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Radially excited Uð1Þ gauged Q-balls are studied using both analytical and numerical methods. Unlike
the nongauged case, there exists only a finite number of radially excited gauged Q-balls at given values
of the model’s parameters. Similarly to the unexcited gauged Q-ball, the radially excited one cannot
possess the Noether charge exceeding some limiting value. This limiting Noether charge decreases with an
increase in the radial excitation of the gauged Q-ball. For nth radial excitation, there is a maximum
allowable value of the gauge coupling constant, and the existence of the nth radially excited gauged Q-ball
becomes impossible if the gauge coupling constant exceeds this limiting value. Similarly to the limiting
Noether charge, the limiting gauge coupling constant decreases with an increase in the radial excitation. At
a fixed Noether charge, the energy of the gauged Q-ball increases with an increase in the radial excitation,
and thus the radially excited gauged Q-ball is unstable against transit into a less excited or unexcited one.
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I. INTRODUCTION

In the framework of field theory, solitons are spatially
localized, nonspreading solutions to field equations pos-
sessing finite energy. Solitons play an important role in
high-energy physics, condensed matter physics, cosmol-
ogy, and hydrodynamics. They can be divided into two
main groups: topological solitons and nontopological
solitons. The existence and stability of topological solitons
result from the topological nontriviality of their field
configurations [1]. This nontriviality means that a topo-
logical soliton cannot be smoothly and continuously
deformed into the vacuum field configuration, which is
topologically trivial. Hence, there exists an infinite poten-
tial barrier between the topological soliton and the vacuum
state, and the soliton cannot decay into a field configuration
in the functional neighborhood of the topologically trivial
vacuum.
In contrast, the field configurations of nontopological

solitons are topologically trivial, and the existence of
nontopological solitons is therefore due to the dynamics
of corresponding field models [2]. In particular, nontopo-
logical solitons exist in field models that possess global
symmetries (which may be both Abelian and non-Abelian)
[3–7] and have interaction potentials that meet certain

conditions [2,8]. The basic property of a nontopological
soliton is that it is the extremum (minimum or saddle point)
of the energy functional at a fixed value of the Noether
charge corresponding to the global symmetry group gene-
rator of the field model. This feature of nontopological
solitons results in the characteristic time dependence
∝ exp ð−iωtÞ of their fields. The time dependence of the
soliton’s field allows the severe restrictions of Derrick’s
theorem [9] to be avoided, meaning that nontopological
solitons composed of scalar fields can exist in space-time
with an arbitrary number of spatial dimensions.
The simplest of nontopological solitons is theQ-ball [5],

a coherent state of a self-interacting complex scalar field.
Q-balls exist in models of complex scalar fields possessing
Uð1Þ global symmetry and certain self-interaction poten-
tials. The characteristic feature of nontopological solitons
in general and of Q-balls in particular is the presence of an
infinite number of radially excited states in addition to the
basic unexcited state [4,10–12]. The basic and radially
excited states of Q-balls are spherically symmetric. The
profile function of the basic unexcited state of a Q-ball has
no nodes for any finite radius, whereas the nth radially
excited state of a Q-ball has exactly n nodes at finite radii.
When the Uð1Þ symmetry of the model is global, the

Noether charge of the Q-ball corresponds to the particle
number. However, the global Uð1Þ symmetry can be
gauged by means of the Abelian gauge field, which
interacts minimally with the model’s complex scalar field.
As in the case of global Uð1Þ symmetry, the Uð1Þ gauged
models of complex self-interacting scalar fields admit the
existence of Q-balls [13–24]. These gauged Q-balls are
electrically charged objects, and thus possess a long-range
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electric field. The electric charge of gauged Q-balls is the
product of the Noether charge and the gauge coupling
constant, which defines the interaction strength between the
gauge field and the complex scalar field. The properties of
gauged Q-balls differ significantly from those of non-
gauged ones. In particular, the Noether (electric) charge and
the energy of gauged Q-balls cannot be arbitrarily large
[14,24], provided that the second derivative of the self-
interaction potential d2VðjϕjÞ=djϕj2 is finite at the origin
[20]. A gauged Q-ball also cannot exist if the gauge
coupling constant exceeds some maximum value [14],
which depends on the other parameters of the model.
As in the nongauged case, there exist radially excited

gauged Q-balls. These also cannot possess an arbitrarily
large electric charge and can exist only if the gauge
coupling constant does not exceed some limiting value;
both the maximum possible Noether charge and the
maximum possible gauge coupling constant decrease with
an increase in the radial excitation of a gauged Q-ball.
Furthermore, there is only a finite number of radially
excited gauged Q-balls for given values of the gauge
coupling constant and the other parameters of the model.
In this paper, we study radially excited gauged Q-balls
from both an analytical and numerical perspective. We
ascertain the basic properties of these objects and discuss
related issues.
The paper is structured as follows. In Sec. II, we describe

briefly the Lagrangian, the symmetries, and the field
equations of the model under consideration. In Sec. III,
the general properties of the gauged Q-balls are considered
and discussed. In Sec. IV, we present numerical results for
radially excited gauged Q-balls. Some numerical results
relating to unexcited gauged Q-balls are also included in
Sec. IV for completeness. In the final section, we briefly
summarize the results obtained in this work. Three
Appendixes are also included. In Appendix A, we show
that the gaugedQ-ball’s fields do not depend on time in the
unitary gauge and establish the basic relation between the
energy and the Noether charge of the gauged Q-ball. In
Appendix B, we discuss the reason for the existence of the
maximum possible electric charge for gauged Q-balls. In
Appendix C, we ascertain the reason for the existence of the
inflection point in the curve describing the dependence of
the energy of the gauged Q-ball on the Noether charge.
Throughout this paper, we use the natural units

c ¼ 1, ℏ ¼ 1.

II. LAGRANGIAN AND FIELD EQUATIONS
OF THE MODEL

The gauge model we are interested in has the Lagrangian
density

L ¼ −
1

4
FμνFμν þ ðDμϕÞ�Dμϕ − VðjϕjÞ: ð1Þ

This model describes the self-interacting complex scalar
field ϕ minimally interacting with the Abelian gauge field
Aμ through the covariant derivative

Dμϕ ¼ ∂μϕþ ieAμϕ: ð2Þ

The local gauge transformations

ϕðxÞ → ϕ0ðxÞ ¼ exp ð−ieΛðxÞÞϕðxÞ;
AμðxÞ → A0

μðxÞ ¼ AμðxÞ þ ∂μΛðxÞ ð3Þ

leave invariant the Lagrangian density (1). A special case of
Eq. (3) is the global phase transformations ϕðxÞ → ϕ0ðxÞ ¼
exp ð−iαÞϕðxÞ. The invariance of the Lagrangian density
(1) under these global phase transformations leads to the
conserved Noether current of the model

jνN ¼ i½ϕ�Dνϕ − ðDνϕÞ�ϕ�: ð4Þ

The self-interaction of the complex scalar field is
described by the six-order potential

VðjϕjÞ ¼ m2jϕj2 − g
2
jϕj4 þ h

3
jϕj6; ð5Þ

where the self-interaction coupling constants g and h are
assumed to be positive. We assume that the potential VðjϕjÞ
has a global minimum at ϕ ¼ 0 and thus there is no
spontaneously broken gauge symmetry. For this to hold,
the parameters of the potential in Eq. (5) must satisfy the
inequality 3g2 < 16hm2.
By varying the action S ¼ R Ld3xdt in the correspond-

ing fields, we obtain the field equations of the model,

DμDμϕþm2ϕ − gjϕj2ϕþ hjϕj4ϕ ¼ 0; ð6Þ

∂μFμν ¼ jν; ð7Þ

where the electromagnetic current density jν ¼ ejνN. Later
on, we shall also need the expression for the energy-
momentum tensor for a field configuration of the model,

Tμν ¼ −FμλFν
λ þ 1

4
ημνFλρFλρ þ ðDμϕÞ�Dνϕ

þ ðDνϕÞ�Dμϕ − ημνððDμϕÞ�Dμϕ − VðjϕjÞÞ; ð8Þ

where the metric tensor ημν ¼ diagðþ1;−1;−1;−1Þ.

III. SOME PROPERTIES OF GAUGED Q-BALLS

By definition, the Q-ball field configuration is an
extremum of the energy functional E ¼ R T00d3x at a fixed
value of the Noether charge QN ¼ R j0Nd3x. Thus, the
Q-ball field configuration is a conditional extremum of the
energy functional. According to Lagrange’s method of
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multipliers, the Q-ball is an unconditional extremum of the
functional F ¼ E − λQN , where λ is the Lagrange multi-
plier. Using Lagrange’s method of multipliers and the
Hamilton field equations, we show in Appendix A that
the Q-ball field configuration does not depend on time in
the unitary gauge ImðϕÞ ¼ 0. Next, we assume that in the
unitary gauge the Q-ball field configuration is spherically
symmetric. The spherical symmetry, time independence,
and regularity of the Q-ball field configuration lead to the
vanishing of the spatial components of the electromagnetic
current density jk in the unitary gauge (and consequently
in any other gauge, since the electromagnetic current
density is gauge invariant). Since in the unitary gauge
jk ¼ −2e2AkReðϕÞ, the spatial components Ak of the
electromagnetic potential also vanish. Thus, we have the
ansatz for the Q-ball fields in the unitary gauge

ϕðx; tÞ ¼ fðrÞffiffiffi
2

p ; Aμðx; tÞ ¼ ημ0A0ðrÞ; ð9Þ

where fðrÞ and A0ðrÞ are the real ansatz functions depend-
ing on the radial variable r.
Since the Q-ball is an unconditional extremum of the

functionalF ¼ E − λQN , the first variation of F vanishes in
the neighborhood of the Q-ball solution

δF ¼ δE − λδQN ¼ 0: ð10Þ

Equation (10) holds for arbitrary variations in fields in the
neighborhood of the Q-ball solution, including those that
change theQ-ball solution to an infinitesimally close one. It
follows that the energy of the gauged Q-ball satisfies the
important relation

dE
dQN

¼ λ; ð11Þ

where the Lagrange multiplier λ is a function of the Noether
charge QN . Since the Q-ball’s energy and the Noether
charge are gauge invariant, the Lagrange multiplier λ is also
gauge invariant. It is shown in Appendix A that in the
unitary gauge the Lagrange multiplier λ is expressed in
terms of the limiting value of the electromagnetic potential
at spatial infinity:

λ ¼ −e lim
r→∞

A0ðrÞ≡Ω∞: ð12Þ

Substituting ansatz (9) into field equations (6) and (7),
we obtain a system of nonlinear differential equations for
the ansatz functions fðrÞ and ΩðrÞ ¼ −eA0ðrÞ:

f00ðrÞ þ 2

r
f0ðrÞ − ðm2 − ΩðrÞ2ÞfðrÞ

þ g
2
fðrÞ3 − h

4
fðrÞ5 ¼ 0; ð13Þ

Ω00ðrÞ þ 2

r
Ω0ðrÞ − e2ΩðrÞfðrÞ2 ¼ 0: ð14Þ

The regularity of the Q-ball field configuration and the
finiteness of the Q-ball’s energy lead to the boundary
conditions for the ansatz functions:

f0ð0Þ ¼ 0; fðrÞ⟶
r→∞

0;

Ω0ð0Þ ¼ 0; ΩðrÞ⟶
r→∞

Ω∞: ð15Þ

The general properties of the electromagnetic potential
A0 of the gauged Q-ball were established in Ref. [14]. In
terms of the ansatz function ΩðrÞ, these properties are
formulated as

0 < Ωðr1Þ < Ωðr2Þ < Ω∞ if Ω∞ > 0; ð16aÞ

0 > Ωðr1Þ > Ωðr2Þ > Ω∞ if Ω∞ < 0; ð16bÞ

where it is supposed that r1 < r2. We see that ΩðrÞ is a
positive and increasing (negative and decreasing) function
of r if its limiting value Ω∞ is positive (negative).
The Lagrangian (1) is invariant under the charge

conjugation: Aμ → −Aμ, ϕ → ϕ�. This invariance of the
Lagrangian results in the invariance of Eqs. (13) and (14)
under the change of sign Ω → −Ω. Furthermore, the
invariance of the Lagrangian (1) under the other discrete
transformation ϕ → −ϕ [which is a particular case of the
phase transformation ϕ → exp ð−iαÞϕ] leads to the invari-
ance of Eqs. (13) and (14) under the change of sign f → −f.
We now consider the asymptotic behavior of the gauged

