
 

Field theory of dissipative systems with gapped momentum states

M. Baggioli ,1,* M. Vasin,2 V. V. Brazhkin,2 and K. Trachenko3,†
1Instituto de Fisica Teorica UAM/CSIC, c/ Nicolas Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain

2Institute for High Pressure Physics, RAS, 142190, Moscow, Russia
3School of Physics and Astronomy, Queen Mary University of London,

Mile End Road, London, E1 4NS, United Kingdom

(Received 1 May 2020; accepted 2 July 2020; published 13 July 2020)

We develop a field theory with dissipation based on a finite range of wave propagation and associated
gapped momentum states in the wave spectrum. We analyze the properties of the Lagrangian and the
Hamiltonian with two scalar fields in different representations and show how the new properties of the two-
field Lagrangian are related to Keldysh-Schwinger formalism. The proposed theory is non-Hermitian, and
we discuss its properties related to PT symmetry. The calculated correlation functions show a decaying
oscillatory behavior related to gapped momentum states. We corroborate this result using path integration.
The interaction potential becomes short-ranged due to dissipation. Finally, we observe that the proposed
field theory represents a departure from the harmonic paradigm and discuss the implications of our theory
for the Lagrangian formulation of hydrodynamics.
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I. INTRODUCTION

The basic assumptions and results of statistical physics
are related to introducing, and frequently exploiting, the
concept of a closed or quasiclosed system or subsystem.
This includes, for example, most of the central ideas of a
statistical or thermal equilibrium ensuing the definitions of
entropy and temperature, the statistical independence of the
subsystems and the consequential additivity of the loga-
rithm of the statistical distribution function [1].
A closed system is an approximation simplifying a

theoretical description. This approximation does not apply
in several important cases, including in small systems that
have been of interest in the area of condensed matter
recently or in systems with short relaxation time. In this
case, a theory needs to deal with an open system.
On general grounds, the theoretical description of open

systems and dissipation is an interesting and challenging
problem related to finding new concepts and ideas. In
quantum-mechanical systems, this problem is viewed as
a core problem in modern physics [2] and is related to
the foundations of quantum theory itself (see, e.g.,
Refs. [2–6]). Describing dissipation has seen renewed
recent interest in areas related to nonequilibrium and

irreversible physics, decoherence effects, complex systems
and hydrodynamics [7].
A related conceptually difficult problem is to describe an

open system using a field theory based on a Lagrangian and
to account for dissipation and irreversibility (see, e.g.,
Refs. [3,8–10] and references therein).
Starting from early work (see, e.g., [11,12]), a common

approach to treat dissipation is to introduce a central
dissipative system of interest together with its environment
modeled as, for example, a bath of harmonic oscillators and
an interaction between the two sectors enabling energy
exchange (see, e.g., Refs. [8,13] for review). In this picture,
dissipative effects can be discussed by solving simplified
models exploiting approximations such as the linearity of
the system and its couplings.
Another approach relies on holographic techniques [14],

where dissipation is encoded into the black hole horizon
dynamics. These methods have been very fruitful in
describing strongly coupled dissipative fluids [15–20].
However, the nature of the dual field theory is not easily
accessible and is often obscure.
Here, we develop a field theory which describes dis-

sipation based on a conceptually different idea. We do not
consider an explicit coupling between a central system with
its environment. Instead, the idea is based on the dissipation
of an excitation which is not an eigenstate in the system
where it propagates. This approach draws on recent under-
standing of phonon propagation in liquids and associated
dissipation of these phonons [21–23].
No dissipation takes place when a plane wave propa-

gates in an ideal crystal where the wave is an eigenstate.
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However, a plane wave dissipates in systems with structural
and dynamical disorder such as glasses, liquids or other
systems with strong anharmonicities because its not an
eigenstate in those systems [24] (see, e.g., Refs. [25–28] for
recent field theory applications of related effects in amor-
phous and disordered systems).
We note that the overall system (liquid in our case) is

conservative and does not lose or gain energy. Similarly,
collective excitations in a disordered system such as glass
or liquid, generally defined as eigenstates in that system, do
not decay either [24]. (We note that calculating these
excitations presents an exponentially complex problem
because it involves a large number of strongly coupled
nonlinear oscillators [21].) In our consideration, a decaying
object that loses energy is the harmonic plane wave
(phonon) propagating in a disordered system where its
not an eigenstate. Indeed, plane waves constantly evolve in
a disordered system, e.g., decay into other waves and
emerge anew due to thermal fluctuations. Accordingly, an
open system in our consideration is the harmonic collective
excitation, the plane wave, operating in a system where its
not an eigenstate.
An important effect related to wave dissipation is the

emergence of the gap in k- or momentum space in the
transverse wave spectrum, with the accompanying decrease
of the wave energy due to dissipation [21–23]. This gap
(a) shrinks the range of k-vectors where phonons can
propagate and (b) reduces the energy of the remaining
propagating phonons.
It has been realized that in addition to liquids, gapped

momentum states (GMS) emerge in a surprising variety of
areas [29], including strongly-coupled plasma, electromag-
netic waves, nonlinear Sine-Gordon model, relativistic
hydrodynamics and holographic models.
The field theory developed here describes dissipation on

the basis of GMS. GMS is a well-specified effect and is
naturally suited for describing the dissipation in a field
theory because the field theory is deeply rooted in the
harmonic paradigm involving the propagation of plane
waves [30]. Despite its specificity, this effect and the
proposed field theory are generally applicable to a wide
range of physical phenomena in interacting systems where
collective excitations propagate.
In the next Sec. II, we briefly review the emergence of

gapped momentum states in Maxwell-Frenkel theory and
their properties. We subsequently recall the two-field
Lagrangian which gives rise to gapped momentum states
and expand on different formulations, solutions and proper-
ties of this Lagrangian in Sec. III. This includes the
discussion of the Hamiltonian and energy and their lower
bounds in different regimes. We also show how two new
properties of the two-field Lagrangian are related to results
from Keldysh-Schwinger formalism in Sec. III C. In the
following Sec. IV, we address the non-Hermiticity of the
proposed Lagrangian and Hamiltonian operators as well as
their PT symmetry and its breaking. We calculate the

correlation functions in Sec. V and find that they show a
decayed oscillatory behavior, with frequency and decay
related to GMS. We corroborate this result using path
integration. In Sec. VI, we observe that the interaction
potential becomes short-ranged due to dissipation. Finally,
we discuss other implications of the proposed field theory,
including the ways in which it departs from the harmonic
paradigm (Sec. VII A) and its implications for the field-
theoretical description of hydrodynamics (Sec. VII B).

II. DISSIPATION AND GAPPED MOMENTUM
STATES IN THE MAXWELL-FRENKEL THEORY

We start with recalling how liquid transverse modes
develop gapped momentum states (GMS) and how this
effect can be represented by a Lagrangian. We note that a
first-principles description of liquids is exponentially com-
plex and is not tractable because it involves a large number
of coupled nonlinear oscillators [21]. At the same time,
liquids have no simplifying small parameters as in gases
and solids [1]. However, progress in understanding liquid
modes can be made by using a nonperturbative approach to
liquids pioneered by Maxwell and developed later by
Frenkel. This program involves the Maxwell interpolation:

ds
dt

¼ P
η
þ 1

G
dP
dt

ð1Þ

where s is shear strain, η is viscosity, G is shear modulus
and P is shear stress.
Equation (1) reflects Maxwell’s proposal [31] that shear

response in a liquid is the sum of viscous and elastic
responses given by the first and second right-hand side.
Equation (1) serves as the basis of liquid viscoelasticity.
Frenkel proposed [32] to represent the Maxwell inter-

polation (1) by introducing the operator A ¼ 1þ τ d
dt and

write Eq. (1) as ds
dt ¼ 1

ηAP. Here, τ is the Maxwell relaxation
time η

G. Frenkel’s theory has identified τ with the average
time between consecutive molecular jumps in the liquid
[32]. This has become an accepted view [33]. Frenkel’s
next idea was to generalize η to account for liquid’s short-
time elasticity as 1

η →
1
η ð1þ τ d

dtÞ and use this η in the

Navier-Stokes equation ∇2v ¼ 1
η ρ

dv
dt, where v is velocity, ρ

is density and d
dt ¼ ∂

∂t þ v∇. We have carried this idea
forward [21] and, considering small v, wrote:

c2
∂2v
∂x2 ¼

∂2v
∂t2 þ 1

τ

∂v
∂t ð2Þ

where v is the velocity component perpendicular to x, η ¼
Gτ ¼ ρc2τ and c is the shear wave velocity.
In contrast to the Navier-Stokes equations, Eq. (2)

contains the second time derivative and hence gives
propagating waves. We solved Eq. (2) in Ref. [21]: seeking
the solution as v ¼ v0 exp ðiðkx − ωtÞÞ gives
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ω2 þ ω
i
τ
− c2k2 ¼ 0 ð3Þ

with the complex solutions

ω ¼ −
i
2τ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 −

1

4τ2

r
ð4Þ

where we assumed ω to be complex and k real, corre-
sponding to time decay.
Then, v can be written as

v ∝ e−
t
2τeiωRt ð5Þ

where

ωR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 −

1

4τ2

r
: ð6Þ

The absence of dissipation in (2) corresponds to setting
τ → ∞ in (6) and to an infinite range of propagation of the
plane shear wave, as in the a ideal ordered crystal. A finite τ
implies dissipation of the wave in a sense that it acquires a
finite propagation range. Indeed, the dissipation takes place
over time approximately equal to τ according to (5). τ sets
the physical time scale during which we consider the
dissipation process: if an observation of an injected shear
wave starts at t ¼ 0, time t ≈ τ is the end of the process
because over this time the wave amplitude and energy
appreciably reduce.
An important property is the emergence of the gap in

k-space or GMS: in order for ω in (6) to be real, k > kg
should hold, where

kg ¼
1

2cτ
ð7Þ

increases with temperature because τ decreases.
The value of k-gap (7) is related to the finite propagation

range of transverse waves. Indeed, if τ is the time during
which a shear stress can exist in a liquid, the liquid
elasticity length del ¼ cτ [34] gives the propagation range
of the shear wave. A wave is well defined only if the
wavelength is smaller than the propagation range. This
corresponds to k > 1

cτ, or approximately to k > kg with kg
given by (7).
Interesting effects related to GMS correspond to the

momentum at which the first and second derivative terms in
Eq. (2) are of the same order and neither can be neglected,
as discussed later in the paper. This corresponds to the
breakdown of hydrodynamics intended as a perturbative
expansion in spatial and time gradients.
Recently, in Ref. [22], detailed evidence for GMS was

presented on the basis of molecular dynamics simulations.

