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In this work, we revisit the duality between a self-dual nongauge invariant theory and a topological
massive theory in 3þ 1 dimensions. The self-dual Lagrangian is composed by a vector field and an
antisymmetric field tensor whereas the topological massive Lagrangian is built using a B ∧ F term. Though
the Lagrangians are quite different, they yield to equations of motion that are connected by a simple dual
mapping among the fields. We discuss this duality by analyzing the degrees of freedom in both theories and
comparing their propagating modes at the classical level. Moreover, we employ the master action method to
obtain a fundamental Lagrangian that interpolates between these two theories and makes evident the role of
the topological B ∧ F term in the duality relation. By coupling these theories with matter fields, we show
that the duality holds provided a Thirring-like term is included. In addition, we use the master action in
order to probe the duality upon the quantized fields. We carried out a functional integration of the fields and
compared the resulting effective Lagrangians.
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I. INTRODUCTION

Dualities are a main theme in present-day physics. By
connecting different theories or opposite regimes of a same
model, dualities are powerful tools to seek and understand
new effects. Notably, string theories are connected by T and
S dualities [1,2] and the AdS=CFT correspondence links
low-energy gravitational theory in AdS spacetime with a
strong coupling regime of a conformal field theory at the
boundary [3]. Among the duality processes, the so-called
bosonization is of special importance and widely used to
investigate nonperturbative properties in quantum field
theory and condensed matter systems in low dimensions
[4]. In 1þ 1 dimension, it is possible to establish a
fermion-boson correspondence based on the properties
of the Fermi surfaces [5]. This duality can be further
generalized for non-Abelian fields [6] and even for higher
dimensions [7,8]. Recently, the bosonization lead to new
2þ 1 relations called a web of dualities [9,10].

Another example of duality involves topologically mas-
sive gauge theories. A well-known duality occurs between
the self-dual (SD) [11] and the Maxwell-Chern-Simons
(MCS) [12] models. These two theories describe a single
massive particle of spin-1 in 2þ 1 dimensional Minkowski
spacetime. Nevertheless, only the MCS model is gauge
invariant. The equivalence between the SD and MCS
models was initially proved by Deser and Jackiw [12],
and over the years, several studies of this equivalence have
been carried out in the literature [13–20]. Particularly, by
considering couplings with fermionic fields, it was shown
in [18] that the models are equivalent provided that a
Thirring-like interaction is included. In addition, super-
symmetric [21–23] and noncommutative [24,25] exten-
sions to the duality involving the SD and MCSmodels have
been studied in different contexts.
At the heart of this duality, the Chern-Simons term plays

a key role. An alternative topological term in 3þ 1
dimensions can be formed from a Uð1Þ vector gauge field
Aμ and a rank-2 antisymmetric tensor field Bμν, also known
as the Kalb-Ramond field [26,27]. Such a massive topo-
logical term is commonly called the B ∧ F term [28–33].
Therefore, a natural generalization of the MCS model in
four dimensions consists of the Maxwell and Kalb-Ramon
fields coupled by a B ∧ F term [34]. This topologically
massive gauge-invariant B ∧ F theory (TMB∧F) is unitary
and renormalizable when minimally coupled to fermions,
and represents a massive particle of spin-1 [28]. Models
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involving the Kalb-Ramond field have been extensively
studied in the literature, specially in connection with string
theories [35], quantum field theory [36,37], supersymmetry
[38], Lorentz symmetry violation [39–42], black hole
solutions [43], cosmology [44], and brane world scenarios
[45,46].
A self-dual version of the TMB∧F model was studied in

Ref. [47]. It involves the B ∧ F term in a nongauge-
invariant, first-order model (SDB∧F). Such work showed
the classic equivalence between the models, i.e., at the level
of the equations of motion, through the gauge embedding
procedure [20]. In addition, when interactions with fer-
mionic fields are considered, the duality mapping only is
preserved if Thirring-like terms are taken into account,
analogously to the SD/MCS case in 2þ 1 dimensions. Yet,
the issues regarding the generalization for arbitrary non-
conserved matter currents and the proof of quantum duality
have not yet been fully elucidated.
The main goal of this work is to provide an alternative

method, via master action [48], to prove the duality
between the SDB∧F and TMB∧F theories, when the fields
of the SD sector couple linearly with nonconserved
currents, composed by arbitrary dynamic fields of matter.
The master action approach has the advantage of providing
a fundamental theory that interpolates between the two
models and allows a more direct demonstration of duality at
the quantum level. Besides, the master action method is a
natural trail for the supersymmetric generalization of the
duality studied here [23].
The present work is organized as follows. In Sec. II, we

present the SDB∧F and TMB∧F theories in the free case,
review their main physical characteristics, and check the
classic duality by comparing their equations of motion.
Moreover, we built a master Lagrangian density from the
TMB∧F model, introducing auxiliary fields in order to
obtain a first-order derivative theory. In Sec. III, we include
matter couplings in the SD sector and verify whether the
equivalence is still compatible. We apply our results to the
case of minimal coupling with fermionic matter and
compare it with those found in the literature. In Sec. IV,
we investigate the equivalence at the quantum level within
the path-integral framework. Finally in Sec. V we provide
our conclusions and perspectives concerning further
investigations.