Q-ball solution at small and large r. Substituting the power
expansions for the ansatz functions into Eqs. (13) and (14),
we obtain the asymptotic form of the Q-ball solution at
small r,

fðrÞ ¼ f0 þ
f2
2!

r2 þOðr2Þ; ð17aÞ

ΩðrÞ ¼ Ω0 þ
Ω2

2!
r2 þOðr2Þ; ð17bÞ

where the next-to-leading coefficients are expressed in
terms of f0 and Ω0,

f2 ¼
1

3

�
ðΩ2

0 −m2Þf0 −
g
2
f30 þ

h
4
f50

�
; ð18aÞ

Ω2 ¼
1

3
e2f20Ω0: ð18bÞ

At large r, Eq. (14) can be linearized, and we obtain the
asymptotic form of ΩðrÞ as r → ∞,
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ΩðrÞ ∼Ω∞ −
e
4π

Q
r
; ð19Þ

where Q ¼ 4π
R∞
0 j0ðrÞr2dr is the total electric charge of

the gauged Q-ball. We see that, due to the long-range
character of the electromagnetic interaction, the ansatz
function Ω tends rather slowly (approximately r−1) to the
limiting value Ω∞. Because of this, in Eq. (13), the gauge
field does not decouple from the scalar field even at large r.
This results in the asymptotics [24] for the complex scalar
field as r → ∞

fðrÞ ∼ f∞ðΔrÞ−ð1þ
β
2ΔÞ exp ð−ΔrÞ; ð20Þ

where

Δ ¼ ðm2 −Ω2
∞Þ1=2; β ¼ e

2π
Ω∞Q; ð21Þ

and f∞ is a constant. We see that the long-range tail of the
gauge field leads to a faster decrease in the complex scalar
field of the gauged Q-ball at large r in comparison with the
nongauged Q-ball for which fðrÞ ∼ f∞ðΔrÞ−1 exp ð−ΔrÞ.
As jΩ∞j ¼ m, the exponent −ð1þ 2−1βΔ−1Þ of the pre-
exponential factor diverges, and Eq. (20) becomes inap-
plicable. However, it was shown in Ref. [24] that when
jΩ∞j ¼ m the scalar field of the gauged Q-ball has the
following asymptotics at large r:

fðrÞ ∼ f∞ðmrÞ−3=4 exp
 
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e
π
Qmr

r !
: ð22Þ

Thus, unlike the nongauged Q-ball, the gauged Q-ball also
exists at the limiting point jΩ∞j ¼ m and has a finite energy
and Noether charge at this point. At the same time, like the
nongauged Q-ball, the gauged Q-ball does not exist when
jΩ∞j > m since the asymptotics (20) shows oscillating
behavior, leading to an infinite energy and Noether charge
for the corresponding field configuration.
The electromagnetic current density and the components

of the energy-momentum tensor can also be expressed in
terms of the ansatz functions,

jμ ¼ eΩðrÞfðrÞ2ημ0; ð23Þ

T00 ¼
1

2e2
Ω0ðrÞ2 þ 1

2
f0ðrÞ2

þ 1

2
ΩðrÞ2fðrÞ2 þ VðfðrÞÞ; ð24Þ

T0k ¼ 0; ð25Þ

Tij ¼
�
xixj
r2

−
1

3
δij

�
sðrÞ þ δijpðrÞ; ð26Þ

where the radially dependent functions

sðrÞ ¼ f0ðrÞ2 − e−2Ω0ðrÞ2 ð27Þ

and

pðrÞ ¼ 1

6e2
Ω0ðrÞ2 − 1

6
f0ðrÞ2

þ 1

2
ΩðrÞ2fðrÞ2 − VðfðrÞÞ ð28Þ

are the shear force and pressure distributions, respectively.
From Eqs. (16) and (23), it follows that

signðj0ðrÞÞ ¼ signðΩðrÞÞ ¼ signðΩ∞Þ; ð29Þ

and hence the sign of the electric (Noether) charge
coincides with that of the parameter Ω∞. In contrast, it
follows from Eqs. (24)–(28) that the values of the compo-
nents of the energy-momentum tensor do not depend on the
sign of Ω∞. We conclude that the energy of the gauged
Q-ball is an even function of Ω∞, whereas the electric
(Noether) charge is an odd function:

Eð−Ω∞Þ ¼ EðΩ∞Þ; Qð−Ω∞Þ ¼ −QðΩ∞Þ: ð30Þ

Since the T0k components of the energy-momentum
tensor vanish, the angular momentum of the spherically
symmetrical gauge Q-ball is equal to zero, as expected.
The conservation of the energy-momentum tensor leads to
the differential relation between the shear force and the
pressure

2

r
sðrÞ þ 2

3
s0ðrÞ þ p0ðrÞ ¼ 0: ð31Þ

Multiplying Eq. (31) by r3 and integrating by parts over r
from zero to infinity, we obtain the Laue condition [25,26]
for the pressure distributionZ

∞

0

drr2pðrÞ ¼ 0: ð32Þ

Any solution of field equations (6) and (7) is an extremum
of the action S ¼ R Ld3xdt. In the case of the gauged
Q-ball, the Lagrangian density L does not depend on time,
and thus the gauged Q-ball solution is an extremum of the
Lagrangian L ¼ R Ld3x. Next, for the Q-ball solution, the
total energy E ¼ R T00d3x and the Lagrangian L ¼ R Ld3x
can be presented as linear combinations of the electrostatic,
gradient, kinetic, and potential terms,

E ¼ EðEÞ þ EðGÞ þ EðTÞ þ EðPÞ; ð33Þ

L ¼ EðEÞ − EðGÞ þ EðTÞ − EðPÞ; ð34Þ
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where

EðEÞ ¼ 4π

Z
∞

0

1

2e2
Ω0ðrÞ2r2dr; ð35aÞ

EðGÞ ¼ 4π

Z
∞

0

1

2
f0ðrÞ2r2dr; ð35bÞ

EðTÞ ¼ 4π

Z
∞

0

1

2
ΩðrÞ2fðrÞ2r2dr; ð35cÞ

EðPÞ ¼ 4π

Z
∞

0

VðfðrÞÞr2dr: ð35dÞ

Let us consider the scale transformation of the gauge
Q-ball’s fields: fðrÞ → fðκrÞ, A0ðrÞ → A0ðκrÞ. Under this
transformation, the terms in Eqs. (35a)–(35d) behave as
EðEÞ → κ−1EðEÞ, EðGÞ → κ−1EðGÞ, EðTÞ → κ−3EðTÞ, and
EðPÞ → κ−3EðPÞ, and thus the Lagrangian (34) becomes a
function of the scale parameter κ. Since fðκrÞ and A0ðκrÞ
form theQ-ball solution at κ ¼ 1, the derivative dL=dκ must
vanish at this point: dL=dκjκ¼1 ¼ 0. The last equation
results in the virial relation for the gauged Q-ball

EðEÞ − EðGÞ þ 3ðEðTÞ − EðPÞÞ ¼ 0: ð36Þ

It can be easily shown that, given Eqs. (35a)–(35d), the virial
relation (36) is equivalent to the Laue condition (32).
The energy of the gauged Q-ball can be presented in

several equivalent forms. Integrating the term Ω02 in the
electrostatic energy density Ω0ðrÞ2=ð2e2Þ by parts, using
Eq. (14) (Gauss’s law), and taking into account the
boundary conditions (15), we obtain the following expres-
sion for the electrostatic energy of the gauged Q-ball:

EðEÞ ¼ 1

2
4π

Z
∞

0

ðA0ðrÞ − A0ð∞ÞÞj0ðrÞr2dr

¼ 1

2e
4π

Z
∞

0

ðΩ∞ −ΩðrÞÞj0ðrÞr2dr: ð37Þ

The kinetic energy (35c) can also be rewritten in terms of
the electric charge density:

EðTÞ ¼ −
1

2
4π

Z
∞

0

A0ðrÞj0ðrÞr2dr

¼ 1

2e
4π

Z
∞

0

ΩðrÞj0ðrÞr2dr: ð38Þ

Combining Eqs. (33), (35b), (35d), (37), and (38) results
in an alternative expression for the energy of the gauged
Q-ball,

E ¼ Ω∞
QN

2
þ 4π

Z
∞

0

�
1

2
f0ðrÞ2 þ VðfðrÞÞ

�
r2dr

¼ Ω∞
QN

2
þ EðGÞ þ EðPÞ: ð39Þ

Next, Eqs. (33) and (39) lead to the following expression
for the Noether charge:

QN ¼ 2

Ω∞
ðEðEÞ þ EðTÞÞ: ð40Þ

Finally, using Eqs. (39), (40), and the virial relation (36),
we obtain two more expressions for the energy of the
gauged Q-ball:

E ¼ Ω∞QN þ 8π

3

Z
∞

0

�
1

2
f0ðrÞ2 − 1

2e2
Ω0ðrÞ2

�
r2dr

¼ Ω∞QN þ 2

3
ðEðGÞ − EðEÞÞ ð41Þ

and

E ¼ Ω∞QN þ 8π

Z
∞

0

�
1

2
ΩðrÞ2fðrÞ2 − VðfðrÞÞ

�
r2dr

¼ Ω∞QN þ 2ðEðTÞ − EðPÞÞ: ð42Þ

IV. NUMERICAL RESULTS

The system of differential equations (13) and (14)
with boundary conditions (15) represents a mixed boundary
value problem on the semi-infinite interval r ∈ ½0;∞Þ,
which can be solved only by numerical methods. In this
paper, the boundary value problem was solved using the
MAPLE package [27]. Since the point r ¼ 0 is the regular
singular point of the system (13), (14), we apply a differ-
ence scheme that does not use the boundary values of the
functions. To check the correctness of our numerical
solutions, we use Eq. (11) and the Laue condition (32).
The mixed boundary value problem (13)–(15) depends

on the five parameters: e, m, g, h, and Ω∞. To reduce the
number of the parameters, we rescale the radial variable and
the ansatz functions:

r¼ r̃
m
; fðrÞ¼ mffiffiffi

g
p f̃ðr̃Þ; A0ðrÞ¼

mffiffiffi
g

p Ã0ðr̃Þ: ð43Þ

After rescaling, the boundary value problem will depend
on only the three dimensionless parameters: ẽ ¼ eg−1=2,
h̃ ¼ hm2g−2, and Ω̃∞ ¼ m−1Ω∞. In particular, the self-
interaction potential will depend on only one dimensionless
parameter: Vðf̃Þ¼2−1f̃2−8−1f̃4þ24−1h̃f̃6. Furthermore,
the dependences of the Noether charge QN , the electric
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charge Q, and the energy E on the parameters m and g are
factorized as

QN ¼g−1Q̃N; Q¼g−1=2Q̃; E¼mg−1Ẽ; ð44Þ

where Q̃N , Q̃ ¼ ẽQ̃N , and Ẽ are the rescaled versions of the
Noether charge, the electric charge, and the energy,
respectively. We can therefore without loss of generality
set the parameters m and g equal to unity. To avoid
spontaneous breaking of the gauge symmetry, the sextic
self-interaction coupling constant h̃ must satisfy the
inequality h̃ > 3=16. In most numerical calculations, we
set h̃ ¼ 0.2, whereas the remaining parameters ẽ and Ω̃∞
may vary within allowable intervals.
First, let us ascertain the domain in the parameter space

in which the basic and radially excited states of the gauged
Q-ball can exist. It is shown in Appendix B that the gauged
Q-ball solution cannot exist if the gauge coupling constant
exceeds some maximum value. Figure 1 shows the depend-
ences of the maximum allowable gauge coupling constant
ẽmax on the self-interaction coupling constant h̃ for the
basic and the first five radially excited Q-balls. These
dependences are presented on the logarithmic scale ranging
from the minimum permissible h̃ ¼ 3=16 to h̃ ¼ 50. We
see that for h̃≳ 0.5 all the curves are well described by the
formula

