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We revisit supersymmetric nonlinear sigma models on the target manifold CPY~! and SO(N)/
SO(N —2) x U(1) in four dimensions. These models are formulated as gauged linear models, but it is
indicated that the Wess-Zumino term should be added to the linear model since the hidden local symmetry
is anomalous. Applying a procedure used for the quantization of anomalous gauge theories to the nonlinear
models, we determine the form of the Wess-Zumino term, by which a global symmetry in the linear model
becomes smaller in the action than the conventional one. Moreover, we analyze the resulting linear model
in the 1/N leading order. Consequently, we find that the model has a critical coupling constant similar to
bosonic models. In the weak coupling regime, the U(1) local symmetry is broken but supersymmetry is
never broken. In contrast to the bosonic case, it is impossible to find stable vacua in the strong coupling
regime as far as in the 1/N leading order. These results are straightforwardly generalized to the case of the

Hermitian symmetric space.

DOI: 10.1103/PhysRevD.102.025014

I. INTRODUCTION

A nonlinear sigma model is regarded as a low-energy
effective field theory, where the relevant degrees of
freedoms are massless Nambu-Goldstone (NG) bosons
associated with broken global symmetries. Interestingly,
any nonlinear sigma model based on the coset manifold
is gauge equivalent to a linear model with a so-called
hidden local symmetry (see Ref. [1] and references cited
therein). Although the gauge fields for the hidden local
symmetry are redundant variables, dynamical vector
bosons may be generated by quantum corrections even
in four dimensions.

In supersymmetric field theories, Zumino first recog-
nized that the scalar fields of nonlinear models take their
values in a Kéhler manifold and gave an explicit form of the
action for the Grassmann manifold [2]. More general
nonlinear realization for more general coset spaces was
extensively studied in Refs. [3—10], and general methods to
construct a nonlinear Lagrangian are provided. The char-
acteristic feature is that massless fermions appear as
supersymmetric partners of NG bosons. These NG bosons
and their fermionic partners are described by chiral super-
fields in four dimensions with N =1 supersymmetry.
Then, the target space must be the Kihler manifold, since
chiral superfields are complex.
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Supersymmetric nonlinear sigma models with hidden
local symmetries were studied on some Kihler manifolds in
Refs. [11-14], and then were generalized by Higashijima-
Nitta about twenty years ago [15]. They showed that a
supersymmetric nonlinear sigma model is formulated as a
linear gauge theory, if its target manifold is the Hermitian
symmetric space. However, importantly, this is a classical
correspondence between both models.

Supersymmetric nonlinear sigma models were studied
in quantum field theories, and many interesting results
have been revealed in two dimensions [16—-19]. However,
nonlinear sigma models are nonrenormalizable in four
dimensions. So, they are defined by the theory with
ultraviolet momentum cutoff as well as the Nambu—
Jona-Lasinio (NJL) model [20], or by some other non-
perturbative methods. Although supersymmetry increases
difficulties in analyzing the quantum dynamics, they seem
not to be physical but rather technical, similar to an
ambiguity of subtraction in the NJL model, and so they
are a relatively tractable problem.

Most crucially, a hidden local symmetry is generically
anomalous in supersymmetric nonlinear models in four
dimensions, since the symmetry acts on chiral superfields.
For example, let us consider the following Kihler potential
as a gauged linear model:

N 2
K(¢7¢‘) = ¢I€2V¢_?V7

where ¢;(i = 1,...,N) is a chiral superfield and V is a
U(1) gauge vector superfield. The last term is a Fayet-
[liopoulos (FI) term with a coupling constant g. The model
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has the global symmetry SU(N) and the local one U(1). In
order to see this model as equivalent to the CPN~! model, it
has been thought that one has only to take ¢py =1 as a
gauge fixing condition [14,15]. Eliminating V by the
equation of motion, one may find the Kéhler potential of
the CPY~! model, the target manifold of which is para-
metrized by the remaining chiral superfields. However, the
important point is that the anomalous hidden local sym-
metry does not allow us to take an arbitrary gauge fixing
condition. In this example, U(1) is anomalous, and so it is
impossible to transform to the CPVY~! model.

For one thing, we can avoid the anomaly problem by
considering nonanomalous hidden local symmetries in the
gauged linear model. Alternatively, one can add additional
chiral superfields coupled to the vector superfield in order
to cancel the anomaly. However, both methods are not
helpful for formulating the nonlinear sigma model based on
the Hermitian symmetric space.

In this paper, we will start with the supersymmetric
nonlinear sigma model, which includes only the chiral
superfields and so is a well-defined theory without the
anomaly. Then, we will rewrite the model by introducing an
auxiliary vector superfield and performing a Legendre
transformation. At this stage, the vector superfield is not
a gauge field, since the original Lagrangian is not gauge
invariant, and the path integral measure is not divided by
the gauge volume. Next, we will insert the Fadeev-Popov
determinant to the partition function by following the
technique used for the quantization of anomalous gauge
theories in Ref. [21], which is an extension of the method of
Ref. [22]. As a result, we obtain the gauged linear model
with a Wess-Zumino term which is equivalent to the
original nonlinear sigma model.

We should comment that the conceptual setting of the
above procedure is not new, because it is almost the same
strategy described by de Wit and Grisaru more than thirty
years ago [23]. In the case of the CPN~! model, the chiral
superfields ¢’ include a compensating field. They showed
that the anomaly can always be eliminated by adding
local counterterms constructed by using the compensator.
However, an advantage of our procedure is that it is obvious
which field is a compensator, while there are various options
in their arguments. Consequently, a Wess-Zumino term can
be uniquely determined in our procedure.