II. THE DUALITY AT THE CLASSICAL LEVEL.

In a 2þ 1 flat spacetime Townsend, Pilch, and
Nieuwenhuizen proposed a first-order derivative theory
self-dual to the topological Chern-Simons theory [11]. In
four dimensions, this kind of duality can be built through a
topological B ∧ F term. In fact, consider a gauge non-
invariant SDB∧F model composed by a vector field Aμ and
an antisymmetric 2-tensor field Bμν governed by the
Lagrangian density [28,47]

LSD ¼ m2

2
AμAμ −

1

4
BμνBμν þ χθ

4
ϵμναβBμνFαβ; ð1Þ

where m is a parameter with dimension of mass, θ is a
dimensionless coupling constant, and χ ¼ �1 defines
either the self-duality (þ) or the anti-self-duality (−) to
the theory. The field strengths associated with the vector
and tensor fields are defined respectively by Fμν ¼ ∂μAν −
∂νAμ and Hμνα ¼ ∂μBνα þ ∂νBαμ þ ∂αBμν. The equations
of motion for the Aμ and Bμν fields are, respectively,

m2Aβ −
χθ

2
ϵμναβ∂αBμν ¼ 0; ð2Þ

Bμν − χθϵμναβ∂αAβ ¼ 0; ð3Þ

and satisfy the constraint relations

∂μAμ ¼ 0; ð4Þ

∂μBμν ¼ 0: ð5Þ

Equations (2) and (3) form a set of coupled first-order
differential equations that can be rewritten, with the help
of relations (4) and (5), in the form of a wave equation
given by

�
□þm2

θ2

�
φ ¼ 0; ð6Þ

where φ denotes Aμ or Bμν fields. This implies that the first-
order Lagrangian density LSD describes the dynamics of a
massive vector field. In fact, the field Bμν is auxiliary and
can be removed from the action leading to [39]

LSD ¼ m2

2
AμAμ −

θ2

4
FμνFμν; ð7Þ

which is the Lagrangian density for a massive vector field
with three propagating degrees of freedom.
In the context of the present work, we are interested in

investigating the equivalence between the self-dual model
(1) and a second-order gauge-invariant theory. For this
purpose, let us consider a topologically massive B ∧ F
model defined as [29,47]

LTM ¼ θ2

12m2
HμναHμνα −

θ2

4
FμνFμν −

χθ

4
ϵμναβBμνFαβ:

ð8Þ

Note that the first two terms of LTM are invariant under the
gauge transformations Aμ → Aμ þ ∂μλ and Bμν → Bμν þ
∂μβν − ∂νβμ, whereas the variation of the last term yields to
a total divergence. The gauge parameter βμ still has a
subsidiary gauge transformation βμ → βμ þ ∂μα that leaves
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Bμν unchanged. The equations of motions derived from this
Lagrangian density are

θ2

2m2
∂μHμνλ þ

χθ

4
ϵνλαβFαβ ¼ 0; ð9Þ

θ2∂μFμλ þ
χθ

6
ϵμναλHαμν ¼ 0: ð10Þ

In general, the two fields Aμ and Bμν have four and six
independent degrees of freedom, respectively. However,
due to the gauge symmetry in the theory described by LTM,
some of them can be eliminated. In order to identify which
ones propagate as massive physical modes or which are
spurious (gauge-dependent) modes, it is instructive to
perform a decomposition in time-space on the equations
of motions (9) and (10). For this purpose, let us split Bμν

into the independent components B0i and Bij and to

introduce spatial vectors X⃗ and Y⃗ defined by

X i ≡ −B0i; Yi ≡ 1

2
ϵijkBjk; ð11Þ

where ϵ0ijk ¼ ϵijk. With these definitions, we obtain a set of
coupled second-order differential equations in the form

∇2A0 þ ∂0∂iAi þ χ

θ
∂iYi ¼ 0; ð12Þ

□Ai−∂ið∂0A0þ∂jAjÞþχ

θ
ðϵijk∂kX jþ∂0YiÞ¼ 0; ð13Þ

−∇2X i−∂i∂jX jþ ϵijk

�
∂0∂jYk−

χm2

θ
∂jAk

�
¼ 0; ð14Þ

∂2
0Y

k þ ∂i∂kYi þ ϵijk∂0∂jX i þ
χm2

θ
ð∂kA0 − ∂0AkÞ ¼ 0:

ð15Þ

After some manipulation of these equations, we can
formally solve the temporal component A0 and the 3-vector
X⃗ in terms of the other components according to