ẽmax ≈
ϵnffiffiffĩ
h

p ; ð45Þ

where ϵn are constant coefficients and the label n ¼ 0;…; 5
corresponds to the basic and first five radially excited
Q-balls.
For large h̃, Eq. (45) can be explained as follows. Let ẽ

be equal to zero; then, the electromagnetic field decouples
from the complex scalar field, and the ansatz function Ω̃
becomes the constant phase frequency ω̃. In this nongauged
case, there is an analytical expression for the minimum
possible phase frequency: ω̃min ¼ ð1 − ð3=16Þh̃−1Þ1=2 ¼
1 − ð3=32Þh̃−1 þOðh̃−2Þ. We see that for sufficiently
large h̃ the phase frequency ω̃ lies in the narrow range
ð1 − ð3=32Þh̃−1; 1Þ with width ∝ h̃−1. Next, we turn on the
electromagnetic interaction by allowing ẽ to be different
from zero, meaning that the phase frequency ω̃ turns
into the monotonically increasing [see Eq. (16a)] function
Ω̃ðr̃Þ. This increase in ẽ leads to an increase in Ω̃∞,
which continues until Ω̃∞ reaches the maximum possible
value Ω̃∞ ¼ 1 at ẽ ¼ ẽmax. At the same time, Eqs. (23) and
(B1) tell us that for small ẽ the difference Ω̃∞ − Ω̃0 ¼
ẽ2J̃N þOðẽ4Þ, where the integral J̃N ¼ ω̃

R∞
0 r̃ f̃ ðr̃Þ2dr̃

does not depend on ẽ. It follows that ẽ2max ∝ h̃−1 at
sufficiently large h̃, resulting in Eq. (45). Note, however,
that Eq. (45) becomes valid at h̃ ≳ 0.5.
From Fig. 1, it follows that in Eq. (45) the coefficients ϵn

decrease with an increase in n. Thus, the maximum
allowable gauge coupling constant ẽmax becomes smaller
for the more excited Q-ball solutions. It was found numeri-
cally that for n≳ 3 the coefficients ϵn are well described by
the formula

ϵn ≈ 0.037n−1: ð46Þ

We see that if the point ðh̃; ẽÞ lies above the solid curve in
Fig. 1, then no Q-ball solutions exist with the parameters h̃
and ẽ. Moreover, if the gauge coupling constant ẽ exceeds
the limiting value 0.182, then there are no Q-ball solutions
in model (1). On the other hand, Eqs. (45) and (46) tell us
that for a given h̃ the number of radially excited states of
the gauged Q-ball is inversely proportional to the gauge
coupling constant ẽ. Thus, the number of radially excited
states increases indefinitely (proportional to ẽ−1) as the
gauge coupling constant ẽ → 0.
Let a Q-ball solution exist for given values of the

parameters ẽ and h̃. In this case, the parameter Ω̃∞ lies
in a range from the minimum allowable value Ω̃min

∞ to the
maximum allowable value of 1. Figure 2 presents the
dependences of the minimum allowable value of Ω̃∞ on
the gauge coupling constant ẽ for the basic and the first five
radially excited Q-ball solutions. In Fig. 2, the curves
Ω̃min

∞ ðẽÞ correspond to the self-interaction coupling con-
stant h̃ ¼ 0.2; for other values of h̃, the behavior of the
curves Ω̃min

∞ ðẽÞ is similar to that in Fig. 2. We see that for a
given ẽ the nth radially excited Q-ball solution may exist

FIG. 1. Dependences of the maximum allowable gauge cou-
pling constant ẽmax on the self-interaction coupling constant h̃ for
the basic and first five radially excited Q-ball states.
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only if Ω̃∞ ∈ ½Ω̃min
∞ ðẽÞ; 1�, where it is understood that

Ω̃min
∞ ðẽÞ is taken for the corresponding n. When ẽ tends

to zero, all the curves in Fig. 2 tend to the minimum
possible phase frequency for the nongauged case:
ω̃min ¼ ð1 − ð3=16Þh̃−1Þ1=2. As ẽ increases, all the curves
monotonically increase until the maximum possible value
Ω̃∞ ¼ 1 is reached. In Fig. 2, the intersection points of
the curves and the line Ω̃∞ ¼ 1 represent the maximum
allowable gauge coupling constants corresponding to the
self-interaction constant h̃ ¼ 0.2 in Fig. 1. In particular, it
follows from Fig. 2 that in accordance with Fig. 1 the
maximum allowable gauge coupling constant ẽmax
decreases with an increase in the radial excitation of the
Q-ball solution.
It is shown in Appendix B that the restriction ΔΩ < m

on the difference ΔΩ ¼ Ω∞ −Ω0 prevents the existence of
gauged Q-balls with an arbitrarily large electric charge or
gauge coupling constant. However, the parameters Ω0 and
Ω∞ are not independent, since they are both determined
by the solution to the mixed boundary value problem
(13)–(15). In this connection, it would be interesting to
study the dependence Ω̃0ðΩ̃∞Þ for different values of the
gauge coupling constant as well as for different radially
excited Q-ball solutions. Figure 3 shows the dependences
Ω̃0ðΩ̃∞Þ for the unexcited Q-ball solution corresponding
to different values of the gauge coupling constant ẽ.
We see that for nonzero ẽ all the curves Ω̃0ðΩ̃∞Þ intersect
the line Ω̃∞ ¼ 1 at two points, and thus each of these curves
has a turning point at Ω̃∞ ¼ Ω̃min

∞ , where the derivative

dΩ̃0=dΩ̃∞ becomes infinite. In Fig. 3, the dependence of
Ω̃min

∞ on ẽ is described by the solid curve in Fig. 2. In
particular, it follows from Fig. 2 that 1 − Ω̃min

∞ ∝ ẽmax − ẽ
in the vicinity of the maximum allowable gauge coupling
constant ẽmax. This means that the allowable interval of Ω̃∞
shrinks to a point as ẽ → ẽmax and thus the gauged Q-ball
cannot exist if ẽ ≥ ẽmax. From Fig. 3, it follows that the
parameter Ω̃∞ does not uniquely define the gauged Q-ball
solution, since there exist two different Q-ball solutions for
each Ω̃∞ ∈ ðΩ̃min

∞ ; 1�. At the same time, Fig. 3 tells us that
the gauged Q-ball solution is uniquely defined by the
parameter Ω̃0. The curves shown in Fig. 3 correspond to
the basic (n ¼ 0) Q-ball solution; for the radially excited
Q-ball solutions (n ≥ 1), the behavior of the curves
Ω̃0ðΩ̃∞Þ is similar to that in Fig. 3.
Now, we discuss the behavior of gauged Q-balls as the

gauge coupling constant ẽ tends to zero. From Fig. 3, it
follows that turning points divide the curves Ω̃0ðΩ̃∞Þ into
upper and lower branches. In the limit ẽ → 0, the Ω̃∞
coordinate of the turning point tends to the nongauged
value ω̃min ¼ ð1 − ð3=16Þh̃−1Þ1=2, and thus gauged Q-ball
solutions that lie on the upper branch tend to the corre-
sponding nongauged ones on the straight line Ω̃0 ¼ Ω̃∞. In
contrast, gauged Q-ball solutions that lie on the lower
branch do not tend to nongauged ones as ẽ → 0. It can be
said that as ẽ → 0 the gauge field decouples from Q-ball
solutions lying on the upper branch of the curve Ω̃0ðΩ̃∞Þ

FIG. 2. Dependences of the minimum allowable value of the
parameter Ω̃∞ on the gauge coupling constant ẽ for the basic and
first five radially excited Q-ball states. The curves correspond to
the self-interaction coupling constant h̃ ¼ 0.2.

FIG. 3. Curves Ω̃0ðΩ̃∞Þ for different values of the gauge
coupling constant ẽ and the self-interaction coupling constant
h̃ ¼ 0.2. The curves correspond to the unexcited Q-ball
solution. The straight solid line corresponds to the linear
dependence Ω̃0 ¼ Ω̃∞.
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but does not decouple from those lying on the lower branch.
Indeed, in this limit, the difference ΔΩ̃ ¼ Ω̃∞ − Ω̃0 → 0

for Q-ball solutions on the upper branch, whereas ΔΩ̃ →
Ω̃∞ − ω̃min for Q-ball solutions on the lower branch. It
follows that for Q-ball solutions that lie on the lower
branch the integral J̃ ¼ R∞0 r̃j̃0ðr̃Þdr̃ on the right-hand side
of Eq. (B1) increases indefinitely as ẽ → 0. Hence, the
electric charge Q̃ ¼ 4π

R
∞
0 r̃2j̃0ðr̃Þdr̃, the Noether charge

Q̃N ¼ ẽ−1Q̃, and the energy Ẽ of these Q-ball solutions
also increase indefinitely in this limit.
Now, let us consider the curves Ω̃0ðΩ̃∞Þ for the radially

excited Q-ball solutions. Figure 4 shows these curves for
the unexcited (n ¼ 0) and the first nine radially excited
(n ¼ 1;…; 9) gauged Q-balls corresponding to the para-
meters ẽ ¼ 0.01 and h̃ ¼ 0.2. We see that in Fig. 4 the
behavior of the curves is similar to that in Fig. 3. Indeed, all
the curves in Fig. 4 intersect the limiting line Ω̃∞ ¼ 1 at
two points and have a turning point with the infinite
derivative dΩ̃0=dΩ̃∞. This similarity can be explained as
follows. Equations (45) and (46) tell us that for the nth
radially excited Q-ball solution the maximum allowable
gauge coupling constant ẽmax ∝ n−1. It follows that for the
curves in Fig. 4 the difference ẽmax − ẽ decreases with an
increase in n due to the decrease in ẽmax. A similar situation
is observed in Fig. 3, where the difference ẽmax − ẽ
decreases due to the increase in ẽ at fixed ẽmax. In both
cases, the decrease in the difference ẽmax − ẽ leads to a
decrease in the allowable interval of Ω̃∞. The decrease in

the interval of Ω̃∞ results in the existence of the maximum
radially excited Q-ball solution for a given ẽ (the solution
with n ¼ 9 in Fig. 4). Note that for a given ẽ the existence
of the maximum radially excited gauged Q-ball is in
accordance with Eqs. (45) and (46).
Next, we turn to a study of the dependence of the energy

Ẽ on the parameter Ω̃∞ for the gauged Q-ball solutions.
The dependence Q̃NðΩ̃∞Þ is similar to ẼðΩ̃∞Þ and is
therefore not shown. In Fig. 5, we can see the curves
ẼðΩ̃∞Þ for the different values of the gauge coupling
constant ẽ. These curves correspond to the unexcited
Q-ball solution. The curves ẼðΩ̃∞Þ corresponding to the
radially excited Q-ball solutions are similar to those in
Fig. 5 and are not shown. First, we see that the behavior of
the curve Ẽðω̃Þ for the nongauged case ẽ ¼ 0 (for which the
parameter Ω̃∞ is equal to the phase frequency ω̃) is
drastically different from that for the gauged case ẽ ≠ 0.
Indeed, the energy of the nongauged Q-ball with the
self-interaction potential (5) tends to infinity both in the
thin-wall regime ω̃ → ω̃min ¼ ð1 − ð3=16Þh̃−1Þ1=2, where
Ẽ ∝ ðω̃2 − ω̃2

minÞ−3, and in the thick-wall regime ω̃ → 1,
where Ẽ ∝ ð1 − ω̃2Þ−1=2. At the same time, the energy of
any gauged Q-ball remains finite for all Ω̃∞ ∈ ½Ω̃min

∞ ; 1�,
where the minimum possible value Ω̃min

∞ depends on ẽ in
accordance with Fig. 2. We see again that for a given Ω̃∞
there exist the two gauged Q-ball solutions whose energies
can differ by several orders of magnitude. In particular, the
curves ẼðΩ̃∞Þ intersect the limiting line Ω̃∞ ¼ 1 at two
points. It was found numerically that for the Q-ball
solutions corresponding to the upper intersection points

FIG. 5. Curves ẼðΩ̃∞Þ for different values of ẽ and h̃ ¼ 0.2.
The curves correspond to the unexcited Q-ball solution.