We will explicitly deal with CPV~! and SO(N)/SO(N —
1) x U(1) models, but our results can be generalized
straightforwardly to other target manifolds, because these
models capture typical features of the models without or
with F-term constraint [15]. Both nonlinear models will be
formulated as anomalous gauged linear models. Impor-
tantly, the symmetry of the action in the gauged linear
model is different from a conventional symmetry due to
the effect of the Wess-Zumino term. For instance, we will
show that the action of the gauged linear model for the
CPN~" model has the symmetry SU(N — 1) gy X U(1)

local>

which is smaller than the conventional symmetry
SU(N)giobar X U(1)14cq1- This is essentially the same result
as pointed out by de Wit and Grisaru in the discussion of
anomalies and compensators [23].

This paper is organized as follows: First, we will show
the details about the supersymmetric CPV~! model. In
Sec. IT A, we will explain the quantum equivalence between
this model and an anomalous gauged linear model with a
Wess-Zumino term, which is derived from the Jacobian
factor for chiral superfields. In Sec. I C, we will calculate a
three-point vertex function given by triangle diagrams and
exactly determine the form of the Wess-Zumino term in the
theory including the momentum cutoff A. For renormaliz-
able theories, the Feynman integral for the triangle diagram
is expanded by the powers of 1/A, and only finite terms for
A — oo contribute to the anomaly [24]. Here, we will
provide an exact anomalous term depending on A, which
includes higher-power terms of 1/A. In Sec. II B, we will
discuss the fact that our model is defined on the whole
CPN~! manifold. In Sec. II D, we will analyze the effective
potential of the linear model in the 1/N leading order. We
find that the model has the critical coupling, below which
the U(1),,.q Symmetry is broken and supersymmetry is
unbroken. Remarkably, in contrast to the bosonic CPN~!
model [1], we will show that there is no stable vacuum
beyond the critical coupling in the 1/N leading order. In
Sec. IT E, we will discuss the vector supermultiplet which is
dynamically generated but unstable as similar to the
bosonic case [1]. Interestingly, we observe that, when
approaching the critical point, the vector multiplet tends
to become massless. This behavior suggests the possibility
that the U(1),., symmetry is restored at the critical
coupling. Next, we will consider the SO(N)/SO(N —2) x
U(1) model in Secs. IITA and IIIB as an example of
the nonlinear model with F-term constraint. Although an
F-term is added to the model, the qualitative features are
unchanged. Finally, we will give concluding remarks in
Sec. IV. In the Appendix, we present details of the
calculation of Feynman integrals in the cutoff theory.

II. SUPERSYMMETRIC CPY-! MODEL

A. Anomalous gauged linear models

The supersymmetric CPV~! model is defined by the
Lagrangian

L= /d29d29K0(q0,goT), (2.1)

where @;(i = 1, ..., N — 1) are chiral superfields and K, is
the Kihler potential given by

Ko(p.¢") = élog <§+¢T(ﬂ>- (2.2)
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As is well known, this Kéhler potential provides the Fubini-
Study metric for the CP¥~! manifold, which is para-
metrized by the complex fields ¢;, ¢;. The parameter g
is a coupling constant with the dimension of inverse mass.
The Kéhler potential can be expanded at ¢ = 0 as

2

. 1 1 g
Ko(p.9") = ?log?Jr eSS

. (2.3)

@@+,
where the first term has no effect on the Lagrangian, and so
we find that the chiral field ¢ is canonically normalized
in Eq. (2.2).

By introducing an auxiliary vector superfield V, we can
change the Kihler potential into

1 2
Ki(p.0". V) =& (? + gow)) s 24)

where the last term is a FI D-term. The equation of motion
of V leads to

5K}, 1 2
_:262V<_+¢T(p> Ep—!
SV 92 92
1/ + o'
= 2V = 1ogLf§”. (2.5)
1/g

Substituting this back into Eq. (2.4), we obtain the same
Kihler potential (2.2) for the CPN~! model up to irrelevant
constant terms.

In Eq. (2.4), we perform a change of variables:

2V =2V —i(A- 1), (2.6)
@i = ei'lél)ia (2.7)
§i = e, (2.8)

where A is a chiral superfield. Then, we find the Kihler
potential to become

2
K(p.¢".V)=¢'e?p -V, (2.9)
g
where ¢;(i = 1, ..., N) are chiral superfields:
. -
pi=(i=1,...,N=1), ¢y=—e" (2.10)
g

This Kihler potential gives a gauged linear model with the
global symmetry SU(N) and the local symmetry U(1),,c,-
If we take ¢y = 1/g as a gauge fixing condition for
U(1),ca> the Kihler potential (2.9) reproduces the expres-
sion (2.4), and then the first one [Eq. (2.2)], by eliminating
V. Hence, it was claimed that the supersymmetric CPV~!
model can be obtained from a gauged linear model.

However, it should be noticed that U(1),,., is an
anomalous symmetry, and this anomaly is an obstruction
in proving the equivalence between the two models. In
order to include the anomaly, we have to deal with
contributions from path integral measures. The idea is
basically the same as the quantization of anomalous gauge
theory [21], although the original Lagrangian (2.1) is not
gauge invariant in our case.

At first, we introduce the auxiliary vector superfield V to
the partition function of the CPN~! model:

Z= /dgod(pT exp(i/dgzl(o(go, (pT))

= /d(pd(pwVexp<i/d8ng((p,¢T,V)), (2.11)

where the superspace coordinate is denoted by z = (x,6,6),
and integration measures denoted by d®z = d*xd*0d>6.
In general, the V integration leads not only to K as a saddle
point, but also to higher-order quantum corrections.
However, in supersymmetric theories, we have no quantum
corrections, as proved by Higashijima-Nitta [25], and so
this is an exact rewriting.