The GMS is interesting. Indeed, the two commonly
discussed types of dispersion relations are either gapless as
for photons and phonons, E ¼ p (c ¼ 1), or have the
energy gap for massive particles, E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, where

the gap is along the y-axis. On the other hand, (6) implies
that the gap is in momentum space and along the x-axis,
similar to the hypothesized tachyon particles with imagi-
nary mass [35].
Fig. 1 illustrates the different dispersion relations includ-

ing the dispersion relation with the k-gap. The k-gap case
displays a non-trivial imaginary part and the presence of a
nonhydrodynamic mode with damping ImðωÞ ¼ −1=τ
[18]. For small frequency and momentum, the disper-
sion relation of the lowest mode is purely diffusive and
hydrodynamic.
How large can the gap in (7) get? In condensed matter

systems and liquids in particular, kg is limited by the UV
scale: the interatomic separation a and corresponding k
point comparable to 1

a. This can be seen in (7) by using the
shortest value of τ comparable to the Debye vibration
period τD. Using τ ¼ τD in (7) gives the maximal value of
kg as 1

2a, where we used a ¼ cτD. This corresponds to the
shortest wavelength in the system to be 2a, as expected on
general grounds. In this picture, the size of the k-gap must
be smaller than the UV cutoff of the theory to have a well
defined elastic regime where shear waves propagate.

FIG. 1. Possible dispersion relations ωðkÞ. Top curve shows the
dispersion relation for a particle with mass m. Middle curve
shows gapless dispersion relation for a massless particle (photon)
or a phonon in solids. Bottom curve shows the dispersion relation
(6) with the gap in k-space, kg, illustrating the results of Ref. [22].
The k-gap case displays a nontrivial imaginary part (dashed lines)
and the presence of a nonhydrodynamic mode with damping
ImðωÞ ¼ −1=τ [18]. Below kg, the dispersion relation of the
lowest hydrodynamic mode is purely diffusive.
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We note that τ in liquids depends on pressure and
temperature. Hence the condition τ ¼ τD giving the maxi-
mal kg gives a well-defined line on the phase diagram. This
line is the Frenkel line (FL) separating the combined
oscillatory and diffusive molecular motion from purely
diffusive motion [21,36,37]. The FL corresponds to quali-
tative changes of system properties in liquids and super-
critical fluids and is ultimately related to the UV cutoff.
Close to the FL, where the k-gap is maximal, liquids
acquire an interesting universality of properties: for exam-
ple, the liquid viscosity becomes minimal and represents a
universal quantum property governed by fundamental
physical constants only [38] which seems at work even
in exotic states of matter such as the quark gluon
plasma [39].
Differently from liquids, kg increases without bound in

scale-free field theories discussed below due to the absence
of an UV regulator. In these theories, the UV cutoff and the
Frenkel line do not exist.

III. TWO-FIELD LAGRANGIAN, ITS
SOLUTIONS AND PROPERTIES

A. Two-field Lagrangian

An important question from the field-theoretical per-
spective is what Lagrangian gives the spectrum given by
Eq. (6) and the associated GMS? The challenge is to
represent the viscous term ∝ τ−1 in (2) in the Lagrangian.
The viscous energy can be written as the work W done to
move the liquid. If s is the strain, W ∝ Fs, where F is the
viscous force F ∝ η ds

dt. Hence, the dissipative term in the
Lagrangian should contain the term s ds

dt. This can be repre-

sented by a scalar field ϕ, giving the term L ∝ ϕ ∂ϕ
∂t .

However, the term ϕ dϕ
dt disappears from the Euler-

Lagrange equation ∂L
∂ϕ ¼ ∂

∂t
∂L
∂∂ϕ∂t

þ ∂
∂x

∂L
∂∂ϕ∂x

because ∂L
∂ϕ ¼

∂
∂t

∂L
∂∂ϕ∂t

¼ ∂ϕ
∂t . Another way to see this is note that the viscous

term is simply a total derivative, ϕ dϕ
dt ∝

d
dtϕ

2.
To circumvent this problem, we proposed to operate in

terms of two fields ϕ1 and ϕ2 [23,40]. We note that a two-
coordinate description of a localized damped harmonic
oscillator was discussed earlier [41,42]. Two fields also
emerge in the Keldysh-Schwinger approach to dissipative
effects, describing an open system of interest and its
environment (bath) [29].
We constructed the dissipative term as the antisymmetric

combination of ϕ dϕ
dt [23], namely as

Ld ∝ ϕ1

∂ϕ2

∂t − ϕ2

∂ϕ1

∂t : ð8Þ

Taking into consideration this new term, the Lagrangian
density involving two scalar fields ϕ1 and ϕ2 and the
dissipative term (8) reads [23]:

Lϕ ¼ ∂ϕ1

∂t
∂ϕ2

∂t − c2
∂ϕ1

∂x
∂ϕ2

∂x þ 1

2τ

�
ϕ1

∂ϕ2

∂t − ϕ2

∂ϕ1

∂t
�

ð9Þ

where we consider only one spatial direction for simplicity.
The scalar fields ϕ1;ϕ2 are real, and we verify the

existence of real solutions later in this section. In real space,
Hermiticity or self-adjointness coincide with the invariance
under the transposition operator since complex conjugation
acts trivially. Defining the vector Φ≡ ðϕ1;ϕ2Þ, we can
write down the Lagrangian as:

Lϕ ¼ ΦTLΦ ð10Þ

where T indicates the transposition operation. Then, the
Lagrangian in Eq. (9) is not Hermitian in the sense that
LT ≠ L. However, we will see later than the Lagrangian (9)
is PT symmetric.
Applying the Euler-Lagrange equations to (9) gives two

decoupled equations for ϕ1 and ϕ2:

c2
∂2ϕ1

∂x2 ¼ ∂2ϕ1

∂t2 þ 1

τ

∂ϕ1

∂t
c2

∂2ϕ2

∂x2 ¼ ∂2ϕ2

∂t2 −
1

τ

∂ϕ2

∂t ð11Þ

where the equation for ϕ1 is the same as (2).
These equations have different solutions depending on

whether k is above or below kg ¼ 1
2cτ. For k > kg, the most

general form of physically relevant real solutions of (11) is

ϕ1 ¼ ϕ̄1e−
t
2τ cosðkx − ωRtÞ

ϕ2 ¼ ϕ̄2e
t
2τ cosðkx − ωRtþ δÞ ð12Þ

where δ is the phase shift and where

ωR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 −

1

4τ2

r
ð13Þ

has the form of (6) predicting the GMS.
The solutions are shown in Fig. 2.
In the fluid regime,1 k < kg, where no transverse modes

propagate, the real solutions are

1By “fluid regime” we mean the range below k ¼ kg where no
propagating waves appear. Note that the “fluid regime” does not
correspond to the hydrodynamic regime stricto sensu. The second
regime needs both the frequency and momentum to be small and
accounts for a single diffusive mode in the spectrum, as compared
to two modes found at k < kg. In this second definition, hydro-
dynamics, intended as a perturbative EFT in small gradients, is
different from fluid dynamics or fluid mechanics [43]. Indeed, it
can be applied also to solid systems and crystals [44,45].

BAGGIOLI, VASIN, BRAZHKIN, and TRACHENKO PHYS. REV. D 102, 025012 (2020)

025012-4



ϕ1 ¼ ϕ̄1e−α1t cosðkxÞ; α1 ¼
1

2τ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4τ2
− c2k2

r
ð14Þ

ϕ2 ¼ ϕ̄2e−α2t cosðkxþ δÞ; α2 ¼ −
1

2τ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4τ2
− c2k2

r
ð15Þ

These solutions are not periodic in time as illustrated in
Fig. 3 but respectively decay and grow exponentially.
The time dependence of ϕ1 and ϕ2 in (12) can be

interpreted as energy exchange between waves ϕ1 and ϕ2:
ϕ1 and ϕ2 appreciably decrease and grow over time τ,
respectively. This process is similar to the phonon scatter-
ing in crystals due to defects or anharmonicity where a
plane-wave phonon (ϕ1) decays into other phonons (rep-
resented by ϕ2) and acquires a finite lifetime τ as a result.
After the next time interval τ, the newly created phonon ϕ2

decays itself, transferring the energy to other phonons, and
the process repeats. The time scale over which we consider
and describe the dissipation process in (12) is τ because
the phonon with the k-gap dissipates after time comparable
to τ (5).
This energy exchange can be represented by a generic

approach to dissipation where the Lagrangian is written
as [9]:

L½1; 2� ¼ L½1� þ L½2� þ Lint½1; 2�: ð16Þ

The interaction term L½1; 2� in (16) represents dissipation as
the energy transfer from the degrees of freedom “1” to the
degrees of freedom “2”. We keep track of the degrees of
freedom “1” related to dissipation but not the degrees of
freedom “2”, either because they are not of interest or are
too complicated to account for. Lint½1; 2� couples the two
sectors and represent the energy exchange between them.
In the language of theories studying the open systems

and non-Hermitian Hamiltonians (see next section), ϕ1 and
ϕ2 in (12) are analogous to the “loss” and “gain” sub-
systems of a composite system [3], although in our case
these subsystems are propagating waves suited for field-
theoretical description rather than localized oscillators
discussed earlier.
The parameters τ and k in the dispersion relation (13) are

subject to UV cutoffs in condensed matter phases, includ-
ing in liquids where GMS emerge as discussed in the
previous section. The high-temperature limit of τ is given
by the shortest time scale in the system on the order of
Debye vibration period τD. When τ → τD, kg ¼ 1

2cτ →
1

2cτD
≈ 1

a, or kD, where a is the interparticle separation
and kD is Debye wave vector. Therefore, the limits of k
and τ at the UV cutoff are

τ → τD; k → kD: ð17Þ
The limits (17) apply to the field theory describing

condensed matter phases with a well-defined UV regulator,

FIG. 2. The solutions for ϕ1;2ðt; xÞ for k > kg. In the time
direction there is a wave propagating together with an exponential
decay for the ϕ1 field and an exponential increase for the ϕ2 field.

FIG. 3. The solutions for ϕ1;2ðt; xÞ for k < kg. In the time
direction there is no wave propagating but a simple exponential
decay for the ϕ1 field and an exponential increase for the ϕ2 field.
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e.g., lattice spacing. More generally, the field theory
discussed here may involve UV cutoffs of different nature
depending on the physical object it describes.