FIG. 4. Curves Ω̃0ðΩ̃∞Þ for the unexcited and first nine radially
excitedQ-ball solutions. The curves correspond to the parameters
ẽ ¼ 0.01 and h̃ ¼ 0.2. The straight dashed line corresponds to the
linear dependence Ω̃0 ¼ Ω̃∞.
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the energy, Noether charge, and electric charge increase
indefinitely as ẽ → 0,

Ẽ ∼ ε̄ẽ−3; Q̃N ∼ q̄Nẽ−3; Q̃ ∼ q̄Nẽ−2; ð47Þ

where ε̄ and q̄N are dimensionless functions of the self-
interaction coupling constant h̃. It can be said that for
sufficiently small ẽ the gauged Q-ball that corresponds to
the upper intersection point passes into the quasi-thin-wall
regime described in Ref. [14].
The ẽ dependences in Eq. (47) can be explained

qualitatively as follows. The basic property of the thin-
wall regime is that the ansatz functions f̃ðr̃Þ and Ω̃ðr̃Þ are
approximately constant for r̃ ∈ ½0; R̃Þ, where R̃ can be
arbitrarily large in the true thin-wall regime (nongauged
case) and large but finite in the quasi-thin-wall regime
(gauged case). Equation (13) tells us that f̃ðr̃Þ can be
almost constant on the interval ½0; R̃Þ only if ðΩ̃2 − 1Þf̃ þ
f̃3=2 − h̃f̃5=4 ≈ 0 there. It follows that in the quasi-thin-
wall regime

f̃0 ≈ h̃−
1
2½1þ ð1 − 4h̃ð1 − Ω̃2

0ÞÞ
1
2�12; ð48Þ

where Ω̃0 and f̃0 are the values of the corresponding ansatz
functions at r̃ ¼ 0. However, the term ẽ2Ω̃f̃2 in Eq. (14)
does not allow the ansatz function Ω̃ðr̃Þ to be approxi-
mately constant on the interval ½0; R̃Þwith an arbitrary large
R̃; hence, there is no true thin-wall regime in model (1),
and as a consequence, there is no gaugedQ-ball possessing
an arbitrarily large Noether (and, consequently, electric)
charge. From Eq. (17b), it follows that Ω̃ðr̃Þ≈
Ω̃0 þ ẽ2f̃20Ω̃0r̃2=6. We see that Ω̃ðr̃Þ will be approximately
constant on the interval ½0; R̃Þ until ẽf̃0R̃ ≪ 1. It follows
that

R̃ ≈ ϱf̃−10 ẽ−1; ð49Þ

where the constant ϱ ≪ 1. Hence, the volume of the ball in
which the ansatz functions Ω̃0 and f̃0 are approximately
constant is proportional to ẽ−3. Next, Eqs. (23) and (24) tell
us that the Noether charge and energy densities are also
approximately constant inside the ball of radius R̃ ∝ ẽ−1,
and this gives rise to Eq. (47).
In the nongauged case, the Q-ball passes into the thick-

wall regime as ω̃ → 1. In this regime, the amplitude f̃ of the
complex scalar field tends to zero as ð1 − ω̃2Þ1=2, and thus
the nongauged Q-ball solution spreads over the space. It
was shown in Ref. [8] that for the potential (5), the energy
and Noether charge of the thick-wall nongauged Q-ball
diverge as ð1 − ω̃2Þ−1=2. Conversely, it follows from Fig. 5
that for fixed ẽ the energy of the Q-ball solution corre-
sponding to the lower intersection point remains finite at
ω̃ ¼ 1. The amplitude f̃ also remains finite, and thus there

is no thick-wall regime when the gauge coupling constant ẽ
is fixed [24]. However, it was found numerically that at the
lower intersection point the energy and Noether charge of
the gauged Q-ball diverge as ẽ → 0,

Ẽ ≈ Q̃N ∼ ¯̄qNẽ−1; ð50Þ

whereas the electric charge Q̃ ¼ ẽQ̃N remains finite. This
behavior can be explained as follows. In the unitary gauge,
the parameter Ω̃∞ plays the same role as the phase
frequency ω̃ in the nongauged case. From Fig. 3, it follows
that at Ω̃∞ ¼ 1 the difference μ̃2 ¼ 1 − Ω̃2

0 tends to zero as
ẽ → 0. Next, it is shown in Appendix B that for small
values of the parameter μ̃ the Noether charge Q̃N ∝ μ̃−1.
However, the integral J̃ ¼ ẽ

R∞
0 r̃j̃0ðr̃Þdr̃ on the right-hand

side of Eq. (B1) is proportional to ẽ2, whereas the left-hand
side of Eq. (B1) is proportional to μ̃2=2. It follows that for
small ẽ the parameter μ̃ ∝ ẽ and thus Ẽ ≈ Q̃N ∝ μ̃−1 ∝ ẽ−1,
in accordance with the numerical results.
In Fig. 5, all the curves (except for the one corresponding

to the nongauged case ẽ ¼ 0) have turning points at which
the derivative dẼ=dΩ̃∞ becomes infinite. Equation (11)
tells us that dQ̃N=dΩ̃∞ is also infinite at the turning points,
and thus the derivative dΩ̃∞=dQ̃N vanishes at these points.
This means that the second derivative d2Ẽ=dQ̃2

N ¼
dΩ̃∞=dQ̃N also vanishes at these turning points, and thus
the turning points on the curves ẼðΩ̃∞Þ correspond to the
inflection points of the curves ẼðQ̃NÞ. The curve ẼðQ̃NÞ
therefore has one inflection point in the gauged case,
whereas it has no inflection points in the nongauged case.
These facts can be explained qualitatively as follows. The
derivative dẼ=dΩ̃∞ determines the profitability of the
absorption of the scalar ϕ-boson into the Q-ball from
the viewpoint of the energy balance. Indeed, the quantity
mð1 − dẼ=dQ̃NÞ is the energy needed to extract one scalar
ϕ-boson from the Q-ball with Noether charge QN and to
transport the extracted ϕ-boson to infinity. From Eq. (11), it
follows that the derivative dẼ=dQ̃N decreases monotoni-
cally with a decrease in Ω̃∞. It than follows from Fig. 5 that
for the nongauged Q-ball solutions lying on the left (thin-
wall) part of the curve ẼðΩ̃∞Þ the derivative dẼ=dQ̃N

decreases monotonically with an increase in Q̃N and thus
the difference ðmþEðQN−1ÞÞ−EðQNÞ≈mð1−dẼ=dQ̃NÞ
increases monotonically with an increase in Q̃N . We
conclude that in the nongauged case ẽ ¼ 0 the absorption
of the ϕ-boson becomes more energetically profitable with
an increase in the Q-ball’s Noether charge toward the thin-
wall regime. The situation changes drastically for gauged
Q-balls. In this case, the role of the electrostatic Coulomb
repulsion increases with an increase in the Noether (and
consequently the electric) charge. The long-range Coulomb
repulsion means that the absorption of the ϕ-boson into a
gauged Q-ball with Noether charge QN is less profitable
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energetically in comparison with the absorption of the
ϕ-boson into a nongauged Q-ball with the same QN .
Hence, for the sameQN , the difference ½mþ EðQN − 1ÞÞ −
EðQNÞ ≈mð1 − dẼ=dQ̃N � is smaller for the gauged Q-ball
than for the nongauged one, and thus dẼg=dQ̃N >
dẼng=dQ̃N , where Ẽg and Ẽng are the energies of the
gauged and nongauged Q-balls, respectively. The differ-
ence dẼg=dQ̃N − dẼng=dQ̃N increases with an increase in
Q̃N , leading to the inflection points on the curves ẼðQ̃NÞ
in the gauged case (see Fig. 6) and, as a consequence,
to the turning points on the curves ẼðΩ̃∞Þ in Fig. 5. In
Appendix C, the existence of the inflection point on the
curve ẼðQ̃NÞ is explained analytically within a certain
approximation.
Figure 6 presents the curves ẼðQ̃NÞ for the first few

values of the gauge coupling constant ẽ and the self-
interaction coupling constant h̃ ¼ 0.2. For ẽ ¼ 0.02 and
ẽ ¼ 0.04, two characteristic points of the curve ẼðQ̃NÞ are
shown: the inflection point, where d2Ẽ=dQ̃2

N ¼ 0, and the
point of contact, where dẼ=dQ̃N ¼ Ẽ=Q̃N . The inflection
points lie to the left of the corresponding points of contact.
For ẽ ¼ 0.06, the terminal point corresponding to the
maximum allowable Noether charge and energy is shown,
whereas the inflection point and the point of contact are not
shown due to their indistinguishability. At the terminal
point, the derivative dẼ=dQ̃N ¼ 1, in accordance with

Eq. (11) and Fig. 5. From Fig. 6, it follows that the
Q-ball’s energy increases rapidly both with an increase in ẽ
for fixed Q̃N and with an increase in Q̃N for fixed ẽ.
Figure 7 presents the dependence of the ratio Ẽ=Q̃N on

the Noether charge Q̃N for different values of the gauge
coupling constant ẽ. The curves in Fig. 7 correspond to
the unexcited Q-ball solutions. The corresponding curves
for the radially excited Q-ball solutions are similar to
those in Fig. 7, and thus are not shown. As in the
previous figures, the curve for the nongauged Q-ball
differs sharply from those for the gauged Q-balls. First,
we see that in accordance with Fig. 5 the energy and
Noether charge of the nongauged Q-ball increase indefi-
nitely, both in the thin-wall (Ẽ=Q̃N → ω̃min) and in the
thick-wall (Ẽ=Q̃N → 1) regimes, whereas there are upper
bounds on the energy and Noether charge of the gauged
Q-balls. Next, in Fig. 7, all the curves (except those that
correspond to ẽ ¼ 0.14 and ẽ ¼ 0.16) have cuspidal
points; these points correspond to the minima of the
curves ẼðΩ̃∞Þ in Fig. 5. Note that, due to Eq. (11), the
position of the minimum in the curve ẼðΩ̃∞Þ coincides
with that in the corresponding curve Q̃NðΩ̃∞Þ, giving rise
to the cusps in Fig. 7. In Fig. 5, the curves ẼðΩ̃∞Þ with
ẽ ¼ 0.14 and ẽ ¼ 0.16 have no minima, resulting in the
absence of cusps for the corresponding curves in Fig. 7.
We see that for all of the curves the ratio Ẽ=Q̃N reaches a
maximum value at the point (cuspidal or otherwise) with
the minimum possible Noether charge Q̃N .

FIG. 7. Dependence of the ratio Ẽ=Q̃N on the Noether charge
Q̃N for different values of ẽ and h̃ ¼ 0.2. The curves correspond
to the unexcited Q-ball solution.

FIG. 6. Curves ẼðQ̃NÞ for the first few values of ẽ and h̃ ¼ 0.2.
The inflection point (on the left) and the point of contact (on the
right) are shown both for ẽ ¼ 0.02 and ẽ ¼ 0.04. The terminal
point is shown for ẽ ¼ 0.06. The curves correspond to the
unexcited Q-ball solution.
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In Fig. 7, all the curves corresponding to gauged Q-balls
(except the one corresponding to ẽ ¼ 0.16) have global
minima, whereas the curve that corresponds to the non-
gauged Q-ball has no minimum. It can easily be shown
that at the minimum point dẼ=dQ̃N ¼ Ẽ=Q̃N and
d2ðẼ=Q̃NÞ=dQ̃2