A0 ¼ −
1

∇2

�
∂0∂iAi

ðLÞ þ
χ

θ
∂iYi

ðLÞ

�
; ð16Þ

X ðTÞ
i ¼ 1

∇2
ϵijk

�
∂0∂jYk

ðTÞ −
χm2

θ
∂jAk

ðTÞ

�
; ð17Þ

where viðTÞ ≡ θijv
j and viðLÞ ≡ ωi

jv
j are the transversal (T)

and longitudinal (L) components of a 3-vector v⃗, respec-
tively, with the projectors θij and ωi

j defined by

θij ≡ δij − ωi
j; ωi

j ≡ −
∂j∂i

∇2
: ð18Þ

Similar procedures can be applied to the components of the
A⃗ and Y⃗, such that

�
□þm2

θ2

�
Ai
ðTÞ ¼ 0; ð19Þ

�
□þm2

θ2

�
Yi

ðLÞ ¼ 0: ð20Þ

The form of these solutions reveals that the only physical
components are Ai

ðTÞ and Yi
ðLÞ, while the others are

auxiliary or gauge modes. Furthermore, as the longitudinal
part of Y⃗ is curl-free, it propagates as a massive scalar field,
i.e., Y⃗ ¼ ∇ϕ, whose mass depends on the coupling con-
stant θ. Thus, the results above show that the TMB∧F theory
defined in (8), like the SDB∧F model, contains three
massive propagating modes.
To make explicit the hidden duality between the models

described above, it is convenient to introduce the dual fields
associated with the field strength tensors Hμνα and Fμν,
respectively, by

H̃μ ≡ −
χθ

6m2
ϵμναβHναβ; ð21Þ

F̃μν ≡ χθ

2
ϵμναβFαβ: ð22Þ

In terms of H̃μ and F̃μν, the equations of motion (9) and
(10) become

m2H̃β −
θ

2χ
ϵμναβ∂μF̃να ¼ 0; ð23Þ

F̃μν −
θ

χ
ϵμναβ∂αH̃β ¼ 0: ð24Þ

A direct comparison between the pairs of equations (2), (3)
and (23), (24) shows that the dual fields H̃β and F̃μν satisfy
exactly the same equations obtained for the SDB∧F model
when we identify Aμ → H̃μ and Bμν → F̃μν. Therefore, the
basic fields of the SDB∧F model correspond to the dual
fields of the TMB∧F model. This proves the classical
equivalence via equations of motion in the free field case.
However, despite having established the dual connec-

tion, the mapping Aμ → H̃μ and Bμν → F̃μν leads to

LTMðH̃; F̃Þ ¼ −
m2

2
H̃μH̃μ þ 1

4
F̃μνF̃μν −

1

2
BμνF̃μν; ð25Þ

wherein the identities FμνFμν ¼ −1=θ2F̃μνF̃μν and
HμναHμνα ¼ −6m4=θ2H̃μH̃μ were used. Note that (25)
does not recover (1) and the equivalence between the
two models is not evident. The common origin of these
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Lagrangian densities can be better addressed by means of
the master Lagrangianmethod, which we will formulate in
the sequel.

A. Classic duality via master Lagrangian

The study of dual equivalence among four-dimensional
models containing a topological B ∧ F term was carried
out for the first time in Ref. [47], whereby the authors used
the dynamical gauge embedding formalism to show the
classic duality between (1) and (8). Here, we employ the
master Lagrangian method [12,18] that extends and inter-
polates those two studied models. Moreover, this method
allows us to study the duality at the quantum level more
directly.
Let us start from Lagrangian density LTM in the form

(25) written explicitly in terms of the fundamental fields Aμ

and Bμν. Following [12], we will introduce auxiliary fields
Πμ and Λμν in order to obtain a first-order derivative theory
such that

LM ¼ aΠμϵ
μρσδ∂ρBσδ þ bΠμΠμ þ cΛμνϵ

μνρσ∂ρAσ

þ dΛμνΛμν −
χθ

2
εμναβBμν∂αAβ; ð26Þ

where a, b, c, and d are constant coefficients to be
determined. Note that the presence of mass terms for Πμ

and Λμν ensures the auxiliary character of these fields.
The functional variation of LM with respect to the

auxiliary fields Πμ and Λμν allows us to write

Πμ ¼ −
a
2b

ϵμναβ∂νBαβ; ð27Þ

Λμν ¼ −
c
2d

ϵμναβ∂αAβ: ð28Þ

Substituting (27) and (28) in (26) and imposing
LM ¼ LTM, we obtain the relations

a2

b
¼ θ2

2m2
; ð29Þ

c2

d
¼ −θ2: ð30Þ

The same procedure can be performed for the fields Aμ

and Bμν, and we can immediately solve their equations of
motion, obtaining the following solutions:

Aμ ¼
2a
χθ

Πμ þ ∂μϕ; ð31Þ

Bμν ¼
2c
χθ

Λμν þ ∂μΣν − ∂νΣμ; ð32Þ

being ϕ and Σμ arbitrary fields. Now, replacing (31) and
(32) in (26) and imposing LM ¼ LSD, we obtain

b ¼ m2

2
; ð33Þ

d ¼ −
1

4
; ð34Þ

such that we can immediately fix a ¼ c ¼ χθ=2 so that our
master Lagrangian takes the final form

