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This is a companion paper of a long work appeared in [C. Cremonini and P. Grassi, Pictures from super
Chern-Simons theory, J. High Energy Phys. 03 (2020) 043] discussing the super-Chern-Simons theory on
supermanifolds. Here, it is emphasized that the Batalin-Vilkovisky formalism is naturally formulated using
integral forms for any supersymmetric and supergravity models and we show how to deal with A∞ algebras
emerging from supermanifold structures.
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I. INTRODUCTION

The Batalin-Vilkovisky (BV) formalism and superge-
ometry have been extensively studied during the last years.
It has been shown the naturalness of the BV formalism
in the supergeometry approach (QP manifolds, odd-
symplectic structures, BV bracket) because all fields have
their own (classical) opposite-statistic partner leading to
a BV-symplectic two-form corresponding to an odd-
symplectic structure (see [1–3] and [4]). The application
of the BV formalism was ubiquitous in quantum field
theory and string theory, but in our opinion the BV
formalism for supersymmetric theories has never been
deeply explored from the supergeometric point of view
and this is the aim of the present work.
As has been shown some years ago by several authors

[5–8], any supersymmetric model can be reformulated on a
given supermanifold by constructing a p-form Lagrangian
LðpÞ (the rheonomic Lagrangian, defined according to the
rules given in [9]). The action functional is obtained by
multiplying the Lagrangian by a PCO Y (also known
as Poincaré dual of the immersion of the bosonic sub-
manifold into the supermanifold) which converts the
p-form Lagrangian LðpÞ into an integral form LðpÞ ∧ Y
which can be integrated on the supermanifold. By choosing

Y , one can obtain any superspace representation of the
same supersymmetric action.
In [8], that procedure has been applied to super-Chern-

Simons theory D ¼ 3, N ¼ 1, and the details of the
construction have been discussed. It has been pointed
out that there might be another way to describe Chern-
Simons theory using pseudoforms (by pseudoforms, we
intend those forms with a nonzero number of delta
functions less than the maximal one or, differently stated
in our case, with picture number equal to 1). In that case,
there are some caveats. Indeed, in order to write the
interactions, one needs to insert some PCOs (lowering
the number of picture) which are potential sources of
ambiguities and difficulties. In [10], it is shown how to deal
with those issues by introducing a suitable set of multi-
products leading to an A∞ algebra.
What is left to study is the BV formalism in the

framework of integral forms. For that reason, we again
use Chern-Simons theory to pave the ground for more
complicated models [11]. We show that the natural way to
introduce the antifields in the game is by using the
supermanifold version of Serre’s duality. Then, when
working with the theory at 0 picture number, the natural
set of antifields lies into the integral forms complex instead
of the usual superforms complex. That automatically takes
into account the correct number of degrees of freedom
needed to use the BV formalism. In the previous works
[8,10], the closure of the Lagrangian form is imposed by
consistency with the entire construction in order to have the
full off-shell supersymmetry and to allow any change of the
PCO interpolating among any superspace realizations. We
show that the closure of the antifield part of the Lagrangian
form is easily achieved and this is consistent with the
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antifield formalism. We also show that the antifield part of
the Lagrangian can be written in a form that is similar to the
gauge field part of the action with the PCOs. In particular,
this allows us to check that, after specifying suitable
choices of PCOs, we get the known superspace or compo-
nent formulations.
The last part of the present work concerns the discussion

of the BV formalism in the language of pseudoforms. In
that case, the antifields are introduced as pseudoforms and
we get that again the multiproducts are needed also in the
antifield sector generating the A∞ structure. We show that
the BV formalism easily adapts to the present framework
and the result leads to Chern-Simons (CS) action where the
picture number 1 gauge field Að1j1Þ is replaced by a generic
pseudoformA with any form degree (in particular, it can be
negative, exactly as in string field theory [12]) and picture
number fixed to 1. The action is automatically invariant
under superdiffeomorphisms and it has the standard gauge
symmetry. The couplings are obtained by multiproducts,
where we have inserted the generic pseudoform A. We
show that the action cannot be redefined into a trivial one
(i.e., without multiproducts), and we show how to retrieve
the supersymmetry in the present context.

II. SUPERFORMS, INTEGRAL FORMS, AND
PSEUDOFROMS

The space of differential forms has to be extended in order
to define a meaningful integration theory. Given a super-
manifold SMðmjnÞ of superdimension ðmjnÞ, we define
Ωð•j•ÞðSMÞ as the complete complex of forms; they are
graded with respect to two gradings as Ωð•j•Þ ¼⊕p;q ΩðpjqÞ,
where q ¼ 0;…; m, p ≤ n if q ¼ m, p ≥ 0 if q ¼ 0, and
p ∈ Z if q ≠ 0; m. The wedge product for form multipli-
cation is used in the paper, with suitable adjustments due to
the picture number as shown in what follows.
Locally, a ðpjqÞ-form ω formally reads

ω ¼
X
l;h

ω½a1…al�ðα1…αhÞ½β1…βq�dx
a1…dxaldθα1…

× dθαhδgðβ1Þðdθβ1Þ ∧ … ∧ δgðβqÞðdθβqÞ; ð2:1Þ

where gðxÞ denotes the differentiation degree of the Dirac
delta function corresponding to the one-form dθx. The
picture number q counts the number of Dirac delta
functions, while p counts the form number. The three
indices l, h, and q satisfy the relation

lþ h −
Xq
k¼1

gðβkÞ ¼ p; αl ≠ fβ1;…; βqg

∀ l ¼ 1;…; h: ð2:2Þ

Each αl in the above summation should be different from
any βk; otherwise, the degree of the differentiation of the
Dirac delta function could be reduced and the correspond-
ing one-form dθαk removed from the basis. The compo-
nents ω½i1…il�ðα1…αmÞ½β1…βr� of ω are superfields.
Once the integral forms are defined, we have to clarify

how the integration is performed: given a top form ωðmjnÞ,
i.e., a form with either maximum picture number n or
maximum form number m, we write

IðωðmjnÞÞ ¼
Z
SMðmjnÞ

ωðmjnÞ: ð2:3Þ

The integral is performed by first integrating over dx’s,
which amounts to selecting the top form, then we use the
Berezin integral over θ’s, and the integration over dθ,
viewed as algebraic bosonic variables [6,13], is performed
as a formal algebraic integration using the distributional
properties of δðdθÞ’s. The final expression needs a usual
Riemann/Lebesgue integral on x’s. The order of integra-
tion is not relevant in the flat case, while when dealing
with curved supermanifolds one has to recall that the
supervielbeins Vμ ¼ Vμ

aðx; θÞdxa þ Vμ
αðx; θÞdθα, ψλ ¼

ψλ
aðx; θÞdxa þ ψλ

αðx; θÞdθα are generically expressed as
functions of x, θ.
The elements of Ωðpj0Þ are denoted by superforms and

are represented as polynomials of dx’s and dθ’s; the forms
of the spaces ΩðpjnÞ are denoted by integral forms and are
represented as polynomials of dx’s and the product
δðdθ1Þ…δðdθnÞ and derivatives of the Dirac deltas; finally,
ΩðpjqÞ, 0 < q < n, are denoted as pseudoforms.1 At a given
form number, Ωðpj0Þ and ΩðpjnÞ are finite-dimensional
spaces, while ΩðpjqÞ are infinite-dimensional spaces.
Besides the wedge product, we recall that the spaces of

forms ΩðpjqÞ admit a differential d acting as an antider-
ivation on each single space. In particular, we have

d∶ΩðpjqÞ → Ωðpþ1jqÞ

ωðpjqÞ ↦ dωðpjqÞ ¼ dxμ∂μω
ðpjqÞ þ dθα∂αω

ðpjqÞ: ð2:4Þ

In particular, if we consider ω as in (2.1), we have

dω ¼
X
l;h;q

ðdxa∂aω½a1…al�ðα1…αhÞ½β1…βq�dx
a1…dxaldθα1…dθαhδgðβ1Þðdθβ1Þ ∧ … ∧ δgðβqÞðdθβqÞ

þ dθα∂αω½a1…al�ðα1…αhÞ½β1…βq�dx
a1…dxaldθα1…dθαhδgðβ1Þðdθβ1Þ ∧ … ∧ δgðβqÞðdθβqÞÞ:

1Notice that the definition of pseudoforms in Voronov et al. is slightly different [14,15].