N ¼ ðd2Ẽ=dQ̃2
NÞ=Q̃N . From Fig. 7, it fol-

lows that the derivative d2ðẼ=Q̃NÞ=dQ̃2
N is positive at the

minimum points, and thus the derivative d2Ẽ=dQ̃2
N is also

positive there. Hence, the curve ẼðQ̃NÞ has a convex
downward shape at the minimum point of ẼðQ̃NÞ=Q̃N ;
this is consistent with the existence of inflection points for
the curves with nonzero ẽ in Fig. 6. It also follows from
Fig. 6 that the curve for zero ẽ has no inflection point, due
to the absence of a minimum point for the curve for zero ẽ
in Fig. 7.
At the minimum point of the curve ẼðQ̃NÞ=Q̃N , the

derivative dẼ=dQ̃N ¼ Ẽ=Q̃N , and this point therefore
corresponds to the point of contact between the curve
ẼðQ̃NÞ and the straight line passing through the origin of
coordinates. From Fig. 6, it follows that the inflection point
lies to the left of the point of contact. Hence, it is possible
that the curve ẼðQ̃NÞ terminates after the inflection point
but has no point of contact with the straight line passing
through the origin of coordinates. In Fig. 7, this situation is
seen for the curve with ẽ ¼ 0.16, which has no minimum.
In Fig. 7, the cuspidal points divide the curves into

upper and lower branches, and the curves without cuspidal
points (corresponding to ẽ ¼ 0.14 and ẽ ¼ 0.16) have only
one branch. We see that for nonzero ẽ both the lower
branches of the double-branch curves and the single-branch
curves terminate at the rightmost points. These points
correspond to the Q-ball solutions with maximum energy
and Noether charge for a given ẽ. From Eq. (11) and Figs. 3
and 5, it follows that for these Q-ball solutions the
derivative dẼ=dQ̃N¼1 (and consequently dE=dQN¼m).
Similarly, the derivative dẼ=dQ̃N is also equal to unity at
the rightmost points of the upper branches of the curves and
at the leftmost points of the single-branch curves. We see
that the gauged Q-balls cease to exist at the points where
the derivative dE=dQN is equal to the mass of the scalar
ϕ-boson [14]. Of course, the reason for this lies in Eqs. (11)
and (20). The former relation tells us that the parameter
Ω∞ ¼ m at the points where the derivative dE=dQN ¼ m,
while the latter means that the amplitude of the complex
scalar field becomes oscillating when Ω∞ > m. This
implies that the Noether charge and energy become infinite
as Ω∞ > m, and thus the Q-ball solution does not exist in
this case.
It follows from Fig. 7 that at fixed Q̃N the ratio Ẽ=Q̃N

increases with an increase in ẽ for Q-ball solutions on both
upper and lower branches of the curves ẼðQ̃NÞ=Q̃N . This is
apparently related to the increase in the role of long-range
Coulomb repulsion. We also see that the ratio Ẽ=Q̃N is less
than unity for Q-balls with the maximum possible energy

and Noether charge (except for ẽ ¼ 0.16). It was found
numerically that for theseQ-balls the ratio Ẽ=Q̃N tends to a
constant as ẽ → 0, and the constant is approximately equal
to 0.73. At the same time, for the nongauged Q-ball, the
ratio Ẽ=Q̃N tends to ω̃min ¼ ð1 − ð3=16Þh̃−1Þ1=2 ¼ 0.25
when Ẽ and Q̃N tend to infinity in the thin-wall regime.
It follows that for gauged Q-balls the ratio Ẽ=Q̃N does not
tend to the nongauged value of 0.25 as ẽ → 0. Hence, in the
limit of vanishing ẽ, the gauge field does not decouple from
the Q-ball with the maximum possible energy and Noether
charge in consistency with the conclusion obtained in
analysis of Fig. 3. Note that for the gauged Q-ball with
an arbitrarily small ẽ and maximum possible Q̃N the ratio
Ẽ=Q̃N is distinctly greater than that for the nongauged
Q-ball in the thin-wall regime. Of course, this difference is
due to the contribution of the electrostatic energy (35a) to
the total energy of gauged Q-ball.
Figure 8 shows the curves ẼðΩ̃∞Þ for the unexcited

and first nine radially excitedQ-ball solutions. As in Fig. 7,
all the curves in Fig. 8 intersect the limiting line Ω̃∞ ¼ 1 at
two points and possess turning points. We see that in the
same way as in Fig. 2 the Ω̃∞ coordinate of the turning
point increases monotonically toward the limiting value
Ω̃∞ ¼ 1 with an increase in n. We also see that the maxi-
mum possible energy of a radially excited gauged Q-ball
decreases monotonically with an increase in n. Note that
such behavior is similar to that shown in Fig. 5, where the
maximum possible energy of the unexcited gauged

FIG. 8. Curves ẼðΩ̃∞Þ for the unexcited and first nine radially
excited Q-ball solutions. The curves correspond to parameters
ẽ ¼ 0.01 and h̃ ¼ 0.2.
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Q-ball decreases monotonically with an increase in the
gauge coupling constant ẽ.
Next, we turn to Fig. 9, in which the dependence of the

ratio Ẽ=Q̃N on the Noether charge Q̃N is shown for the
unexcited and first nine radially excited Q-ball solutions.
We see that the individual behavior of the curves in Fig. 9 is
similar to that in Fig. 7. However, the relative positions of
the curves in Fig. 9 are different from those in Fig. 10, since
the cusps (or the leftmost points for n ¼ 8, 9) in Fig. 9 are
separated by larger intervals of Q̃N than those in Fig. 7.
All the curves ẼðQ̃NÞ=Q̃N in Fig. 9 (except the one
corresponding to n ¼ 9) have minimum points. With the
existence of the turning points in Fig. 8, this implies that the
all corresponding curves ẼðQ̃NÞ have inflection points at
which d2Ẽ=dQ̃2

N ¼ 0 and (except for n ¼ 9) points of
contact at which dẼ=dQ̃N ¼ Ẽ=Q̃N . All the curves in Fig. 9
possess two terminal points corresponding to the two points
of intersection with the line Ω̃∞ ¼ 1 in Fig. 8. This implies
that at the terminal points the derivative dẼ=dQ̃N ¼ 1.
Note that in Fig. 9, the ratio Ẽ=Q̃N is less than unity at all of
the terminal points at the right; for a given n, the right
terminal point corresponds to the Q-ball solution with the
maximum allowable energy and Noether charge. Finally,
it follows from Fig. 9 that for fixed Q̃N the energy of the
Q-ball solution increases with an increase in n.
Let us discuss the stability of radially excited gauged

Q-balls. Figure 9 tells us that for the nth radially excited
gauged Q-ball there are at least the n gauged Q-balls

having the same Noether charge but lower energy. It
follows that all radially excited gaugedQ-balls are unstable
with respect to the transition into less excited ones. The
energy released in this transition is carried away by the
electromagnetic radiation and the scalar ϕ-bosons.
Moreover, from Fig. 9, it follows that for all n there
are gauged Q-ball solutions (those for which the ratio
Ẽ=Q̃N > 1) that are unstable against decay into the massive
scalar ϕ-bosons. Thus, all the radially excited gauged
Q-balls are unstable. The instability, however, can be either
classical (the presence of one or more unstable modes in the
functional neighborhood of gauged Q-ball) or quantum
mechanical (the possibility of quantum tunneling). Note
that the issue of classical stability of gauged Q-balls is
rather complicated. Indeed, unlike the nongauged case,
there is no criterion of classical stability for gaugedQ-balls
[28]. Note, however, that in Fig. 9 there are cusps on the
curves corresponding to n ¼ 0;…; 6. It was shown in
Refs. [29,30] that the appearance of a cusp indicates the
onset of a new mode of instability. Hence, the curves with
cusp have areas of classical instability. At the same time,
the presence of cusp may mean the addition of a new
unstable mode to already existing ones. In this case, all the
radially excited gauged Q-balls would be classically
instable as in the model [4].
The boundary conditions (15) and Eq. (28) tell us that the

pressure p0 at the center of the Q-ball solution can be
written as

p0 ≡m4g−1p̃0 ¼ m4g−1
�
1

2
Ω̃2

0f̃
2
0 − Vðf̃0Þ

�
; ð51Þ

where Ω̃0 ¼ Ω̃ð0Þ and f̃0 ¼ f̃ð0Þ. In Eq. (51), the expres-
sion in square brackets is the dimensionless version of
the effective potential (B5): Ũeffðf̃Þ ¼ Ω̃2f̃2=2 − Vðf̃Þ. In
the nongauged case, the ansatz function Ω̃ðr̃Þ becomes the
constant phase frequency ω̃. It is well known that in this
case the value of the effective potential is always positive at
the center of the Q-ball solution; hence, the pressure at the
center of the nongauged Q-ball solution is also always
positive. The situation is different in the gauged case,
however, as the effective potential Ũeffðf̃Þ may be negative
at r̃ ¼ 0, resulting in negative pressure at the center of the
gauged Q-ball [24]. Figures 10 and 11 show the depend-
ences of the central pressure p̃0 on the parameter Ω̃∞. The
former shows the curves p̃0ðΩ̃∞Þ for the unexcited Q-ball
solutions corresponding to different values of ẽ, while the
latter shows the curves for the unexcited and first nine
radially excited Q-ball solutions for fixed ẽ ¼ 0.01. All the
curves in Figs. 10 and 11 have similar behavior. They
intersect the limiting line Ω̃∞ ¼ 1 at the upper and lower
points, and possess turning points. The only exception is
the curve p̃0ðΩ̃∞Þ in Fig. 10, which corresponds to the
nongauged case ẽ ¼ 0; this curve has only one intersection

FIG. 9. Dependence of the ratio Ẽ=Q̃N on the Noether charge
Q̃N for the unexcited and first nine radially excited Q-ball
solutions. The curves correspond to parameters ẽ ¼ 0.01 and
h̃ ¼ 0.2.

A. YU. LOGINOV and V. V. GAUZSHTEIN PHYS. REV. D 102, 025010 (2020)

025010-12



point, and does not have a turning point. Note that the
positions of the turning points in Figs. 3, 5, and 10 coincide,
as do the positions of the turning points in Figs. 4, 8, and 11.
However, the main feature of Figs. 10 and 11 is the presence
of rather broad intervals of Ω̃∞ in which the central pressure
of the Q-ball solution is negative. This behavior is

characteristic for curves corresponding to ẽ ¼ 0.02, 0.04,
0.06, 0.08, and 0.1 in Fig. 10 and for the curves corres-
ponding to n ¼ 0;…; 5 in Fig. 11. Note that a negative
central pressure is characteristic for the quasi-thin-wall
regime, i.e., for gauged Q-ball solutions possessing large
energies and Noether charges. This is because the central
effective potential Ũeff (and consequently the central pres-
sure) of large nongauged Q-balls is only slightly higher
than zero, and thus may become negative when we turn on
the electromagnetic interaction. Finally, of all the curves
in Figs. 10 and 11, only the one corresponding to the
nongauged Q-ball in Fig. 10 tends to zero at both (left and
right) terminal points. This is because the effective potential
of the nongauged Q-ball tends to zero in both the thin-
wall (Ω̃∞ → ½1 − ð3=16Þh̃−1�1=2) and thick-wall (Ω̃∞ → 1)
regimes.
A detailed description of the forms of the radially excited

nongauged Q-ball solutions is given in Ref. [12]. We
have found that the forms of the ansatz function fðrÞ ¼
mg−1=2f̃ðr̃Þ, the energy density EðrÞ ¼ m4g−1Ẽðr̃Þ, the
Noether charge density j0NðrÞ ¼ m3g−1j̃0Nðr̃Þ, and the pres-
sure pðrÞ ¼ m4g−1p̃ðr̃Þ for the gauged case are similar
to those for the nongauged case. We give as an example
only the excited Q-ball solution shown in Fig. 12, corre-
sponding to the parameters ẽ ¼ 0.01, h̃ ¼ 0.2, n ¼ 9, and
Ω̃∞ ¼ 0.9817, as it demonstrates all of the characteristic
properties of radially excited gaugedQ-ball solutions. Note
that the solution in Fig. 12 is the maximum possible radially
excited solution for a given ẽ and h̃. We can see that the

ansatz function f̃ðr̃Þ has the nine nodes (n ¼ 9) that
separate the nine alternating peaks. At the same time,
the ansatz function Ω̃ðr̃Þ increases monotonically on the
interval ½0;∞Þ, in accordance with Eq. (16a).

FIG. 11. Curves p̃0ðΩ̃∞Þ for the unexcited and first nine
radially excited Q-ball solutions. The curves correspond to
parameters ẽ ¼ 0.01 and h̃ ¼ 0.2.

FIG. 12. Profile functions f̃ðr̃Þ= ffiffiffi
2

p
(solid line) and Ω̃ðr̃Þ

(dashed line) for the ninth (n ¼ 9) radially excited Q-ball
solution. The solution corresponds to parameters ẽ ¼ 0.01,
h̃ ¼ 0.2, and Ω̃∞ ¼ 0.9817.

