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A nearly black, gravitationally intense star of a semitransparent, spherical, massive shell containing a
few pointlike light sources inside would be perceived not like a three-dimensional ball for a localized
observer outside the shell in terms of the affine or binocular distance. As the radius of the spherical shell
approaches the Schwarzschild radius, the perceived distance between the front and rear surfaces of the shell
would go to zero, while the images of most of the interior emitters would squeeze around the shell surfaces
in terms of the affine or binocular distance. So, the Schwarzschild black hole formed from the star would be
thought of as a two-dimensional membrane for the observers who can only measure the binocular distance
and/or affine distance. However, the depth information of a point source inside the nearly black star can still
be resolved in terms of the radar or luminosity distance, which needs the knowledge about the radar signals
or standard candles sent in earlier by the observer outside the star. This suggests that at late times of
gravitational collapse the area law of the entropy would dominate over the volume law for outside observers
due to the loss of the knowledge about the ingoing probes earlier.
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I. INTRODUCTION

A field ϕxðtÞ can be considered as a collection of
oscillators, each oscillator is labeled with a space point
x and evolving in time t, and each is interacting with the
oscillators labeled as its spatial neighbors (and perhaps with
itself, too) [1,2]. Since the entropy of a simple system in
statistical physics is proportional to the dimension of the
phase space, or the degrees of freedom of the system [3],
one may expect that the entropy of a field in a spatial region
would be proportional to the number of oscillators, namely,
the number of space points in that region, or the volume of
that region divided by a constant specific volume. It is
therefore curious that the entropy of a black hole is
proportional to the area rather than the volume of the
black hole in classical general relativity [4].
Much effort has been made in various perspectives to

understand how the entropy of a black hole should be
proportional to its area rather than its volume. The major
direction is to count the degeneracy of microscopic states to
each single macroscopic state of a stationary black hole
[5,6]. The leading-order results of such counting in string
theory [7] and loop quantum gravity [8] can match the area
law of black hole entropy in many cases. However, the
calculations in this direction are usually started with an
eternal black hole whose horizon has been in existence.
Having those interesting results, one may still ask the
following: is there a continuous transition of entropy

scaling from the volume law for a collapsing star to the
area law for the black hole formed from that star?
A sound answer comes from the study of the systems

with negative specific heat due to the presence of long-
range attractive forces [9]. When the long-range interaction
is gradually turned on, the thermodynamic entropy of the
system can smoothly switch from extensive to nonexten-
sive properties [10]. For a spherically symmetric star, as the
star radius goes from a large number down to the
Schwarzschild radius and the gravitational effect inside
the star becomes more and more significant, the thermo-
dynamic entropy of the star matter also shows a continuous
transition from volume-scaling to area-scaling behaviors
[10–12]. Along the transition, the local temperature grows
while the entropy density decays inside the star. Eventually,
the matter entropy of a nearly black star is mainly
contributed by the pressure density of the star around
the surface. Nevertheless, a black hole’s matter energy and
pressure densities can be vanishing around its surface (i.e.,
the horizon), while its Bekenstein-Hawking entropy is
large. There seems to be a gap between these results and
the black hole entropy.
In this paper, we suggest an alternative thought. Since the

Hawking temperature associated with the Bekenstein-
Hawking entropy in the equation of state originates from
the vacuum fluctuations of quantum fields in the back-
ground geometry of a collapsing star [13], the Bekenstein-
Hawking entropy of a black hole should be related to the
number of field degrees of freedom in the star. Suppose no
observer localized outside a star can communicate with the
observers inside the star in a timescale associated with their*sylin@cc.ncue.edu.tw
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cutoffs, or during the period of interest in a model.
Following the line in the opening paragraph, if every
outside observer perceives the collection of space points
in the star like a membrane rather than a ball, then for the
outside world, the number of field degrees of freedom in the
star should be considered as proportional to that area of the
membrane rather than the volume of a ball. If all those two-
way causally connected observers can in principle agree on
a standard area for the membrane after they exchange and
compare their results, the area-scaling number of field
degrees of freedom should be considered as a relativistic
invariance.
To show that such a situation would be possible, we are