LM ¼ χθ

2
Πμϵ

μρσδ∂ρBσδ þ
m2

2
ΠμΠμ þ χθ

2
Λμνϵ

μνρσ∂ρAσ

−
1

4
ΛμνΛμν −

χθ

2
εμναβBμν∂αAβ: ð35Þ

Accordingly, the Lagrangian density (35) describes both
(1) and (8). This mechanism transforms models without
gauge invariance into models with this symmetry by adding
terms which do not appear on shell. Note that the gauge
invariance of LM under δAμ ¼ ∂μλ and δBμν ¼ ∂μβν −∂νβμ with δΠμ ¼ δΛμν ¼ 0 is now evident, while it was a
hidden symmetry in the self-dual formulation. With the
master method, we were able to establish the relation of
equivalence when the coupling to other dynamical fields is
considered and we have a simple formalism which accounts
for the investigation of the theory at the quantum level.

III. DUALITY MAPPING WITH A LINEAR
MATTER COUPLING

The discussion on the duality developed in the previous
section deals only with free theories. However, it is
fundamental to ensure that this dual equivalence is also
valid in the presence of external sources coupled to the
fields in LM. Here and throughout the paper, we will
assume only linear couplings with external fields, whose
associated currents are composed only of matter fields,
represented generically by ψ. The cases involving nonlinear
couplings or when the currents depend explicitly on the
gauge or self-dual fields are beyond our present scope.
Let us consider the master Lagrangian (35) added by

dynamical matter fields ψ linearly coupled to the self-dual
sector:

Lð1Þ
M ¼ χθ

2
Πμϵ

μρσδ∂ρBσδ þ
m2

2
ΠμΠμ þ χθ

2
Λμνϵ

μνρσ∂ρAσ

−
1

4
ΛμνΛμν −

χθ

2
εμναβBμν∂αAβ

þ ΠμJμ þ ΛμνJ μν þ LðψÞ; ð36Þ

where LðψÞ represents a generic Lagrangian density
responsible for the dynamics of the matter fields, with
the corresponding currents being denoted by Jμ and J μν.
Note that due to the lack of gauge symmetry in the self-dual
sector, the matter currents Jμ and J μν are generally not
conserved. Also, to make our analysis as general as
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possible, we will not assume any specific form to the matter
sector for now.
First, we will remove the dependency on the gauge fields

in Eq. (36). Varying the action
R
d4xLð1Þ

M with respect to the
fields Aμ and Bμν, we obtain their corresponding equations
of motion whose solutions are given by

Aμ ¼ Πμ þ ∂μϕ; ð37Þ

Bμν ¼ Λμν þ ∂μΣν − ∂νΣμ; ð38Þ

and substituting these solutions into Eq. (36) we find

Lð1Þ
M ¼ Lð1Þ

SD, with

Lð1Þ
SD ¼ m2

2
ΠμΠμ −

1

4
ΛμνΛμν þ χθ

2
Πμϵ

μναβ∂νΛαβ

þ ΠμJμ þ ΛμνJ μν þ LðψÞ: ð39Þ

Then, Lð1Þ
SD is equivalent to the self-dual theory (1) linearly

coupled to the matter, as expected.
Next, we will eliminate the fields Πμ and Λμν from the

master Lagrangian Lð1Þ
M . The equations of motion for these

fields are

Πμ ¼ −
χθ

2m2
ϵμναβ∂νBαβ −

1

m2
Jμ; ð40Þ

Λμν ¼ χθϵμναβ∂αAβ þ 2J μν: ð41Þ

Replacing Eqs. (40) and (41) into the master Lagrangian

then implies Lð1Þ
M ¼ Lð1Þ

TM, with

Lð1Þ
TM ¼ θ2

12m2
HμναHμνα −

θ2

4
FμνFμν −

χθ

2
ϵμναβBμν∂αAβ

−
χθ

2m2
Bμνϵ

μναβ∂αJβ −
1

2m2
JμJμ

þ χθAμϵ
μναβ∂νJ αβ þ J μνJ μν þ LðψÞ: ð42Þ

From the above result, it is clear that the Lagrangian density

Lð1Þ
TM represents the TMB∧F theory (8) interacting with

the matter through “magnetic” currents plus Thirring-
like terms involving only the matter fields. A similar

Lagrangian density to the Lð1Þ
TM has appeared before in

[47]. However, the approach used in [47] was based on
the gauge embedding method, different from the one
developed here. Also, one may verify that the equations
of motion for the fields Πμ and Λμν in the SDB∧F model
(39) and for the gauge fields Aμ and Bμν in the TMB∧F
model (42) can be cast in the same form by means of the
identification

Πμ → H̃μ −
1

m2
Jμ; ð43Þ

Λμν → F̃μν þ 2J μν: ð44Þ
It is worth noting that the duality symmetry between

SDB∧F=TMB∧F theories exchanges linear couplings ΠμJμ

and ΛμνJ μν, involving currents not necessarily conserved
in the self-dual sector into derivative dual couplings
Aμϵ

μναβ∂νJ αβ and Bμνϵ
μναβ∂αJβ in the gauge sector, whose

associated currents are automatically conserved. Moreover,
self-interaction matter terms are naturally generated, which
will play a decisive role in ensuring the duality in the matter
sector, as we shall see in what follows.