FIG. 10. Curves p̃0ðΩ̃∞Þ for different values of ẽ and h̃ ¼ 0.2.
The curves correspond to the unexcited Q-ball solution.
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It was found numerically that for n close to the maximum
possible value the absolute values of f̃ at the peak positions
r̃i approximately satisfy the relation

jf̃ðr̃iÞjr̃
1
2

i ≈ const: ð52Þ

This can be explained as follows. It is shown in Appendix B
[see Eqs. (B4) and (B5)] that the system of differential
equations (13) and (14) describes the two-dimensional
motion of a particle with unit mass in the plane ðf̃; Ω̃Þ.
The particle moves in the force field of the effective
potential Ũeffðf̃Þ ¼ Ω̃2f̃2=2 − Vðf̃Þ and experiences the
action of the nonconservative force F̃nc ¼ ð0; ð1þ ẽ2ÞΩ̃f̃2Þ
and the friction force F̃f ¼ ð−2r̃−1f̃0;−2r̃−1Ω̃0Þ. Next, the
amplitudes of the peaks in Fig. 12 are determined by the
effective potential Ũeffðf̃Þ. In the wide neighborhood of
the point ðf̃; Ω̃Þ ¼ ð0; 1Þ, the contour lines correspon-
ding to zero levels of Ueff and ∂ f̃Ueff are well described

by the approximate expressions f̃ ≈ 2ð1 − Ω̃Þ1=2 and
f̃ ≈ 2

ffiffiffi
2

p ð1 − Ω̃Þ1=2, respectively. During the oscillations,
the particle must intersect with the zero level of ∂ f̃Ueff ;
otherwise, there is no restoring force, and oscillations are
impossible. At the same time, the “coordinate” f̃ of the
particle cannot significantly exceed the zero level of Ueff ;
otherwise, oscillations are also impossible. We see that in
the neighborhood of the point ðf̃; Ω̃Þ ¼ ð0; 1Þ the ampli-
tudes of f̃ oscillations are approximately proportional to
ð1 − Ω̃Þ1=2. Equation (19) also tells us that in the neighbor-
hood of Ω̃ ¼ 1 the difference 1 − Ω̃ ∝ r̃−1. A combination
of the last two expressions results in Eq. (52).
Figure 13 shows the distributions of the energy density

Ẽðr̃Þ, the Noether charge density j̃0Nðr̃Þ, and the pressure
p̃ðr̃Þ corresponding to the Q-ball solution in Fig. 12. All
three distributions consist of a central region, where Ẽ, j̃0N ,
and p̃weakly depend on r̃, followed by a region in which Ẽ,
j̃0N , and p̃ oscillate. However, the oscillation patterns of Ẽ,
j̃0N , and p̃ are different. The Noether charge density j̃0Nðr̃Þ
has the simplest oscillation pattern, consisting of a
sequence of peaks separated by zero minima. The positions
of the zeros in j̃0N coincide with those of the ansatz function
f̃, whereas the maxima in j̃0N are slightly different from
those of f̃ due to the inconstancy of Ω̃ in Eq. (23). From
Eq. (52), it follows that the height of the ith peak of j̃0N is
approximately inversely proportional to its radial position
r̃i, whereas from Fig. 13, it follows that the width of the ith
peak increases moderately with an increase in i as well as
the distance r̃i − r̃i−1 between neighboring peaks.
The pattern of oscillation of the energy density Ẽ is more

complicated than that of the Noether charge density j̃0N. As
in the previous case, it is a sequence of peaks separated by
minima, but the peaks have a complicated structure, and the
minima are nonzero. For i ≤ 4, there are small, sharp peaks

against a background of wider basic peaks. This com-
plicated pattern of peaks is due to the interference between
the gradient (35b), kinetic (35c), and potential (35d)
parts of the energy density, where the small, sharp peaks
arise from the contribution of the gradient part. With an
increase in i, the contribution of the gradient part
decreases due to the decrease in the derivative f̃0ðr̃Þ; this
results in the disappearance of the small, sharp peaks,
starting with i ¼ 5. The values of Ẽ at the minimum points
located between the wide basic peaks are nonzero and
result from the contributions of the electric (35a) and
gradient (35b) parts, where the contribution of the latter
predominates. These values therefore allow us to estimate
the relative contributions of the gradient and electric
energy densities to the total energy density.
The oscillation behavior of the pressure p̃ is also rather

complicated. Unlike the energy and Noether charge den-
sities, the pressure p̃ may be negative. Indeed, we see that in
Fig. 13 the negative minima of p̃ are separated by positive
peaks, the positions of which approximately coincide with
those of the Noether charge density j̃0N ; these positive peaks
are due to the kinetic term Ω̃2f̃2=2 in Eq. (28). The minima
in p̃ have a double-well structure resulting from the
interference of the last three terms in Eq. (28). The central
maxima of these double wells approximately coincide with
the zeros in j̃0N , whereas the two side minima of the double
wells are due to the contribution from the negative gradient
term −f̃02=6 in Eq. (28).
The solution in Fig. 12 corresponds to the initial values

f̃0 ¼ 2.9 and Ω̃0 ¼ 0.6; for a given ẽ and h̃, it has the
maximum possible number of nodes (n ¼ 9). Note that
these initial values satisfy the condition of the quasi-thin-
wall regime (48). We also studied radially excited Q-ball

FIG. 13. Energy density Ẽðr̃Þ (solid line), Noether charge
density ρ̃ðr̃Þ ¼ j̃0Nðr̃Þ (short-dashed line), and pressure p̃ðr̃Þ
(long-dashed line) corresponding to the Q-ball solution in
Fig. 12.
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solutions with the same Ω̃0 but a smaller number of nodes.
All these solutions also satisfy the quasi-thin-wall condition
(48), and thus their initial values f̃0 are very close to that of
the solution in Fig. 12. It was found numerically that
starting with n ¼ 4 the energy and Noether charge of these
solutions satisfy the approximate relations

Ẽ1=3 ≈ aẼ þ bẼn; Q̃1=3
N ≈ aQ̃N

þ bQ̃N
n; ð53Þ

where the coefficients aẼ, bẼ, aQ̃N
, and bQ̃N

depend on the

position of the initial point ðf̃0; Ω̃0Þ on the quasi-thin-wall
regime curve (48). Note that the relations (53) are similar to
those obtained in Ref. [12] for radially excited nongauged
Q-balls. In the latter case, however, the number of radially
excited Q-balls is infinite, whereas in the gauged case, it is
finite and increases with a decrease in the gauge coupling
constant ẽ.

V. CONCLUSION

In the present paper, radially excited Uð1Þ gauged
Q-balls have been investigated both analytically and
numerically. In particular, the domain of existence of
Uð1Þ gauged Q-balls in the parameter space has been
found by numerical methods. It has also been found that the
presence of an Abelian gauge field leads to substantial
changes in the properties of radially excited gaugedQ-balls
compared to nongauged ones. First, there exists only a
finite number of radially excited gauged Q-balls at given
values of the model’s parameters, whereas in the non-
gauged case, the number of radially excited Q-balls is
infinite. For the nth radially excited gaugedQ-ball solution,
there exist a maximum possible Noether charge and energy,
both of which decrease with an increase in n. For a given n,
there also exists a maximum allowable value of the gauge
coupling constant; there is no nth radially excited gauged
Q-ball if the gauge coupling constant exceeds this limiting
value. In the same way as the maximum possible Noether
charge and energy, the maximum allowable gauge coupling
constant decreases with an increase in n. Note that this
behavior of the radially excited gaugedQ-balls is similar to
that of the unexcited one [14,24].
Another characteristic feature of gauged Q-balls (both

unexcited and radially excited) is the existence of turning
points in the curves describing the dependences of the
energy, the Noether charge, and several other quantities on
the parameter Ω∞. All of these turning points are due to the
inflection point on the curve EðQNÞ describing the depend-
ence of the energy of theQ-ball on the Noether charge. This
inflection point, in turn, results from the long-range nature
of the electrostatic Coulomb repulsion.
Unlike nongauged Q-balls, gauged ones (both unexcited

and radially excited) may have a negative pressure in the
central domain. This behavior holds for the gauged Q-balls
with a sufficiently large Noether charge (quasi-thin-wall

regime). However, the central pressure of the gaugedQ-ball
becomes positive with increases in both the gauge coupling
constant and the radial excitation.
At a fixed Noether charge, the energy of the gauged

Q-ball increases with an increase in the radial excitation
(i.e., with an increase in n). It follows that the ith excited
gauged Q-ball can transition into less excited Q-balls with
n ¼ 1;…; i − 1 or into an unexcited Q-ball with n ¼ 0; the
energy released is carried away by electromagnetic and
scalar waves.
In the present paper, we have considered radially excited

gauged Q-balls in three-dimensional space, whereas three-
dimensional radially excited nongauged Q-balls were
studied in Refs. [10,12]. It is obvious that radially excited
nongaugedQ-balls also exist in two spatial dimensions and
do not exist in one dimension. The existence of radially
excited nongauged Q-balls is due to the existence of the
“friction” term ðd − 1Þf0ðrÞ=r in the differential equation
for the ansatz function fðrÞ. This term is nonzero in the
two-dimensional (d ¼ 2) case and vanishes in the one-
dimensional (d ¼ 1) case, making the existence of one-
dimensional radially excited Q-balls impossible.
It is known that one- and two-dimensional electrically

charged objects must have infinite electrostatic energy,
meaning that the existence of one- and two-dimensional
electrically charged solitons in Maxwell gauge models is
impossible. Note, however, that two-dimensional electri-
cally charged solitons can exist in gauge models for which
the Lagrangians include the Chern-Simons term [31–39]. In
Maxwell gauge models, however, there are one- and two-
dimensional soliton systems with zero total electric charge
but a nonzero electric field [40–42]. These soliton systems
are unexcited; however, there are no reasons prohibiting
radial (in two spatial dimensions) or linear (in one spatial
dimension) excitations for them.
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APPENDIX A: TIME INDEPENDENCE
OF GAUGED Q-BALL FIELDS
IN THE UNITARY GAUGE

To establish the time dependence of the gauged Q-ball,
the Hamiltonian formalism can be used together with the
Lagrange multipliers method [43,44]. First of all, we must
fix the gauge. We shall use the unitary gauge, in which the
imaginary part of the complex scalar field vanishes,

ReðϕÞ ¼ fffiffiffi
2

p ; ImðϕÞ ¼ 0; ðA1Þ

and the Lagrangian density (1) takes the form
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L ¼ −
1

4
FμνFμν þ 1

2
∂μf∂μf þ e2

2
AμAμf2 − VðfÞ: ðA2Þ

Using Eq. (A2), we obtain the generalized momenta
corresponding to the fields f, Ax ¼ A1, Ay ¼ A2, and
Az ¼ A3,

Πf ¼ ∂L
∂ð∂tϕ1Þ

¼ ∂tf; ðA3aÞ

ΠAx
¼ ∂L

∂ð∂tAxÞ
¼ F10 ¼ −Ex; ðA3bÞ

ΠAy
¼ ∂L

∂ð∂tAyÞ
¼ F20 ¼ −Ey; ðA3cÞ

ΠAz
¼ ∂L

∂ð∂tAzÞ
¼ F30 ¼ −Ez; ðA3dÞ

and the Hamiltonian density

H ¼ ∂tfΠf þ ∂tAxΠAx
þ ∂tAyΠAy

þ ∂tAzΠAz
− L

¼ 1

2
Π2

Ax
þ 1

2
Π2

Ay
þ 1

2
Π2

Az
þ 1

2
Π2

f þ
1

4
FijFij

þ 1

2
ð∂xfÞ2 þ

1

2
ð∂yfÞ2 þ

1

2
ð∂zfÞ2

−
e2

2
f2ðA2

0 − A2
x − A2

y − A2
zÞ

− ΠAx
∂xA0 − ΠAy

∂yA0 − ΠAz
∂zA0 þ VðfÞ; ðA4Þ

where we express the time derivatives of the fields in terms
of the generalized momenta.
Since the Hamiltonian density (A4) does not depend on

the derivative ∂tA0, we have the primary constraint
ΠA0

¼ 0. The primary constraint must hold at any instant
of time, and thus the Poisson bracket of the generalized
momentum ΠA0

with the Hamiltonian H ¼ R Hd3x must
vanish. This condition leads us to the secondary constraint

δH
δA0

¼ ∂xΠAx
þ ∂yΠAy

þ ∂zΠAz
− e2f2A0 ¼ 0: ðA5Þ

Taking into account the expression for the electric charge
density in the unitary gauge, ρ ¼ j0 ¼ −e2f2A0, and the
definitions of the generalized momenta in Eqs. (A3b)–(A3d),
we see that constraint (A5) is Gauss’s law

∂iEi ¼ ρ: ðA6Þ

Gauss’s law makes it possible to represent the Noether
charge of a field configuration of the model as the surface
integral of the flux of the generalized momenta:

QN ¼ e−1
Z

ρd3x ¼ −e−1
Z

∂iΠAid3x

¼ −e−1
I
S∞

ΠAidSi: ðA7Þ

The energy density E ¼ T00 can also be expressed in
terms of the generalized momenta and the corresponding
fields

E ¼ 1

2
Π2

Ax
þ 1

2
Π2

Ay
þ 1

2
Π2

Az
þ 1

2
Π2

f þ
1

4
FijFij

þ 1

2
ð∂xfÞ2 þ

1

2
ð∂yfÞ2 þ

1

2
ð∂zfÞ2

þ e2

2
f2ðA2

0 þ A2
x þ A2

y þ A2
zÞ þ VðfÞ: ðA8Þ

We see that the energy density (A8) does not coincide with
the Hamiltonian density (A4):