C. A. CREMONINI and P. A. GRASSI PHYS. REV. D 102, 025009 (2020)

025009-2



Here we recall the distributional property, extensively
discussed in [10], dθαδðrÞðdθαÞ ¼ −rδðr−1ÞðdθαÞ, to be
used when manipulating integral forms. Analogously, we
can define the contraction operator ιX, where X is a vector
field. Notice that if X is an odd vector field, ιX is a
commuting derivation. There are several new operators,
(Z, Y , Θ, η) acting on forms, inspired by string theory,
which modify also the picture number. In particular, wewill
consider the picture raising operator Y ð0jsÞ which acts on a
ðpjqÞ form ωðpjqÞ ∈ ΩðpjqÞ as follows:

Y ð0j1Þ∶ΩðpjqÞ → Ωðpjqþ1Þ

ωðpjqÞ ↦ ωðpjqÞ ∧ Y ð0j1Þ; ð2:5Þ

i.e., it raises the picture number by 1. When s ¼ n, the PCO
Y ð0jnÞ corresponds to the Poincaré dual form of the
embedding of the bosonic submanifold into the super-
manifold M ↪ SM.
Again, given a ðpjqÞ-form ωðpjqÞ ∈ ΩðpjqÞ, we define the

picture lowering operator ZD as

Zv∶ΩðpjqÞ → Ωðpjq−1Þ;

ωðpjqÞ ↦ ZvðωðpjqÞÞ ¼ ½d;−iΘðιDÞ�ωðpjqÞ;

where ½·; ·� denotes as usual a graded commutator and the
action of the operator ΘðιvÞ is defined by the Fourier-like
relation of the Heaviside step function

ΘðιvÞωðpjqÞðdθαÞ ¼ −ilim
ϵ→0

Z
∞

−∞

dt
tþ iϵ

eitιvωðpjqÞðdθαÞ

¼ −ilim
ϵ→0

Z
∞

−∞

dt
tþ iϵ

ωðpjqÞðdθα þ itvαÞ;

ð2:6Þ

where we have used the fact that eitιv is a translation
operator. Hence, the operator ΘðιvÞ maps

Ωpjq → Ωp−1jq−1;

i.e., it lowers either the form degree or the picture degree.
As has been shown in [10] this operator does not give a
pseudoform as a result, but rather an inverse form, i.e.,
an expression containing negative powers of dθ [16]. The
computation techniques and results are contained in [10].
There, the ηðιvÞ operator has been described as well. The
latter is crucial to define and build the higher products of
the A∞ algebra. For the sake of clarity, let us consider the
easy example of application of Zv on the ð0j1Þ form
ω ¼ fðx; θÞδðdθÞ. First, let us calculate ΘðιvÞω,

ΘðιvÞfðx; θÞδðdθÞ

¼ −ið−1Þjfjfðx; θÞlim
ϵ→0

Z þ∞

−∞

dt
tþ iϵ

e−itιvδðdθÞ

¼ −i
iv

ð−1Þjfjfðx; θÞlim
ϵ→0

Z þ∞

−∞

dt
tþ iϵ

δ

�
tþ i

dθ
v

�

¼ ið−1Þjfjfðx; θÞ
dθ

: ð2:7Þ

Hence, we have

Zvω ¼ −iðdΘðιvÞ þ ΘðιvÞdÞω ¼ ð−1Þjfj∂θfðx; θÞ

þ ð−1Þjfjdx∂xfðx; θÞ
dθ

−
ð−1Þjfjdx∂xfðx; θÞ

dθ
¼ ð−1Þjfj∂θfðx; θÞ; ð2:8Þ

where when calculating dω we have used the fact
that dθδðdθÞ ¼ 0.

III. SUPER CHERN-SIMONS ACTIONS

In this section, we briefly resume super Chern-Simons
(SCS) theory on supermanifolds when dealing with picture-
0 gauge field Að1j0Þ (subsection III A) or picture-1 gauge
field Að1j1Þ (Secs. III A, III B, and III C). The full treatment
at picture 0 and 1 can be found in [8,10], respectively. In
Sec. III D, we consider the emergence of the L∞ gauge
algebra in a slightly different way from [10] by introducing
the BRST (Becchi-Rouet-Stora-Tyutin) differential dþ s.

A. At picture 0

We briefly recall some basic facts about D ¼ 3, N ¼ 1
SuperChern-Simons theory (the notationwe use is described
in the Appendix). That model serves as a simple playground
for more sophisticated examples. We start from a ð1j0Þ-
superform Að1j0Þ ¼ AaVa þ Aαψ

α (where the superfields
Aaðx; θÞ and Aαðx; θÞ take values in the adjoint representa-
tion of the gauge group), and we define the field strength

Fð2j0Þ ¼ dAð1j0Þ þ Að1j0Þ ∧ Að1j0Þ ¼ F½ab�Va ∧ Vb

þ FaαVa ∧ ψα þ FðαβÞψα ∧ ψβ: ð3:1Þ

In order to reduce the redundancyof degrees of freedomofAa

and Aα of the ð1j0Þ-form Að1j0Þ, one imposes a priori the
conventional constraint

ιαιβFð2j0Þ ¼ 0 ⇔

FðαβÞ ¼ DðαAβÞ þ γaαβAa þ fAα; Aβg ¼ 0; ð3:2Þ

from which it follows that Faα ¼ γa;αβWβ with Wα ¼
∇β∇αAβ and ∇αWα ¼ 0. The gaugino field strength Wα

(a ð0j0Þ form) is gauge invariant under the non-Abelian
transformations δAα ¼ ∇αΛ. These gauge transformations
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descend from the gauge transformations of Að1j0Þ, δAð1j0Þ ¼
∇Λ where Λ is a ð0j0Þ form.
In order to express the action as an integral on a

supermanifold, we use the Poincaré dual form (as known
as PCO) Y ð0j2Þ dual to the immersion ofMð3Þ into SMð3j2Þ.
The Poincaré dual form Y ð0j2Þ is closed; it is not exact and
any of its variation is d exact. The action can now bewritten
on the full supermanifold as

S½A� ¼
Z
SMð3j2Þ

Lð3j0ÞðA; dAÞ ∧ Y ð0j2Þ: ð3:3Þ

Any variation of the embedding yields δY ð0j2Þ ¼ dΛð−1j2Þ
and leaves the action invariant if the Lagragian is closed.
The rheonomic Lagrangian Lð3j0ÞðA; dAÞ reads

Lð3j0ÞðA; dAÞ ¼ Tr

�
Að1j0Þ ∧ dAð1j0Þ

þ 2

3
Að1j0Þ ∧ Að1j0Þ ∧ Að1j0Þ

þWð0j0ÞαϵαβWð0j0ÞβV3

�
∧ Y ð0j2Þ; ð3:4Þ

which is a ð3j2Þ form, V3 ¼ 1
3!
ϵabcVa ∧ Vb ∧ Vc.

This is the most general action that can be built with the
rheonomic rules, and the closure of Lð3j0Þ implies that any
gauge-invariant and supersymmetric action can be built by
choosing a PCO Y ð0j2Þ inside the same cohomology class.
Therefore, starting from the rheonomic action, one can
choose a different “gauge”—or better said a different
immersion of the submanifold Mð3Þ inside the supermani-
fold SMð3j2Þ—leading to different form of the action with
the same physical content.