A. The matter sector

Classically, the duality mapping established in Eqs. (43)
and (44) ensures that the Lagrangian densities (39) and (42)
are equivalent since the SDB∧F and TMB∧F fields obey the
same equations of motion in the presence of external
sources. However, for this equivalence between the models
to be complete, it is also necessary to verify what happens
in the matter sector, when these sources are dynamics.
To this end, we now consider the equation of motion for

the matter field ψ . First, let us focus our attention on the
SDB∧F model described by (39), so

δ

δψ

Z
d4xLð1Þ

SD ¼ 0 ⇒
δLðψÞ
δψ

¼ −Πμ
δJμ

δψ
− Λμν

δJ μν

δψ
;

ð45Þ

where δLðψÞ
δψ is the Lagrangian derivative.

On the other hand, the equations of motion for the fields
Πμ and Λμν are

m2Πμ þ χθ

2
ϵμναβ∂νΛαβ ¼ −Jμ; ð46Þ

1

2
Λμν −

χθ

2
ϵμναβ∂αΠβ ¼ J μν; ð47Þ

and obey the constraints

m2∂μΠμ ¼ −∂μJμ; ð48Þ
∂μΛμν ¼ 2∂μJ μν: ð49Þ

Inserting (47) into (46), we can eliminate Λμν in favor ofΠμ

and obtain a second-order differential equation as

ðθ2□þm2ÞΠμ ¼ −Jμ −
θ2

m2
∂μ∂νJν − χθϵμναβ∂νJ αβ;

ð50Þ
where we used the constraint m2∂μΠμ ¼ −∂μJμ. Defining

the wave operator as R̂−1 ¼ □þ m2

θ2
, we can write

Πμ ¼ −
R̂
θ2

�
Jμ þ

θ2

m2
∂μ∂νJν þ χθϵμναβ∂νJ αβ

�
: ð51Þ
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A similar procedure for the field Λμν results in

Λμν ¼ −
R̂
θ2

½−2m2J μν þ 2θ2∂αð∂μJ να − ∂νJ μαÞ
þ χθϵμναβ∂αJβ�: ð52Þ

Replacing the solutions (51) and (52) back in the matter
equation (45), we come to the result

δLðψÞ
δψ

¼ R̂
θ2

�
Jμ þ

θ2

m2
∂μð∂νJνÞ þ χθϵμναβ∂νJ αβ

�
δJμ

δψ

þ R̂
θ2

½−2m2J μν þ 2θ2∂αð∂μJ να − ∂νJ μαÞ

þ χθϵμναβ∂αJβ� δJ
μν

δψ
: ð53Þ

This is a nonlocal differential equation, expressed only in
terms of the matter fields.
Now, if we start fromLð1Þ

TM, the equation of motion for the
matter field takes the form

δ

δψ

Z
d4xLð1Þ

TM ¼ 0 ⇒
δLðψÞ
δψ

¼
�

1

m2
Jμ − Ĥμ

�
δJμ

δψ

þ ð−2J μν − F̂μνÞ
δJ μν

δψ
; ð54Þ

where we have used the definitions (21) and (22) for the
dual fields.
To eliminate the dual fields in (54), we write

the equations of motion for Aμ and Bμν, obtained from

Lð1Þ
TM, as

m2H̃μ þ
θ

2χ
ϵμναβ∂νF̃αβ ¼ −χθϵμναβ∂νJ αβ; ð55Þ

−F̃μν þ
θ

χ
ϵμναβ∂αH̃β ¼ χθ

m2
ϵμναβ∂αJβ: ð56Þ

These equations can be decoupled, and after some algebraic
manipulations we get the following results:

H̃μ ¼
R̂
θ2

�
θ2

m2
ð□Jμ − ∂μ∂νJνÞ − χθϵμναβ∂νJ αβ

�
; ð57Þ

F̃μν ¼ −2R□J μν −
R̂
θ2

½2θ2∂αð∂μJ να − ∂νJ μαÞ
þ χθϵμναβ∂αJβ�: ð58Þ

Substituting these solutions in Eq. (54) we obtain

δLðψÞ
δψ

¼
�
1

m2
ð1 − R̂□ÞJμ þ

R̂
θ2

�
θ2

m2
∂μ∂νJν þ χθϵμναβ∂νJ αβ

��
δJμ

δψ

þ
�
2ðR̂□ − 1ÞJ μν þ

R̂
θ2

ð2θ2∂αð∂μJ να − ∂νJ μαÞ þ χθϵμναβ∂αJβÞ
�
δJ μν

δψ
: ð59Þ

Using the definition R̂−1 ¼ □þ m2

θ2
, we can write □ ¼ R−1 − m2

θ2
which implies

δLðψÞ
δψ

¼ R̂
θ2

�
Jμ þ

θ2

m2
∂μð∂νJνÞ þ χθϵμναβ∂νJ αβ

�
δJμ

δψ

þ R̂
θ2

½−2m2J μν þ 2θ2∂αð∂μJ να − ∂νJ μαÞ þ χθϵμναβ∂αJβ� δJ
μν

δψ
: ð60Þ

By comparing Eqs. (53) and (60), we conclude that the
matter sectors of the two models give rise to the same
equations of motion. Thus, we have shown that the
Lagrangians Lð1Þ