Let us define the Fadeev-Popov determinant A /[V] for
the gauge fixing condition f[V] = 0:

AV / dAdas(f[VAA)) = 1, (2.12)
where dAd] is a gauge invariant measure and V@D s a
gauge transformation of V:

2V =2V 4 i(2 - 2). (2.13)
Inserting Eq. (2.12) into Eq. (2.11) and changing an
integration variable as V — V(=4=4) the partition function

(2.11) is expressed in terms of the functional integral over 4,
4 and the original fields:

7 = / dode DV didiexp <i / azK' (¢, ¢", A, 2, V)>,

(2.14)

DV = dVA[V]Is(f[V]). (2.15)
where dV is assumed to be gauge invariant, and so DV
corresponds to a gauge invariant measure divided by the
gauge volume. The Kihler potential K’ is given by

K'(g.0" 4.2, V) = ez‘/{? e 4 ((pTe’*)(e"”(ﬂ)}

2

-Zv.

g

(2.16)
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If we take the chiral superfields ¢’ = e~*¢ as integration
variables, the functional measure produces the Jacobian
factor derived from the relation [26,27]

5¢;(2) & —iA(z) -D?

= ke M) —88(z = 7).
Spi(2) g o)

(2.17)

Moreover, we change the variable from A to ¢y = e™#/g.
Since A is a chiral field, we have a similar relation to
Eq. (2.17):
Sy (z) 1 iA(z) -D?
A7) g 4

B(z—-7). (2.18)

So, in the partition function integrated over the new
variables, we have the Wess-Zumino term with the factor
N, in which N — 1 and 1 are coming from the measures of
@; and 4, respectively. Finally, we can rewrite the partition
function of the CPN~! model as follows:

Z= /dqﬁdqﬁ*DVexp

x (i / dBzK (¢, $, V) + ia]V, ¢N,(§5N}>, (2.19)

- N
LA — / dxd0log gy WOW,

1622

+ H.c. + O(1/A?), (2.20)
where the Kihler potential is given by Eq. (2.9). [V,
¢y, @y) is the anomalous term generated by the Jacobian
factor. A is the ultraviolet cutoff parameter to regularize the
functional measure [26,27], in which the leading term is
given by the Wess-Zumino term for U(1),ycu-
Consequently, we show that the supersymmetric CPV~!
model is quantumly equivalent to the theory given by the
Kihler potential [Eq. (2.9)] and the F-term [Eq. (2.20)].
This F-term reduces the flavor symmetry to SU(N — 1),
and so the action of this gauged linear model has the
symmetry SU(N — 1) x U(1)

local*

B. Global structure and inhomogeneous coordinates

We have started from the action (2.2) of the CPN~!
model and then have rewritten its partition function as that
of the linear model (2.19). In the action (2.2), ¢,’s denote
local affine coordinates of the CPV~! manifold, and so this
coordinate patch does not cover CPV~!,

First, let us reconfirm that the partition function given by
the Kéhler potential (2.2) is defined on the whole manifold,
while the action is represented by the local coordinates. For
simplicity, the coupling constant is set to be 1. ¢; are local
coordinates in a patch, which is expressed by Uj. In the
case of ¢, # 0, we can introduce an affine coordinate
system in the coordinate patch Uy:

1 @i .
oo=—. @=L (i%k). 2.21
ET o o (i # k) (2.21)
Importantly, the N coordinate patches U;(i =0, ...,N — 1)
cover the CPN~! manifold.

Under the coordinate change (2.21), the Kihler potential

(2.2) is transformed to

Ko(g.0") = Ko(¢', ") + f(¢) + f*(9™),  (222)
where f(¢) is the holomorphic function f(¢’) = —log ¢}.
Since both holomorphic and antiholomorphic terms vanish
in the action after supercoordinate integration, the action
has the same expression with respect to the coordinates ¢/.
Accordingly, the partition function given by Eq. (2.2) can
be defined on the whole of the CPY~! manifold, if the
measure is invariant under the coordinate change.

Thus, it is clear that the nonlinear model is defined on the
whole manifold by using inhomogeneous coordinates. Let
us remember that, in the linear model, ¢;(i = 1,...,N — 1)
are related to the coordinates ¢;, and then ¢y, is given by the
gauge transformation parameter A. According to Eq. (2.21),
to move from U, to U, we have only to transform the
superfields as

¢;{ _ ¢_]2V ) ¢/ — ¢N ¢i

br "

It is easily seen that the action is unchanged under this

transformation. Consequently, the linear model is also
defined on the whole CPN~! manifold.

Here, it should be emphasized that ¢y is merely a
redundant field, or in other words a compensating field
[23], which is irrelevant to a coordinate system for CPN~!:
¢y = e~**/g. If there is no anomalous term in Eq. (2.19),
¢;(i =1, ..., N) may be interpreted as homogeneous coor-
dinates for CPV~!, and ¢y = 0 may represent a hyperplane
at infinity in the CPV~!. In the present case, ¢y is not equal
to zero due to a logarithmic singularity of the anomalous
term (2.20). However, this is not a problem for including
the hyperplane at infinity in the model, because the trans-
formation (2.23) makes it possible for us to change
coordinate patches and to include the whole manifold. It
is noted that, on the contrary, the coordinate transformation
(2.23) is a breakdown for ¢y = 0.