studying how the position information of the pointlike
emitters distributed inside a spherical massive shell, which
is about to form a black hole, would be perceived by an
observer localized outside the star. We will see that, as the
shell radius approaches the Schwarzschild radius, namely,
the star becomes “gravitationally intense” [14], the interior
of the shell would be perceived like a two-dimensional (2D)
membrane rather than a three-dimensional (3D) ball in
terms of the affine and binocular distances,1 so the outcome
of each local measurement on the field amplitude or
momentum in the star would be positioned on the 2D
membrane. This implies that the Bekenstein-Hawking
entropy is actually extensive and thermodynamically
admissible in observational coordinates, and one would
not need to construct an alternative entropic functional to be
used for thermodynamical issues [16].
We will further see that the interior of the shell still looks

like a 3D ball in terms of the radar or the luminosity
distances whenever the nearly black star is not truly black.
The key difference between these two kinds of distance
measures suggests that, by including or ignoring the full
knowledge about the probes and responses, namely, by
keeping or dropping the autocorrelations of ingoing and
outgoing signals, the field degrees of freedom inside the
star can switch between a volume-scaling and an area-
scaling quantity for a localized observer outside. At late
times of gravitational collapse, the area law eventually
dominates among the observations due to the growing
difficulty of reconstructing those autocorrelations.
This paper is organized as follows. We focus our

attention on a simple geometry produced by a semitrans-
parent spherical massive shell in Sec. II, where we
determine the affine distance from a point source of light
inside or outside the spherical shell to an observer localized
outside the star. In Sec. III, we introduce the binocular
distances perceived by the observer with baselines in two
orthogonal directions to compare with the affine distances
of the interior emitters. We further examine in Sec. IV if

other measures of distance such as the radar distance and
luminosity distance would give similar results. Then, we
summarize and discuss our results in Sec. V. A review on
the null geodesic equations describing the light rays in a
spherically symmetric spacetime is given in Appendix A,
and the angles of departure of the observable light rays
sourced from the interior emitters are discussed in
Appendix B.

II. EMITTERS IN A SPHERICAL MASSIVE SHELL

Consider a star of a spherical thin shell of radius rs, total
mass M, and centered at C chosen as the origin of
bookkeeper coordinates (A1), containing a few pointlike
light emitters of negligible masses to help the outside
observers determining the locations of the events inside the
spherical shell.2 The mass of the star is concentrated on the
shell of negligible thickness with a uniform surface density,
and the shell is semitransparent so that light rays can go
through the shell and a localized observer at a fixed radius
outside the star can see the front and the rear surfaces of the
shell, like viewing a dusty hollow glass sphere, as well as
those light emitters inside. Note that the light rays here
would not only refer to some eikonal limit of realistic
electromagnetic waves, which may be scattered by the
interior matter of a star, but also the ideal light rays in
relativistic physics to specify the causal structure [13,18],
or any messenger fields or particles weakly interacting with
matter [19].
Suppose the interior of the star is otherwise empty and

the bending of light rays is purely due to the spacetime
geometry (A1), which has

AðrÞ ¼ 1=BðrÞ ¼ 1 −
2M
r

for r > rs ð1Þ

outside the star as the Schwarzschild metric by Birkhoff’s
theorem and

AðrÞ ¼ As ≡ 1 −
2M
rs

; BðrÞ ¼ 1 for r ≤ rs ð2Þ

inside as the Minkowski metric with a scaled time
coordinate [20–22]. Note that As → 0 as rs → 2M.
Then, Eq. (A12) can be written as E ¼ T þ V, where

T ¼
�
_r2=2

As _r2=2
V ¼

8<
:

b2

2r2

�
1− 2M

r

�
for r > rs;

b2

2r2As for r ≤ rs;
ð3Þ

and the light rays of different b have different effective
potentials V (Fig. 1).
When rs ≥ 3M, VðrÞ is monotonically decreasing as r

increases. For a gravitationally intense star 2M < rs < 3M,1Similar ideas in the affine distance can be found in Ref. [15],
while the direct images of the rear surfaces (R in Fig. 2 for each
observed light ray) of the collapsing star are not shown there. 2For more realistic cases, see Refs. [10,12,17].
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as shown in Fig. 1, the Schwarzschild metric outside the
shell forms a local maximum of V at r ¼ 3M, where the
photon sphere is located. The light rays of E < Vð3MÞ, or
jbj > bc, where