SD and Lð1Þ
TM are equivalent and have estab-

lished the classical duality between the SDB∧F and TMB∧F
theories when couplings with dynamical matter fields are
considered.
In order to liken our results with the literature, let us

consider, as a particular case, a fermionic matter field
minimally coupled to the self-dual field Πμ. Assuming the
following identifications:

LðψÞ → LDirac ¼ ψ̄ðiγμ∂μ −MÞψ ; ð61Þ

whereM is the Dirac field mass, and the fermionic currents
are

Jμ → −eJμ ¼ −eψ̄γμψ ; ð62Þ

J μν → 0; ð63Þ

with e being a dimensionless coupling constant. The
equation of motion for ψ (60) takes the simple form

ðiγμ∂μ −MÞψ ¼ e2

θ2
R̂Jμγμψ ; ð64Þ

which agrees with the result obtained in [47].
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IV. THE DUALITY AT THE
QUANTUM LEVEL

Once we proved the duality between SDB∧F and TMB∧F
models at the level of equations of motion, we now check
whether this duality is preserved at the quantum level. For
this purpose, we adopt the path-integral framework and
define the master generating functional as

ZðψÞ ¼ N
Z

DAμDBμνDΠμDΛμν exp

×

�
i
Z

d4x½LM þ JμΠμ þ J μνΛμν þ LðψÞ�
�
;

ð65Þ

where N is an overall normalization constant. Our aim is
to evaluate the effective Lagrangian resulting from the
integration over the fields. First, let us integrate out the
contribution of the SDB∧F fields.
After the shifts, Πμ → Πμ þ H̃μ − 1

m2 Jμ and Λμν →
Λμν þ F̃μν þ 2J μν, we perform the functional integra-
tion in Eq. (65) over the fields Πμ and Λμν, thereby
producing

ZðψÞ ¼N
Z

DAμDBμν exp

�
i
Z

d4xLð1Þ
eff ðA;B;ψÞ

�
; ð66Þ

where

Lð1Þ
eff ðA; B;ψÞ ¼

θ2

12m2
HμναHμνα −

θ2

4
FμνFμν

−
χθ

2
ϵμναβBμν∂αAβ −

χθ

2m2
Bμνϵ

μναβ∂αJβ

−
1

2m2
JμJμ þ χθAμϵ

μναβ∂νJ αβ

þ J μνJ μν þ LðψÞ ð67Þ

is the same Lagrangian density found in Eq. (42).
To integrate over the fields configurations Aμ and Bμν, let

us first note that the master Lagrangian LM can be
rewritten, up to surface terms, as

LM ¼ χθ

2
ϵμναβðΛμν − BμνÞ∂αðAβ − ΠβÞ þ LSD: ð68Þ

In this way, we can make a shift in the gauge fields through
Bμν → Bμν þ Λμν and Aβ → Aβ þ Πβ, which allows us to
rewrite the generating function (65) as

ZðψÞ ¼ N
Z

DAμDBμνDΠμDΛμν exp

�
i
Z

d4x

�
−
χθ

2
ϵμναβBμν∂αAβ þ LSD þ JμΠμ þ J μνΛμν þ LðψÞ

��
; ð69Þ

such that the Aμ and Bμν fields decouple. Then, performing the function integration yields to the following generating
functional

ZðψÞ ¼ N
Z

DΠμDΛμν exp

�
i
Z

d4xLð2Þ
eff ðΠ;Λ;ψÞ

�
; ð70Þ

with

Lð2Þ
eff ðΠ;Λ;ψÞ ¼

m2

2
ΠμΠμ −

1

4
ΛμνΛμν þ χθ

2
Πμϵ

μναβ∂νΛαβ þ ΠμJμ þ ΛμνJ μν þ LðψÞ; ð71Þ

corresponding to the same Lagrangian density (39) previously obtained. It is worth highlighting the physical implications
contained in (68). We clearly see that the master Lagrangian LM obtained in (35) is equivalent to self-dual Lagrangian LSD
added by a purely topological B ∧ F term, which makes evident the role of the master Lagrangian on the duality symmetry.
The implications of the above results at the quantum level can be explored by considering the functional derivatives of

(66) and (70) with respect to the sources. Setting Jμ ¼ J μν ¼ 0, we can establish the following identities to the correlation
functions:

hΠμ1ðx1Þ � � �ΠμN ðxNÞiSD ¼ hH̃μ1 ½Bðx1Þ� � � � H̃μN ½BðxNÞ�iTM þ contact terms; ð72Þ

hΛμ1ν1ðx1Þ � � �ΛμNνN ðxNÞiSD ¼ hF̃μ1ν1 ½Aðx1Þ� � � � F̃μNνN ½AðxNÞ�iTM þ contact terms: ð73Þ

