24], correction
terms of order 1=Λ2 naturally appear in the anomalous term as
long as we keep the cutoff finite. (Λ should be regarded as a
radius P of a large three-sphere in Ref. [24].) Also, by applying
the Fujikawa method [26], it is easily seen that the correction term
appears in a Jacobian factor for a finite cutoff. Then, it is
interesting to understand how to deal with the index theorem
in cutoff theories, but this is out of the scope of this paper.
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1

N
Vðz;DÞ

¼ −
1

G
DþDjzj2 þ 1

16π2
D2 logðGjzj2Þ

þ 1

32π2

�
Λ4 log

�
1þ D

Λ2

�
−D2 log

�
1þΛ2

D

�
þDΛ2

�
:

ð2:39Þ

Here, the first and second terms arise from the tree-level
action, where we note again the negative sign convention of
the D-term. The third term is the anomalous potential from
Eq. (2.37). The fourth term is given by one-loop calcu-
lation, which is performed in a supersymmetric NJL model
in Ref. [29]. In the calculation, D is a mass-squared
parameter for the scalar component of ϕ, and so D must
be positive for a consistent vacuum.
The stationarity condition with respect to z is

δV
δz

¼ D
z

�
1

16π2
Dþ jzj2

�
¼ 0: ð2:40Þ

Then, we conclude that D ¼ 0, and so supersymmetry is
never broken in the leading order.
Another stationarity condition leads to

δV
δD

¼ 0 ⇒ −
1

G
þ jzj2 þ 1

32π2

�
2Λ2 − 2D log

�
1þ Λ2

D

�

þ 4D logðGjzj2Þ
�
¼ 0: ð2:41Þ

Substituting D ¼ 0 into the above, we find

jzj2 ¼ 1

G
−

Λ2

16π2
: ð2:42Þ

The model becomes inconsistent if G is larger than
Gcr ¼ 16π2=Λ2.
Accordingly, we conclude that, in the 1=N leading order,

the model has a stable vacuum only for the weak coupling
G < Gcr, and supersymmetry is unbroken in this vacuum.
Here it should be noted that the anomalous potential play

an important role in the robustness of supersymmetry. If we
naively quantize the gauged linear model without the
anomalous term, the stationarity condition with respect
to z becomesDz� ¼ 0 instead of Eq. (2.40), and so we have
D ¼ 0 or z ¼ 0. The stationarity condition with respect to
D implies the gap equation

jzj2 −
Z

d4k
ð2πÞ4

�
1

k2
−

1

k2 þD

�
¼ 1

G
−

1

Gcr
; ð2:43Þ

which is the same as that of a bosonic CPN−1 model [1].
Then, we might have two phases: (i) G < Gcr, jzj ≠ 0,
D ¼ 0; and (ii) G > Gcr, jzj ¼ 0, D ≠ 0. While the first

case corresponds to the above supersymmetric model, the
second appears as a new phase. If there were no anomaly,D
would acquire a vacuum expectation value in the strong
coupling region, and so supersymmetry would be sponta-
neously broken. But this is not the case, and so it is
regarded that the anomalous term keeps supersymmetry
unbroken.
We note that, although there is no vacuum in the strong

coupling region in the 1=N leading order, there still remains
a possibility of finding a vacuum in higher order or by
considering some nonperturbative effects.

E. Dynamical vector supermultiplets

We showed that z has the vacuum expectation value
given by Eq. (2.42) in the weak coupling region. On this
vacuum, the anomalous term in Eq. (2.44) induces the
kinetic term for the vector superfield:

−
N

16π2

Z
d4xd2θ logð

ffiffiffiffi
G

p
zÞWαf

�
−i

∂⃖
∂x ;−i

∂⃗
∂x

�
WαþH:c:

ð2:44Þ
It is well known that, in general, vector bosons are
dynamically generated in the model with hidden local
symmetries [1]. Also in this model, loop diagrams of
components of ϕ generate the kinetic term for a vector
boson. In addition, the anomalous term [Eq. (2.44)] supplies
the kinetic term, which, however, enhances the possibility of
the wrong sign due to the logarithmic function. If the
logarithmic function is positive, the anomalous term encour-
ages the appearance of negative metric states.
Fortunately, it can be easily seen that the large-N

dynamics prohibits such a negative metric state. For the
vacuum expectation value [Eq. (2.42)], we find