bc ¼ 3M
ffiffiffiffiffiffi
6E

p
ð4Þ

is defined byE ¼ Vð3MÞjb¼bc, cannot cross the barrier of the
effective potential. Such null geodesics that started from the
inside of the spherical shell will be trapped in the photon
sphere and that started from the outside of the photon sphere
cannot reach the surface of the spherical shell. Once the null
geodesic can reach and enter the shell, the closest radius r to
the shell center it can possibly reach is

rmin ≡
ffiffiffiffiffiffiffiffiffiffi
b2As

2E

r
; ð5Þ

where _r ¼ 0 and so the effective kinetic energy T ¼ 0. For
finite values of E and b, one has rmin → 0 as rs → 2M.
When considering the null geodesics passing through the

localized observer at ro > rs, we insert E ¼ Ao=2 from
(A14) into (4) and (5).

A. Angle of arrival and affine distance

The angle of arrival for a light ray received by the
localized observer O at r ¼ ro is

θa ¼ tan−1
r_θ
−_r

����
r¼ro

¼ tan−1
b=roffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ao½1 − ðb=roÞ2�
p ð6Þ

in the rθ plane in bookkeeper coordinates, assuming that
the observer is always facing to the shell center C at the
origin (Fig. 2). The perceived angle of arrival would then be

θ̃a ¼ tan−1
ro _θ

− _̃r

����
r¼ro

¼ tan−1
b=roffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðb=roÞ2
p ¼ sin−1

b
ro

ð7Þ

in terms of the radar coordinates, ds2 ¼ dr2=Ao þ r2odθ2 ≡
dr̃2 þ r2odθ2 for dt ¼ dφ ¼ 0, around the observer at
r ¼ ro. Note that the value of θa here increases in the
clockwise direction in Figs. 2 and 3, in contrast to other
angles defined in this paper such as (B4) and (B5). The
above θa, θ̃a, and b are allowed to have negative values.
When some positive value of b is associated with some
value of θa, then π þ θa will also be associated with b, and
−b will be associated with −θa and π − θa. Here, one
should choose b2 ≤ r2o to make _rðroÞ real and VðroÞ ≤
Ao=2 ¼ E [(A12), (A11), (A14), and Fig. 1]. As b → �ro,
one has θa; θ̃a → �π=2.
From (A12), the affine distance dA of a null geodesic

connecting an event or emitter e at ðre; θeÞ and the observer
O at ðro; θoÞ is defined as the difference of the normalized
affine parameter between e and O, namely,

dA ¼
Z

e

O
dλ ¼

Z
e

O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

2ðE − VðrÞÞ

s
dr; ð8Þ

where E is given in (A14) and λ≡ 0 at O. The above
integrand will be real if the connecting null geodesic
exists classically. To make dA positive and monotonically

FIG. 2. The black curve represents the light ray with
b ≈ 4.36062, and the spherical shell is colored in orange. Here,
M ¼ 1, rs ¼ 2.05M, and ro ¼ 8M. The straight line joining the
shell center C and P∞ is parallel to the tangent line of the light ray
around the observer O (gray dashed lines).

FIG. 1. The effective potential given in (3) with b ¼ 3 (solid
curve), b ¼ bc ¼ 4.5 (dashed), b ¼ 5.5 (dotted), and b ¼ ro
(gray dashed). Local maxima occur at the photon sphere
r ¼ 3M. Here, the total mass of the spherical shell is M ¼ 1;
the shell and the observer are situated at r ¼ rs ¼ 2.25M and
ro ¼ 8M, respectively; and bc ¼ 3

ffiffiffiffiffiffiffiffi
3Ao

p
M defined above

Eq. (12). The horizontal line represents the effective total
energy E ¼ Ao=2 ¼ 3=8. The least values of the bookkeeper
r coordinate that the rays with b ¼ 3 (< bc) and 5.5 (> bc) can
reach are rmin¼r3≈1.1547M<2M and r5.5 ≈ 4.8783M > 3M,
respectively.
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increasing as we move e away from O along the same null
geodesic, one needs to take care of the upper and lower
limits for the above r integration, which should be done
piecewise if rðλÞ is not single valued [cf. Eq. (A15)
and below].
For an observer outside the photon sphere (ro > 3M,