B. An alternative formulation of the
two-field Lagrangian

In this section, we further elaborate on the origin of the
dissipative Lagrangian discussed in the previous section.
This will enable us to make a correspondence with the
effective Lagrangian emerging in the Keldysh-Schwinger
formalism discussed in the next section.
The first two cross terms in our initial Lagrangian (9)

follow from the standard scalar field theory

Lζ ¼
1

2

��∂ζ1
∂t
�

2

− c2
�∂ζ1
∂x
�

2

þ
�∂ζ2

∂t
�

2

− c2
�∂ζ2
∂x
�

2
�
ð18Þ

using the standard transformation:

ϕ1 ¼
1ffiffiffi
2

p ðζ1 þ iζ2Þ

ϕ2 ¼
1ffiffiffi
2

p ðζ1 − iζ2Þ ð19Þ

In terms of the fields ζ1 and ζ2, the Lagrangian (9) reads

Lζ ¼
1

2

��∂ζ1
∂t
�

2

− c2
�∂ζ1
∂x
�

2

þ
�∂ζ2

∂t
�

2

− c2
�∂ζ2
∂x
�

2
�

þ i
2τ

�
ζ2

∂ζ1
∂t − ζ1

∂ζ2
∂t
�
: ð20Þ

We note that in terms of ζ fields, the non-Hermiticity of
Lagrangian (20) has a more standard meaning of L†

ζ ≠ Lζ.
Applying the Euler-Lagrange equations to (23) gives two

coupled equations for ζ1 and ζ2 as

c2
∂2ζ1
∂x2 ¼ ∂2ζ1

∂t2 þ i
τ

∂ζ2
∂t

c2
∂2ζ2
∂x2 ¼ ∂2ζ2

∂t2 −
i
τ

∂ζ1
∂t ð21Þ

These equations can be decoupled by using the same
transformation (19): using (19) in (21) gives the system
of two equations for ϕ1 and ϕ2. Adding and subtracting
these equations gives (11).
The solutions of (20) and (21) are generally complex.

Representing these fields in the Lagrangian can be
done using complex field conjugates [46,47]. However,
this introduces an ambiguity in the equations of motion
derived by applying the Euler-Lagrange equations to the
Lagrangian. The ambiguity can be removed by selecting

the solutions related by PT symmetry [46,47] (see next
section).
We note that taking real solutions ϕ1 and ϕ2 in (12),

together with (19), implies that ζ1 is real and ζ2 is purely
imaginary. In order to have a clearer formulation of our
field theory, we continue our Lagrangian formulation in
terms of real fields, similarly to (12) and define new real
fields ψ1 and ψ2 as ζ1 ¼ ψ1 and ζ2 ¼ −iψ2. Then, (19)
becomes

ϕ1 ¼
1ffiffiffi
2

p ðψ1 þ ψ2Þ

ϕ2 ¼
1ffiffiffi
2

p ðψ1 − ψ2Þ ð22Þ

where all the fields involved in this transformation are real
valued.
In the next section, we will see that this transformation is

the same as the “Keldysh rotation” used in the Keldysh-
Schwinger formalism.
In terms of the fields ψ , the Lagrangian (9) reads

Lψ ¼ 1

2

��∂ψ1

∂t
�

2

− c2
�∂ψ1

∂x
�

2

−
�∂ψ2

∂t
�

2

þ c2
�∂ψ2

∂x
�

2
�

þ 1

2τ

�
ψ2

∂ψ1

∂t − ψ1

∂ψ2

∂t
�
: ð23Þ

The Hamiltonian based on (9) or (23) is non-Hermitian
due to the presence of the antisymmetric last term ∼1=τ, but
it is PT invariant (see Ref. [48] for a similar case). As
compared to the free-field part of (20), the free term for ψ2

in (23), −ð∂ψ2∂t Þ2 þ c2ð∂ψ2∂x Þ2, has the opposite sign. In the
next section, we show that this is related to the result
following from Keldysh-Schwinger formalism. The oppo-
site sign is not an issue from the point of view of system’s
energy because the kinetic matrix is not diagonal due to the
coupling ∼ 1

τ. As explicitly shown in the next section, the
system is stable and the Hamiltonian has a well-defined
lower bound.
Let consider the case ϕ̄1 ¼ ϕ̄2 ¼ 1 and δ ¼ 0 in (12).

Using (12) and (22), the solutions in terms of ψ1 and ψ2 for
k > kg are

ψ1ðt; xÞ ¼
1ffiffiffi
2

p e−
t
2τðet=τ þ 1Þ cosðkx − ωRtÞ

ψ2ðt; xÞ ¼
1ffiffiffi
2

p e−
t
2τðet=τ − 1Þ cosðkx − ωRtÞ: ð24Þ

For k < kg, the solutions are

ψ1ðt; xÞ ¼
1ffiffiffi
2

p cosðkxÞe−tðα1þα2Þðeα1t þ eα2tÞ

ψ2ðt; xÞ ¼
1ffiffiffi
2

p cosðkxÞe−tðα1þα2Þðeα1t − eα2tÞ: ð25Þ
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In the limit τ → ∞, ψ2 ¼ 0 according to (24). Hence, in the
absence of dissipation, we have

ψ1ðt; xÞ ¼ cos½kðx − ctÞ�
ψ2ðt; xÞ ¼ 0: ð26Þ

In this case, the Lagrangian (23) becomes the free-field
Lagrangian for the single field ψ1. Using ψ2 ¼ 0 in (22)
also implies that ϕ1 ¼ ϕ2, and the Lagrangian (9) similarly
becomes the free-field Lagrangian for the single field
Φ≡ ϕ1 ¼ ϕ2.
This is an important point for two reasons. First, it shows

that the number of degrees of freedom is halved in the
absence of dissipation at τ ¼ ∞. The meaning of the addi-
tional degree of freedom will become clear in the Keldysh-
Scwhinger formalism in Sec. III C. Second, the remaining
single degree of freedom is a plane wave with the
dispersion relation ω ¼ ck. This ensures that the system
reduces to the canonical situation in the limit τ → ∞.

C. The Lagrangian from Keldysh-Schwinger
formalism

In the previous sections, we discussed how describing
dissipation necessitates a two-field Lagrangian. We have
earlier noted that the Keldysh-Schwinger (KS) formalism
similarly involves two fields, and that the Green function
operator contains the first time derivative which can be
related to GMS [29]. Here, we make a stronger and more
specific assertion. We show that two new important features
of our dissipative Lagrangian (23) and emerging GMS
appear in the KS formalism: (a) the new dissipative term of
the form (8), ðψ2

∂ψ1∂t − ψ1
∂ψ2∂t Þ and (b) the opposite sign of

the free-field term of ψ2 in Lψ [third and fourth terms
in (23)].
The description of nonequilibrium effective field theories

involves the doubling of the degrees of freedom [7]. Let us
consider the simple case of one scalar field, ψ1. The action
of a dissipative system depends on the initial state of the
system and, accordingly, on the choice of initial time. The
averaging operation is not defined in this case and, as a
consequence, the statistical theory can not be formulated.
To get around this problem, the KS formalism uses the
following approach: consider a copy of our system with
the same transition amplitude and the field in the replica
system ψ2. Recall that both fields are identical, hence
hψ1ð0Þjψ2ð0Þi ¼ 1. Using these two fields, we reverse
(invert) time in the second system and close the integration
contour at t ¼ ∞. Then we can write the system’s path
integral as

eWðζ1;ζ2Þ ¼
Z

Dψ1Dψ2e
i
R

t

∞
dtðLðψ1;ξ1Þ−Lðψ2;ξ2ÞÞþiL1;2ð∞Þ

ð27Þ
where ξ1;2 are source terms associated with fields ψ1;2.

Importantly, the term related to the copy ψ2 has the
opposite sign, meaning that it propagates backward along
the Keldysh-Schwinger contour [7,8]. Therefore, we can
interpret the field ψ2 as the additional degree of freedom
required to describe an open system and whose dynamics is
reversed with respect to the arrow of time (see Fig. 4).
The KS formalism involves introducing r,a variables

(retarded/advanced), defined as:

ψ r ¼
1ffiffiffi
2

p ðψ1 þ ψ2Þ; ψa ¼
1ffiffiffi
2

p ðψ1 − ψ2Þ ð28Þ

where variable a is related to the real field dynamics, and
variable r related to dissipation and quantum fluctuations.
This is the same transformation as (22) which we used
earlier to find the relation between fields ψ and ϕ.
By comparing the KS transformation with (22), we see

that ϕ2 plays the role of ψa which corresponds to
dissipation. As we will later find, hϕ2ϕ2i ¼ 0. This implies
unitarity of our field theory, ensured by the PT invariance
of the action [49].
We now make this more precise and elaborate on the

details. Let us consider an out-of-equilibrium system
represented by a continuous field whose energy dissipates
with time. We assume that at t ¼ 0, the system is out of
equilibrium and is in the state jΦ0i. It evolves to its final
state, hΦ∞j with energy is E∞ ¼ 0. In order to describe the
system’s nonequilibrium dynamics, we use the KS tech-
nique [50]. We first write the transition probability from the
initial state to the final one as follows:

hΦ∞;∞jΦ0; 0i ¼ hΦ∞jÛ∞jΦ0i

¼
Z

DΦ∞DΦ exp

�
i
Z

∞

0

dt

�
LðΦÞ

þ i
Z
V

dV
Vτ

Φ̄∂tΦ
��

ð29Þ

where Φ̄ is the field conjugated to Φ, τ is the characteristic
time and the Lagrangian is given by

LðΦÞ ¼ 1

V

Z
V
dVð _Φ2 − c2ð∇ΦÞ2Þ

For details of this derivation we refer the reader to Ref. [29].