(i#k). (2.23)

C. Exact anomalous terms in cutoff theories

The CPN~! model in four dimensions is nonrenormaliz-
able, and it is regarded as a low-energy effective field
theory with an ultraviolet cutoff. So, we have to evaluate
the anomalous contribution in the gauged linear model by
keeping the cutoff finite. In this section, we consider the
cutoff dependence of the anomalous term by calculating the
triangle diagram.
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First, we consider the vacuum functional: Therefore, a[V, ¢y, ¢n] can be determined by solving this
equation for given SI'[V].
Here let us explain in detail the calculation of SI'[V] in
eVl = / dpdep’ exp (i / d*zK (¢, P, V)> (2.24)  the cutoff theory. The Lagrangian for the chiral spinor is
given by

Since U(1),ey is anomalous, I'[V] is not gauge invariant 20 2DV 4 AR T
due to the triangle diagram. On the other hand, since the dOLOP ™ = I¥PPRY + v, ¥y Pp¥ + -+, (2.20)

partition function (2.19) is gauge invariant, the anomaly

from the gauge transformation of I'[V] is canceled by the where we have used four-component notation for the spinor,
gauge transformation of a[V, ¢y, py]: and v, denotes a vector field in V. Py, is a projection operator
on the right-handed fermion field: Pr = (1 +y5)/2. The
famous two triangle diagrams contribute to the three-point

5(1[‘/, o, &N] = —5F[V]' (2'25) vertex function of v# [24]:

() _ d*k l+ys 1 1 1
F”W(kth):_N/i(Zﬂ:)“ {tr[ > —k—dy”—k—¢i+k] y”_k_ﬁ_kzy/’:|
1+75 1 1 1
+tr|: D) _k+¢yp_k+¢+k2yy_k+¢_k1YM }s (227)

where N component fermions yield the factor N. As in the NJL model, this integral is divergent, and so we introduce the
ultraviolet cutoff A after Wick rotation. It is noted that the cutoff is different from the previous one in Eq. (2.20), and there is
no simple relation between them. The four-vector a* is introduced due to arbitrariness of the momenta carried by internal
lines.

More precisely, we can introduce two four-vectors a* and b* independently to each triangle diagram. In this case, we
have to choose a* = —b* to avoid nonchiral anomalies for all three currents as explained in Ref. [24]. Actually, the charge
conjugation matrix C satisfies C~'y#C = —y#T, and we have

1 1 1 1 1 1
H-%—ﬁ“—k—¢+%an—¢—ﬁ”i__Hb+¢“k+¢+h“k+¢—%“}

So, the traces which contain no ys in Eq. (2.27) cancel to each other if a momentum variable is flipped in one diagram:
k* — —k*. Therefore, only the traces involving ys are left, and this justifies a choice of a* = —b*.

Now, we evaluate the anomaly term SI'[V], which corresponds to the Fourier transformation of the divergence of
Eq. 2.27)"

d4k (k + 61)111(2}L —(k + a)Dkl}b
ky + ky )Tl (ky, ky) = 4Ni / - . (228
oS Tunh ko) =i | o G F P+ a+ kP Graitera—kpf 02
These integrals can be calculated straightforwardly by picking up antisymmetric parts on the two indices v, 4. Combining
the denominator by the Feynman parameter technique, we perform the k integration by using the formula in the Appendix.
Then, if one rotates back to the Minkowski space, the resulting function is given by

. N !
i(ky + kz)”F,(;),,(kl ky) = = 5.2 Cup A dx{a'ky*g(—(a + xk,)?, —a® — 2xa - ky — xk3)

+ a*ki*g(—(a — xk)?, —a® + 2xa - k; — xk?)}, (2.29)

'In general, a simple momentum cutoff breaks gauge invariance, and this is a well-known problem, for example, as seen in dealing
with vector mesons in the NJL model [20]. In the NJL model, a conventional gauge invariant form of vertex functions was used to avoid
an ambiguity of mass subtraction. There are many other prescriptions proposed to deal with gauge invariance in cutoff theories. Here, we
use arbitrariness in the choice of the momentum shift in the loop integral in order to ensure gauge invariance. As an alternative, you may
define the model in the gauge invariant way by higher-derivative kinetic terms as in Ref. [28]. In any case, qualitative features are
unchanged.
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where g(p?, m?) is defined by Eq. (A6). This is the exact
result for the anomalous vertex function in the cutoff
theory.

Suppose that the currents for the u, p directions are
conserved; we then have to choose a =k; —k,, as
explained in Ref. [24]:

N
: (3 _ v
l(kl + k2) Fl(ll/;’(klka) - _47[2 euﬂipkl kZif(kl’kZL

(2.30)
where f(k, k,) is given by
Flkiok) = [ dxlol=(k: = (1 =0k
R +2(1=x)k; ko — (1 - x)K2)
+9(=((1=x)k; = ky)?,
—(1=x)k2+2(1 = x)k; -k — K2} (2.31)

This result is expressed in terms of the chiral current
JH = oty = Yyt PRY:

N o0
(1)) = = pez e f (i g i ) PP (232

The expansion in powers of 1/A is evaluated as

3, (¥ (x)) = PP 4 FHOF

3271.2 vpAp

+O(1/A%),

96722 €uuip
(2.33)

where the first term agrees with the conventional chiral
anomaly.2

Since the operator f consists of space-time derivatives,
we can easily provide SI'[V] in the supersymmetric model.
Finally, from 6I'[V] and Eq. (2.25), the resulting anomalous
term can be obtained as

alV,dy, @N] = d*xd*0 log(gpn)Wef

16722

R,
X (—la , =i a) W,+H.c. (2.34)

2According to calculations in Sec. 22 of Ref. [24], correction
terms of order 1/A? naturally appear in the anomalous term as
long as we keep the cutoff finite. (A should be regarded as a
radius P of a large three-sphere in Ref. [24].) Also, by applying
the Fujikawa method [26], it is easily seen that the correction term
appears in a Jacobian factor for a finite cutoff. Then, it is
interesting to understand how to deal with the index theorem
in cutoff theories, but this is out of the scope of this paper.