Gjzj2 ¼ 1 −
G
Gcr

< 1 ðG < GcrÞ: ð2:45Þ

Therefore, the kinetic term of the vector superfield is well
behaved, since the logarithmic function becomes negative
forG < Gcr. Then, the anomalous term [Eq. (2.44)] leads to
the vertex function of the vector field:

ΓAð2Þ
μν ðpÞ ¼ ðp2ημν − pμpνÞ

N
32π2

log

�
1 −

G
Gcr

�
fðp;−pÞ;

ð2:46Þ
where fðp;−pÞ can be evaluated explicitly from
Eq. (2.31). For p2 > 0, we find

fðp;−pÞ ¼ 1þ 7p2=3Λ2

1þ 2p2=Λ2
: ð2:47Þ

Now, we calculate all of the two-point vertex function
of the vector field for the timelike momentum. For loop
integrations with a cutoff, we have the freedom to choose a

SUPERSYMMETRIC NONLINEAR SIGMA MODELS AS … PHYS. REV. D 102, 025014 (2020)

025014-7



momentum shift carried by internal lines, as well as the
anomaly calculation given in Sec. II C. Here, by adopting a
symmetric momentum shift (aμ ¼ −pμ=2), the vertex

function Γ0ð2Þ
μν ðpÞ for the vector component is given by

Γ0ð2Þ
μν ðpÞ ¼ Γfð2Þ

μν ðpÞ þ Γbð2Þ
μν ðpÞ; ð2:48Þ

Γfð2Þ
μν ðpÞ ¼ −N

Z
1

0

dx
Z
k2≤Λ2

d4k
ð2πÞ4

×
4kμkν − pμpν − 2ðk2 − p2=4Þημν
fk2 þ 2ð1=2 − xÞp · kþ p2=4g2 ; ð2:49Þ

Γbð2Þ
μν ðpÞ ¼ N

Z
1

0

dx
Z
k2≤Λ2

d4k
ð2πÞ4

×
4kμkν − 2ðk2 þ p2=4Þημν

fk2 þ 2ð1=2 − xÞp · kþ p2=4g2 ; ð2:50Þ

where Γf and Γb are coming from fermion and boson one-
loop diagrams, respectively. After the k integration by using
the formula in the Appendix, we find that each vertex
function includes a quadratic term of Λ, which corresponds
to the vector self-energy. It implies that gauge symmetry is
broken by introducing the cutoff parameter. However, the
quadratic terms cancel to each other in the total vertex
function owing to supersymmetry. As a result, the vertex
function is expressed in the conventional gauge invariant
form: for 0 < p2 < 4Λ2 in the Minkowski space,

Γ0ð2Þ
μν ðpÞ ¼ −ðp2ημν − pμpνÞ

N
16π2

×

�
1þ log

4Λ2 − p2

4p2
þ iπ

�
: ð2:51Þ

The integral is calculated as a real number in the Euclidean
space, but the imaginary part appears in the Minkowski
space due to the logarithm function.
Combining these results with tree-level terms, the

resulting vertex function for the timelike momentum is
given by

Γð2Þ
μν ðpÞ ¼ −ðp2ημν − pμpνÞFðp2Þ þm2ημν; ð2:52Þ

Fðp2Þ ¼ N
16π2

�
1þ log

4 − p2=Λ2

4p2=Λ2

−
1þ 7p2=3Λ2

2ð1þ 2p2=Λ2Þ log
�
1 −

G
Gcr

��
þ i

N
16π

;

ð2:53Þ

m2 ¼ N

�
2

G
−

2

Gcr

�
: ð2:54Þ

From this vertex function, we could expect that a
massive vector particle appears dynamically; however, it

includes the nonzero imaginary part, and so the “would-be”
vector particle is unstable. Actually, the vector particle has
couplings with the scalar and spinor components of ϕ,
which remain massless in the 1=N leading order, and so the
vector state decays into these massless particles.
Finally, we elucidate the behavior of the unstable vector

state in terms of the spectral function. The propagator can
be derived from the vertex function (2.46):

ΔμνðpÞ ¼ iΔ0ðpÞ
�
ημν −

pμpν

m2
Fðp2Þ

�
;

Δ0ðpÞ ¼ 1=Fðp2Þ
m2=Fðp2Þ − p2

: ð2:55Þ

Here we forget for a moment that Fðp2Þ is divergent for
Λ2 → ∞ as in Ref. [20]. If so, the spectral function ρðσ2Þ is
given by the imaginary part of Δ0ðpÞ, and then Δ0ðpÞ is
expressed by ρðσ2Þ:

Δ0ðpÞ ¼
Z

Λ2

0

dσ2
ρðσ2Þ

σ2 − p2 − iϵ
; ð2:56Þ

where a new cutoff is introduced as in Ref. [20], although
there is no simple relation between both cutoffs. By using
Eqs. (2.53) and (2.54), we can evaluate ρðσ2Þ numerically,
and the resulting plots are depicted in Fig. 1. We note that
ρðσ2Þ is given by order 1=N.
From these plots, we find a peak in the region σ2 ≲ Λ2

for the coupling G≳ 0.5Gcr, but the width is large and the
peak is hard to distinguish for 0.7Gcr ≳ G≳ 0.5Gcr. Near
the critical coupling, the position of the peak approaches
σ2 ∼ 0, and the width becomes gradually narrower.
The position of the peak can be evaluated numerically

by using the numerical results of ρðσ2Þ. The resulting
plots are shown in Fig. 2. We find that the “mass” of the
unstable vector state decreases to zero for the coupling G
approachingGcr. Since supersymmetry is not broken in this
vacuum, the vector supermultiplet is dynamically generated
for G≳ 0.7Gcr, but it is unstable.

FIG. 1. The plots of the spectral function for the unstable vector
state.
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Most interestingly, we find that the spectral function
rapidly approaches a delta function for G → Gcr, namely
ρðσ2Þ → Zδðσ2Þ. This behavior suggests that a massless
vector supermultiplet is dynamically generated and the
Uð1Þ gauge symmetry is restored at the critical coupling.
Unfortunately, the analysis just at G ¼ Gcr seems to be
subtle in the leading order, because jzj2 becomes zero, and
so the logarithmic term in the effective potential diverges.

III. NONLINEAR SIGMA MODELS
WITH F-TERM CONSTRAINT

A. SOðNÞ=SOðN − 2Þ × Uð1Þ model

We consider a supersymmetric nonlinear sigma model
based on the manifold SOðNÞ=SOðN − 2Þ × Uð1Þ [15].
The model is formulated by a gauged linear sigma model as
well as the CPN−1 model. We introduce the chiral super-
fields ϕiði ¼ 1;…; NÞ, and the Kähler potential is the same
as in Eq. (2.4). In addition, the linear model has the
superpotential by using an extra chiral superfield:

Wðϕ0;ϕÞ ¼
1

2
ϕ0ϕ

2; ð3:1Þ

where the chiral superfield ϕ0 corresponds to a Lagrange
multiplier, and then it induces the constraint ϕ2 ¼ 0. For
the Uð1Þ symmetry, ϕ and ϕ0 have the charges þ1 and −2,
respectively.
In order to transform back to the nonlinear model, we

have to fix the gauge of the Uð1Þ symmetry as ϕN ¼ 1=g,
similar to the case of the CPN−1 model. Here, we should
notice that this rewriting also suffers from the anomaly.
Since the total Uð1Þ charge for ϕ0 and ϕi equals N − 2, the
anomalous term turns out to be given by3

α½V;ϕN; ϕ̄N � ¼ −
N − 2

16π2

Z
d4xd2θ logðgϕNÞWαf

×

�
−i

∂⃖
∂x ;−i

∂⃗
∂x

�
Wα þ H:c: ð3:2Þ

As a result, the symmetry of the action is reduced to
SOðN − 1Þ × Uð1Þlocal, while the Kähler potential has the
symmetry SOðNÞ ×Uð1Þlocal.
In the background hϕ0i ¼ ½w; 0; h�, the part of the

Lagrangian derived from Eq. (3.1) is expanded by the
component fields ϕi ¼ ½Ai;ψ i; Fi� asZ

d2θWðϕ0;ϕÞ þ H:c:

¼ wFiAi þ 1

2
hAiAi − wψ iψ i þ H:c: ð3:3Þ

Eliminating the auxiliary fields Fi by the equations of
motion Fi� þ wAi ¼ 0, Eq. (3.3) yields mass terms for
component fields. By including the contribution from the
Kähler potential, the mass terms in this background are
given as

Lmass ¼ −ðDþ jwj2ÞAi†Ai þ
�
1

2
hAiAi − wψ iψ i þ H:c:

�
:

ð3:4Þ

B. Effective potentials including F-terms

The mass term [Eq. (3.4)] is essentially the same as that
of the supersymmetric NJL model analyzed in Ref. [29].
For the scalar, the mass-squared eigenvalues are given by
Dþ jwj2 � jhj. According to Ref. [29], the effective
potential in the 1=N leading order can be calculated as

1

N
Vðz;D; w; hÞ ¼ −

1

g2
Dþ NðDþ jwj2 − jhj cos θÞjzj2

þ 1

16π2
D2 logðGjzj2Þ

þ 1

16π2
fFðDþ jwj2 þ jhjÞ

þ FðDþ jwj2 − jhjÞ − 2Fðjwj2Þg;
ð3:5Þ

where θ is the phase of hAiAi and the function FðxÞ is
defined by

FðxÞ ¼ 1

2

�
logð1þ xÞ − x2 log

�
1þ 1

x

�
þ x

�
: ð3:6Þ

We set the cutoff Λ equal to 1 for simplicity. The potential
(3.5) reduces to a similar expression to the previous one
[Eq. (2.39)] if taking the limit h; w → 0. We note that the

FIG. 2. The plots of the position of the peak of ρðσ2Þ, σ ¼ M. It
corresponds to the mass of the unstable vector multiplet.

3It is noted that, as in the CPN−1 model, ϕiði ¼ 1;…; N − 1Þ
are related to local coordinates of the manifold. ϕ0 and ϕN are
irrelevant to local coordinates. So, we can use coordinate trans-
formations to cover the whole of the manifold.
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factor of the anomalous term N − 2 is approximated as N
for large N.
Differentiating the potential (3.5), the stationarity con-

ditions are given by

δV
δθ

¼ 0 ⇒ jhjjzj2 sin θ ¼ 0; ð3:7Þ

δV
δjhj ¼ 0 ⇒ IðDþ jwj2 þ jhjÞ − IðDþ jwj2 − jhjÞ

¼ 16π2jzj2 cos θ; ð3:8Þ

δV
δw

¼ 0 ⇒ w�fIðDþ jwj2 þ jhjÞ þ IðDþ jwj2 − jhjÞg
¼ −16π2w�jzj2; ð3:9Þ

δV
δz

¼ 0 ⇒
1

z

�
1

16π2
D2 þ ðD − jhj cos θÞjzj2

�
¼ 0;

ð3:10Þ

δV
δD

¼ 0⇒ −
1

G
þ jzj2 þ 1

8π2
D logðGjzj2Þ

þ 1

16π2
fIðDþ jwj2 þ jhjÞ þ IðDþ jwj2 − jhjÞg ¼ 0;

ð3:11Þ

where IðxÞ is defined by

IðxÞ≡ F0ðxÞ ¼ 1 − x log

�
1þ 1

x

�
: ð3:12Þ

The stationarity condition (3.7) implies that θ ¼ 0 or π,
or jhj ¼ 0. Note that jzjmust not be zero, since the potential
includes log jzj. Since IðxÞ is a monotonically decreasing
function [29], we find, if jhj ≠ 0,

IðDþ jwj2 þ jhjÞ − IðDþ jwj2 − jhjÞ < 0: ð3:13Þ

So, from Eq. (3.8), it follows that θ ¼ π if jhj ≠ 0.
However, these values do not satisfy the stationarity
condition (3.11), and so jhj must be zero. Then, from
Eqs. (3.8) and (3.10), it follows that θ must be π=2 and D
must be zero. At this stage, we conclude that supersym-
metry is unbroken in this model, since D ¼ 0 and h ¼ 0.
From Eqs. (3.9) and (3.11), we find that if w ≠ 0,

−
1

G
þ 1

8π2
D logðGjzj2Þ ¼ 0: ð3:14Þ

It is inconsistent for D ¼ 0, and so w must be zero.
After all, D, h, and w are zero, and jzj is given by the

same expression of Eq. (2.42). At this vacuum, the effective
action is essentially the same as that of the CPN−1 model
in the 1=N leading order. Therefore, the analysis of the

vector boson is also the same, and so one massive vector
particle appears in this model, but it decays to massless
components.