FIG. 4. The opposite sign in front of field ψ2 follows from
closing the integration contour in the KS formalism.
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As discussed earlier, this probability depends on the
initial state of the system and, accordingly, on the choice of
the initial time. The averaging operation is not defined in
this case and, as a consequence, the statistical theory can
not be formulated. In order to get around this problem, the
KS approach [50] introduces a copy of the system with the
same transition probability. We denote the field in the initial
system as Φþ and in the copy as Φ−. This is the same field,
hence hΦ−

0 ; 0jΦþ
0 ; 0i ¼ 1. Using the two fields, we close

the integration contour in point t ¼ ∞ (see Fig. 4) and write

1≡ hΦ−
0 ; 0jΦþ

0 ; 0i

¼
Z

DΦ∞hΦ−
0 ; 0jΦ∞;∞ihΦ∞;∞jΦþ

0 ; 0i

After the Wick rotation t → it, we obtain

hΦ−
0 ; 0jΦþ

0 ; 0i

¼ N 0
Z

DΦþDΦ− exp

�
−
Z

∞

0

dt

�
LðΦþÞ

−
Z
V

dV
Vτ

Φþ∂tΦþ − LðΦ−Þ þ
Z
V

dV
Vτ

Φ−∂tΦ−
��

ð30Þ

Therefore, the effective Lagrangian of the theory is given
by

L0 ¼
�∂Φþ

∂t
�

2

− c2
�∂Φþ

∂x
�

2

−
�∂Φ−

∂t
�

2

þ c2
�∂Φ−

∂x
�

2

−
1

τ

�
Φþ ∂Φþ

∂t −Φ− ∂Φ−

∂t
�

ð31Þ

We now perform Keldysh rotation:

ϕ1 ¼
1ffiffiffi
2

p ðΦþ þΦ−Þ; ϕ2 ¼
1ffiffiffi
2

p ðΦþ −Φ−Þ; ð32Þ

which is the same transformation we used earlier (22), and
find

L0 ¼ ∂ϕ̄1

∂t
∂ϕ2

∂t − c2
∂ϕ̄1

∂x
∂ϕ2

∂x þ 1

τ

�
ϕ̄1

∂ϕ2

∂t −
∂ϕ̄1

∂t ϕ2

�
ð33Þ

where we use the commutation relation for bosonic

operators ½Φa;Φb� ¼ 0 and note that ∂ϕ1∂t ϕ̄2 ¼ −ð∂ϕ1∂t Þϕ2 ¼
− ∂ϕ̄1∂t ϕ2.
Setting ϕ̄1 ¼ ϕ1, we observe that (33) coincides with the

dissipative Lagrangian we started with in (9) (up to a factor
of 2 in front of τ).
It is remarkable that the dissipative Lagrangian (9) and,

therefore, the gapped momentum states effect appear to be
related to a mature technique such as Keldysh-Schwinger
formalism. We note an important caveat of this relation.
The KS formalism does not contain the relaxation time τ.

Instead, the timescale in the KS approach is set by the
Planck constant. We have introduced τ as the relaxation
time of the system on top of the standard KS formulation
[29], similarly to how τ is introduced in the Maxwell-
Frenkel interpolation in (1)–(2), where it is assigned the
meaning of the time between molecular rearrangement in
the liquids [32]. In this sense, Lagrangian (31) is not a
derivation of our dissipative Lagrangian (23) from the KS
formalism. However, it backs up two new and important
features of our dissipative Lagrangian (23). First, it contains
the term of the form ∝ ϕ1

∂ϕ2∂t − ϕ2
∂ϕ1∂t . This is the same

term (8) featuring in our Lagrangians (9) and (23) which is
required to obtain GMS and which enters with the time-
scale set by τ. Second, the third and fourth terms describing
the free-field contribution of the second field enter (31)
with the sign opposite to that of the first field:
−ð∂Φ−

∂t Þ2 þ c2ð∂Φ−

∂x Þ2. This is the same as in our dissipative
Lagrangian (23).

D. The Hamiltonian

The Hamiltonian of our composite system consisting of
fields ϕ1 and ϕ2 is

Hϕ ¼ π1
∂ϕ1

∂t þ π2
∂ϕ2

∂t − Lϕ ð34Þ

where Lϕ is given in (9) and where the conjugate momenta
are

π1 ¼
∂ϕ2

∂t −
ϕ2

2τ
; π2 ¼

∂ϕ1

∂t þ ϕ1

2τ
: ð35Þ

This gives

Hϕ ¼ ∂ϕ1

∂t
∂ϕ2

∂t þ c2
∂ϕ1

∂x
∂ϕ2

∂x : ð36Þ

The terms with τ re-appear in the Hamiltonian once the
Hamiltonian is written in terms fields and momenta, as
discussed in the next section.
We now compute the energy of our system directly using

the solutions derived in the previous sections. The results
are obviously independent of the choice of variables such
as ϕ or ψ.
Using the solutions for ϕ in (12), the Hamiltonian for

k > kg above the k-gap is

H ¼ ω2
R − c2k2 cos ð2ðωrt − kxÞÞ: ð37Þ

Below the k-gap, we have:

H ¼ −c2k2 cosð2kxÞe−2ωRt: ð38Þ
At k ¼ kg, ωR ¼ 0, and the two results coincide:

Hkg ¼ −c2k2 cosð2kxÞ: ð39Þ
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The Hamiltonian is displayed in Fig. 5 in both regimes. The
Hamiltonian oscillates both in time and space for k > kg
and decays with time for k < kg.
The lower bound of (37) is Hl ¼ ω2

R − c2k2, or − 1
4τ2
,

according to (13). The lower limit of (38) is Hl ¼ −c2k2.
Given that k < kg in this regime, Hl of (38) is −c2k2g.
Combined with kg ¼ 1

2cτ from (13), the lower bound of (38)
is Hl ¼ − 1

4τ2
, the same as the lower bound of (37).

Therefore, Hl has a finite value in both regimes for a
finite τ. We recall that the UV cutoff for τ in condensed
matter systems is given by τD in (17). The limit τ → 0

corresponds to the infinite gap kg ∝ 1
τ and, therefore,

nonpropagating waves which our Lagrangian formulation
is not designed to describe.
We now perform time and space average of the

Hamiltonians (37) and (38) and find

hHi ¼ ω2
R > 0 for k > kg ð40Þ

in agreement with the earlier calculation [23], and

hHi ¼ 0 for k ≤ kg: ð41Þ

Equation (41) is consistent with the fact that there are no
propagating waves below the k-gap.
To summarize, we find that the Hamiltonian of the

composite gain-loss system is stationary in the propagating
wave regime k > kg. In this regime, the energy has a lower
bound and a positive average value. In the nonpropagating
regime k < kg, the system energy similarly has a lower
bound and zero average energy as expected.

IV. NON-HERMITICITY AND PT SYMMETRY

As mentioned earlier, the Lagrangian of our theory, (9) or
(23), is not Hermitian. However, we will see that both the
Lagrangian and Hamiltonian in our theory are PT sym-
metric. We first recall how non-Hermiticity arises in
theoretical approaches to dissipation.
The effect of dissipation can be generally represented by

a complex energy spectrum, with imaginary term setting
the lifetime of the state (see, e.g., [2,6,51,52]). This is
similarly discussed in the context of resonances (see
Ref. [53] for a recent discussion and a review) in which
the complex energy plane is considered. Resonances are
derived from complex poles of the form:

εn ¼ ϵn − iΓn ð42Þ

which necessitates a non-Hermitian model. The width of
the resonances or, equivalently, their lifetime, is due to
dissipation.
To illustrate how non-Hermiticity is related to dissipation

and a finite relaxation time, it is instructive to consider a
simple quantum mechanical system in the Heisenberg
picture [54]. Given a generic operator O, its time depend-
ence is given by:

OðtÞ ¼ eiH
†tOe−iHt ð43Þ

The dynamics of such operator is

dOðtÞ
dt

¼ ieiH
†tðH†O −OHÞe−iHt: ð44Þ

We observe that a Hermitian Hamiltonian H† ¼ H implies
the conservation of this operator. On the contrary, the non-
Hermiticity introduces a finite relaxation time:

dOðtÞ
dt

≠ 0: ð45Þ

The energy spectrum of a Hermitian Hamiltonian are
real, however one of the central points of the discussion of
symmetry under parity and time transformations (PT
symmetry) is that a Hermiticity can be replaced by a
weaker condition: a non-Hermitian but PT -symmetric

FIG. 5. The Hamiltonian Hðt; xÞ for k > kg (top) and k < kg
(bottom).
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Hamiltonian may still result in real spectra. This follows
from an assertion that PT -symmetric Hamiltonians have
secular equations with real coefficients so that some of the
eigenvalues can be real depending on parameters [3,5].2

The discussion of the PT symmetry [3] starts with
noting that a realistic physical system is an open non-
isolated system with accompanying flux of probability
flowing in or out. Theoretical description of this system is a
long-standing problem, both classically and quantum-
mechanically [2,58]. The proposal to address this problem
is to treat an open system as a subsystem and add another,
time-reversed, subsystem with the opposite net flux of
probability, so that the composite system had no net gain or
loss of probability flux and is closed. The composite system
exhibits the PT symmetry, where T is the time-reversal
operator and P is the generic parity operator that inter-
changes the two subsystems [3].
Although the two subsystems are not stationary and are

not in equilibrium separately, the stationary state of the
composite system can be achieved by coupling the sub-
systems. The eigenvalues of the composite system are real,
provided the coupling parameter is large enough, corre-
sponding to the stationary state of the system and unbroken
PT symmetry [3]. This process can be illustrated by a
system of two coupled localized oscillators with gain and
loss discussed earlier (see Fig. 6). The equations of motions
for two coupled oscillators are ẍþ ω2xþ γ _x ¼ gy and
ÿþ ω2y − γ _y ¼ gx, where x and y are coordinates, γ is the
friction coefficient and g is the coupling parameter. The
coupling term enters the Hamiltonian as Hc ¼ −gxy, and
the total Hamiltonian is PT -symmetric. There are three

regimes: weak, intermediate, and strong coupling corre-
sponding to no real solutions (frequencies), four real
solutions and two real solutions, respectively. The state
where all solutions are real corresponds to unbroken PT
symmetry, whereas complex solutions correspond to bro-
ken symmetry [3].
There are several interesting similarities and differences

between the above system discussed in the context of PT
symmetry and the system in our theory. First, ϕ1 and ϕ2

describe fields, rather than localized oscillators and corre-
spond to propagating waves in the solutions. This is
required in order to describe the k-dependence and gapped
momentum states in particular. Second, the ϕ1 and ϕ2 in
(12) can be viewed as two subsystems with opposite fluxes
of probability, similarly to the discussion of PT symmetry
above. Third, the coupling term between ϕ1 and ϕ2 (ψ1 and
ψ2) is different and involves the coupling between one field
and the derivative of the other field [see Eqs. (8), (9) and
(23)] rather than between the fields themselves as in the
model used in the above discussion of PT -symmetry.
Let us look at the properties of our system in more detail.

The easiest way is to define the doublet:

Φ≡
�
ϕ1ðx⃗; tÞ
ϕ2ðx⃗; tÞ

�
: ð46Þ

Parity P and time reversal T transformations act on the
coordinates as:

P∶ x⃗ → −x⃗; T ∶ t → −t: ð47Þ

Their action on the field doublet can be written in matrix
form as:

T ¼
�
1 0

0 1

�
; P ¼

�
0 1

1 0

�
→ PT ¼

�
0 1

1 0

�
:

ð48Þ
The latter coincides with the statement that a PT trans-
formation swaps the source and the sink [3], i.e., ϕ1 ↔ ϕ2.
Given these definitions, we observe that the Lagrangians

(9) and (23) are invariant under the transformations
involving fields swapping and change of time sign and,
therefore, are PT -invariant. However, a Lagrangian is not a
physical observable (unlike a Hamiltonian), and its unclear
whether the PT -symmetry of the Lagrangian is related to
real energy spectrum. To study the energy spectra, we write
the Hamiltonian (36) in terms of fields and momenta as

H ¼ c2
∂ϕ1

∂x
∂ϕ2

∂x þ π1π2 þ
1

2τ
ðπ2ϕ2 − π1ϕ1Þ −

1

4τ2
ϕ1ϕ2:

ð49Þ

The PT transformation involves changing the sign of
momenta and swapping two fields. We observe that this

FIG. 6. The gain-loss mechanism typical of non-Hermitian
systems. One system is dissipating at a rate γ, while the other is
absorbing at the same rate. If the coupling between the two
systems g is large enough, PT symmetry is unbroken and the
eigenvalues are real.