B. At picture 1

Any PCO Y ð0j2Þ can be decomposed into the product of
two PCO’s Y ð0j1Þ as follows:

Y ð0j2Þ ¼ Y ð0j1Þ
v ∧ Y ð0j1Þ

w þ dΩð−1j2Þ; ð3:5Þ

where v and w are two independent spinors Detðv; wÞ ¼
vαϵαβwβ ≠ 0. Let us analyze the action with the new choice
of PCO,

SSCS ¼
Z
SMð3j2Þ

�
A ∧ dAþ 2

3
A ∧ A ∧ AþWαWαV3

�

∧ Y ð0j1Þ
v ∧ Y ð0j1Þ

w ; ð3:6Þ

where the Ω term is dropped by integration by parts. Let us
put aside the interaction term, to be discussed later, and let
us distribute the two Y ’s on the two pieces of the action as
follows:

SquadSCS ¼
Z
SMð3j2Þ

ðA ∧ dA ∧ Y ð0j1Þ
v Y ð0j1Þ

w

þWαWαY
ð0j1Þ
v Y ð0j1Þ

w ∧ V3Þ: ð3:7Þ
Since the PCOs are closed, we can also bring them after
each connection term Að1j0Þ and after the spinorial Wð0j0Þ
forms as

SquadSCS ¼
Z
SMð3j2Þ

ððA∧Y
ð0j1Þ
v Þ ∧ dðA∧Y

ð0j1Þ
w Þ

þ ðWα∧Y
ð0j1Þ
v Þ ∧ ðWα∧Y

ð0j1Þ
w Þ ∧ V3Þ; ð3:8Þ

converting the gauge connection to a ð1j1Þ form as

Að1j0Þ → Að1j1Þ ≡ Að1j0Þ∧Y
ð0j1Þ
v : ð3:9Þ

In the same way, the ð0j0Þ-form Wα is converted into a
ð0j1Þ pseudoform. Passing from Að1j0Þ, which has a finite
number of components, to Að1j1Þ, we have moved to an
infinite-dimensional space. Therefore, we now take into
account the more generic action

SSCS ¼
Z
SMð3j2Þ

ðAð1j1Þ ∧ dAð1j1Þ

þWð0j1Þ;αϵαβ ∧ Wð0j1Þ;β ∧ V3Þ: ð3:10Þ
The wedge product is taken in the space of pseudoforms
and we use the convention that two ð0j1Þ forms must be
multiplied with the wedge product. We observe that (3.10)
reduces to (the free part of) (3.4) if we consider the
factorized gauge field Að1j1Þ ¼ Að1j0Þ ∧ Y ð0j1Þ.
Now, we relax the condition (3.9) and we consider the

action in terms of the picture-1 fieldsAð1j1Þ. That opens up to
a completely new theory with several implications still to be
fully explored. The strategy is to relax the factorization
properties and consider all possible terms into a CS type of
action. First, we briefly review the result of our previous
paper [10] and then we build the BV formalism for this new
theory.
Decomposing the pseudoform Að1j1Þ ¼ A0 þ A1 þ

A2 þ A3, where the subscript denotes the number of dx’s
in the expression, we have

A0 ¼
X∞
p¼0

AðpÞ
αβ ðdθαÞpþ1δðpÞðdθβÞ;

A1 ¼
X∞
p¼0

dxmAðpÞ
mαβðdθαÞpδðpÞðdθβÞ;

A2 ¼
X∞
p¼0

dxmdxnAðpÞ
½mn�αβðdθαÞpδðpþ1ÞðdθβÞ;

A3 ¼
X∞
p¼0

dxmdxndxrAðpÞ
½mnr�αβðdθαÞpδðpþ2ÞðdθβÞ: ð3:11Þ
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We can compute the Lagrangian,

Lð3j2Þ ¼ Að1j1ÞdAð1j1Þ

¼
X∞
p¼0

½−p!ðpþ 1Þ!AðpÞ
αβ ð∂ ½rA

ðpÞ
mn�βα − ∂βA

ðp−1Þ
½mnr�βα þ ðpþ 2Þ∂αA

ðpÞ
½mnr�βαÞþ

− p!p!AðpÞ
½mαβð∂rA

ðpÞ
n�βα − ∂βA

ðp−1Þ
nr�βα þ ðpþ 1Þ∂αA

ðpÞ
nr�βαÞþ

− p!ðpþ 1Þ!AðpÞ
½mnαβð∂r�A

ðpÞ
βα − ∂βA

ðpÞ
r�βα þ ðpþ 1Þ∂αA

ðpþ1Þ
r�βα Þþ

− p!ðpþ 2Þ!AðpÞ
½mnr�αβð−∂βA

ðpÞ
βα þ ðpþ 1Þ∂αA

ðpþ1Þ
βα Þ�dxm ∧ dxn ∧ dxrδðdθβÞδðdθαÞ:

We obtain the equations of motion by varying the action with respect to the fields AðpÞ
αβ , A

ðpÞ
mαβ, A

ðpÞ
½mn�αβ, and AðpÞ

½mnr�αβ;
the resulting equations are

−∂βA
ðpÞ
βα þ ðpþ 1Þ∂αA

ðpþ1Þ
βα ¼ 0; ∀ p ∈ N;

∂rA
ðpÞ
βα − ∂βA

ðpÞ
rβα þ ðpþ 1Þ∂αA

ðpþ1Þ
rβα ¼ 0 ∀ p ∈ N;

∂ ½rA
ðpÞ
n�βα − ∂βA

ðp−1Þ
½nr�βα þ ðpþ 1Þ∂αA

ðpÞ
½nr�βα ¼ 0 ∀ p ∈ N;

∂ ½rA
ðpÞ
mn�βα − ∂βA

ðp−1Þ
½mnr�βα þ ðpþ 2Þ∂αA

ðpÞ
½mnr�βα ¼ 0 ∀ p ∈ N; ð3:12Þ

where we stress that in (3.12) and in (3.12) if p ¼ 0 the

fields Að−1Þ
½nr�βα and Að−1Þ

½mnr�βα are both defined to be zero. The

equations of motion for Wð0j1Þ;α implies that this is set to
zero algebraically, and this is automatically achieved also in
the present framework.
To show that this complicated set of linear equations

coincides with the usual CS equations of motion, one needs
to remove the infinite redundancy by algebraic (i.e., θ
dependent) gauge transformations. As a result, we find that
a representative of the cohomology class is

A1j1 ¼ dxmθβB̃ð0Þ
mαβðxÞδð0ÞðdθβÞ; ð3:13Þ

and the relative equation of motion is

∂ ½nB̃
ð0Þ
m�αβðxÞ ¼ 0: ð3:14Þ

Remarkably, notice that even if we started from an SCS
Lagrangian with an infinite number of fields, we have
shown that there is only one physical field. All the other
fields are d-exact θ-dependent terms.
Moreover, we have shown that starting from the free SCS

action with a general A1j1 pseudoform, we obtain the
factorization

Að1j1Þ ¼ Að1j0Þ ∧ Y ð0j1Þ; s:t:Y ð0j1Þ ¼ θβδðdθβÞ þ dΩð−1j1Þ:

ð3:15Þ

Thus, we have recovered a factorized form from a non-
factorized Lagrangian.

C. Interaction terms

We now define an interaction term which can be
integrated on a supermanifold. Apparently, a problem
arises. In order to define an interaction term, we need
three gauge fields Að1j1Þ, but the wedge product of three
fields vanishes by the anticommutativity of the three Dirac
delta functions of dθ1 or dθ2.
In [10], we propose an action where Z is inserted into the

product of three gauge fields; however, as discussed in the
paper, we have to consider all the possible places where to
put the PCO. Therefore, following [17,18] (see also the
proceeding [19]), we are led to define the two-product with
picture degree −1 as

M2∶Ωð1j1Þ ×Ωð1j1Þ → Ωð2j1Þ

ðA; AÞ ↦ M2ðA; AÞ

¼ 1

3
½ZvðA ∧ AÞ þ ZvðAÞ ∧ Aþ A ∧ ZvðAÞ�: ð3:16Þ

Observe that this product has form degree 0, i.e., it does not
change the form number and it decreases the picture
number by 1. The products of the various fields involve
also the matrix multiplication of the generator in the adjoint
representation.
In an analogous way, we can define a product with form

degree −1 as

SUPER CHERN-SIMONS THEORY: BATALIN-VILKOVISKY … PHYS. REV. D 102, 025009 (2020)

025009-5



m̃ð−1Þ
2 ∶Ωð1j1Þ × Ωð1j1Þ → Ωð1j1Þ

ðA; AÞ ↦ m̃ð−1Þ
2 ðA; AÞ ¼ 1

3
½−iΘðιvÞðA ∧ AÞ − iΘðιvÞðAÞ ∧ A − ð−1ÞjAjA ∧ iΘðιvÞðAÞ�: ð3:17Þ

This product is needed as an intermediate product to define higher order product as explained in the literature (see, e.g.,
[18]). It maps the integral forms into the space of inverse forms which do not have a physical interpretation (it is analogous
to the so-called large Hilbert space). From the definition (3.16), it follows that

M2 ¼ ½d; m̃ð−1Þ
2 �; ð3:18Þ

where ½·; ·� denotes as usual the graded commutator.
We can compute the first interaction term of the Lagrangian Að1j1Þ ∧ M2ðAð1j1Þ; Að1j1ÞÞ, which explicitly reads

Lð3j2Þ
INT ¼ 2tr

�X∞
p;q¼0

ð−1Þpp!q!q!fðqþ 1Þ½AðqÞ
mnαβ; A

ðqÞ
βα � þ AðqÞ

mαβA
ðqÞ
nβαg

×

��
vα

vβ

�
p
�
vα

vβ
∂α þ ∂β

�
AðpÞ
rαβ þ

�
vβ

vα

�
p
�
vβ

vα
∂β þ ∂α

�
AðpÞ
rβα

��
ϵmnrϵαβd3xδ2ðdθÞ: ð3:19Þ

Notice that the interaction term depends on the constant
vector vα through v1

v2, namely, their relative phase. That
resembles the usual frame dependence of superstring field
theory actions.