IV. CONCLUDING REMARKS

We have shown that the supersymmetric CPN−1 and
SOðNÞ=SOðN − 1Þ ×Uð1Þ models are formulated as
anomalous gauge theories. By the anomalous term, the
gauged linear models have smaller symmetries of the
action than conventional ones: the remaining symmetry
is SUðN − 1Þglobal ×Uð1Þlocal for CPN−1, and SOðN −
1Þglobal ×Uð1Þlocal for SOðNÞ=SOðN − 2Þglobal × Uð1Þlocal.
In the 1=N leading order, the linear model has a vacuum

for G < Gcr, where the Uð1Þlocal symmetry is broken but
supersymmetry is unbroken. It is a remarkable feature of
both models that there is no stable vacuum for G > Gcr in
the 1=N leading order.
From the analysis of the spectral function, we expect that

the dynamical gauge boson becomes massless at the critical
coupling, and so the Uð1Þlocal symmetry is restored. To
show this, it is necessary to study the models in the strong
coupling regime by other methods than the 1=N leading
order. In particular, it is interesting to clarify the fate of
supersymmetry for G > Gcr.
It has been shown that all supersymmetric nonlinear

sigma models for the Hermitian symmetric space are
formulated as gauge theories, although the anomaly is
not included in Ref. [15]. In this paper, we deal with the two
models for the Hermitian symmetric space and show that
the anomaly should be taken into account in the models.
Then, it is natural to ask whether the anomalous term is
required for analyzing the model for other Hermitian
symmetric spaces.
In the case of the Grassmann manifold GM;N , the linear

model is described by a chiral superfield of the ðN; M̄Þ
representation of UðNÞL ×UðMÞR, and the model has no
F-term constraint. Since UðMÞR is gauged in this model,
the anomalous term should be added in the nonlinear sigma
model for GM;N.
For SpðNÞ=UðNÞ and SOð2NÞ=UðNÞ, we similarly

have a chiral superfield ϕ and an additional chiral field
ϕ0 to impose the F-term constraint. Although the gauge
symmetry is non-Abelian, it can be easily seen that the
anomalous term is required also in this case by considering
Uð1ÞD, which is a subgroup of UðNÞ [15]. For Uð1ÞD, ϕ
and ϕ0 have 1 and −2 charges, respectively. Counting the
total charge, the anomalous factor for Uð1ÞD is given by
NðN þ 1Þ for SpðNÞ=UðNÞ, and NðN − 1Þ for SOð2NÞ=
UðNÞ. Since these factors are nonzero, we should include
the anomalous term in the linear model for these target
manifolds.
Similarly, we can deal with E6=SOð10Þ ×Uð1Þ and

E7=E6 ×Uð1Þ in terms of the Uð1ÞD charge. In the case
of E6=SOð10Þ ×Uð1Þ, there are two chiral superfields of
the 27 representations of E6, and they have 1 and −2
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charges. So, we need the anomalous term in the linear
model. For E7=E6 ×Uð1Þ, we have two chiral superfields
of the 56 representations of E7, which have 1 and −3
charges for Uð1ÞD, and so the anomalous term is required.
Consequently, we conclude that it is necessary to include
the anomalous term in all linear models corresponding to
the nonlinear sigma model whose target manifold is the
Hermitian symmetric space.
Finally, we comment on a supersymmetric NJL model

proposed by Cheng, Dai, Faisei, and Kong[30,31]. The
model is given by the Kähler-potential-truncating higher-
order terms of Eq. (2.3). One analysis of the model was
performed in Ref. [29] by introducing an auxiliary vector
superfield and calculating an effective potential in the 1=N
leading order. Relating to an auxiliary vector superfield, the
model has hidden Uð1Þ local symmetry with the anomaly,
as well as in the CPN−1 model. However, the anomalous
term was not included in the effective potential in the
previous analysis. The result including the anomaly will be
reported in the near future [32].
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APPENDIX: FEYNMAN INTEGRALS IN
CUTOFF THEORIES

First, let us consider the Feynman integral

I ¼
Z
k2≤Λ2

d4k
ð2πÞ4

1

k2 þ 2k · pþm2
; ðA1Þ

where kμ and pμ are Euclidean momenta. The dot product
for the two momenta is written by k · p ¼ jkjjpj cos θ,
where θ is the angle between the two vectors and jkj is the
norm. Writing k ¼ jkj and p ¼ jpj, the Feynman integral is
expressed as

I ¼ 4π

16π4

Z
Λ

0

dkk3
Z

π

0

dθ
sin2 θ

k2 þm2 þ 2kp cos θ
; ðA2Þ

where we have used d4k ¼ dkdθ4πk3 sin2 θ in four
dimensions.
Here, the θ integration can be performed by the formula