2It was observed that “The reality of the spectrum ofH implies
the presence of an antilinear symmetry (which is not necessarily
PT ). Moreover, the spectrum of H is real if and only if there is a
positive-definite inner-product on the Hilbert space with respect
to which H is Hermitian or alternatively there is a pseudo-
canonical transformation of the Hilbert space that maps H into a
Hermitian operator” [55–57].
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gives PT H ¼ H, implying that H in (49) is PT -
symmetric and ½PT ; H� ¼ 0. However, this is not a
sufficient condition to ensure real eigenvalues. The caveat
is that the time reversal T is an antilinear operator. Given
the eigenvectors of the Hamiltonian and PT operators:

HjnHi ¼ ϵnjnHi; PT jnPT i ¼ εnjnPT i ð50Þ
the two eigenvectors do not necessarily coincide:

jnHi ≠ jnPT i: ð51Þ
This last criterion defines two different phases of the
system (see Fig. 7): the PT unbroken phase and the
PT broken phase. The first is distinguished from
the second by the fact that the two sets of eigenvectors
are equivalent. This implies:

PT unbroken phase∶ real eigenvalues; ImðωnÞ ¼ 0

PT broken phase∶ pairs of complex eigenvalues:

The second phase can be viewed as the phase where
coupling between the source and the sink cannot be
balanced [3], corresponding to a proper open system
[2,58]. The separation between the two phases is called
the “exceptional point” and is characterized by interesting
properties such as a the halving of the degrees of freedom
and unparticle physics [59,60]. In the context of non-
Hermitian theories and dissipation, the exceptional point
was discussed in Ref. [61].
The phase diagram of our system can be discussed using

the eigenfrequencies of the system (4). They have the same
form as (42):

ω ¼ ωRe − iωIm: ð52Þ
The solutions of the form (52) are called “quasinormal
modes” and are discussed in several fields, including

dissipative open systems, holography [62], hydrodynamics
[63], and gravitational waves dynamics [64,65]. In these
areas, it is well recognized that the finite imaginary part of
these modes determines the relaxation times of the exci-
tations and governs the late-time dynamics of the physical
system.
For a finite τ, our system is in the PT -broken phase

because, according to Eq. (4), the spectrum always contains
an imaginary term. The eigenvalues in our theory, given by
Eq. (4), become real in the absence of dissipation and
τ → ∞. This implies that τ → ∞ corresponds to the
exceptional point. Figure 7 illustrates this point.
As discussed in Sec. III, the number of degrees of

freedom is halved in the absence of dissipation when
τ → ∞. This is reminiscent of the exceptional point which
separates the PT broken and unbroken phases. In our case,
the exceptional point is at infinity and the system is always
in the PT broken phase, in which the eigenvalues are
complex.
It would be interesting to deform our Lagrangian (9) or

(23) by adding a new scale that allows the system to cross
over between two regimes in the phase diagram shown in
Fig. 7 as in simpler field theories of [66–68].

V. CORRELATION FUNCTIONS

Using Lagrangian (9), the equations of motion can be
written in matrix form as:

Kabϕa ¼ 0 ð53Þ

whereKab is the kinetic (matrix) operator, which in Fourier
space is

Kabðω; kÞ ¼
�

0 ω2 − c2k2 þ iτ−1ω

ω2 − c2k2 − iτ−1ω 0
0

�
:

ð54Þ

We define the matrix of Green’s functions as

Gabðω; kÞ ¼ ½Kab�−1ðω; kÞ ð55Þ

with the inverse:

Gabðω; kÞ ¼
 

0 1
ω2−c2k2−iτ−1ω

1
ω2−c2k2þiτ−1ω 0

!
: ð56Þ

Then, the correlation functions read

hϕ1ϕ2i ¼
1

ω2 − c2k2 − iτ−1ω

hϕ2ϕ1i ¼
1

ω2 − c2k2 þ iτ−1ω

hϕ1ϕ1i ¼ hϕ2ϕ2i ¼ 0: ð57Þ

FIG. 7. In the PT unbroken phase all the eigenvalues are real,
and the excitation lifetimes are infinite. In the PT -broken phase,
finite relaxation times appear. From a mathematical point of view
the separation is given by criterion (51). In our case, the
exceptional point is at τ ¼ ∞, and we are always in the PT -
broken phase where the relaxation time is finite.
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Taking the Fourier transform gives time dependence of
these functions as

hϕ2ϕ1it ¼ θðtÞ sin ðωRtÞ
ωR

e−
t
2τ

hϕ1ϕ2it ¼ θð−tÞ sin ð−ωRtÞ
ωR

e
t
2τ ð58Þ

where

ωR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 −

1

4τ2

r
ð59Þ

is the frequency related to GMS as in (13).
To find the correlation functions for fields ψ fields, we

use the inverse transformation of (22):

ψ1 ¼
1ffiffiffi
2

p ðϕ1 þ ϕ2Þ

ψ2 ¼
1ffiffiffi
2

p ðϕ1 − ϕ2Þ

resulting in

hψ1ψ1i ¼
1

2
ðhϕ1ϕ2i þ hϕ2ϕ1iÞ

hψ2ψ2i ¼ −
1

2
ðhϕ1ϕ2i þ hϕ2ϕ1iÞ ¼ −hψ1ψ1i

hψ1ψ2i ¼
1

2
ðhϕ2ϕ1i − hϕ1ϕ2iÞ

hψ2ψ1i ¼
1

2
ðhϕ1ϕ2i − hϕ2ϕ1iÞ ¼ −hψ1ψ2i: ð60Þ

Interestingly, the trace of the Green’s function matrix
vanishes as follows from hψ1ψ1i ¼ −hψ2ψ2i above and
from (56): TrGabðω; kÞ ¼ 0.
Combining (57) and (60) gives

hψ1ψ1i ¼ −
ω2 − c2k2

ðω2 − c2k2Þ2 þ τ−2ω2

hψ1ψ2i ¼
iωτ−1

ðω2 − c2k2Þ2 þ τ−2ω2
: ð61Þ

Taking the Fourier transform gives time dependence of
these functions as

hψ1ψ1it ¼
sin ðωRjtjÞ

2ωR
e−

jtj
2τ

hψ1ψ2it ¼
sin ðωRtÞ
2ωR

e−
jtj
2τ ð62Þ

which also follows from combining (58) and (60).

For k > kg when ωR is real and positive, the correlators
of both fields ϕ and ψ show a damped oscillatory behavior
with two important features. First, the oscillation frequency
of the correlation functions is set by ωR in (59), the
frequency that sets gapped momentum states as discussed
throughout this paper. This frequency features in the poles
of calculated correlation functions [see, e.g., Eqs. (58)
and (62)]. Second, the decay time of the correlation
functions is set by the relaxation time τ.
For k < kg in the fluid-mechanics regime, the oscillatory

behaviour disappears, and the late time dynamics is
exponentially decaying. This is illustrated in Fig. 8 where
we plot the correlation function hψ1ψ1i (62) in three
different regimes.
The behavior of correlation functions in (58) and (62) is

expected and is physically reasonable. It shows that the
non-Hermitian field theory with dissipation proposed here
yields physically sensible results in terms of correlation
functions and their frequency and time behavior. This is
important in view of previous problems of formulating a
Lagrangian-based field theory with dissipation.
The same results for correlation functions can be

obtained using path integration. The path integral has
the following form:

Z ¼
ZZ

Dϕ1Dϕ2e−L; L ¼
ZZ

dkdωLk ð63Þ

where
R
Dϕ ¼Qk ∬ dϕðkÞdϕð−kÞ is the functional mea-

sure, k≡ fk;ωg the four-momentum, τ is the coherence
time and Vk ¼ V−1 is the system’s volume in k-space. If
the Lagrangian has the form of (9) then

Lk ¼
1

2
ϕ1ðkÞðω2 − c2k2 − iτ−1ωÞϕ2ð−kÞ

þ 1

2
ϕ2ðkÞðω2 − c2k2 þ iτ−1ωÞϕ1ð−kÞ: ð64Þ

10 20 30 40 50
t

0.5

1.0

FIG. 8. Plots of correlation function hψ1ψ1i (62) in three
different regimes: the solidlike regime where k > kg and where
transverse modes propagate (lower curve), the hydrodynamic
regime k < kk with no propagating waves (upper curve) and the
exceptional point k ¼ kg (middle curve).
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As a specific example, let us consider the calculation of the
hϕ1ϕ2i correlation function:

hϕ1ϕ2ik ¼ Z−1
ZZ

Dϕ1Dϕ2ϕ1ðkÞϕ2ð−kÞe−L: ð65Þ

Using functional derivation, the correlation function can be
written as

hϕ1ϕ2ik ¼ lim
α→0

δ2

δα1ð−kÞδα1ðkÞ

×

RR
dϕ1ðkÞdϕ2ð−kÞe−Lkþα1ðkÞϕ1ð−kÞþα2ð−kÞϕ2ðkÞRR

dϕ1ðkÞdϕ2ð−kÞe−Lk

ð66Þ

where α1 and α2 are the sources. After integrating over ϕ1

and ϕ2, we obtain

hϕ1ϕ2ik ¼ lim
α→0

δ2

δα1ð−kÞδα1ðkÞ
exp

�
α1ð−kÞα2ðkÞ

ω2 − c2k2 − iτ−1ω

�

¼ 1

ω2 − c2k2 − iτ−1ω
: ð67Þ

This is the same result as hϕ1ϕ2i in (57). The other
correlators can be obtained using the same method. This
shows that the path integral formulation of our theory is
sensible and gives consistent results.