D. Gauge invariance and the emergence
of the A∞ algebra

The nonassociativity of the productM2 breaks the gauge
invariance of Chern-Simons action; furthermore, the alge-
bra of gauge transformations does not close. To overcome
these two problems, we need additional terms in the action
and we need to change the gauge transformations.
We now proceed by constructing explicitly the first

multiproduct of the A∞ algebra. Let us consider the action
discussed so far,

SA ¼
Z
SMð3j2Þ

Tr

�
1

2
A ∧ dAþ 1

3
A ∧ M2ðA; AÞ

�
: ð3:20Þ

Wewill assume that the gauge field A is a ð1j1Þ pseudoform
and we neglect the WW term for the moment (then we
denote this part of the action as SA). Assuming the cyclicity
of the trace, we can compute the field strength from the
variation of (3.20)

F ¼ dAþM2ðA; AÞ: ð3:21Þ

The field strength is a ð2j1Þ form as dA; indeed, M2

consistently reduces the picture by 1. Upon applying the
exterior derivative d, which is a derivation of M2 (since
½Zv; d� ¼ 0), we get

dF ¼ dM2ðA; AÞ ¼ M2ðdA; AÞ −M2ðA; dAÞ: ð3:22Þ

We can now use (3.21) to substitute the expression for dA
in (3.22) and we get

dF ¼ M2ðF; AÞ −M2ðA; FÞ −M2ðM2ðA; AÞ; AÞ
þM2ðA;M2ðA; AÞÞ; ð3:23Þ

where, as expected, it appears the extra term given by the
associator ofM2. In order to get rid of this term, we add an
extra term to the action such that

F0 ¼ dAþM2ðA;AÞ þM3ðA;A;AÞ ¼ FþM3ðA;A;AÞ;
dF0 ¼M2ðF;AÞ−M2ðA;FÞ−M3ðdA;A;AÞ

þM3ðA;dA;AÞ−M3ðA;A;dAÞ; ð3:24Þ

which implies that

dM3ðA; A; AÞ þM3ðdA; A; AÞ −M3ðA; dA; AÞ
þM3ðA; A; dAÞ −M2ðM2ðA; AÞ; AÞ
þM2ðA;M2ðA; AÞÞ ¼ 0: ð3:25Þ

This is the third A∞ relation (e.g., see [20–23]). Notice that
when we apply d toM3, since a priori it is not a derivation
of M3, we also need three additional terms in the first line
of (3.25). The explicit form of M3 is given in [10], and we
do not repeat here its construction: it is based on m̃2 which
is built from ΘðιvÞ instead of Z.
Clearly, the Bianchi identity for F0 does not hold. In

particular, from (3.24), we have
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dF0 ¼ −M2ðF; AÞ þM2ðA;FÞ −M3ðdA; A; AÞ þM3ðA; dA; AÞ −M3ðA; A; dAÞ
¼ −M2ðF0 −M3ðA; A; AÞ; AÞ þM2ðA;F0 −M3ðA; A; AÞÞ
−M3ðF0 −M2ðA; AÞ −M3ðA; A; AÞ; A; AÞ þM3ðA;F0 −M2ðA; AÞ −M3ðA; A; AÞ; AÞ
−M3ðA; A; F0 −M2ðA; AÞ −M3ðA; A; AÞÞ

¼ M2ðF0; AÞ −M2ðA; F0Þ −M3ðF0; A; AÞ þM3ðA;F0; AÞ −M3ðA; A; F0Þ
−M2ðM3ðA; A; AÞ; AÞ þM2ðA;M3ðA; A; AÞÞ þM3ðM2ðA; AÞ; A; AÞ
−M3ðA;M2ðA; AÞ; AÞ þM3ðA; A;M2ðA; AÞÞ þOðA5Þ; ð3:26Þ

where we have neglected the five-gauge field terms OðA5Þ. Expressing the field strength F in terms of the corrected one
F0 ¼ dAþM2ðA; AÞ þM3ðA; A; AÞ þOðA4Þ, the equation can be rewritten as

dF0 −M2ðF0; AÞ þM2ðA;F0Þ þM3ðF0; A; AÞ −M3ðA; F0; AÞ þM3ðA; A; F0Þ
¼ −M2ðM3ðA; A; AÞ; AÞ þM2ðA;M3ðA; A; AÞÞ −M3ðM2ðA; AÞ; A; AÞ
−M3ðA;M2ðA; AÞ; AÞ þM3ðA; A;M2ðA; AÞÞ þOðA5Þ; ð3:27Þ

where in the first line we have the Bianchi identities, broken by the right-hand side of the equation, which contains four-
gauge field terms expressing the nonassociativity of the M2 and M3 products. Again, we have an extra term breaking the
Bianchi identity. By following the prescription described above, we add to the action an extra term M4ðA; A; A; AÞ for the
field strength and correspondently for the action. Proceeding in the same way, we have a new action of the form

SA ¼
Z
SMð3j2Þ

Tr

�
1

2
AdAþ

X∞
n¼2

1

nþ 1
A ∧ MnðA;…; AÞ

�
; ð3:28Þ

yielding the equations of motion

dAþ
X
n

MnðA;…; AÞ ¼ 0; ð3:29Þ

consistent with the Bianchi identities because of the A∞
relations among the various multiproducts MnðA;…; AÞ.
Notice that according to [10] every multiproduct reduces
the form degree from n (the total degree of the product of n
gauge fields A) to 2 and the picture number from n (the total
picture of a formal product of n gauge fields) down to 1 as
required for building an integral form. Notice that the form
of the action is the conventional homotopy Mauer-Cartan
action, also discussed in [24] for general L∞ algebras (see
also [25] for application to string field theory).
Let us now study the gauge symmetry. Previously

we have seen that since the product mð−1Þ
2 is not associa-

tive, the gauge algebra does not close. We now show that in
order to close the algebra, we have to modify the gauge
transformation law by introducing multiproducts induced
by the A∞ algebra discussed so far, but then it emerges that
one necessarily needs the BV formalism to deal with the
gauge symmetries (see [24] for a general discussion and
examples). We derive the BRST symmetry by shifting the
gauge field A with Aþ c. Notice that we trade the form
number with the ghost number, but we have not changed
the picture number, since both A and c have the same

picture. The second shift is d into dþ s, introducing the
BRST differential. Then, we impose the equation

ðdþ sÞðAþ cÞ þM2ðAþ c; Aþ cÞ
þM3ðAþ c; Aþ c; Aþ cÞ þOðA4;…; c4Þ ¼ F0;

ð3:30Þ

from which we get the following relations:

F0 ¼ dAþM2ðA; AÞ þM3ðA; A; AÞ þOðA4Þ;
0 ¼ sAþ dcþM2ðA; cÞ þM2ðc; AÞ þM3ðA; A; cÞ

þM3ðA; c; AÞ þM3ðc; A; AÞ þOðA3Þ;
0 ¼ scþM2ðc; cÞ þM3ðA; c; cÞ þM3ðc; A; cÞ

þM3ðc; c; AÞ þOðA2Þ;
0 ¼ M3ðc; c; cÞ þOðAÞ: ð3:31Þ

The last equation is consistent with the definition of theM3

product since it decreases the form number, but c has form
degree equal to zero. The first line reproduces the definition
of F0 given in (3.24). The second line gives the gauge
transformation of the gauge field

sA ¼ −dc − L2ðc; AÞ −
1

2
L3ðc; A; AÞ þOðA3Þ; ð3:32Þ
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where the Lie-algebra-like symbols (for anticommuting quantities)