This is an exact result for Eq. (2.20) including all orders
of A.

D. Effective potentials in the 1/N leading order

Now that the CPV~! model is formulated as the con-
sistent linear model, we can consider the effective potential
of this model in the 1/N expansion. In the Wess-Zumino
gauge, the scalar components are the D-term —D of the
vector superfield V and the first component of ¢y. As in
Ref. [29], we take negative sign convention for the D-term
of V. The F-term of ¢y is irrelevant to the effective
potential.

In order to perform the 1/N expansion, we define the

coupling ¢* by
¢
N b

92

(2.35)

and we study the limit of large N with fixed G. This is a
conventional choice used in the CPY~! model. Moreover,
since g¢ should be of order 1 for the anomalous term to be
leading order, the vacuum expectation value of ¢, should
be defined as
(py) = VNz, (2.36)
where z is a fixed complex number in the 1/N expansion.
Substituting these component fields into Eq. (2.34), we

can calculate an anomalous contribution to the effective
action:

16722
b
X <—la,—la>l).

For constant D, the operator f becomes 1, and so a
quadratic term of D is generated in the effective potential.

We notice that for constant W, higher-order correction
terms may arise from other diagrams (square, pentagon,
and so on) in the superpotential as

W“Wa>
A )
where F(---) denotes a certain function. If we expand it in
the power series of W*W,/A3, since the constant fields
are included as WeW, = 00D* + --- and log(gpy) =
log(Gz) + - - -, the quadratic and higher powers do not
contribute to the effective potential. So, Eq. (2.37) leads to
an exact result of the anomalous effective potential.

Consequently, we can provide the effective potential in
the leading order in the 1/N expansion:

alV, gy, dy) = d*x1og(G|z|*)Df

(2.37)

log(g¢N)A3F< (2.38)
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1
NV(ZvD)
1 1
= —— D+ D|z2 +—D*log(Glz|?
5D+ DIl + 5 D*1og(Gl2f)
1 D A?
A4l 1 —D?1 14+— DAZ|.
g [V (14 ) - orws (145 ) 0
(2.39)

Here, the first and second terms arise from the tree-level
action, where we note again the negative sign convention of
the D-term. The third term is the anomalous potential from
Eq. (2.37). The fourth term is given by one-loop calcu-
lation, which is performed in a supersymmetric NJL. model
in Ref. [29]. In the calculation, D is a mass-squared
parameter for the scalar component of ¢, and so D must
be positive for a consistent vacuum.
The stationarity condition with respect to z is

(2.40)

oV _D /1
oz 167>

D+ z|2) =0.

Then, we conclude that D = 0, and so supersymmetry is
never broken in the leading order.
Another stationarity condition leads to

oV 1 1 A2
=0=—-— 24— |2A2-2D1 1+ —
3D = +\z| +322{ og( +D>
+4D 10g(G|z|2)} = (2.41)
Substituting D = 0 into the above, we find
1 A2
2 - _ 2.42

The model becomes inconsistent if G is larger than
Gy = 1677 /A2,

Accordingly, we conclude that, in the 1/N leading order,
the model has a stable vacuum only for the weak coupling
G < G, and supersymmetry is unbroken in this vacuum.

Here it should be noted that the anomalous potential play
an important role in the robustness of supersymmetry. If we
naively quantize the gauged linear model without the
anomalous term, the stationarity condition with respect
to z becomes Dz* = 0 instead of Eq. (2.40), and so we have
D = 0 or z = 0. The stationarity condition with respect to
D implies the gap equation

2P /d4" 1 1 y_1 1
¢ Co)f\® " K+D) "G G,

which is the same as that of a bosonic CPV~! model [1].
Then, we might have two phases: (i) G < G, |z]| #0,
D =0; and (ii) G > G, |z] =0, D # 0. While the first

(2.43)

case corresponds to the above supersymmetric model, the
second appears as a new phase. If there were no anomaly, D
would acquire a vacuum expectation value in the strong
coupling region, and so supersymmetry would be sponta-
neously broken. But this is not the case, and so it is
regarded that the anomalous term keeps supersymmetry
unbroken.

We note that, although there is no vacuum in the strong
coupling region in the 1/N leading order, there still remains
a possibility of finding a vacuum in higher order or by
considering some nonperturbative effects.

E. Dynamical vector supermultiplets

We showed that z has the vacuum expectation value
given by Eq. (2.42) in the weak coupling region. On this
vacuum, the anomalous term in Eq. (2.44) induces the
kinetic term for the vector superfield:

N [ el 0 D
_1677.'2/d xdzelog(\/az)W f( la, la>Wa—|-H,c.

(2.44)

It is well known that, in general, vector bosons are
dynamically generated in the model with hidden local
symmetries [1]. Also in this model, loop diagrams of
components of ¢ generate the kinetic term for a vector
boson. In addition, the anomalous term [Eq. (2.44)] supplies
the kinetic term, which, however, enhances the possibility of
the wrong sign due to the logarithmic function. If the
logarithmic function is positive, the anomalous term encour-
ages the appearance of negative metric states.

Fortunately, it can be easily seen that the large-N
dynamics prohibits such a negative metric state. For the
vacuum expectation value [Eq. (2.42)], we find

G
GlzP=1-—" <1
4 o <

cr

(G<Gy).  (245)

Therefore, the kinetic term of the vector superfield is well
behaved, since the logarithmic function becomes negative
for G < G, Then, the anomalous term [Eq. (2.44)] leads to
the vertex function of the vector field:

A(2 G
T (p) = (P*Huw = Pupy) m 210g< G—)f(p, -p).