VI. INTERACTION POTENTIAL

We now address the behavior of the correlation functions
in space. The Fourier transform of the propagator taken in
space is related to the interaction potential between
particles distance r apart [30]. The correlators in the
presence of dissipation (57) depend on the modulus of k
and are rotationally invariant. Hence, the interaction poten-
tial depends on the radial coordinate only. In order to
preserve the causality of the interactions, we choose
the retarded correlator in (57), whose spatial Fourier
transform is

D ¼ 1

ð2πÞ3
Z

∞

0

eik·r

ω2 − c2k2 þ iω
τ

dk: ð68Þ

Evaluating the integral in spherical coordinates gives

D ¼ −
1

4πc2r
e
ir
c

ffiffiffiffiffiffiffiffiffi
ω2þiω

τ

p
: ð69Þ

In the absence of dissipation τ → ∞, we recover the
standard result [69]

Dðτ → ∞Þ ¼ −
1

4πc2r
e
iωr
c : ð70Þ

Equation (69) can be written as

D ¼ −
1

4πc2r
e
ir
cω1e−

r
cω2 ð71Þ

where

ω1 ¼
ωffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτÞ−2

q
þ 1

r

ω2 ¼
ωffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðωτÞ−2

q
− 1

r
: ð72Þ

In the solidlike elastic propagating regime ωτ ≫ 1,
ω1 ¼ ω, ω2 ¼ 0, and D in Eq. (71) becomes

D ¼ −
1

4πc2r
e
iωr
c ð73Þ

which is the same as Eq. (70) in the absence of dissipation.
In the nonpropagating hydrodynamic regime ωτ ≪ 1,

ω1 ¼ ω2 ¼
ffiffiffiffi
ω
2τ

p
, and D reads

D ¼ −
1

4πc2r
e
ir
c

ffiffiffi
ω
2τ

p
e−

r
c

ffiffiffi
ω
2τ

p
ð74Þ

D in Eq. (74) differs from D in (73) in two respects.
First, the oscillating part in (74) can be viewed as the
wave propagating with an effective frequency dependent
speed c1

c1ðωÞ ¼ c
ffiffiffiffiffiffiffiffi
2ωτ

p
ð75Þ

where c1 ≪ c in the regime ωτ ≪ 1.
Second, D in (74), and therefore the corresponding

interaction, become short-ranged and acquire an exponen-
tially decreasing term ∝ exp ð− r

dÞ, where the decay dis-
tance d is

d ¼ c

ffiffiffiffiffi
2τ

ω

r
: ð76Þ

We observe that the wavelength in the oscillatory term in
(74) is equal to the decay distance (76). Therefore, D
displays an overdamped dependence in r-space in this
regime, in contrast to Eq. (73).
The regime ωτ ≪ 1 approximately coincides with

k < kg [see Eq. (59)] and implies no propagating waves
that mediate the interaction. It is therefore interesting that
an interaction still operates and extends to a finite distance
d (76). This can be interpreted as follows. In the hydro-
dynamic regime ωτ ≪ 1, the hydrodynamic diffusive
mode is

ω ¼ −iDk2 with D ¼ c2τ; ð77Þ

where D is diffusion constant.
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Equation (76) gives

d2 ¼ 2c2τ
ω

¼ 2D
ω

ð78Þ

where we used (77).
Using ω ∝ 1

T, where T is period, we find

d2 ∝ DT ð79Þ

which has the form of the Einstein diffusion equation.
Physically, this implies that despite the absence of

propagating waves in the regime ωτ ≪ 1, the interaction
is mediated by the diffusive mode up to a distance
corresponding to the mean displacement in the Einstein
relation. To the best of our knowledge, an interaction
mediated by diffusive modes was not previously considered
using formal field theory.
Equation (76) implies that the decay distance becomes

infinite in the limit of zero frequency. This corresponds to
the mean displacement of the diffusive mode becoming
infinite and interaction transmitted without exponential
decay and screening.
We note that d in (76) can remain finite in the limit of

small ω provided τ tends to 0 (corresponding to large
dissipation) in a way that the limit of the ratio τ

ω in (76) is
finite.

VII. FURTHER DISCUSSION

A. Departure from the “harmonic paradigm”

Introducing the quantum field theory and its Lagrangian
L, Zee writes [30]:

L ¼ 1

2

�X
a

m _q2a −
X
a;b

ka;bqaqb −
X
a;b;c

gabcqaqbqc −…

�
:

ð80Þ

The first two terms in (80) describe a harmonic theory and
propagating plane waves, giving the starting point of the
theory. The nonlinear terms describe scattering of plane
waves originating from the harmonic part of the Lagrangian
and production of new particles. The nonlinear terms
need to be small compared to the harmonic term in order
for the perturbation theory to converge and produce
sensible results.
Zee observes [30] that the subject of the field theory

remains rooted in this “harmonic paradigm”. Charac-
terising this state of affairs as limited, he wonders about
ways beyond the paradigm. Notably, our approach and in
particular the Lagrangian (23) (or (9)) represents a depar-
ture from the harmonic paradigm in two important respects.
First, the elastic or harmonic (Klein-Gordon) term in (23)

is not necessarily a starting point of the system description,
with the viscous dissipative term added on top as is the case

in the harmonic paradigm of the field theory based on (80).
Indeed, both elastic and viscous ∝ 1

τ term are treated in (23)
on equal footing. The same applies to elastic and viscous
terms in the Maxwell-Frenkel interpolation (1) where they
are similarly treated on equal footing, and on which our
Lagrangian formulation is based.
The combined effect of elastic and viscous terms is

interestingly related to the widely-used term “viscoelas-
ticity” and the area known as generalized hydrodynamics
[21,70]. The central effort in this area is to start with
hydrodynamic equations such as Navier-Stokes equation
and subsequently modify it to include the elastic response.
The term and approach are related to the everyday
observation that liquids flow and therefore necessitate a
hydrodynamic approach as a starting point, with the elastic
properties accounted for as a next step. However, we
recently showed [23] that the same Eq. (2) that follows
from this Lagrangian can also be obtained by starting with a
solidlike equation for a nondecaying wave and by sub-
sequently generalizing the shear modulus to include the
viscous response using Maxwell interpolation (1).
Therefore, “elastoviscosity” is an equally legitimate term
to describe Eq. (1) and (2) as well as Lagrangians (9) or
(23). This is apparent in our Lagrangian (23) which gives
no preference as to the starting point and treats elastic and
viscous terms on equal footing.
Second and differently from (80) where nonlinear terms

need to be small in order for the perturbation theory to
converge, the dissipative ∝ 1

τ term in (23) is not small in
general. As discussed in the next section, large dissipative
term (small τ) results in purely hydrodynamic viscous
regime where no shear waves propagate, completely negat-
ing the effect of the harmonic elastic term. In this sense, our
approach and Lagrangian (23) is essentially nonperturbative.
The crossover to nonpropagating regime is similar to

the concept of diffusons which appears in the theory of
electron-electron interactions in dirty metals [71] as well as
in physics of glasses and amorphous materials [25,27,72].
Notably, we observe that all the nonlinear terms in (80)

can be thought to be incorporated in the dissipative ∝ 1
τ

term in Lagrangian (23). At a deeper level, this is
tantamount to stating that the introduction of liquid
relaxation time τ by Frenkel [32] accounted for the
(exponentially) complex problem of treating strongly
coupled nonlinear oscillators [21,73].

B. Implications for a Lagrangian formulation
of hydrodynamics

As discussed earlier, the treatment of dissipative systems
using a formal field theory has been a long-standing
problem. A related open problem is formulating hydro-
dynamics, the area with a long history, using the field-
theoretical description based on a Lagrangian. We note here
that hydrodynamics in a broad sense is an effective field
theory description valid at large wavelengths and long
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times. In this sense it is applicable to all systems, including
crystals [44]. In a different context, “hydrodynamics” is
used as an equivalent to “fluid-mechanics”and applies to
liquids only [43]. To avoid confusion, we will refer to
hydrodynamics in a broad sense and to fluid dynamics in
the second, more restrictive, sense.
One general approach to this problem was to use

Keldysh-Schwinger-based techniques discussed earlier in
this paper and out-of-time-order contours [7,10,74–76] and
more recently holography [77,78]. Despite the action being
typically non-Hermitian (i.e., containing a finite but pos-
itive imaginary part, ImðSeffÞ > 0), a unitary evolution is
ensured by the KMS constraint [7]. In the regime where
dissipation is slow, τ=T ≫ 1, an interesting phenomeno-
logical formalism (not derived from an action formalism)
known as quasihydrodynamics [79] has been proposed and
verified explicitly in several holographic constructions
[17–20].
Our description of dissipation and gapped momentum

states involves two fields in the Lagrangian (9) or (23) and
in this sense is similar to the Keldysh-Schwinger approach
where the two fields are introduced to close the integration
contour (see section III C). For convenience, we rewrite (9)
and (11):

Lϕ ¼ ∂ϕ1

∂t
∂ϕ2

∂t − c2
∂ϕ1

∂x
∂ϕ2

∂x þ 1

2τ

�
ϕ1

∂ϕ2

∂t − ϕ2

∂ϕ1

∂t
�
ð81Þ

c2
∂2ϕ1

∂x2 ¼ ∂2ϕ1

∂t2 þ 1

τ

∂ϕ1

∂t
c2

∂2ϕ2

∂x2 ¼ ∂2ϕ2

∂t2 −
1

τ

∂ϕ2

∂t : ð82Þ

The Lagrangian and equations of motions have two
parameters, c and τ. This suggests that the Lagrangian can
give rise to different regimes depending on c and τ. Below
we show that the constructed Lagrangian indeed has three
well-defined regimes: (a) purely elastic nondissipative and
nonfluid regime, (b) mixed regime where transverse modes
propagate above the k-gap and (c) purely fluid-dynamics
regime where no transverse modes propagate.
As discussed earlier, the most general solution describes

propagating transverse modes above the k-gap according
to Eqs. (12) and (13). This is the mixed regime (b) above.
The purely elastic Lagrangian, and regime (a) above,
readily follows from setting τ→∞, in which case ϕ1¼ϕ2,
according to (12), and we are left with a standard
propagating Klein-Gordon field. A nonpropagating regime
follows from considering the condition at which fluid
mechanics applies: ωτ ≪ 1 [32,43]. Considering time
dependence of fields ϕ1;2 ∝ expðiωtÞ, we see that the terms
with second and first time derivative in (82) are ∝ ω2τ2 and
∝ ωτ, respectively. Therefore, the second time derivative

term can be neglected in the regime ωτ ≪ 1, and we find
the “loss” subsystem describing the Navier-Stokes equation

predicting nonpropagating waves, c2 ∂2ϕ1∂x2 ¼ 1
τ
∂ϕ1∂t , and its

gain counterpart, c2 ∂2ϕ2∂x2 ¼ − 1
τ
∂ϕ2∂t .