L2ðA; cÞ ¼ M2ðA; cÞ þM2ðc; AÞ;
L3ðA; c; cÞ ¼ 2M3ðA; c; cÞ þ 2M3ðc; A; cÞ þ 2M3ðc; c; AÞ;
L2ðX; YÞ ¼ M2ðX; YÞ − ð−1ÞjXjjYjM2ðY; XÞ;

L3ðX1; X2; X3Þ ¼ M3ðX1; X2; X3Þ − ð−1ÞjX2jjX3jM3ðX1; X3; X2Þ
þM3ðX2; X3; X1Þ − ð−1ÞjX3jjX1jM3ðX2; X1; X3Þ
þM3ðX3; X1; X2Þ − ð−1ÞjX1jjX2jM3ðX3; X2; X1Þ ð3:33Þ

have been introduced. Note that L2ðc; cÞ ¼ 2M2ðc; cÞ. In
addition, L2ðA; cÞ has form number ¼ þ1, ghost number ¼
þ1, and picture ¼ þ1. L3ðA; c; cÞ has form number ¼ 0,
ghost number ¼ þ2, and picture ¼ þ1. The third line of
(3.31) gives us the BRST transformation of the ghost field

sc ¼ −
1

2
L2ðc; cÞ −

1

2
L3ðA; c; cÞ þOðA2Þ: ð3:34Þ

In order to study the nilpotency of s, it is useful to verify the
compatibility of the multiproducts with s. For example,
starting from the second A∞ relation, we have

ðsþ dÞM2ðAþ c; Aþ cÞ −M2ððsþ dÞðAþ cÞ; Aþ cÞ
þM2ðAþ c; ðsþ dÞðAþ cÞÞ ¼ 0; ð3:35Þ

which implies the following relations:

sM2ðA; AÞ −M2ðsA; AÞ þM2ðA; sAÞ ¼ 0;

sL2ðA; cÞ − L2ðsA; cÞ − L2ðsc; AÞ ¼ 0;

sL2ðc; cÞ − L2ðsc; cÞ þ L2ðc; scÞ ¼ 0; ð3:36Þ

where L2ðsA; cÞ ¼ M2ðsA; cÞ −M2ðc; sAÞ since c is fer-
mionic and sA is bosonic. This implies that L2ðsA; cÞ ¼
−L2ðc; sAÞ and L2ðsc; AÞ ¼ −L2ðA; scÞ, leading to

sL2ðA; cÞ ¼ L2ðsA; cÞ − L2ðA; scÞ; ð3:37Þ

which expressed the Leibniz rule of s with respect to L2.
Let us study the nilpotency of s on the ghost field. Acting

with s on (3.34), we get

s2c ¼ −
1

2
sL2ðc; cÞ −

1

2
sL3ðA; c; cÞ þOðA2Þ

¼ −L2ðsc; cÞ −
1

2
L3ðsA; c; cÞ þ L3ðA; sc; cÞ

− LðA; c; scÞ þOðA2Þ: ð3:38Þ

Inserting the BRST transformations of c, using the A∞
relations, it yields

s

�
sc −

1

4
L4ðA; A; c; cÞ

�
¼ 1

3
L4ðF; c; c; cÞ þOðA2Þ;

ð3:39Þ

where on the left-hand side we have reabsorbed
L4ðA; A; c; cÞ in the definition of the BRST transformation
of the ghost c, and on the right-hand side we finally found
that the algebra is not closed, but it closes on the field
strength F of the gauge field A. This is crucial, since
this implies that we need the antifield formalism to deal
with it since the field strength is just the variation of the
antifield A� of the gauge field. As it will be shown in the
last section, it is precisely the integral form formalism that
gives the correct quantum number for A�. It should be a
ð2j1Þ form.

IV. BV ACTION

A. Picture-0 gauge fields

To build the BV action, we need to include into the
previous action the antifields as the generators of the BRST
transformations (the superspace formulation has been
studied in [26]); at the moment we assume these antifields
to be superforms. For example, the term corresponding to
the BRST transformation of the gauge field reads

Z
SMð3j2Þ

Tr½A�ð2j0Þ ∧ ∇cð0j0Þ� ∧ Y ð0j2Þ; ð4:1Þ

where A�ð2j0Þ is the ð2j0Þ superform

A� ¼ VaVbA�
ab þ VaψαA�

aα þ ψαψβA�
αβ: ð4:2Þ

The PCO Y ð0j2Þ is used to convert it into an integral form.
Comparing with the component formalism, we see that
there are too many independent components in A� and,
therefore, we need a convenient constraint to reduce them
systematically. Hence, we set

∇A� ¼ 0; A�
αβ ¼ 0 ⇒

A� ¼ VaVbA�
ab þ VaψαγaαβW�β ð4:3Þ
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as for the field strength Fð2j0Þ [see Eq. (3.1)]. A�
ab serves as

the antifield for the gauge field, whileW�α for the gaugino.
The vanishing of the covariant derivative of A� is needed to
require the closure of the 0-picture factor of (4.1). Here, this

choice seems to be too adapted to the specific example,
then the quest for a more natural setting. Nevertheless, by
taking the susy PCO, i.e., Y ð0j2Þ ¼ VaVbϵabcιαγ

cαβιβδ
2ðψÞ,

Eq. (4.1) reads

Z
SMð3j2Þ

Tr½ðVaVbA�
ab þ VaψαγaαβW�βÞ ∧ ðVc∇ccþ ψγ∇γcÞ� ∧ Y ð0j2Þ

susy ¼
Z
x;θ

TrðW�α∇αcÞ: ð4:4Þ

This result matches with the superspace CS BV action.
The integral form formalism provides a more natural way to obtain the correct BV terms. We observe that the Serre’s dual

to a ð1j0Þ superform is a ð2j2Þ integral form (see also [5]),

A�ð2j2Þ ¼ VaVbϵabcA�cδ2ðψÞ þ VaVbVcϵabcW�αιαδ2ðψÞ: ð4:5Þ

We do not impose any constraint on A�ð2j2Þ, since this integral form already contains the correct number of fields.
Analogously, the BRST symmetry of the ghost c is coupled to a ð3j2Þ-integral form c�, representing its antifield

c�ð3j2Þ ¼ c�VaVbVcϵabcδ
2ðψÞ: ð4:6Þ

Therefore, the action reads

S ¼
Z
SMð3j2Þ

Tr

��
AdAþ 2

3
A3 þ 1

2
W2V3

�
∧ Y þ A�∇cþ 1

2
c�½c; c�

�
¼ SSCS þ SBV: ð4:7Þ

To compare (4.7) with the component or with the superspace actions, it is convenient to rewrite it into a factorized form
Lð3j0Þ ∧ Y ð0j2Þ. For that, we have

Tr

�
A�∇cþ 1

2
c�½c; c�

�
¼ ZTr

�
A�∇cþ 1

2
c�½c; c�

�
∧ Y

¼ Tr

�
ZðA�∇cÞ þ Z

�
1

2
c�½c; c�

��
∧ Y ¼ LBV ∧ Y ; ð4:8Þ

where the formal inverse Z of Y and the linearity have been used.2 It follows that

dLBV ¼ dTr

�
ZðA�∇cÞ þ Z

�
1

2
c�½c; c�

��
¼ dZTrðA�∇cÞ þ dZTr

�
1

2
c�½c; c�

�

¼ ZTr

�
dðA�∇cÞ þ d

�
1

2
c�½c; c�

��
¼ 0; ð4:9Þ

using ½d; Z� ¼ 0 and noting that d acts on a top integral form. The closure of the Lagrangian suggests that we do not need
any other terms. In particular, we do not need any further antifield since all the needed d.o.f. are already present. To verify
this, we compute (4.8) for two choices of PCO, namely, the supersymmetric PCO and the component PCO. Let us start from
the supersymmetric case. It is easy to verify that