These relations show that the classical dual map (43) and (44) is satisfied by all quantum correlation functions of those
fields, up to contact terms.
Finally, we now complete the proof of quantum duality between the SDB∧F=TMB∧F models by performing the path

integration over Aμ and Bμν gauge fields in Eq. (66), and over Πμ and Λμν self-dual fields in Eq. (70). For this goal, it is
convenient to organize the effective Lagrangians (67) and (71) in a matrix form according to the
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L ¼ 1

2
XTÔX þ XTJ; ð74Þ

where the wave operator, Ô, forms a 2 × 2 matrix, X, and J represent vector-tensor duplet of type

X ¼
�

Aμ

Bμν

�
: ð75Þ

To accomplish the functional integration, we use the Gaussian path integral formula over a bosonic field X,Z
DX exp

�
i
Z

d4x

�
1

2
XTÔX þ XTJ

��
¼ ½Detð−iÔÞ�−1

2 × exp

�
−i
Z

d4x
1

2
JTÔ−1J

�
: ð76Þ

In our case, the determinant Detð−iÔÞ is field independent and can be absorbed by the normalization constant. The
calculation of propagators Ô−1 is rather lengthy, and the details are in the Appendix. Here we just write the results

ðÔ−1
SDÞμ;αβ;ν;λσ ¼

 
1

θ2□þm2 Θμν þ 1
m2 ωμν 2

θ2□þm2 Sμλσ

− 2
θ2□þm2 Sαβν − 2m2

θ2□þm2 ðPð1ÞÞαβ;λσ − 2ðPð2ÞÞαβ;λσ

!
; ð77Þ

and

ðÔ−1
TMÞμ;αβ;ν;λσ ¼

 1
θ2□þm2 Θμν þ λ

□
ωμν − 2m2

θ2□ðθ2□þm2Þ S
μλσ

2m2

θ2□ðθ2□þm2Þ S
αβν − 2m2

θ2□þm2 ðPð1ÞÞαβ;λσ − 2ξ
□
ðPð2ÞÞαβ;λσ

!
; ð78Þ

where Θμν, ωμν, Sμνα, P
ð1Þ
μν;αβ, and Pð2Þ

μν;αβ are projection operators whose definitions and closed algebras are shown in the
Appendix. Also, λ and ξ are convenient gauge-fixing parameters. Note that the physical poles of the two propagators are
equal, i.e., θ2□þm2 ¼ 0, and confirm that the particle spectrum of both theories are equivalent, so that we may consider
the self-dual theory equivalent to TMB∧F theory with the fixed gauge.
The above propagators, together with formula (76), enable us to perform the functional integration in (66) and (70). After

completing all tensorial contractions, we obtain the same effective Lagrangian for the matter field

Lð3Þ
eff ðψÞ ¼ LðψÞ þ 1

2
ð Jμ J αβ Þ

 
− 1

θ2□þm2 ημν − θ2

m2
1

θ2□þm2 ∂μ∂ν − χθ
θ2□þm2 ϵμλσδ∂δ

χθ
θ2□þm2 ϵαβνδ∂δ

2
θ2□þm2 ðθ2□Pð2Þ þm2IÞαβ;λσ

!�
Jν
J λσ

�
: ð79Þ

It is easy to verify that the equation of motion for the
matter field obtained from Lð3Þ

eff (79) is precisely that found
in the previous section [see Eqs. (53) or (60)]. Thus, we
prove the quantum equivalence between the matter sector
of the SDB∧F=TMB∧F models. It is worth mentioning that
the dynamics of the matter fields is preserved in the
functional integration in (66) only if the Thirring-like
interactions are added to the diagonal elements of the
Ô−1

TM matrix. Besides, the gauge-dependent parts involving
the gauge-fixing parameters are canceled, as it should be.

V. CONCLUSION

In this work, we revisited the duality between the self-
dual and topologically massive models involving the B ∧ F
term in 3þ 1 spacetime dimensions. The study of this
duality when couplings with fermionic matter are included
was first carried out in [47], through the gauge embedding

formalism. Here, we considered another approach, namely
the master action method, whereby we obtained a funda-
mental Lagrangian density that interpolates between the
two models and provides direct proof of dual equivalence at
both the classical and quantum levels. The master action
enabled us to relate the equations of motion of these models
via a dual map among fields and currents of both theories,
which ensures that they are equivalent at the classical level.
In addition, we demonstrated the duality at the quantum
level through the path-integral framework. We defined a
master generating functional wherein the integration over
the different fields provided effective Lagrangians that are
the same as those obtained classically. Moreover, after a last
functional integration over the bosonic fields, we obtained
an effective nonlocal Lagrangian for the matter fields,
which proves the equivalence between the matter sectors of
the analyzed models.
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We assumed that the external currents are linearly
coupled with the self-dual fields and are constituted
exclusively of the matter fields. We show that these
interactions induce “magnetic” couplings involving the
gauge fields, in addition to current-current Thirring-like
interactions. These types of couplings are, in general,
nonrenormalizable by direct power counting [18,22].
However, as in the 2þ 1 dimensional case involving the
Maxwell-Chern-Simons model, we may expect that this
weakness can be overcome by a 1=N perturbative expan-
sion when the matter field is an N-component fermionic
field, such that the theory becomes renormalizable. An
explicit verification of this issue, as well as a possible
extension of our results to the supersymmetric case [23,38],
are themes for forthcoming works.
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APPENDIX: FEYNMAN PROPAGATOR
FOR THE TMB∧F THEORY