(2.46)

where f(p,—p) can be evaluated explicitly from
Eq. (2.31). For p? > 0, we find

1 +7p?/3A?

f(p.—p) = 11202 /A (2.47)

Now, we calculate all of the two-point vertex function
of the vector field for the timelike momentum. For loop
integrations with a cutoff, we have the freedom to choose a
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momentum shift carried by internal lines, as well as the
anomaly calculation given in Sec. I C. Here, by adopting a
symmetric momentum shift (a# = —p#/2), the vertex

/(2)

function I',,’ (p) for the vector component is given by

Ly (p) =T (p) + T (), (2.48)
d“k
P (p) = -N L
k2<A2
4kﬂkl/ — PulPv — 2(k2 - p2/4)’7/w (2 49)
{2 +2(1/2 = x)p -k + p*/4}*° '
1 d*k
- [
1<2<A2 ﬂ
4k, k, —2(k* + p*/4)n,,
(k> + p*/4)n, (2.50)

{k2 +2(1/2=x)p -k + p?/4}*’

where I'/ and I'” are coming from fermion and boson one-
loop diagrams, respectively. After the k integration by using
the formula in the Appendix, we find that each vertex
function includes a quadratic term of A, which corresponds
to the vector self-energy. It implies that gauge symmetry is
broken by introducing the cutoff parameter. However, the
quadratic terms cancel to each other in the total vertex
function owing to supersymmetry. As a result, the vertex
function is expressed in the conventional gauge invariant
form: for 0 < p?> < 4A? in the Minkowski space,

) N
F;f;)(l’) = _(pzrlm/ - pﬂpv)ﬁ

4AN? — p2 .
X (1 +log47pz+ m').
The integral is calculated as a real number in the Euclidean
space, but the imaginary part appears in the Minkowski
space due to the logarithm function.
Combining these results with tree-level terms, the

resulting vertex function for the timelike momentum is
given by

(2.51)

T (p) = =P = Pup ) F(p?) + mP,,,  (2.52)
N 4 —p?/N\?
F(p? 1+ log—— P/
P’ =1s 2{ MRy

1 +7p?/3A2 G N
R C ) G AT
2(1 +2p%/A?) Ger 167

(2.53)
(2.54)

From this vertex function, we could expect that a
massive vector particle appears dynamically; however, it

includes the nonzero imaginary part, and so the “would-be”
vector particle is unstable. Actually, the vector particle has
couplings with the scalar and spinor components of ¢,
which remain massless in the 1/N leading order, and so the
vector state decays into these massless particles.

Finally, we elucidate the behavior of the unstable vector
state in terms of the spectral function. The propagator can
be derived from the vertex function (2.46):

Bulp) = i) - 2B P ) |

1/F(p?)
m?/F(p*) — p*’

Here we forget for a moment that F(p?) is divergent for
A? = oo as in Ref. [20]. If so, the spectral function p(c?) is
given by the imaginary part of A’(p), and then A’(p) is
expressed by p(c?):

A(p) = (2.55)

A2 2
plo
0 o~ — pT — 1€

where a new cutoff is introduced as in Ref. [20], although
there is no simple relation between both cutoffs. By using
Egs. (2.53) and (2.54), we can evaluate p(¢?) numerically,
and the resulting plots are depicted in Fig. 1. We note that
p(c?) is given by order 1/N.

From these plots, we find a peak in the region 6% < A2
for the coupling G 2 0.5G,, but the width is large and the
peak is hard to distinguish for 0.7G., 2 G Z 0.5G,,. Near
the critical coupling, the position of the peak approaches
6% ~ 0, and the width becomes gradually narrower.

The position of the peak can be evaluated numerically
by using the numerical results of p(c?). The resulting
plots are shown in Fig. 2. We find that the “mass” of the
unstable vector state decreases to zero for the coupling G
approaching G,. Since supersymmetry is not broken in this
vacuum, the vector supermultiplet is dynamically generated
for G = 0.7G,, but it is unstable.

(2.56)

150

50

FIG. 1.
state.

The plots of the spectral function for the unstable vector
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00 02 0.4 06
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FIG. 2. The plots of the position of the peak of p(c?), 0 = M. It
corresponds to the mass of the unstable vector multiplet.

Most interestingly, we find that the spectral function
rapidly approaches a delta function for G — G, namely
p(6?) — Z5(6?). This behavior suggests that a massless
vector supermultiplet is dynamically generated and the
U(1) gauge symmetry is restored at the critical coupling.
Unfortunately, the analysis just at G = G, seems to be
subtle in the leading order, because |z|2 becomes zero, and
so the logarithmic term in the effective potential diverges.

ITII. NONLINEAR SIGMA MODELS
WITH F-TERM CONSTRAINT

A. SO(N)/SO(N-2) x U(1) model

We consider a supersymmetric nonlinear sigma model
based on the manifold SO(N)/SO(N —2) x U(1) [15].
The model is formulated by a gauged linear sigma model as
well as the CPV~! model. We introduce the chiral super-
fields ¢;(i = 1, ..., N), and the Kihler potential is the same
as in Eq. (2.4). In addition, the linear model has the
superpotential by using an extra chiral superfield:

W(go.9) = 5 o, G.)
where the chiral superfield ¢, corresponds to a Lagrange
multiplier, and then it induces the constraint ¢> = 0. For
the U(1) symmetry, ¢ and ¢, have the charges +1 and -2,
respectively.

In order to transform back to the nonlinear model, we
have to fix the gauge of the U(1) symmetry as ¢y = 1/g,
similar to the case of the CPN~! model. Here, we should
notice that this rewriting also suffers from the anomaly.
Since the total U(1) charge for ¢b and ¢; equals N — 2, the
anomalous term turns out to be given by

’It is noted that, as in the CPN~! model, ¢;(i = 1,...,N — 1)
are related to local coordinates of the manifold. ¢, and ¢y are
irrelevant to local coordinates. So, we can use coordinate trans-
formations to cover the whole of the manifold.