TrA�∇c ¼ Tr½½VaVbϵabcA�cδ2ðψÞ þ VaVbVcϵabcW�αιαδ2ðψÞ� ∧ ½Vd∇dcþ ψγ∇γc��
¼ Tr½½A�aψγaψ þ VcW�γcψ � ∧ ½Vd∇dcþ ψγ∇γc�� ∧ Y ð0j2Þ

susy

¼ Tr½A�aψγaψVd∇dcþ VcW�γcψψγ∇γc� ∧ Y ð0j2Þ
susy : ð4:10Þ

We see that the first term contains the antifield relative to the gauge field Aa, while the second term contains the antifield of
the gaugino. Equation (4.10) coincides with the result in (4.4) up to a rescaling: recall that ∇a ¼ 1

2
γαβa f∇α;∇βg, then

2Notice that by Z we mean the product of two PCOs Zv and Zw, where v and w represent two independent directions.
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Tr½A�aψγaψVd∇dcþ VcW�γcψψγ∇γc� ∧ Y ð0j2Þ
susy ¼ Tr½A�aψγaψVbγαβb ∇α∇βcþ VcW�γcψψβ∇βc� ∧ Y ð0j2Þ

susy

¼ Tr½Vc½−∇αA�aψγaψγ
αβ
c þW�γcψψβ�∇βc� ∧ Y ð0j2Þ

susy ð4:11Þ

up to exact terms.
The same analysis can be repeated for the component PCO, namely θ2δ2ðdθÞ,

TrA�∇c ¼ VaVbVcϵabcTr½A�d∇dc −W�α∇αc�δ2ðψÞ
¼ dxadxbdxcϵabcTr½A�d∇dc −W�α∇αc�δ2ðdθÞ; ð4:12Þ

passing from the vielbein basis to the component one given by dx’s and dθ’s. We can now apply the PCO Z and by recalling
that Zðfδ2ðdθÞÞ ¼ ∂θ1∂θ2f, we get

Z½dxadxbdxcϵabcTrðA�d∇dc −W�α∇αcÞδ2ðdθÞ� ¼ dxadxbdxcϵabcTrð∂2
θðA�d∇dc −W�α∇αcÞÞ

¼ dxadxbdxcϵabcTrð∂2
θ½ð−∇αA�dγαβd −W�βÞ∇βc�Þ: ð4:13Þ

Again the gaugino antifield emerges and it couples cor-
rectly to the BRST variation of the fields.

B. Picture-1 gauge fields

We now want to study the BV formalism in the context
of picture-1 fields, namely, pseudoforms. Let us start by
considering the action (3.28). We can substitute the gauge
field Að1j1Þ with a form A with general form number and
picture number 1,

SSCS−BV ¼
Z
SMð3j2Þ

Tr

�
1

2
A ∧ dA

þA ∧ X∞
i¼2

1

iþ 1
MiðA;A;…Þ

�
: ð4:14Þ

The gauge transformations are obtained by applying the
rules described in the previous sections: we replace the
exterior derivative d with dþ s in the e.o.m., and the ð1j1Þ
gauge field Að1j1Þ with a sum of ðpj1Þ forms, p ∈ Z,3

namely,

d → dþ s; Að1j1Þ → A ¼
X∞
p¼−∞

Aðpj1Þ ⇒

⇒ ðdþ sÞAþ
X∞
i¼2

MiðA;A;…Þ ¼ 0: ð4:15Þ

The action written in these terms contains an infinite
number of terms with all powers of any Aðpj1Þ. See also
[24] where the general construction has been worked out in
several examples. Here, we want to study the possible field
redefinitions.
The BV terms look quite redundant compared to the

previous results with a two-form and a three-form only;
at picture number 1, we first need Að2j1Þ and Að3j1Þ. These
two fields are the natural antifields for Að1j1Þ and for
Að0j1Þ ≡ cð0j1Þ, respectively. Serre’s duality at picture 1
involves only picture-1 forms. Then, we denote them as

Að2j1Þ ≡ A�ð2j1Þ; Að3j1Þ ≡ c�ð3j1Þ: ð4:16Þ

Notice that a priori we may have pseudoforms with
different form numbers as well; for example, in the action,
there can be a term as

Að−1j1Þ ∧ M2ðA�ð2j1Þ; A�ð2j1ÞÞ: ð4:17Þ

In order to justify these structures, we proceed into two
steps. First, we show that there is always a field redefinition
which can reexpress the entire set of forms into those with
0 ≤ p ≤ 3, but the BV action and the BV symplectic form
are not compatible with that field redefinition (see [27] for a
detailed description of compatible field redefinition for A∞
BV string field theory action).4 In particular, we show that
this field redefinition implies nontrivial constraints on the
set of fields.

3Notice that this formula is analogous to the string field in
bosonic or super string field theory where the form number is
replaced by the ghost number and the physical fields are those
with ghost number equal to 1; the components with nonpositive
form numbers are interpreted as the ghosts and ghosts-for-ghosts
of several generations, and those with form number greater than 1
are interpreted as the antifields of the gauge field and of the entire
set of ghosts.

4In [27], the authors show that in the case of tensor con-
struction, the “gauge group” d.o.f.—which in principle could be
described by a A∞ algebra with an even symplectic form—can be
suitably redefined, under adequate hypotheses, and the only
nontrivial structure is an associative algebra.
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First, we show that we need to include all possible BV
fields, in particular those with negative and positive (greater
than three) form number fields by studying the structure of
multiproducts. For that, we observe that we can rewrite the
fields by starting from the expansion of a general picture-1
form on a basis of forms

Að•j1Þ ¼
X∞
p¼−∞

Aðpj1Þ

¼
X
i¼1;2

X3
n¼0

X∞
q¼−∞

Ai
n;qe

qj1
n;i ∈ ⨁

∞

r¼−∞
Ωðrj1Þ: ð4:18Þ

This notation means that the bosonic form number is n, the
fermionic form number is q while the index i indicates the
argument of the delta function, i.e., dθi. In particular, we
have

eqj1n;i ¼ dx ∧ … ∧ dx|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

X∞
p¼0

ðdθjÞpðιiÞp

×

� ðdθjÞqδðdθiÞ; if q ≥ 0;

ιqi δðdθiÞ; if q ≤ 0;
i ≠ j: ð4:19Þ

We single out a box defined by the conditions 0 ≤ n ≤ 3
and 0 ≤ nþ q ≤ 3,

e−qj1n;i

e0j10;i e1j10;i e2j10;i e3j10;i

e−1j11;i e0j11;i e1j11;i e2j11;i

e−2j12;i e−1j12;i e0j12;i e1j12;i

e−3j13;i e−2j13;i e−1j13;i e0j13;i

eqj1n;i q ≥ 0: ð4:20Þ

As a consequence of (4.19), we can write every element of
the full basis as elements of the diagonal of the cohomo-
logical box (we call it “cohomological box” since the whole
cohomology is contained in those spaces only; see, e.g.,
[10,18]) as follows:

eqj1n;i ¼ dx ∧ … ∧ dx|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n

X∞
p¼0

ðdθjÞpðιiÞp

×

� ðdθjÞqδðdθiÞ ¼ ðdθjÞqe0j1n;i ; if q ≥ 0;

ιqi δðdθiÞ ¼ ιqi e
0j1
n;i ; if q ≤ 0;

i ≠ j:

ð4:21Þ

The elements of the box in (4.20) have a natural
interpretation: they provide a basis for the ghost c, the
gauge field A, the antifield A�, and the antighost c�,

cð0j1Þ ¼ A0
0 þ A−1

1 þ A−2
2 þ A−3

3 ;

Að1j1Þ ¼ A1
0 þ A0

1 þ A−1
2 þ A−2

3 ;

A�ð2j1Þ ¼ A�2
0 þ A�1

1 þ A�0
2 þ A�−1

3 ;

c�ð3j1Þ ¼ c�30 þ c�21 þ c�12 þ c�03 : ð4:22Þ

Let us first focus on the gauge field only. In [10], we have
explicitly shown that, on-shell, the complete tower of fields
reduces to the first field appearing in A0

1, namely, it has the
factorized form

Að1j1Þ
phys ¼ dxaAaY ð0j1Þ; ð4:23Þ

where Y ð0j1Þ denotes as usual the PCO. In particular, we
observe that (4.23) is A0

1 in the table above. Moreover, we
have shown in (4.21) that, by using carefully the differential
operators dθ and ιθ, we can write every element of the basis