called a “far observer” below), when the event or emitter is
outside the shell with the whole null geodesic going in the
Schwarzschild geometry, one has

dA ¼
����
Z

ro

re

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aor4 − b2r2 þ 2Mb2r

p ����; ð9Þ

and when the event/emitter is inside the shell, one has

dA ¼
Z

F

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
As

Ao−Asb2=r2

s
drþ

Z
ro

rs

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aor4−b2r2þ2Mb2r

p
¼

ffiffiffiffiffiffi
As

Ao

s
lþ

Z
ro

rs

r2drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aor4−b2r2þ2Mb2r

p ; ð10Þ

where l is the depth of the emitter from the front surface of
the shell, i.e., jeFj in Fig. 2. There, F (R) represents the
intersection of the null geodesic and the front (rear) surface
of the shell with respect to the affine distance for the
observer. In bookkeeper coordinates,

l≡ L
2
∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e − r2min

q
ð11Þ

with “−” for jeFj ≤ jeRj in Fig. 2, “þ” for jeFj > jeRj, and
the depth of the rear surfaces from the front surface
L≡ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − r2min

p
¼ jFRj. Note that both l and L depend

on b due to the b dependence in rmin from (5).
For an observer inside the photon sphere (called a “near

observer” below, only possible when the star is gravita-
tional intense, namely, 2M < rs < ro < 3M), the light rays
of b ∈ ðbc; roÞ will be trapped in the photon sphere and
oscillate between two of the real solutions for E ¼ VðrÞ,
r ¼ rmin given in (5) and rmax ∈ ½ro; 3MÞ. Then, r in (8) is
not single valued in λ, and (8) should be calculated more
carefully.
Around the shell surface r ¼ rs, since the effective

potential V in (3) is continuous and E is a constant, the
effective kinetic energy T has to be continuous, too. This
implies that _rjrsþϵ ¼

ffiffiffiffiffi
As

p
_rjrs−ϵ, ϵ → 0þ, and so for the

light ray traveling for the same Δr in the bookkeeper r
coordinate, the affine distance Δλ just inside the shell is
shrunk from the one just outside the shell by a factorffiffiffiffiffi
As

p
< 1. As rs approaches the Schwarzschild radius 2M

and so
ffiffiffiffiffi
As

p
→ 0, the affine distance from the front to the

rear surfaces of the shell for the observer, Δλ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=Ao

p
L

from (10), goes to zero at every angle of arrival, and the
interior emitters of different depths between the two
surfaces along the same light ray become more and more
difficult to resolve for the observer. In other words, our
nearly black spherical star “perceived” by the localized
observer is not a ball in terms of ðdA; θ̃aÞ. Rather, it would
look like a pancake or a contact lens by a far observer
(ro > 3M), and will get into a membrane as its radius rs
goes down to 2M, as shown in Fig. 4. In the same plot, one
can also see that earlier when rs was going down to the
vicinity of the photon-sphere radius 3M the edge of the 3D
map of the shell (in terms of the affine distance and the
perceived angle of arrival) started to stretch backward along
an asymptotic cone for the observer. When 2M < rs < 3M,
the affine distance of the edge of the 3D “image” goes to
infinity, and the angle of arrival of the boundary of the
shell’s image for the far observer localized at ro > 3M
corresponds to the rays coming exactly from the photon
sphere r ¼ 3M with E ¼ Vð3MÞ, namely,

θ̃ca ¼ sin−1
bc
ro

¼ sin−1
3

ffiffiffiffiffiffiffiffi
3Ao

p
M

ro
ð12Þ

from (4) and (A14). For the far observer, the received rays
with jbj > bc or jθ̃aj > θ̃ca must have never been inside the
spherical shell.
For a near observer (2M < rs < ro < 3M), the boundary

of the star image would be perceived at the angle of arrival
θ̃a ¼ π − θ̃ca ≥ π=2. The images at sufficiently small angles
of arrival θ̃a ≤ θ̃ca (which is one of the escape cones for a
pointlike emitter situated at the same position of the
localized observer O; see Appendix B) look similar to