E −H ¼ ΠAx
∂xA0 þ ΠAy

∂yA0 þ ΠAz
∂zA0 þ e2A2

0f
2:

ðA9Þ

However, after integrating by parts, the right-hand side of
Eq. (A9) vanishes for field configurations which have finite
energy (so limr→0ΠAi ¼ 0) and satisfy Gausss law (A5),
and hence for these field configurations,

E ¼
Z

Ed3x ¼ H ¼
Z

Hd3x: ðA10Þ

It can be shown that in the unitary gauge the field
equations (6) and (7) can be written in the Hamiltonian
form,

∂tΠf ¼ −
δH
δf

¼ −
δE
δf

; ∂tΠAi ¼ −
δH
δAi ¼ −

δE
δAi ;

ðA11Þ

where Eq. (A10) is used. When calculating the variational
derivatives in Eq. (A11), the time component A0 of the
electromagnetic potential must be expressed in terms of the
canonical variables f and ΠAi using Gauss’s law (A5):

A0 ¼ e−2f−2ð∂xΠAx
þ ∂yΠAy

þ ∂zΠAz
Þ: ðA12Þ

The remaining Hamilton equations

∂tf ¼ δE
δΠf

¼ δH
δΠf

; ∂tAi ¼ δE
δΠAi

¼ δH
δΠAi

ðA13Þ

are simply the definitions of the generalized momenta
(A3a)–(A3d). Next, from Eq. (10), it follows that in the
Q-ball field configuration the variation in the energy
δE ¼ λδQN , where λ is the Lagrange multiplier. In deriving
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the field equations (A11) and (A13), we must consider only
those variations of fields and generalized momenta that
vanish at spatial infinity. In particular, δΠAi jS∞ ¼ 0, so from
Eq. (A7), it follows that δQN ¼ 0 for these variations. Since
δE ¼ λδQN in the Q-ball field configuration, the variation
δE also vanishes. It then follows from Eqs. (A11) and
(A13) that the fields f and Ai and the corresponding
generalized momenta Πf and ΠAi do not depend on time in
the unitary gauge. The time component A0 of the electro-
magnetic potential also does not depend on time in the
unitary gauge, as this follows from Eq. (A12). Note,
however, that Eq. (10) also holds for variations in the
fields and generalized momenta that lead to nonzero δE and
δQN . In particular, it holds for variations connecting two
infinitesimally closeQ-ball field configurations, giving rise
to the differential relation (11).
Now, let us investigate how the Lagrange multiplier λ

is related to the parameters of the gauged Q-ball. To do
this, we shall follow the method of Ref. [21]. First, note
that in the unitary gauge the electromagnetic potential A0

of the gauged Q-ball must tend to some constant value;
otherwise, the energy of the gauged Q-ball would be
infinite. Let us denote this limiting value of A0ðrÞ as
−e−1λ̄; then, the combination ΩðrÞ ¼ −eA0ðrÞ can be
represented as

ΩðrÞ ¼ Ω̄ðrÞ þ λ̄; ðA14Þ

where limr→∞ Ω̄ðrÞ ¼ 0. Using Eqs. (23), (24), and
(A14), we obtain expressions for derivatives of the
Noether charge QN and the energy E of the gauged
Q-ball with respect to λ̄,

dQN

dλ̄
¼ 4π

Z∞
0

�
f2
�
1þ dΩ̄

dλ̄

�
þ 2f

df

dλ̄
ðΩ̄þ λ̄Þ

�
r2dr;

ðA15Þ

dE

dλ̄
¼ 4π

Z∞
0

�
e−2Ω̄0

�
dΩ̄
dλ̄

�0
þ f0

�
df

dλ̄

�0

þ f2ðΩ̄þ λ̄Þ
�
1þ dΩ̄

dλ̄

�

þ f
df

dλ̄
ðΩ̄þ λ̄Þ2 þ dV

df
df

dλ̄

�
r2dr; ðA16Þ

where the prime means differentiation with respect
to the radial variable r. Next, we integrate the term
f0ðdf=dλ̄Þ0r2 in Eq. (A16) by parts and use Eqs. (13),
(15), and (A15) to recast Eq. (A16) in the form

dE

dλ̄
¼ λ̄

dQN

dλ̄
þ 4π

Z
∞

0

�
e−2Ω̄0

�
dΩ̄
dλ̄

�0

þ Ω̄
�
f2
�
1þ dΩ̄

dλ̄

�
þ 2f

df

dλ̄
ðΩ̄þ λ̄Þ

��
r2dr:

ðA17Þ

We can then use Eq. (A14) and differentiate Eq. (14)
with respect to λ̄ to obtain the relation

�
dΩ̄
dλ̄

�00
þ 2

r

�
dΩ̄
dλ̄

�0
− e2f2

�
1þ dΩ̄

dλ̄

�

− 2e2f
df
dλ̄

ðΩ̄þ λ̄Þ ¼ 0: ðA18Þ

We now integrate the term e−2Ω̄0ðdΩ̄=dλ̄Þ0r2 in Eq. (A17)
by parts and use Eq. (A18) to show that in Eq. (A17) the
integral term vanishes for the Q-ball field configuration.
Thus, dE=dλ̄ ¼ λ̄dQN=dλ̄, and as a consequence, we
obtain the relation

dE
dQN

¼ λ̄: ðA19Þ

From Eqs. (11) and (A19), it follows that λ ¼ λ̄, and we
conclude that in the unitary gauge the Lagrange multi-
plier λ ¼ −eA∞

0 , where A∞
0 is limr→∞ A0ðrÞ.

We have shown that the gauge Q-ball solution does not
depend on time in the unitary gauge. Of course, this time
independence is not gauge invariant. In particular, under
the gauge transformations (3) with the gauge function
Λðx; tÞ ¼ e−1ωt, the unitary Q-ball solution (9) becomes
the gauge transformed solution

ϕωðr; tÞ ¼ fðrÞ exp ð−iωtÞ; ðA20aÞ

Aω
0 ðrÞ ¼ A0ðrÞ þ e−1ω; ðA20bÞ

which depends on t. At the same time, the combina-
tion ΩωðrÞ ¼ ω − eAω

0 ðrÞ does not depend on the gauge
parameter ω and thus coincides with the unitary gauge
combinationΩðrÞ ¼ −eA0ðrÞ. In particular, it follows from
Eq. (A20b) that Ω∞ ¼ limr→∞ΩωðrÞ is equal to the
Lagrange multiplier λ,

Ω∞ ¼ lim
r→∞

ðω − eAω
0 ðrÞÞ

¼ −e lim
r→∞

A0ðrÞ ¼ −eA∞
0 ¼ λ; ðA21Þ

and thus the differential relation (11) can be written in the
form

dE
dQN

¼ Ω∞; ðA22Þ
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which is valid for an arbitrary gauge parameter ω. Note that
if limr→∞ Aω

0 ðrÞ ¼ 0 (this gauge is often used to describe
gauged Q-balls) then Ω∞ ¼ ω and Eq. (A22) takes the
form dE=dQN ¼ ω.

APPENDIX B: EXISTENCE OF A MAXIMUM
POSSIBLE ELECTRIC CHARGE

FOR GAUGED Q-BALLS

It is known that in most cases the electric charge of a
gaugedQ-ball cannot be arbitrarily large. It was pointed out
in Ref. [20] that this situation arises when the second
derivative of the self-interaction potential d2VðjϕjÞ=djϕj2 is
finite at jϕj ¼ 0. We will discuss this point in more detail.
Multiplying Eq. (14) by r and integrating by parts, we
obtain the integral relation

R
∞
0 Ω0ðrÞdr ¼ e

R
∞
0 rj0ðrÞdr,

which implies that

ΔΩ ¼ Ω∞ − Ω0 ¼ e
Z∞
0

rj0ðrÞdr: ðB1Þ

On the other hand, Eqs. (16a), (20), (21), and (22) lead us to
the conclusion

ΔΩ < Ω∞ ≤ m; ðB2Þ

where we assume for definiteness that the parameter Ω∞ is
positive. Equations (B1) and (B2) result in the inequality

e
Z∞
0

rj0ðrÞdr < m; ðB3Þ

where for field models with regular self-interaction poten-
tials the squared mass m2 ¼ 2−1d2VðjϕjÞ=djϕj2 at jϕj ¼ 0.
We now show that Eq. (B3) cannot be satisfied if the

gauged Q-ball can possess an arbitrarily large electric
charge Q ¼ 4π

R∞
0 r2j0ðrÞdr. First, it should be noted

that the electric charge density j0ðrÞ ¼ eΩðrÞfðrÞ2 is a
bounded function of r. Indeed, from Eq. (16), it follows
that ΩðrÞ ∈ ð0; m� and thus is bounded. At the same time,
it can be shown that, regardless of the value of r, the ansatz
function fðrÞ cannot exceed the limiting value

ffiffiffiffiffiffiffiffiffiffi
2g=h

p
;

otherwise, the term ðΩ2 −m2Þf þ gf3=2 − hf5=4 in
Eq. (13) is negative for Ω ∈ ð0; m�, and thus fðrÞ increases
indefinitely. The boundary condition fðrÞ⟶r→∞ 0 is there-
fore not met, and the gauged Q-ball does not exist. We can
conclude that the electric charge density of the gauged
Q-ball is bounded on the interval r ∈ ½0;∞Þ.
Now, we consider the possible variants of the electric

charge density j0ðrÞ that lead to an arbitrarily large elec-
tric charge Q ¼ 4π

R
∞
0 j0ðrÞr2dr. The first variant corre-

sponds to the case when the integral I ¼ R∞0 j0ðrÞdr is
infinite. In this case, however, the integral J ¼ R∞0 rj0ðrÞdr

is also infinite, and thus Eq. (B3) cannot be satisfied.
Consequently, this variant of j0ðrÞ cannot be realized.
The second variant of j0ðrÞ corresponds to the case when

the integral I ¼ R∞0 j0ðrÞdr is finite but the electric charge
Q ¼ 4π

R∞
0 j0ðrÞr2dr is infinite. Note in this connection

that Eqs. (20)–(22) lead to the conclusion that the electric
charge density j0ðrÞ ¼ eΩðrÞfðrÞ2 tends to zero exponen-
tially as r → ∞. It follows that the electric chargeQ cannot
have an infinite contribution from the spatial asymptotics of
j0ðrÞ. If we suppose that the maximum of j0ðrÞ does not
tend to zero, then this means that the electric charge density
is localized within a finite vicinity of this maximum, and
the radial position of the maximum increases indefinitely.
Using the mean value theorem, we find that for this
electric charge density Q ∼ R2 and J ∼ R, where R is the
radial position of the maximum of j0ðrÞ. We see that an
indefinite increase in Q leads to an indefinite increase
in R, and as a consequence to an indefinite increase in
the integral J ¼ R∞0 rj0ðrÞdr. Because of this, Eq. (B3)
again cannot be satisfied, and this variant of j0ðrÞ is also
unrealizable.
There is one more possible variant, which corresponds

to the case where the electric charge density j0ðrÞ spreads
over the semi-infinite interval r ∈ ½0;∞Þ in such a way
that the integral I tends to zero while the electric charge
Q increases indefinitely. In this case, the integral J ¼R∞
0 rj0ðrÞdr may be finite, and condition (B3) may be met.
However, since the integral I ¼ R∞0 j0ðrÞdr tends to zero,
the maximum of j0ðrÞ also tends to zero, and consequently
so does the maximum of the ansatz function fðrÞ. We now
show that this behavior of fðrÞ cannot be realized. First,
note that the system of differential equations (13) and (14)
can be represented in the form

f00 þ 2

r
f0 ¼ −

∂
∂f Ueffðf;ΩÞ; ðB4aÞ

Ω00 þ 2

r
Ω0 ¼ −

∂
∂ΩUeffðf;ΩÞ þ ð1þ e2ÞΩf2; ðB4bÞ

where the effective potential

Ueffðf;ΩÞ ¼
1

2
ðΩ2 −m2Þf2 þ g

8
f4 −

h
24

f6: ðB5Þ

The system (B) describes the two-dimensional motion
of a particle with unit mass in the plane ðf;ΩÞ, where
the radial variable r plays the role of time. The particle
moves in a viscous medium under the action of a con-
servative force Fc ¼ ð−∂fUeff ;−∂ΩUeffÞ, a nonconserva-
tive force Fnc ¼ ð0; ð1þ e2ÞΩf2Þ, and a friction force
Ff ¼ ð−2r−1f0;−2r−1Ω0Þ, which is also nonconservative.
The structure of the level lines of the effective potential