The different regimes also follow without bringing the
frequency of external probe, ω, into consideration. The
product of two parameters c and τ in the Lagrangian (81)
gives the length scale cτ. We now recall that in the fluid
mechanics regime, now transverse modes operate [43].
It is easy to see our Lagrangian describes this regime at
distance

d > 2cτ: ð83Þ

Indeed, (81) results in no propagating modes when the
frequencies (4) do not have a real part. This corresponds to
k < kg, or λ > 2cτ for wavelengths [see Eq. (13)]. We also
recall that cτ is the wave propagation range, and that a
wave, in order to be well-defined, must not have a wave-
length longer than the propagation range. Hence, (83)
follows, as illustrated in Fig. 9.
We note that hydrodynamics and fluid mechanics are

often stated to describe the medium at small k. The novelty
here is that the field theory proposed gives a specific range
of k based on the parameters of the theory (c and τ) where
the fluid-mechanical description operates.
We note that conditions (83) and k < kg are consistent

with the condition of applicability of fluid mechanics
discussed earlier, ωτ < 1. Indeed, combining the dispersion
relation with the k-gap (13) with ωτ < 1 gives k <ffiffi

5
2

q
1
cτ ≈

1
cτ, or approximately k < kg.

Increasing τ decreases the range of length scales where
the hydrodynamic regime operates. At τ → ∞, this range
shrinks to zero, consistent with removing the dissipative
term in our Lagrangian. On the other hand, small τ
increases the hydrodynamic range. In this process, there
is an interesting difference between the scalefree field
theories and the field theory describing condensed matter
phases with the UV cutoff. Unlike in scalefree field

FIG. 9. Illustration of different regimes described by our field
theory. The field theory correctly describes a fluid system with
diffusive modes only at length scales d > 2cτ. At smaller
distances d < 2cτ, the field theory predicts a solidlike non-
hydrodynamic behavior with propagating shear modes.
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theories, τ cannot decrease without bound in condensed
matter phases and is bound by the shortest, Debye,
vibration period, τD. When τ approaches τD, cτ becomes
cτD and is approximately equal to the shortest distance in
condensed matter phases set by the interatomic separation a
[see (17)].
It is interesting to recall that τ ¼ τD at the UV cutoff

corresponds to the Frenkel line separating the combined
oscillatory and diffusive components of liquid dynamics
from purely diffusive motion [21,36,37]. τ ¼ τD corre-
sponds to kg approaching the zone boundary, at which point
all transverse waves disappear from the system spectrum.
This, in turn, corresponds to purely hydrodynamic Navier-
Stokes solutions as discussed above.
We note that below the k-gap, Eq. (4) gives two

solutions. One of them is the diffusive mode representing
the diffusive hydrodynamic shear flow:

ω ¼ −ic2τk2: ð84Þ

The second mode is

ω ¼ −iτ−1 þ ic2τk2 ð85Þ

and is not present in the standard formulation of fluid-
mechanics description [43].
The second gapped mode is related to GMS, which

emerges due to the collision between the diffusive and

gapped modes. In a more general framework, this gapped
mode can be captured by improved setups such as
generalized hydrodynamics [79]. The diffusive mode
operates in the limit ωτ ≪ 1 as in standard fluid mechanics,
as is illustrated in Fig. 10.

C. Implications for liquid theory

In addition to the general importance of formulating a
field theory with dissipation, our results have more
specific and practical interest in areas where decaying
excitations are either experimentally measured or are
obtained for modeling and need to fitted and analyzed.
One example is the area of liquids where the measured
inelastic structure factor needs to be fitted in order to
extract phonon frequencies. Traditionally, the results of
generalized hydrodynamics [21,70] are used to fit exper-
imental spectra. Generalized hydrodynamics starts with
the hydrodynamic equations and subsequently modifies
them to account for solidlike nonhydrodynamic effects
such as propagating transverse waves. Traditionally, this
was supported by our experience that liquids flow and
hence require a hydrodynamic theory as a starting point.
However, more recent experiments show that even simple
low-viscous liquids such as Na, Ga, Cu, Fe and so on are
not hydrodynamic but, similarly to solids, support trans-
verse waves with frequencies approaching the highest
(Debye) frequency and wavelengths approaching the
interatomic separation [21]. A hydrodynamic Navier-
Stokes equation does not predict these waves [32,43].
Therefore, describing real liquids necessitates the pres-
ence of an elastic component in the equations of motion
such as Eq. (2) which, in turn, follows from the visco-
elastic Maxwell-Frenkel theory. As discussed earlier, this
elastic component is manifestly present in the Lagrangian
(23) in the form of the Klein-Gordon fields and enters the
Lagrangian on equal footing with the hydrodynamic
dissipative term. This discussion therefore revisits the
point discussed in the earlier section related to the correct
starting point of liquid description involving both hydro-
dynamic and elastic terms.
Returning to the generalized hydrodynamics approach,

there are issues related to its phenomenological nature
and, consequently, approximations used to fit liquid
spectra [80,81]. These can affect the reliability and
interpretation of experimental data. On the other hand,
a Lagrangian formulation of combined effects of elasticity
and dissipation is free from these complications.
Moreover, the full range of field-theoretical methods
can be applied to the Lagrangian to calculate different
correlation functions of relevance in the liquid theory as
well as other theories where dissipation plays a central
role. In this respect, it is interesting to note that the
functional form of the denominator of (61) is similar to
that obtained in generalized hydrodynamics for correla-
tion functions [70].

 

HYDRO

NON HYDRO

HYDRO

NON HYDRO

FLUID SOLID

breakdown
of hydro

0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.4

0.2
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0.4

0.6

FIG. 10. Different regimes of our system in relation to hydro-
dynamic description. The red region corresponds to solidlike
propagating modes. The region below kg does not have propa-
gating modes and we label it as the “fluid region.” The blue area is
the hydrodynamic regime ωτ ≪ 1; kcτ ≪ 1which is smaller than
the fluid region. The red star indicates the breakdown of the
hydrodynamic perturbative framework.

BAGGIOLI, VASIN, BRAZHKIN, and TRACHENKO PHYS. REV. D 102, 025012 (2020)

025012-16



VIII. CONCLUSIONS

In summary, we developed a field theory of dissipation
based on gapped momentum states and using the non-
Hermitian two-field theory with broken PT symmetry.
The calculated correlation functions show decaying oscilla-
tory behavior with the frequency and dissipation related to
gapped momentum states. The interaction potential becomes
short-ranged due to dissipation. We observed that the pro-
posed field theory represents a departure from the harmonic
paradigm theory and discussed the implications of this theory
for the Lagrangian formulation of hydrodynamics.
Our theory is relatively simple as compared to more

complicated setups [7] and is therefore suitable for practical
and tractable calculations, providing an optimal formu-
lation to study dissipation using field theory more generally

and beyond the well-known phenomenological approaches.
It would be interesting to extend our theory by adding new
relevant fields and types of interaction and apply the theory
to a wider range of systems of interest including, for
example, electromagnetic and electron waves.

ACKNOWLEDGMENTS

We are grateful to J. Alexandre, D. Arean, C. Bender,
M. Chernodub, A. Cortijo, N. P. Fokeeva, S. Grozdanov,
K. Landsteiner, N. Poovuttikul, K. Schalm, and J. Zaanen
for fruitful discussions and comments. K. T. thanks EPSRC
for support. M. B. acknowledges the support of the Spanish
MINECO’s “Centro de Excelencia Severo Ochoa”
Programme under Grant No. SEV-2012-0249.

[1] L. Landau and E. Lifshitz, Statistical Physics (Elsevier
Science, New York, 2013), Vol. 5.

[2] I. Rotter and J. Bird, Rep. Prog. Phys. 78, 114001 (2015).
[3] C. Bender, PT Symmetry: In Quantum and Classical

Physics (World Scientific, Singapore, 2018).
[4] R. Mohsen, Classical and Quantum Dissipative Systems

(World Scientific, Singapore, 2017).
[5] C. M. Bender, Rep. Prog. Phys. 70, 947 (2007).
[6] I. Rotter, J. Phys. A 42, 153001 (2009).
[7] H. Liu and P. Glorioso, Proc. Sci., TASI2017 (2018) 008

[arXiv:1805.09331].
[8] A. Kamenev, Field Theory of Non-Equilibrium Systems

(Cambridge University Press, Cambridge, England,
2011).

[9] S. Endlich, A. Nicolis, R. A. Porto, and J. Wang, Phys. Rev.
D 88, 105001 (2013).

[10] M. Crossley, P. Glorioso, and H. Liu, J. High Energy Phys.
09 (2017) 095.

[11] R. Feynman and F. Vernon, Ann. Phys. (N.Y.) 24, 118
(1963).

[12] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211
(1981).

[13] U. Weiss, Quantum Dissipative Systems, Series in Modern
Condensed Matter Physics (World Scientific, Singapore,
1999).

[14] M. Baggioli, Applied holography, Ph. D. thesis, IFT, 2019.
[15] G. Policastro, D. T. Son, and A. O. Starinets, J. High Energy

Phys. 09 (2002) 043.
[16] R. A. Janik, Phys. Rev. Lett. 98, 022302 (2007).
[17] M. Baggioli and K. Trachenko, J. High Energy Phys. 03

(2019) 093.
[18] M. Baggioli and K. Trachenko, Phys. Rev. D 99, 106002

(2019).
[19] M. Baggioli, U. Gran, A. J. Alba, M. Tornsö, and T. Zingg,

J. High Energy Phys. 09 (2019) 013.
[20] M. Baggioli, U. Gran, and M. Tornsö, J. High Energy Phys.

04 (2020) 106.

[21] K. Trachenko and V. V. Brazhkin, Rep. Prog. Phys. 79,
016502 (2016).

[22] C. Yang, M. T. Dove, V. V. Brazhkin, and K. Trachenko,
Phys. Rev. Lett. 118, 215502 (2017).

[23] K. Trachenko, Phys. Rev. E 96, 062134 (2017).
[24] K. Trachenko and V. Brazhkin, J. Phys. Chem. B 118,

11417 (2014).
[25] M. Baggioli and A. Zaccone, Phys. Rev. Lett. 122, 145501

(2019).
[26] M. Baggioli, R. Milkus, and A. Zaccone, Phys. Rev. E 100,

062131 (2019).
[27] M. Baggioli and A. Zaccone, Phys. Rev. Research 1,

012010 (2019).
[28] M. Baggioli and A. Zaccone, Phys. Rev. Research 2,

013267 (2020).
[29] M. Baggioli, M. Vasin, V. Brazhkin, and K. Trachenko,

Phys. Rep. 865, 1 (2020).
[30] A. Zee, Quantum Field Theory in a Nutshell (Princeton

University Press, Princeton, NJ, 2003).
[31] J. C. Maxwell, Phil. Trans. R. Soc. London 157, 49 (1867).
[32] J. Frenkel, Kinetic Theory of Liquids (Dover, New York,

1955).
[33] J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).
[34] K. Trachenko and V. V. Brazhkin, J. Phys. Condens. Matter

21, 425104 (2009).
[35] G. Feinberg, Phys. Rev. 159, 1089 (1967).
[36] V. V. Brazhkin and K. Trachenko, Phys. Today 65, No. 11,

68 (2012).
[37] V. V. Brazhkin, Y. D. Fomin, A. G. Lyapin, V. N. Ryzhov,

E. N. Tsiok, and K. Trachenko, Phys. Rev. Lett. 111,
145901 (2013).

[38] K. Trachenko and V. Brazhkin, Sci. Adv. 6, eaba3747
(2020).