(4.20) by using the basis elements e0j1n;i , n ¼ 0, 1, 2, 3 only.
We could then be induced to consider the BV action to be
built by ghost, gauge field, antifield, and antighost of the
following form:

c00; A
0
1; A

�0
2 ; c�03 : ð4:24Þ

This would be analogous to consider the elements of the
diagonal of (4.21). However, this is not the case; indeed, we
know that the gauge field is made of four pieces,

A1j1 ¼ A1
0 þ A0

1 þ A−1
2 þ A−2

3 ; ð4:25Þ

and this is required by covariance on a generic super-
manifold. An analogous argument holds for the antifield
and the antighost, then we need the whole set of fields in
(4.22). Let us consider now the structure of the products of
the action (4.14); a simple power counting shows that we
have to take into account not only the fields of (4.22), but
also those of the form (4.18). Indeed, recall that

M2∶Ωðpj1Þ ⊗ Ωðqj1Þ → Ωðpþqj1Þ: ð4:26Þ

This means we generate all other possible sets, even if we
started from the fields in (4.22). For example, we generate
forms of Ωð6j1Þ from the two-products

M2ðc�30 ; c�30 Þ ∈ Ωð6j1Þ: ð4:27Þ

In particular, this term would appear in the action as

B−6
3 ∧ M2ðc�30 ; c�30 Þ; ð4:28Þ

where B−6
3 ∈ Ωð−3j1Þ. That shows we have to include also

the fields with negative form degree, which, in turn, will
enter in the multiproducts themselves.
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These arguments show that the definitions of the multi-
products require fields with any form degree. Their structure
is given by the geometric data of the supermanifold
considered. Hence, the A∞ structure of the multiproducts
and the L∞ structure of the gauge transformations are the
building blocks of an action on a supermanifold with fields
with nonzero and nonmaximum picture number.
Now, we have to show that there is no nontrivial field

redefinition which allows us to restrict the space of fields to
those of (4.22). For that, we start from the BV symplectic
form and we rewrite it as follows:

ωBV ¼ hA;Ai ¼
Z
SM

Að•j1Þ ∧ Að•j1Þ; ð4:29Þ

and the integral selects the forms with total form degree
equal to three. We claim that with the construction des-
cribed in the previous paragraphs we prove that there is no
unconstrained field redefinition establishing the equiva-
lence between the BV theory written using all possible
components ofA with any form number and the BV theory
written using the fields of the box (4.22) only. Let us
consider a term of (4.29) made as

hAðpj1Þ; Að3−pj1Þi ¼ hAi
n;qe

qj1
n;i ; A

j
3−n;−qe

−qj1
3−n;ii ¼

Z
SM

Tr

�X∞
p¼0

ð−1ÞjAjðpÞ
3−n;−qjAi;ðpÞ

n;q Aj;ðpÞ
3−n;−qðdθjÞpþqðdθiÞpιpi δðdθiÞιpþq

j δðdθjÞ
�

¼
Z
SM

Tr

�X∞
p¼0

ð−1ÞjAjðpÞ
3−n;−qjAi;ðpÞ

n;q Aj;ðpÞ
3−n;−qð−1Þq½ιqj ðdθjÞpþq�ðdθiÞpιpi δðdθiÞιpj δðdθjÞ

�

¼
Z
SM

Tr

�X∞
p¼0

ð−1ÞjAjðpÞ
3−n;−qjAi;ðpÞ

n;q Aj;ðpÞ
3−n;−q

ðqþ pÞ!
p!

ðdθiÞpðdθjÞpιpi δðdθiÞιpj δðdθjÞ
�

¼
Z
SM

Tr

�X∞
p¼0

ð−1ÞjAjðpÞ
3−n;−qjÃi;ðpÞ

n;q Ãj;ðpÞ
3−n;−qðdθiÞpðdθjÞpιpi δðdθiÞιpj δðdθjÞ

�

¼ hÃi
n;qe

0j1
n;i ; Ã

j
3−n;−qe

0j1
3−n;ii ¼ hÃi

n;qÃ
j
3−n;−qe

0j1
n;i ; e

0j1
3−n;ii; ð4:30Þ

where ∼ is used to denote the redefinition of the fields in order to absorb the combinatorial coefficients.
To establish the explicit equivalence of the two BV symplectic forms, we end up with constraints of the fields. The BV

from (4.29) with only the fields and antifields cð0j1Þ, Að1j1Þ, A�ð2j1Þ, c�ð3j1Þ reads

ωBV;A ¼ hcð0j1Þ þ Að1j1Þ þ A�ð2j1Þ þ c�ð3j1Þ; cð0j1Þ þ Að1j1Þ þ A�ð2j1Þ þ c�ð3j1Þi

¼ 2hcð0j1Þ; c�ð3j1Þi þ 2hAð1j1Þ; A�ð2j1Þi ¼ 2
X3
n¼0

½hcð−nj1Þn ; c�ðnj1Þ3−n i þ hAð1−nj1Þ
n ; A�ðn−1j1Þ

3−n i�

¼ 2
X3
n¼0

½hcin;−neð−nj1Þn;i ; c�j3−n;ne
ðnj1Þ
3−n;ji þ hAi

n;1−ne
ð1−nj1Þ
n;i ; A�j

3−n;n−1e
ðn−1j1Þ
3−n;j i�

¼ 2
X3
n¼0

½hc̃in;−neð0j1Þn;i ; c̃�j3−n;ne
ð0j1Þ
3−n;ji þ hÃi

n;1−ne
ð0j1Þ
n;i ; Ã�j

3−n;n−1e
ð0j1Þ
3−n;ji�

¼ 2
X3
n¼0

½hðc̃in;−nc̃�j3−n;n þ Ãi
n;1−nÃ

�j
3−n;n−1Þeð0j1Þn;i ; eð0j1Þ3−n;ji� ¼

X3
n¼0

½hBij
n e

ð0j1Þ
n;i ; eð0j1Þ3−n;ji�; ð4:31Þ

where in the last equation we havewritten the field in brackets in terms of a single field to make the notation easier. Now, we
can repeat the same calculations for the BV symplectic form built with the whole set of fields,

ωBV;A ¼
X∞
p¼−∞

hAðpj1Þ; Að3−pj1Þi ¼
X3
n¼0

X∞
p¼−∞

hAi
n;p−ne

p−nj1
n;i ; Aj

3−n;n−pe
n−pj1
3−n;j i

¼
X3
n¼0

X∞
p¼−∞

hÃi
n;p−ne

0j1
n;i ; Ã

j
3−n;n−pe

0j1
3−n;ji ¼

X3
n¼0

X∞
p¼−∞

hÃi
n;p−nÃ

j
3−n;n−pe

0j1
n;i ; e

0j1
3−n;ji ¼

X3
n¼0

hBij
n e

0j1
n;i ; e

0j1
3−n;ji: ð4:32Þ

It is now clear that the two BV symplectic forms could be equivalent after the identification

C. A. CREMONINI and P. A. GRASSI PHYS. REV. D 102, 025009 (2020)

025009-12



X3
n¼0

Bij
n ≡X3

n¼0

Bij
n ; i:e:;

X3
n¼0

2ðc̃in;−nc̃�j3−n;n þ Ãi
n;1−nÃ

�j
3−n;n−1Þ≡

X3
n¼0

X∞
p¼−∞

Ãi
n;p−nÃ

j
3−n;n−p: ð4:33Þ

However, this equivalence would imply nontrivial constraints on the fields. In particular, it implies

X∞
p¼−∞

p≠0;1;2;3

Ãi
n;p−nÃ

j
3−n;n−p ¼ 0; ð4:34Þ

which is actually a nontrivial condition. Therefore, only under special conditions, the field redefinition can be achieved and
in general, this is not possible.
Finally, the complete BV action for SCS at picture number 1 is given by the CS action with the complete sequence

of fields,

SSCS−BV ¼
Z
SMð3j2Þ

Tr

�
1

2
A ∧ dAþA

X∞
i¼2

1

iþ 1
MiðA;A;…Þ

�
; A ¼ ⨁

∞

p¼−∞
Aðpj1Þ: ð4:35Þ

We may ask whether it is possible to select and construct
a simplified action in terms of a subsector of fields which
identifies a consistent, gauge-invariant action. There are
many examples in the literature (see, e.g., [24] and
references therein) where it is shown that it is possible
to build gauge-invariant actions when working with An
structures or Ln structures, i.e., algebraic structures includ-
ing multiproducts up to n entries (see [20] for rigorous
definitions). However, the multiproducts we are using do
not come from an external structure (e.g., promoting the
gauge Lie algebra to a nonassociative version [27]) that we
can freely modify, but they are defined in terms of the
supermanifold geometry itself; therefore, we are not
allowed to truncate the multiproducts with more than n
entries. Alternatively, we can investigate whether a sub-
sector of our fields might lead to a gauge-invariant action.
There is one consistent choice, namely, restricting our-
selves to the fields highlighted in (4.24) only. They are
proportional to dx and the terms in the action involving
higher products vanish; for example, we have