Z
π

0

dθ
sin2θ

aþ 2b cos θ
¼ π

4b2
ða −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 2bÞða − 2bÞ

p
Þ ða > 2jbj; b ≠ 0Þ: ðA3Þ

In the case of m > p, we have k2 þm2 > 2kp, and so the Feynman integral becomes

I ¼ 1

16π2

Z
Λ

0

dk
k
p2

fk2 þm2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 þm2 þ 2kpÞðk2 þm2 − 2kpÞ

q
g: ðA4Þ

Then, the k integration can be easily performed. The resulting integral is

I ¼ 1

16π2

�
Λ4 þ Λ2m2 − Λ2p2

Λ2 þm2
þ p2

2

�
1 −

2p2

Λ2 þm2

�
gðp2; m2Þ þ ðp2 −m2Þhðp2; m2Þ

�
; ðA5Þ

where hðp2; m2Þ and gðp2; m2Þ are defined by

gðp2; m2Þ ¼ Λ4

2p4

�
1þm2

Λ2

��
1þm2

Λ2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þm2

Λ2

�
2

−
4p2

Λ2

s
−

2p2

Λ2 þm2

�
; ðA6Þ

hðp2; m2Þ ¼ log
Λ2 þm2 − 2p2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛ2 þm2Þ2 − 4Λ2p2

p
2ðm2 − p2Þ : ðA7Þ

Next, we illustrate the integration with a momentum in the numerator of the integrand:

Z
k2≤Λ2

d4k
ð2πÞ4

kμ
ðk2 þ 2k · pþm2Þ2 ¼ −

1

2

∂
∂pμ

Z
k2≤Λ2

d4k
ð2πÞ4

1

k2 þ 2k · pþm2

¼ 4π

16π4

Z
Λ

0

dkk3
Z

π

0

dθ
ksin2θ cos θ

ðk2 þm2 þ 2kp cos θÞ2
pμ

p
: ðA8Þ
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By using the formula

Z
π

0

dθ
sin2 θ cos θ
aþ 2b cos θ

¼ πð−a2 þ 2b2Þ
8b3

þ πa
8b3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 2bÞða − 2bÞ

p
; ðA9Þ

the θ integration is performed, and then we find that the result of the k integration is given by

Z
k2≤Λ2

d4k
ð2πÞ4

kμ
ðk2 þ 2k · pþm2Þ2 ¼

pμ

16π2

�
Λ2

Λ2 þm2
þ 1

2

�
1þ 2p2

Λ2 þm2

�
gðp2; m2Þ − hðp2; m2Þ

�
: ðA10Þ

Other Feynman integrals can be calculated by similar procedures. We give the results of the calculation of other Feynman
integrals used in this paper:

Z
k2≤Λ2

d4k
ð2πÞ4

1

ðk2 þ 2k · pþm2Þ2 ¼
1

16π2

�
−

Λ2

Λ2 þm2
−

p2

Λ2 þm2
gðp2; m2Þ þ hðp2; m2Þ

�
; ðA11Þ

Z
k2≤Λ2

d4k
ð2πÞ4

kμkν
ðk2 þ 2k · pþm2Þ2 ¼

1

16π2
pμpν

p2

�
Λ2ðΛ2 þm2 − 3p2Þ

2ðΛ2 þm2Þ −
1

4

�
Λ2 þm2 þ p2 þ 6p4

Λ2 þm2

�
gðp2; m2Þ

þ 3p2 −m2

2
hðp2; m2Þ

�

þ 1

16π2
−1
2

�
δμν −

pμpν

p2

��
−
Λ2ðΛ2 þ 3m2 − 3p2Þ

3ðΛ2 þm2Þ

−
1

6

�
Λ2 þm2 − p2 þ ð4m2 − 6p2Þp2

Λ2 þm2

�
gðp2; m2Þ − ðp2 −m2Þhðp2; m2Þ

�
: ðA12Þ

It is noted that the consistency of Eqs. (A5), (A10), (A11), and (A12) can be checked by the relation

1

k2 þ 2k · pþm2
¼ δμν

kμkν
ðk2 þ 2k · pþm2Þ2 þ 2pμ

kμ
ðk2 þ 2k · pþm2Þ2 þm2

1

ðk2 þ 2k · pþm2Þ2 : ðA13Þ

[1] M. Bando, T. Kugo, and K. Yamawaki, Nonlinear realiza-
tion and hidden local symmetries, Phys. Rep. 164, 217
(1988).