FIG. 3. The light rays (red, black, and gray curves) around a
spherical shell (orange) and received by the localized observer O
are represented in bookkeeper coordinates r and θ, plotted as
polar coordinates on a 2D plane (of some constant φ). Here,
M ¼ 1, ro ¼ 8M, and rs ¼ 2.01M. The photon sphere at r ¼ 3M
and the Schwarzschild radius r ¼ 2M are represented in blue
dotted and red dotted circles, respectively. The red ray has
θa ¼ θ1, which is the minimum angle of arrival within which
the localized observer can collect the signals from all the point
sources inside the shell.
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those in the above case for the far observers. At larger
angles of arrival θ̃a ∈ ðθ̃ca; π − θ̃caÞ, however, the images of
the interior emitters are produced by the light rays trapped
in the photon sphere and going into and out of the shell
periodically. Those images would distribute in a series of
thin layers of thickness

ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=Ao

p
L (Fig. 5) separated by

finite interlayer gaps of the affine distances contributed by
the sections of the light rays outside the shell. At θa ¼ π=2,
where b reaches the maximum value ro, the gap is minimal
but still greater than the affine distance to the shell surface
for the observer. Thus, it would not be difficult for
the observer to distinguish the nearest image layer
from the others in terms of the affine distance. As
rs → 2M, while the affine distance to the thin layer where
an image is positioned could be resolved by the observer,
the affine depths of that image in its layer would not be
resolvable.
In short, for a localized observer outside a nearly

black shell, either she is situated inside or outside the
photon sphere of the shell, the information of depth
of the interior emitters from the shell surface in terms of
the affine distance will be lost as the shell is turning into a
black hole.

B. Direct images

In Fig. 3, one can see that inside the nearly black star, as
b and so θa in (6) increase from zero, the sections of the
light rays inside the shell roughly rotate about the shell
center C and scan the interior of the star on the same rθ
plane. A further rotation of the whole rθ plane about the z
axis from φ ¼ 0 to 2π will make the shaded region in Fig. 3
pass through every interior point of the spherical shell at
least once. Thus, the red curve with the section inside the
shell perpendicular to the z axis in Fig. 3 represents the light
ray with θa equal to the minimal angle of arrival θ1 within
which the localized observer could possibly collect the
signals emitted by all the point sources inside the shell (red
dashed lines in Fig. 4).
In the interval of the angle of arrival jθaj ≤ θ1 for a far

observer (ro > 3M), most of the pointlike emitters inside
the shell have single pointlike images. The only exceptions
are those emitters located in the small region −rminðb1Þ <
z < 0 with b1 ≡ bjθa¼θ1

¼ ro sin θ̃1 around the z axis
(between the vertical red curve and the shell center C in
Fig. 3), where the pointlike emitters right on the z axis
would produce small Einstein rings, and the ones slightly
off the z axis may produce double images asymmetric to the
center of the image of the whole star (both kinds of these
images will reduce to single pointlike images as rs → 2M).
All of them are direct images.
As one keeps increasing jθaj from θ1 toward θca (cor-

responding to θ̃ca), the pointlike emitters in most of the
region inside the shell start to be seen repeatedly as the first,

FIG. 5. The observed spherical shell of rs ¼ 2.001M (black
curves) by a near observer at ro ¼ 2.25M inside the photon
sphere in terms of the affine distance dA and the angle of arrival
θ̃a in a constant-φ plane in the observer’s local frame. The green
lines represent the angle of arrival θ̃ca and π − θ̃ca, and the red-
dashed lines represent θ̃a ¼ �θ̃1, where θ̃1 ≈ 0.6457π > π=2
(with b1 ≈ 2.0184). The ellipses are the spherical shell (orange),
the photon sphere (blue dotted), and the Schwarzschild radius
(red dotted) in the rθ plane of bookkeeper coordinates, with the z
coordinate scaled by 1=

ffiffiffiffiffiffi
Ao

p
.