[39] K. Trachenko, V. Brazhkin, and M. Baggioli, arXiv:2003
.13506.

[40] K. Trachenko, Sci. Rep. 9, 6766 (2019).
[41] H. Bateman, Phys. Rev. 38, 815 (1931).

FIELD THEORY OF DISSIPATIVE SYSTEMS WITH GAPPED … PHYS. REV. D 102, 025012 (2020)

025012-17

https://doi.org/10.1088/0034-4885/78/11/114001
https://doi.org/10.1088/0034-4885/70/6/R03
https://doi.org/10.1088/1751-8113/42/15/153001
https://arXiv.org/abs/1805.09331
https://doi.org/10.1103/PhysRevD.88.105001
https://doi.org/10.1103/PhysRevD.88.105001
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1103/PhysRevLett.46.211
https://doi.org/10.1103/PhysRevLett.46.211
https://doi.org/10.1088/1126-6708/2002/09/043
https://doi.org/10.1088/1126-6708/2002/09/043
https://doi.org/10.1103/PhysRevLett.98.022302
https://doi.org/10.1007/JHEP03(2019)093
https://doi.org/10.1007/JHEP03(2019)093
https://doi.org/10.1103/PhysRevD.99.106002
https://doi.org/10.1103/PhysRevD.99.106002
https://doi.org/10.1007/JHEP09(2019)013
https://doi.org/10.1007/JHEP04(2020)106
https://doi.org/10.1007/JHEP04(2020)106
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1088/0034-4885/79/1/016502
https://doi.org/10.1103/PhysRevLett.118.215502
https://doi.org/10.1103/PhysRevE.96.062134
https://doi.org/10.1021/jp503647s
https://doi.org/10.1021/jp503647s
https://doi.org/10.1103/PhysRevLett.122.145501
https://doi.org/10.1103/PhysRevLett.122.145501
https://doi.org/10.1103/PhysRevE.100.062131
https://doi.org/10.1103/PhysRevE.100.062131
https://doi.org/10.1103/PhysRevResearch.1.012010
https://doi.org/10.1103/PhysRevResearch.1.012010
https://doi.org/10.1103/PhysRevResearch.2.013267
https://doi.org/10.1103/PhysRevResearch.2.013267
https://doi.org/10.1016/j.physrep.2020.04.002
https://doi.org/10.1098/rstl.1867.0004
https://doi.org/10.1103/RevModPhys.78.953
https://doi.org/10.1088/0953-8984/21/42/425104
https://doi.org/10.1088/0953-8984/21/42/425104
https://doi.org/10.1103/PhysRev.159.1089
https://doi.org/10.1063/PT.3.1796
https://doi.org/10.1063/PT.3.1796
https://doi.org/10.1103/PhysRevLett.111.145901
https://doi.org/10.1103/PhysRevLett.111.145901
https://doi.org/10.1126/sciadv.aba3747
https://doi.org/10.1126/sciadv.aba3747
https://arXiv.org/abs/2003.13506
https://arXiv.org/abs/2003.13506
https://doi.org/10.1038/s41598-019-43273-9
https://doi.org/10.1103/PhysRev.38.815


[42] H. Dekker, Phys. Rep. 80, 1 (1981).
[43] L. Landau and E. Lifshitz, Fluid Mechanics (Elsevier

Science, New York, 2013), Vol. 6.
[44] P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A 6,

2401 (1972).
[45] M. Ammon, M. Baggioli, S. Gray, S. Grieninger, and A.

Jain, arXiv:2001.05737 [Phys. Rev. D (to be published)].
[46] J. Alexandre, J. Ellis, P. Millington, and D. Seynaeve, Phys.

Rev. D 99, 075024 (2019).
[47] J. Alexandre, P. Millington, and D. Seynaeve, Phys. Rev. D

96, 065027 (2017).
[48] C. M. Bender, S. F. Brandt, J.-H. Chen, and Q.-h. Wang,

Phys. Rev. D 71, 025014 (2005).
[49] P. D. Mannheim, Phil. Trans. R. Soc. A 371, 20120060

(2013).
[50] A. Kamenev, Field Theory of Non-Equilibrium Systems

(Cambridge University Press, Cambridge, England, 2011).
[51] E. C. G. Sudarshan, C. B. Chiu, and V. Gorini, Phys. Rev. D

18, 2914 (1978).
[52] E. G. Sudarshan, Prog. Theor. Phys. Suppl. 184, 451 (2010).
[53] J. Feinberg, Int. J. Theor. Phys. 50, 1116 (2011).
[54] M. N. Chernodub and A. Cortijo, Symmetry 12, 761 (2020).
[55] A. Mostafazadeh, J. Math. Phys. (N.Y.) 43, 205 (2002).
[56] A. Mostafazadeh, J. Math. Phys. (N.Y.) 43, 2814 (2002).
[57] A. Mostafazadeh, J. Math. Phys. (N.Y.) 43, 3944 (2002).
[58] E. Davies, Quantum Theory of Open Systems (Academic

Press, New York, 1976).
[59] W. D. Heiss, Int. J. Theor. Phys. 54, 3954 (2015).
[60] M. A. Zubkov, Phys. Rev. D 86, 034505 (2012).
[61] K. Hashimoto, K. Kanki, H. Hayakawa, and T. Petrosky,

Prog. Theor. Exp. Phys. 2015, 023A02 (2015).
[62] P. K. Kovtun and A. O. Starinets, Phys. Rev. D 72, 086009

(2005).
[63] P. Kovtun, J. Phys. S 45, 473001 (2012).

[64] H.-P. Nollert, Classical Quantum Gravity 16, R159 (1999).
[65] C. Chirenti, Braz. J. Phys. 48, 102 (2018).
[66] J. Alexandre, P. Millington, and D. Seynaeve, J. Phys. Conf.

Ser. 952, 012012 (2018).
[67] J. Alexandre, J. Ellis, P. Millington, and D. Seynaeve, Phys.

Rev. D 98, 045001 (2018).
[68] C. M. Bender, H. Jones, and R. Rivers, Phys. Lett. B 625,

333 (2005).
[69] V. Berestetskii, L. Pitaevskii, and E. Lifshitz, Quantum

Electrodynamics: Volume 4 (Elsevier Science, New York,
2012).

[70] J. Boon and S. Yip, Molecular Hydrodynamics, Dover
Books on Physics (Dover Publications, New York, 1991).

[71] J. Rammer, Quantum Transport Theory, Frontiers in
Physics (Book 99) (CRC Press, 2004).

[72] P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Philos.
Mag. B 79, 1715 (1999).

[73] K. Trachenko, Phys. Rev. D 95, 043522 (2017).
[74] S. Grozdanov and J. Polonyi, Phys. Rev. D 91, 105031

(2015).
[75] K. Jensen, R. Marjieh, N. Pinzani-Fokeeva, and A. Yarom,

SciPost Phys. 5, 053 (2018).
[76] F. M. Haehl, R. Loganayagam, and M. Rangamani, Phys.

Rev. Lett. 114, 201601 (2015).
[77] J. de Boer, M. P. Heller, and N. Pinzani-Fokeeva, J. High

Energy Phys. 05 (2019) 188.
[78] C. Jana, R. Loganayagam, and M. Rangamani, arXiv:

2004.02888.
[79] S. Grozdanov, A. Lucas, and N. Poovuttikul, Phys. Rev. D

99, 086012 (2019).
[80] W.-C. Pilgrim and C. Morkel, J. Phys. Condens. Matter 18,

R585 (2006).
[81] V. M. Giordano and G. Monaco, Proc. Natl. Acad. Sci.

U.S.A. 107, 21985 (2010).

BAGGIOLI, VASIN, BRAZHKIN, and TRACHENKO PHYS. REV. D 102, 025012 (2020)

025012-18

https://doi.org/10.1016/0370-1573(81)90033-8
https://doi.org/10.1103/PhysRevA.6.2401
https://doi.org/10.1103/PhysRevA.6.2401
https://arXiv.org/abs/2001.05737
https://doi.org/10.1103/PhysRevD.99.075024
https://doi.org/10.1103/PhysRevD.99.075024
https://doi.org/10.1103/PhysRevD.96.065027
https://doi.org/10.1103/PhysRevD.96.065027
https://doi.org/10.1103/PhysRevD.71.025014
https://doi.org/10.1098/rsta.2012.0060
https://doi.org/10.1098/rsta.2012.0060
https://doi.org/10.1103/PhysRevD.18.2914
https://doi.org/10.1103/PhysRevD.18.2914
https://doi.org/10.1143/PTPS.184.451
https://doi.org/10.1007/s10773-010-0604-y
https://doi.org/10.3390/sym12050761
https://doi.org/10.1063/1.1418246
https://doi.org/10.1063/1.1461427
https://doi.org/10.1063/1.1489072
https://doi.org/10.1007/s10773-014-2428-7
https://doi.org/10.1103/PhysRevD.86.034505
https://doi.org/10.1093/ptep/ptu183
https://doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1103/PhysRevD.72.086009
https://doi.org/10.1088/1751-8113/45/47/473001
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.1007/s13538-017-0543-7
https://doi.org/10.1088/1742-6596/952/1/012012
https://doi.org/10.1088/1742-6596/952/1/012012
https://doi.org/10.1103/PhysRevD.98.045001
https://doi.org/10.1103/PhysRevD.98.045001
https://doi.org/10.1016/j.physletb.2005.08.087
https://doi.org/10.1016/j.physletb.2005.08.087
https://doi.org/10.1080/13642819908223054
https://doi.org/10.1080/13642819908223054
https://doi.org/10.1103/PhysRevD.95.043522
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.21468/SciPostPhys.5.5.053
https://doi.org/10.1103/PhysRevLett.114.201601
https://doi.org/10.1103/PhysRevLett.114.201601
https://doi.org/10.1007/JHEP05(2019)188
https://doi.org/10.1007/JHEP05(2019)188
https://arXiv.org/abs/2004.02888
https://arXiv.org/abs/2004.02888
https://doi.org/10.1103/PhysRevD.99.086012
https://doi.org/10.1103/PhysRevD.99.086012
https://doi.org/10.1088/0953-8984/18/37/R01
https://doi.org/10.1088/0953-8984/18/37/R01
https://doi.org/10.1073/pnas.1006319107
https://doi.org/10.1073/pnas.1006319107