[2] B. Zumino, Supersymmetry and Kahler manifolds, Phys.
Lett. 87B, 203 (1979).

[3] M. Bando, T. Kuramoto, T. Maskawa, and S. Uehara,
Nonlinear realization in supersymmetric theories, Prog.
Theor. Phys. 72, 313 (1984).

[4] K. Itoh, T. Kugo, and H. Kunitomo, Supersymmetric non-
linear realization for arbitrary Kahlerian coset space G=H,
Nucl. Phys. B263, 295 (1986).

[5] K. Itoh, T. Kugo, and H. Kunitomo, Supersymmetric non-
linear Lagrangians of Kahlerian coset spacesG=H:G ¼ E6,
E7 and E8, Prog. Theor. Phys. 75, 386 (1986).

[6] T. Kugo, I. Ojima, and T. Yanagida, Superpotential sym-
metries and Pseudonambu-Goldstone supermultiplets, Phys.
Lett. 135B, 402 (1984).

[7] B. A. Ovrut and J. Wess, Supersymmetric Rξ gauge and
radiative symmetry breaking, Phys. Rev. D 25, 409 (1982).

[8] W. Lerche, On Goldstone fields in supersymmetric theories,
Nucl. Phys. B238, 582 (1984).

[9] W. Lerche, Pseudosymmetry currents and PCAC in super-
symmetric Goldstone theories, Nucl. Phys.B246, 475 (1984).

[10] W. Lerche, Extended anomaly constraints in super-
symmetric gauge theories, Nucl. Phys. B264, 60 (1986).

[11] S. Aoyama, The supersymmetric UN;rσ-model and its O2

extended supersymmetry, Nuovo Cimento A 57, 176 (1980).
[12] U. Lindstrom and M. Rocek, Scalar tensor duality and

N ¼ 1, N ¼ 2 nonlinear sigma models, Nucl. Phys. B222,
285 (1983).

[13] N. J. Hitchin, A. Karlhede, U. Lindstrom, and M. Rocek,
Hyperkahler metrics and supersymmetry, Commun. Math.
Phys. 108, 535 (1987).

[14] T. Kugo, Supersymmetric non-linear realization, in Sor-
yushiron Kenkyu (Kyoto) SCGT96 Proceedings, 1997, C56,
edited by J. Nishimura and K. Yamawaki (World Scientific,
Singapore, 1996), Vol. 95, http://ekenwww.phys.nagoya-u
.ac.jp/Scgt/proc/.

AYA KONDO and TOMOHIKO TAKAHASHI PHYS. REV. D 102, 025014 (2020)

025014-12

https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-1573(88)90019-1
https://doi.org/10.1016/0370-2693(79)90964-X
https://doi.org/10.1016/0370-2693(79)90964-X
https://doi.org/10.1143/PTP.72.313
https://doi.org/10.1143/PTP.72.313
https://doi.org/10.1016/0550-3213(86)90118-5
https://doi.org/10.1143/PTP.75.386
https://doi.org/10.1016/0370-2693(84)90303-4
https://doi.org/10.1016/0370-2693(84)90303-4
https://doi.org/10.1103/PhysRevD.25.409
https://doi.org/10.1016/0550-3213(84)90336-5
https://doi.org/10.1016/0550-3213(84)90049-X
https://doi.org/10.1016/0550-3213(86)90472-4
https://doi.org/10.1007/BF02776450
https://doi.org/10.1016/0550-3213(83)90638-7
https://doi.org/10.1016/0550-3213(83)90638-7
https://doi.org/10.1007/BF01214418
https://doi.org/10.1007/BF01214418
http://ekenwww.phys.nagoya-u.ac.jp/Scgt/proc/
http://ekenwww.phys.nagoya-u.ac.jp/Scgt/proc/
http://ekenwww.phys.nagoya-u.ac.jp/Scgt/proc/
http://ekenwww.phys.nagoya-u.ac.jp/Scgt/proc/
http://ekenwww.phys.nagoya-u.ac.jp/Scgt/proc/


[15] K. Higashijima and M. Nitta, Supersymmetric nonlinear
sigma models as gauge theories, Prog. Theor. Phys. 103,
635 (2000).