A0
1 ∧ M3ðA0

1; A
0
1; A

0
1Þ ¼ ðdxÞ4A0

0 ∧ M3ðA0
0; A

0
0; A

0
0Þ ¼ 0:

ð4:36Þ
That leads to a standard BV Chern-Simons. In that case, the
condition (4.34) is satisfied by setting all coefficient to
zero. Nonetheless, that solution cannot be reached by a
nontrivial field redefinition as shown above.
Notice that from the previous arguments it follows that

the restriction to the fields in (4.24) is the only (evident)
consistent possible restriction, since otherwise we would
immediately need all the tower of possible fields as
discussed above. Finally, we conclude that the most general
BV action for super-Chern-Simons theory is the one
described in (4.35).
It is well known in mathematics that any homotpy

algebra allows for a quasi-isomorphic strict model (see

again [24] for a detailed description of quasi-isomorphisms
and their importance in physics), namely, a physically
equivalent (i.e., with the same physical states) associative
model. As briefly recalled in Sec. III A, we have explicitly
verified this for the free SCS (see [10] for a full treatment).
The theorem treating the quasi-isomorphism of an A∞
algebra A and its cohomology HðA;M1Þ is due to
Kadeishvili [28] (it can also be found, e.g., in [23]).

C. The supersymmetric term

As largely discussed in [10,29] and as recalled in Sec. II,
when considering super Chern-Simons theory with picture
number 0, we have to add to the action the term
ðWð0j0ÞÞ2V3 ∧ Y ð0j2Þ. This is necessary in order to have a
closed Lagrangian. Recall that the requirement of a closed
Lagrangian is related to the possibility of changing the PCO
by d-exact terms, without modifying the action,

Z
SMð3j2Þ

Lð3j0Þ ∧ δVY ð0j2Þ ¼
Z
SMð3j2Þ

Lð3j0Þ ∧ dΛð−1j2Þ

¼
Z
SMð3j2Þ

dLð3j0Þ ∧ Λð−1j2Þ ¼ 0:

ð4:37Þ

When considering the picture-1 case, the gauge field is not
factorized any more; therefore, we do not have explicitly
the chance to choose the embedding, i.e., the PCO Y .
Moreover, the Lagrangian is closed by definition, being a
top integral form. Then the questions for theW2 term raise:
is this term necessary in the present case? How can we
establish the connection with the usual picture-0 case?
Again, the answer comes from the nontrivial structure
of the picture-1 action. Let us focus on the kinetic term.
In particular, let us consider A−1

2 ∧ ðdAÞ11. We can choose
the fields such that
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A−1
2 ¼ Va ∧ Vbϵabcιγ

cWð0j1Þ; ðdAÞ11 ¼ VaψγaWð0j1Þ;

ð4:38Þ

where ðdAÞ11 denotes the contribution to Fð1j1Þ
1 ¼ dA−1

2

when d acts on Va. Other terms are needed for covariance.
These two terms together reproduce exactly the gaugino
term of the super Chern-Simons action, with W lifted to a
form with picture number 1. This consideration highlights
once again the generality and the nontrivial structure of the
action written using the whole tower of forms.

V. CONCLUSIONS

We have studied BV super-Chern-Simons theory on
supermanifolds at different picture numbers. The results are
the following:
(1) We built BV formalism for super-Chern-Simons

starting from picture-0 action. We pointed out that
the natural space for antifields is given by the
integral forms. There is a natural map between
the components antifields and superspace antifields.
That was never noticed before, and this gives addi-
tional strength to integral form formalism for any
supersymmetric model or for any model built on
supermanifolds.

(2) We have shown that the richness of the multi-
products and nonassociative algebra is not avoid-
able. That has been proved by studying the BV
symplectic form ωBV and showing that there is no
field redefinition which allows us to restrict the set of
fields and consequently the powers of multiproducts.
In comparison with [27], apparently here the A∞
algebra is intrinsically nested in the supermanifold
geometry and cannot be redefined. That resembles
how Haag-Łopuszańsky-Sonhius theorem over-
comes the no-go theorem of Coleman-Mandula,
since, as has been noticed in [27], the nontrivial
structures may emerge if they have a spacetime
interpretation (see also [17]).

(3) We build the BV formalism for picture-1 gauge
fields finding once more the beautiful geometric
action of Chern-Simons for the entire set of fields
and antifields as in string field theory. Furthermore,
we show how the gaugino mass term is recovered
from that action confirming the consistency of our
results. The case of extended supersymmetry will be
published elsewhere.

(4) Finally, it would be certainly very interesting to
consider this theory a general supermanifold such as
nonsplit/nonprojected supermanifold [30–32].
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APPENDIX: NOTATIONS

We consider the case of a real supermanifold SMð3j2Þ; in
terms of the coordinates, we define the following differ-
ential operators:

∂a ¼
∂
∂xa ; Dα ¼

∂
∂θα − ðγaθÞα∂a;

Qα ¼
∂
∂θα þ ðγaθÞα∂a; ðA1Þ

where the second and the third are known as super-
derivative and supersymmetry generator, respectively.
They satisfy the superalgebra relations

½∂a;∂b� ¼ 0; fDα;Dβg¼−2γaαβ∂a; fQα;Qβg¼ 2γaαβ∂a;

fDα;Qβg¼ 0; f∂a;Dαg¼ 0; f∂a;Qαg¼ 0: ðA2Þ

In three dimensional, for the local subspace, we use the
Lorentzian metric ηab ¼ ð−;þ;þÞ, and the real and
symmetric Dirac matrices γaαβ given by

γ0αβ ¼ ðCΓ0Þ ¼ −1; γ1αβ ¼ ðCΓ1Þ ¼ σ3;

γ2αβ ¼ ðCΓ2Þ ¼ −σ1; Cαβ ¼ iσ2 ¼ ϵαβ: ðA3Þ

Numerically, we have γ̂αβa ¼ γaαβ and γ̂αβa ¼ ηabðCγbCÞαβ ¼
Cαγγa;γδCδβ. The conjugation matrix is ϵαβ and a bispinor
is decomposed as follows: Rαβ ¼ Rϵαβ þ Raγ

a
αβ, where

R ¼ − 1
2
ϵαβRαβ and Ra ¼ TrðγaRÞ are a scalar and a

vector, respectively. In addition, it is easy to show that
γabαβ ≡ 1

2
½γa; γb�αβ ¼ ϵabcγcαβ.

The differential of a generic function ϕ is expanded on a
basis of forms as follows:

dϕ ¼ dxa∂aϕþ dθα∂αϕ

¼ ðdxa þ θγadθÞ∂aϕþ dθαDαϕ≡ Va∂aϕþ ψαDαϕ;

ðA4Þ

where Va ¼ dxa þ θγadθ and ψα ¼ dθα which satisfy the
Maurer-Cartan equations

dVa ¼ ψγaψ ; dψα ¼ 0: ðA5Þ

Given now a generic form Φ, we can compute the
supersymmetry variation and translation as a Lie derivative
Lϵ with ϵ ¼ ϵαQα þ ϵa∂a (ϵa are the infinitesimal para-
meters of the translations and ϵα are the supersymmetry
parameters) and by means of the Cartan formula, we have
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δϵΦ ¼ LϵΦ ¼ ιϵdΦþ dιϵΦ ¼ ιϵðdxa∂aΦþ dθα∂αΦÞ þ dιϵΦ

¼ ðϵa þ ϵγaθÞ∂aΦþ ϵα∂αΦþ dιϵΦ ¼ ϵa∂aΦþ ϵαQαΦþ dιϵΦ; ðA6Þ

where the term dιϵΦ is simply a gauge transformation. It follows easily that δϵVa ¼ δϵψ
α ¼ 0 and δϵdΦ ¼ dδϵΦ.
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