Consider the topologically massive B ∧ F model
defined as

STM ¼
Z

d4x

�
−
θ2

4
FμνFμν þ

θ2

12m2
HμναHμνα

−
χθ

4
ϵμναβBμνFαβ

�
; ðA1Þ

where the first two terms represent a gauge-invariant
Maxwell-Kalb-Ramond theory, while the last is a topo-
logical B ∧ F term. The calculation of the Feynman
propagator for the theory (A1) can be performed as follows.
First, let us rewrite the integrand in Eq. (A1) on the

matrix form

LTM ¼ 1

2
XTÔTMX; ðA2Þ

with the wave operator, ÔTM, being a 2 × 2 matrix, and X
represents a column vector-tensor as

X ¼
�

Aμ

Bμν

�
: ðA3Þ

Adding convenient gauge-fixing terms in (A2), namely,
− 1

2λ ð∂μAμÞ2 and 1
2ξ ð∂μBμνÞ2, we can explicitly write the

operator ÔTMþgf, in the form

Ôμ;αβ;ν;λσ
TMþgf

¼
 
θ2□Θμν þ □

λ ω
μν −Sμλσ

Sαβν − θ2□
2m2 ðPð1ÞÞαβ;λσ − □

2ξ ðPð2ÞÞαβ;λσ

!
;

ðA4Þ

where we have introduced the set of spin-projection
operators as

Θμν ¼ ημν − ωμν; ωμν ¼
∂μ∂ν

□
; ðA5Þ

Sμνα ¼
χθ

2
ϵμναβ∂β; ðA6Þ

Pð1Þ
μν;αβ ¼

1

2
ðΘμαΘνβ − ΘμβΘναÞ; ðA7Þ

Pð2Þ
μν;αβ ¼

1

2
ðΘμαωνβ − Θμβωνα þ Θνβωμα − ΘναωμβÞ; ðA8Þ

with □≡ ∂μ∂μ, and ημν is the Minkowski metric with
signature ðþ;−;−;−Þ. Note that Pð1Þ and Pð2Þ satisfy the
tensorial completeness relation:

ðPð1Þ þ Pð1ÞÞμν;αβ ¼
1

2
ðημαηνβ − ημβηναÞ≡ Iμν;αβ: ðA9Þ

The products between the operators defined above
satisfy a closed algebra and are summarized in Tables I
and II.
The Feynman propagator is defined as Ô−1

TMþgf. In order
to invert the wave operator, we will write it and its inverse
generically by

TABLE I. Algebra of the spin-projection operators.

Θα
ν ων

ν

Θμα Θμν 0
ωμα 0 ωμν

ðPð1ÞÞρσαβ ðPð2ÞÞρσαβ
Pð1Þ
μνρσ Pð1Þ

μναβ
0

Pð2Þ
μνρσ

0 Pð2Þ
μναβ

TABLE II. Algebra of the spin-projection operators.

Sαβν Θβσ ωβσ

Sμαβ − θ2

2
□Θμ

ν
Sμασ 0

Sλαβ ðPð1ÞÞνλρσ ðPð2ÞÞνλρσ
Sμνλ − θ2

2
□Pð1Þ

μναβ
Sμρσ 0
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O ¼
�
A B

C D

�
and O−1 ¼

�
A B

C D

�
; ðA10Þ

which fulfills the relation OO−1 ¼ I, where the general
identity matrix I is defined by

I ¼
�
I 0

0 I

�
; ðA11Þ

where I and I are the identities to the projectors (θμν, ωμν)
and (Pð1Þ, Pð2Þ), respectively. From these preliminary

definitions, we obtain a system of four equations, whose
solutions can be written as we get8>>><
>>>:

AAþ BC ¼ I

ABþ BD ¼ 0

CAþDC ¼ 0

CBþDD ¼ I

⇒

8>>><
>>>:

A ¼ ðA − BD−1CÞ−1
B ¼ −A−1BD

C ¼ −D−1CA

D ¼ ðD − CA−1BÞ−1
: ðA12Þ

After some algebraic manipulations with the set of the
operators presented above, the TMB∧F gauge propagator is
properly written as

ðÔ−1
TMÞμ;αβ;ν;λσ ¼

 1
θ2□þm2 Θμν þ λ

□
ωμν − 2m2

θ2□ðθ2□þm2Þ S
μλσ

2m2

θ2□ðθ2□þm2Þ S
αβν − 2m2

θ2□þm2 ðPð1ÞÞαβ;λσ − 2ξ
□
ðPð2ÞÞαβ;λσ

!
: ðA13Þ
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