- N-2
alV. by n] == [ dxd0loglap)Ws
9D
X <_l6x , —lax> W, +H.c. (3.2)

As a result, the symmetry of the action is reduced to
SO(N — 1) x U(1),oca» While the Kihler potential has the
symmetry SO(N) x U(1),ycan

In the background (¢o) = [w,0,h], the part of the
Lagrangian derived from Eq. (3.1) is expanded by the
component fields ¢’ = [A",y', F] as

/ d*OW (. ) + H.c.

| o o
= wF'A' + zhA’A’ —wy'y' + Hee. (3.3)

Eliminating the auxiliary fields F; by the equations of
motion F™* +wA’ = 0, Eq. (3.3) yields mass terms for
component fields. By including the contribution from the
Kihler potential, the mass terms in this background are
given as

Linass = _(D + |W|2)AITAI + <2 hA'A" —wy'y' + HC>

(3.4)

B. Effective potentials including F-terms

The mass term [Eq. (3.4)] is essentially the same as that
of the supersymmetric NJL model analyzed in Ref. [29].
For the scalar, the mass-squared eigenvalues are given by
D + |w|> £ |h|. According to Ref. [29], the effective
potential in the 1/N leading order can be calculated as

1 1
NV(z,D,w, h) = —?D + N(D + |w|* = |h| cos 0)|z|?

L 2
+ 167z2D log(G|z|*)
1
——{F(D 2 h
+ o (D + ol + )
+ F(D + [w* = [n]) = 2F(|w[*)},
(3.5)

where 6 is the phase of hA'A’ and the function F(x) is
defined by

1 1
F(x) =3 10g(1+x)—x2log<1+—> +x]. (3.6)
X
We set the cutoff A equal to 1 for simplicity. The potential

(3.5) reduces to a similar expression to the previous one
[Eq. (2.39)] if taking the limit 4, w — 0. We note that the
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factor of the anomalous term N — 2 is approximated as N
for large N.

Differentiating the potential (3.5), the stationarity con-
ditions are given by

oV

5 = 0= |hllzPsin6 =0, (3.7)
oV 2 2
M:O:I(D—klwl + |h]) = I(D + |w]* = |A])

_ 16H2|Z|2 cos 6, (3.8)
1% N 2 2
5, = 0= w{I(D + WP+ [h]) + 1(D + w] — [k])}

= —l167°w*|z|?, (3.9)
sV 1/ 1
) SN D* + (D — |h|cos0)|z|* | =0,
5z :>z<16rc2 (D= [#fcos >|Z|>

(3.10)

1% 1 1
0= ——+z>+—DI 2
5= 0= G+|Z| tea 0g(Glz|*)

1
+ 12 D+ W+ [hl) +1(D + |wl* = [A])} =0,
(3.11)

where /(x) is defined by

I(x)=F(x)=1- xlog(l + %) (3.12)

The stationarity condition (3.7) implies that & = 0 or 7,
or || = 0. Note that |z| must not be zero, since the potential
includes log |z|. Since I(x) is a monotonically decreasing
function [29], we find, if |h| # 0,

I(D+ |w|*+ |h|) = I(D + |w]* = |n]) < 0. (3.13)
So, from Egq. (3.8), it follows that @ =z if |h|#0.
However, these values do not satisfy the stationarity
condition (3.11), and so |h| must be zero. Then, from
Egs. (3.8) and (3.10), it follows that & must be z/2 and D
must be zero. At this stage, we conclude that supersym-

metry is unbroken in this model, since D = 0 and & = 0.
From Egs. (3.9) and (3.11), we find that if w # 0,

11
——+-Dlog(G|z[*) = 0.

14
G 8r? (3.14)

It is inconsistent for D = 0, and so w must be zero.
After all, D, h, and w are zero, and |z| is given by the
same expression of Eq. (2.42). At this vacuum, the effective
action is essentially the same as that of the CPN~! model
in the 1/N leading order. Therefore, the analysis of the

vector boson is also the same, and so one massive vector
particle appears in this model, but it decays to massless
components.

IV. CONCLUDING REMARKS

We have shown that the supersymmetric CPV~! and
SO(N)/SO(N —1) x U(1) models are formulated as
anomalous gauge theories. By the anomalous term, the
gauged linear models have smaller symmetries of the
action than conventional ones: the remaining symmetry
is SUN = 1) gopat X U(1)1e for CPN=!, and SO(N —
1)global X U(l)local for SO(N)/SO(N - 2)g]obal X U(l)local'

In the 1/N leading order, the linear model has a vacuum
for G < G, where the U(1),,.,; Symmetry is broken but
supersymmetry is unbroken. It is a remarkable feature of
both models that there is no stable vacuum for G > G, in
the 1/N leading order.

From the analysis of the spectral function, we expect that
the dynamical gauge boson becomes massless at the critical
coupling, and so the U(1),,., symmetry is restored. To
show this, it is necessary to study the models in the strong
coupling regime by other methods than the 1/N leading
order. In particular, it is interesting to clarify the fate of
supersymmetry for G > G.

It has been shown that all supersymmetric nonlinear
sigma models for the Hermitian symmetric space are
formulated as gauge theories, although the anomaly is
not included in Ref. [15]. In this paper, we deal with the two
models for the Hermitian symmetric space and show that
the anomaly should be taken into account in the models.
Then, it is natural to ask whether the anomalous term is
required for analyzing the model for other Hermitian
symmetric spaces.