Ueffðf;ΩÞ leads to the conclusion that the particle must
start moving in the close vicinity of the point ð0; mÞ in order
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to have the infinitesimal coordinate fðrÞ. In this case, the
initial coordinate Ω0 satisfies the condition

m2 −Ω2
0 ≡ μ2 ≪ m2; ðB6Þ

from which it follows that

ΔΩ ¼ Ω∞ −Ω0 < m −Ω0 ≈
μ2

2m
: ðB7Þ

We now estimate the effective radial size ΔR of the
electric charge distribution for this case. From Eq. (B4a),
it follows that the motion of the particle along the
coordinate f is determined by the action of the force
−∂fUeff . The effective potential Ueff is negative in the
interval f ∈ ð0; 2g−1=2μÞ and has a local minimum at
fmin ¼ 21=2g−1=2μ, where condition (B6) is used. In the
neighborhood of the local minimum fmin, the effective
potential Ueff takes the form

Ueff ≈ −
μ4

2g
þ μ2

 
f −

ffiffiffi
2

g

s
μ

!
2

; ðB8Þ

and thus in the neighborhood of fmin, the motion of the
particle is harmonic with period T ¼ ffiffiffi

2
p

π=μ. We can use
the period T to estimate ΔR. In doing so, we neglect the
friction force −2r−1f0 and the nonharmonic nature of the
effective potential Ueff and assume that the coordinate Ω is
fixed when the particle moves along the coordinate f. All
these factors, however, can only result in an increase in the
effective radial size ΔR, and thus we have the estimation

ΔR > aμ−1; ðB9Þ

where a is a finite positive constant. To estimate the value
of the ansatz function f on the interval ΔR, we note that
the minimum point fmin ¼ 21=2g−1=2μ and the nearest zero
point f ¼ 2g−1=2μ of the effective potential Ueff are both of
the order μ. Hence, the particle moving in the force field
of the effective potential Ueff will have the coordinate f of
the order μ on the “time” interval ΔR, and we obtain the
estimation

f > bμ; ðB10Þ

where b is a finite positive constant. Equations (16a) and
(B10) lead to an estimation for the electric charge density j0
on the interval ΔR,

j0 > eΩ0b2μ2: ðB11Þ

We can now obtain an estimation for the integral J,

J ¼
Z

∞

0

rj0ðrÞdr ¼
Z

ΔR

0

rj0ðrÞdrþ A

> eΩ0b2μ2
Z

ΔR

0

rdrþ A >
1

2
eΩ0a2b2; ðB12Þ

where we use the fact that the integral A ¼ R∞ΔR rj0ðrÞdr is
finite, since from Eqs. (20)–(22) it follows that j0ðrÞ tends
to zero exponentially as r → ∞. In the same way, it can be
shown that the integral J is less than some positive finite
value. Hence, the integral J is finite as μ → 0. On the other
hand, Eqs. (23), (B9), and (B11) result in a lower estimation
for the electric charge Q:

Q >
4π

3
eΩ0a3b2μ−1: ðB13Þ

Thus, the integral J is finite, whereas the electric charge Q
increases indefinitely as μ → 0. At the same time, Eq. (B7)
tells us that ΔΩ < μ2=ð2mÞ and therefore vanishes as
μ → 0. It follows that the condition ΔΩ ¼ eJ [Eq. (B1)]
does not hold as μ → 0, and thus a gauged Q-ball with an
arbitrarily large electric charge cannot exist in this case.
We have shown that gauged Q-balls with arbitrarily

large electric charges cannot exist in model (1). The reason
lies in the constraint Ω∞ ≤ m, from which it follows that
the difference ΔΩ ¼ Ω∞ −Ω0 < m. Because of this last
inequality, Eq. (B1) can not be satisfied for sufficiently
large electric charges, and thus the corresponding Q-balls
do not exist.
The regular self-interaction potential VðjϕjÞ must have a

finite second-order derivative d2VðjϕjÞ=djϕj2 at jϕj ¼ 0,
and thus the mass m of the complex scalar field ϕ is
also finite in this case, since m2 ¼ 2−1d2VðjϕjÞ=djϕj2 at
jϕj ¼ 0. The difference ΔΩ ¼ Ω∞ −Ω0 therefore remains
bounded for all Q-balls with regular self-interaction poten-
tials, and hence such Q-balls cannot possess arbitrarily
large electric charges. It follows that there is a maximum
allowable electric charge for a gauged Q-ball with a
regular self-interaction potential. However, as shown in
Refs. [18,20], gauged Q-balls also exist in models where
the self-interaction potentials are not regular at jϕj ¼ 0. In
particular, the second order derivative d2VðjϕjÞ=djϕj2
diverges as jϕj → 0, and thus there is no upper bound
on the difference ΔΩ ¼ Ω∞ − Ω0 in these models. This
results in the existence of gauged Q-balls with arbitrarily
large electric charges [18,20].
Another consequence of Eq. (B3) is that gauged Q-balls

cannot exist if the gauge coupling constant e exceeds some
upper bound. Indeed, Eq. (B3) cannot be satisfied for
sufficiently large e, since, as shown above, the integral J ¼R∞
0 rj0ðrÞdr cannot be arbitrarily small. Radially excited
gauged Q-balls also cannot exist if the number of nodes n
of the ansatz function fðrÞ increases indefinitely. In this
case, the integral J ¼ R∞0 rj0ðrÞdr also increases indefi-
nitely, and Eq. (B3) cannot be satisfied. Hence, there is only
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a finite number of radially excited gauged Q-balls at given
values of the models parameters.

APPENDIX C: EXISTENCE OF AN INFLECTION
POINT ON THE CURVE EðQNÞ IN THE

GAUGED CASE

In the present paper, the curves in Figs. 3, 4, 5, 8, 10, and
11 have turning points at certain values of the parameter
Ω∞. The existence of these turning points results from
the existence of inflection points on the corresponding
curves EðQNÞ. Indeed, by definition, the second derivative
d2E=dQ2

N ¼ 0 at an inflection point; the basic relation (11)
then tells us that the derivatives dΩ∞=dQN and dΩ∞=dE
also vanish at the inflection point. Hence, the derivatives
dQN=dΩ∞ and dE=dΩ∞ are infinite at the inflection point,
resulting in the turning points shown in Figs. 5 and 8.
Next, we differentiate Eq. (B1) with respect to the param-
eter Ω∞. Taking into account that at the turning point the
infinite derivative dQN=dΩ∞ results from the infinite
derivative ∂j0=∂Ω∞, we conclude that the derivative
dΩ0=dΩ∞ becomes infinite at the turning point in accor-
dance with Figs. 3 and 4. Finally, keeping in mind that the
central pressure p0 ¼ Ω2

0f
2
0=2 − Vðf0Þ, we conclude that

the derivative dp0=dΩ∞ is also infinite at the turning point,
which is consistent with Figs. 10 and 11.
Combining Eqs. (11) and (41), we obtain the differential

relation

dE
dQN

−
E
QN

þ 2

3QN
ðEðGÞ − EðEÞÞ ¼ 0: ðC1Þ

From this equation, it follows that if we know how the
electric and gradient parts of the energy depend on the
Noether charge QN , we can determine the dependence of
the total energy E of the Q-ball solution on the Noether
charge QN . In this case, Eq. (C1) becomes a first-order
linear inhomogeneous differential equation that can be
solved by the method of variation of constants. Of course,
the exact forms of the dependences EðEÞðQNÞ and EðEÞðQNÞ
are unknown; however, we can guess the main features of
these dependences for sufficiently large QN when the
interior part and the edge of the Q-ball solution are clearly
distinguishable. The electrostatic energy of a compact
object possessing the Noether charge QN can be written
as EðEÞðQNÞ ¼ αQ2

N=ð2RðQNÞÞ, where RðQNÞ is the
object’s effective charge radius, which depends on QN ,
and α ¼ e2=ð4πÞ is the fine-structure constant. For a
uniform distribution of the electric charge, the effective
charge radius R ∝ Q1=3

N . If the electric charge is concen-
trated in the spherical shell of radius R and thickness Δ,
then the effective charge radius R ∝ Q1=2

N . For a gauged
Q-ball, we have an intermediate situation and therefore
expect that R ≈ ϱQγ

N , where ϱ is a positive constant and the

exponent γ ∈ ð1=3; 1=2Þ. Thus, the electrostatic energy of
the Q-ball solution is written as

EðEÞðQNÞ ≈
α

2ϱ
Q2−γ

N ≡ aQ2−γ
N : ðC2Þ

Next, we suppose that for sufficiently large QN the main
contribution to the gradient energy EðGÞ comes from the
edge region of the Q-ball. In this case, the gradient energy
of the Q-ball solution takes the form

EðGÞðQNÞ ≈ 4πR2T ¼ 4πϱ2TQ2γ
N ≡ bQ2γ

N ; ðC3Þ

where T is the surface tension.
Substituting Eqs. (C2) and (C3) into Eq. (C1), we obtain

a first-order linear inhomogeneous differential equation
that can be integrated by the method of variation of
constants. The solution to this differential equation can
be written as

E ¼ cQN þ 2

3

aQ2−γ
N

ð1 − γÞ þ
2

3

bQ2γ
N

ð1 − 2γÞ ; ðC4Þ

where c is the integration constant. Note that from Eq. (C4)
it follows that the positive constant γ should be less than
1=2; otherwise, the last term in Eq. (C4) becomes negative
or diverges, which is unacceptable from a physical point of
view. Under this condition, all the exponents in Eq. (C4) are
positive. Next, using Eq. (C4), we obtain the first and
second derivatives of theQ-ball’s energy with respect to the
Noether charge:

dE
dQN

¼ cþ 2

3

að2 − γÞQ1−γ
N

ð1 − γÞ þ 4

3

bγQ2γ−1
N

ð1 − 2γÞ ; ðC5Þ

d2E
dQ2

N
¼ 2

3
að2 − γÞQ−γ

N −
4

3
bγQ2γ−2

N : ðC6Þ

By equating the second derivative (C6) to zero, we obtain
the value of the Noether charge at the inflection point:

QN;infl ¼
�

2bγ
að2 − γÞ

� 1
2−3γ

: ðC7Þ

Formally, the existence of the inflection point is related
to the fact that the two terms in Eq. (C6) have opposite
signs. This is because the exponent 2 − γ in Eq. (C2) is
larger than the exponent 2γ in Eq. (C3), due to the multi-
plier Q2

N in the electrostatic energy EðEÞ. In turn, the multi-
plier Q2

N is a consequence of the long-range nature of the
electrostatic Coulomb repulsion. Thus, it can be said that
the existence of the inflection point is due to the long-range
Coulomb repulsion. Indeed, from Eq. (C7), it follows that
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QN;infl ∝ e−2=ð2−3γÞ. Hence,QN;infl → ∞ as e → 0, which is
equivalent to the absence of an inflection point at zero e
when there is no Coulomb repulsion.
As mentioned above, the derivative dE=dQN cannot

exceed the mass m of the scalar ϕ-boson. However,
Eq. (C5) tells us that dE=dQN → ∞ as QN → 0.
Hence, Eq. (C4) becomes inapplicable for sufficiently
small QN . In particular, it does not reproduce the cusp at
the minimum possibleQN . This is because the partition of
the Q-ball into an interior and an edge is unclear for small
enough QN , and thus Eqs. (C2) and (C3) become
inapplicable in this case.
When QN reaches the maximum possible value QN;max,

the derivative dE=dQN ¼ m. Combining this result with

Eq. (C5) allows us to express the parameter c in terms of
QN;max and the rest of the parameters:

c ¼ m −
2a
3

2 − γ

1 − γ
Q1−γ

N;max −
4

3

bγ
ð1 − 2γÞQ

−1þ2γ
N;max : ðC8Þ

Finally, note that Eqs. (C2) and (C3) can be considered
as an approximation that is only valid for sufficiently large
QN . In particular, a more accurate description can be
achieved if the parameters ϱ and T in Eqs. (C2) and
(C3) are some functions of QN . Nevertheless, we believe
that the simplified approach used here clearly shows the
reason for the existence of the inflection point on the curve
EðQNÞ in the gauged case.
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