[16] P. Di Vecchia and S. Ferrara, Classical solutions in two-
dimensional supersymmetric field theories, Nucl. Phys.
B130, 93 (1977).

[17] E. Witten, A supersymmetric form of the nonlinear
sigma model in two-dimensions, Phys. Rev. D 16, 2991
(1977).

[18] E. Witten, Instantons, The quark model, and the 1=n
expansion, Nucl. Phys. B149, 285 (1979).

[19] A. D’Adda, P. Di Vecchia, and M. Luscher, Confinement
and chiral symmetry breaking in CPn−1 models with quarks,
Nucl. Phys. B152, 125 (1979).

[20] Y. Nambu and G. Jona-Lasinio, Dynamical model of
elementary particles based on an analogy with supercon-
ductivity. I, Phys. Rev. 122, 345 (1961).

[21] K. Harada and I. Tsutsui, On the path integral quanti-
zation of anomalous gauge theories, Phys. Lett. B 183, 311
(1987).

[22] L. Faddeev and S. L. Shatashvili, Realization of the
Schwinger term in the Gauss law and the possibility of
correct quantization of a theory with anomalies, Phys. Lett.
167B, 225 (1986).

[23] B. de Wit and M. T. Grisaru, Compensating fields and
anomalies, in Quantum Field Theory and Quantum

Statistics, edited by I. A. Batalin, C. J. Isham, and G. A.
Vilkovisky (Adam Hilger, Bristol, 1987), Vol. 2.

[24] S. Weinberg, The Quantum Theory of Fields, Volume II
Modern Applications (Cambridge University Press,
Cambridge, England, 2005), Sec. 22.

[25] K. Higashijima and M. Nitta, Quantum equivalence of
auxiliary field methods in supersymmetric theories, Prog.
Theor. Phys. 103, 833 (2000).

[26] K. Konishi and K. Shizuya, Functional-integral approach to
Chiral anomalies in supersymmetric gauge theories, Nuovo
Cimento A 90, 111 (1985).

[27] T. E. Clark, O. Piguet, and K. Sibold, Absence of radiative
corrections to the axial current anomaly, Nucl. Phys. B159,
1 (1979).

[28] T. Hamazaki and T. Kugo, Defining the Nambu–Jona-
Lasinio model by higher derivative kinetic term, Prog.
Theor. Phys. 92, 645 (1994).

[29] T. Kugo, Spontaneous supersymmetry breaking, negative
metric and vacuum energy, arXiv:1703.00600.

[30] Y. Cheng, Y. M. Dai, G. Faisel, and O. C.W. Kong, A
simple model of dynamical supersymmetry breaking with
the generation of soft mass(es), arXiv:1507.01514.

[31] Y. Cheng, Y. M. Dai, G. Faisel, and O. C.W. Kong, Analysis
on a Nambu–Jona-Lasinio model of dynamical supersym-
metry breaking, arXiv:1603.00724.

[32] A. Kondo, H. Ohki, and T. Takahashi (to be published).

SUPERSYMMETRIC NONLINEAR SIGMA MODELS AS … PHYS. REV. D 102, 025014 (2020)

025014-13

https://doi.org/10.1143/PTP.103.635
https://doi.org/10.1143/PTP.103.635
https://doi.org/10.1016/0550-3213(77)90394-7
https://doi.org/10.1016/0550-3213(77)90394-7
https://doi.org/10.1103/PhysRevD.16.2991
https://doi.org/10.1103/PhysRevD.16.2991
https://doi.org/10.1016/0550-3213(79)90243-8
https://doi.org/10.1016/0550-3213(79)90083-X
https://doi.org/10.1103/PhysRev.122.345
https://doi.org/10.1016/0370-2693(87)90970-1
https://doi.org/10.1016/0370-2693(87)90970-1
https://doi.org/10.1016/0370-2693(86)90604-0
https://doi.org/10.1016/0370-2693(86)90604-0
https://doi.org/10.1143/PTP.103.833
https://doi.org/10.1143/PTP.103.833
https://doi.org/10.1007/BF02724227
https://doi.org/10.1007/BF02724227
https://doi.org/10.1016/0550-3213(79)90322-5
https://doi.org/10.1016/0550-3213(79)90322-5
https://doi.org/10.1143/PTP.92.645
https://doi.org/10.1143/PTP.92.645
https://arXiv.org/abs/1703.00600
https://arXiv.org/abs/1507.01514
https://arXiv.org/abs/1603.00724