In the case of the Grassmann manifold G, y, the linear
model is described by a chiral superfield of the (N, M)
representation of U(N); x U(M)g, and the model has no
F-term constraint. Since U(M )y is gauged in this model,
the anomalous term should be added in the nonlinear sigma
model for Gy y.

For Sp(N)/U(N) and SO(2N)/U(N), we similarly
have a chiral superfield ¢ and an additional chiral field
¢o to impose the F-term constraint. Although the gauge
symmetry is non-Abelian, it can be easily seen that the
anomalous term is required also in this case by considering
U(1)p, which is a subgroup of U(N) [15]. For U(1)p, ¢
and ¢, have 1 and —2 charges, respectively. Counting the
total charge, the anomalous factor for U(1)y, is given by
N(N + 1) for Sp(N)/U(N), and N(N — 1) for SO(2N)/
U(N). Since these factors are nonzero, we should include
the anomalous term in the linear model for these target
manifolds.

Similarly, we can deal with Eg/SO(10) x U(1) and
E;/Es x U(1) in terms of the U(1)p charge. In the case
of E¢/SO(10) x U(1), there are two chiral superfields of
the 27 representations of Eg, and they have 1 and -2
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charges. So, we need the anomalous term in the linear
model. For E;/E¢ x U(1), we have two chiral superfields
of the 56 representations of E,, which have 1 and -3
charges for U(1),, and so the anomalous term is required.
Consequently, we conclude that it is necessary to include
the anomalous term in all linear models corresponding to
the nonlinear sigma model whose target manifold is the
Hermitian symmetric space.

Finally, we comment on a supersymmetric NJL. model
proposed by Cheng, Dai, Faisei, and Kong[30,31]. The
model is given by the Kéhler-potential-truncating higher-
order terms of Eq. (2.3). One analysis of the model was
performed in Ref. [29] by introducing an auxiliary vector
superfield and calculating an effective potential in the 1/N
leading order. Relating to an auxiliary vector superfield, the
model has hidden U(1) local symmetry with the anomaly,
as well as in the CPY~! model. However, the anomalous
term was not included in the effective potential in the
previous analysis. The result including the anomaly will be
reported in the near future [32].
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APPENDIX: FEYNMAN INTEGRALS IN
CUTOFF THEORIES

First, let us consider the Feynman integral

4
1
I :/ a NN
een’ (2n)4k? + 2k - p + m?

where k* and p# are Euclidean momenta. The dot product
for the two momenta is written by k- p = |k||p|cos,
where 0 is the angle between the two vectors and |k| is the
norm. Writing k = |k| and p = |p|, the Feynman integral is
expressed as

/ / ” sin® @
~16at k* +m? + 2kpcos @’

where we have used d*k = dkd94zk’sin>@ in four
dimensions.
Here, the 6 integration can be performed by the formula

(A2)

™ sin’6)
d)—— = 2b)(a —2b 2|b|,b #0). A3
Mo 5= e V@t ) a=26)) (@ > 205 20) (A3)
In the case of m > p, we have k* + m? > 2kp, and so the Feynman integral becomes
1 RTILT 2 2 2 2 2
= [ dk o (R m? =\ (R + m? 4 2kp) (R + m? — 2kp)}. (Ad)
16z~ Jo )4
Then, the k integration can be easily performed. The resulting integral is
1 A4—|—A2 2_A2p2 p2 2p2
I = L . 2 2 2 _ m2)h(pt, m?) \, AS
e | A (1= o) + (02 = )| (45)
where h(p?, m?) and g(p?, m?) are defined by
A# m2 »? 2p?
ot = (15 ) {1+ \/( ) ) (A6)
A2 _ A2 4A2 2
b, ) = log MR e | (A7)
Next, we illustrate the integration with a momentum in the numerator of the integrand:
/ d*k k, B li/ d*k 1
e<nz (27)4 (K2 + 2k - p +m?)? 2(9p” r<p (27)4k? 4+ 2k - p + m?
ksin’6 cos 0
/ dki / L (A8)
~ 167 (k* +m* + 2kp cos 0)
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By using the formula

sin?@cos  m(—a*+ 2b*

/ﬂd B a
0 a-+2bcosh 8h*

8p°

)4 V/(a+2b)(a-2b), (A9)

the 6 integration is performed, and then we find that the result of the k integration is given by

d*k k, Py A2 1 2p°
- (14— ) g(p?m?) = h(pPm?) . (AL0
AzsAz(Zﬂ')“(kz—l—Zk-p—l—mz)z 16 (A2 2\ Rz 97— P (A10)

Other Feynman integrals can be calculated by similar procedures. We give the results of the calculation of other Feynman

integrals used in this paper:

d*k 1 1 A? p? s
= - — , h(p?, m?) %, All
/(25/\2 Qm)* (K> +2k-p+m?)*  16x? { A2+ m?  A?+ m? 9(p=m7) + h(p=,m )} ( )
d*k kyk 1 pupy [N*(A*+m?=3p?) 1 6p*
v _ v _ (A2 2 2 2 m2
LSAZ Q) (R +2k-p+m)? 1622 p? 2(A2+ m?) g \NHme 4P s J9lpnm)
3 2 _ 02
+E 5 = h(pz»mz)}
P Y Sy A*(A* +3m* = 3p?)
16z 2 \'"  p? 3(A% 4+ m?)
1 (4m*> — 6p°) p*
- (w0 BE O g2 ) - 2 i) (a1
It is noted that the consistency of Egs. (A5), (A10), (Al1), and (A12) can be checked by the relation
1 k,k 1
- =" £ 2pH K 2 . Al3
1 2k-p+m? ik prmr Pk sk gy A
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