FIG. 4. The observed spherical shells of rs ¼ 4M (gray, short-
dashed curve), rs ¼ 3.1M (gray, long-dashed), and rs ¼ 2.01M
(black) by a far observer at ro ¼ 8M in terms of the affine
distance dA and the angle of arrival θ̃a in a constant-φ plane in the
observer’s local frame. Here, M ¼ 1 and ðz̃; x̃Þ≡ ðdA cos θ̃a;
dA sin θ̃aÞ. The black curves actually extend to infinity with the
asymptotes in green. The red dashed lines represent θ̃a ¼ �θ̃1,
where θ̃1 ≈ 0.1286π (with b1 ≈ 0.25615) for the case of
rs ¼ 2.01M. For comparison, the spherical shells of different
radii are represented in orange short-dashed, long-dashed, and
solid curves, together with the photon sphere (blue dotted) and
the Schwarzschild radius (red dotted) in the rθ plane of book-
keeper coordinates, with the z coordinate scaled by 1=

ffiffiffiffiffiffi
Ao

p
. One

can see that the affine distance between the front and rear surfaces
of the spherical shell decreases as rs → 2M.
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second, and perhaps infinitely many higher-order indirect
images in the picture of the whole star, if the whole setup is
stable for an infinitely long period and the observer has an
infinite angular resolution. However, the emitters in the
core region of r ≤ rminðb1Þ around the shell centerC cannot
be seen at any jθaj > θ1 by the observer, since both rminðbÞ
and θaðbÞ of the light rays that the observer O receives
[Eqs. (5) and (6)] are increasing function of jbj, which
implies that the light rays of b > b1 or jθaj > θ1 will
always have rminðbÞ > rminðb1Þ and never reach the emit-
ters in that core region of r < rminðb1Þ when traced back.
Let the intersection of the red ray and the upper shell

surface be ðrs; θs1Þ in bookkeeper coordinates in Fig. 3,
where the observerO is located at ðro; θoÞ. One can see that
θs1 − θo is greater than π=2 in Fig. 3 because rmin is still
significant there. As rs → 2M and so rmin → 0, the polar
angle θs1 − θo corresponding to θ1 will go to π=2, and the
core region mentioned above will shrink to point C.
For a near observer inside the photon sphere, θ1 can be

defined in the same way as in Fig. 3 on the nearest image
layer to the observer. As shown in Fig. 5, in this case, θ1 can
be greater than θca and even greater than π=2 if ro is
sufficiently close to 2M. In spite of this, the observer would
still be able to identify the direct images of all the interior
emitters within jθaj ≤ θ1 in the nearest image layer.
Since rmin given in (5) varies with different b, the direct

images of two emitters inside the spherical shell may
overlap (along the same ray of some value of b to reach the
observer), while their higher-order indirect images split
(along two rays of different b), and vice versa. From this, an
observer (or a group of observers situated at different
angles in bookkeeper coordinates) outside the shell may be
able to extract the relative positions of different interior
emitters, including the relative depths of them. As
rs → 2M, however, all the light rays from the interior
emitters to the observer outside the shell will have their
inside-shell sections almost going in the radial and opposite
directions, namely, the straight-line extension of each
inside-shell section will almost pass through the shell
center C in bookkeeper coordinates as all rminðbÞ goes
to zero in this limit (also see Appendix B). This implies that
the images of all the interior emitters lying on the same
diameter of the spherical shell would overlap in all orders
and all layers when the shell is about to form a black hole,
while the images of the interior emitters not on the same
diameter would never overlap in view of all the observers
localized outside the shell. Then, it becomes impossible for
those observers to extract the depth information of the
interior emitters using the relative positions of their images
in different orders or layers, from which only the emitters’
angular positions can be determined.

III. BINOCULAR DISTANCES

In previous section, we have learned that as a 3D
spherical star is turning into a black hole, it would be

perceived more and more like a 2D membrane by a
localized observer outside the star in terms of the affine
distance. One may argue that the affine distance is a
mathematical construction, which is not measurable directly
by physical means. Below, we examine whether the obser-
vation would be similar in terms of physical measurables
such as the binocular distance.
To determine the binocular distance, our localized

observer should set a baseline of nonzero length. We
assume the baseline is infinitesimal to suppress the ambi-
guity. In a spherically symmetric spacetime, the binocular
distance to a point source of light may be well determined
using a baseline either parallel or perpendicular to the
polar direction with respect to the z axis joining the origin
C and the localized observer O or the emitter e, though
the values of the binocular distances determined by these
two orthogonal baselines are different in general for the
localized observer. Off these two directions, however, the
binocular distance could not be determined straightfor-
wardly, and the observer may need a more sophisticated
way to obtain a reasonable measure of distance, e.g., the
trinocular distance [23].

A. Baseline in polar direction

Consider the same model in Sec. II. Let us choose the z
axis joining the origin at the shell center C and the pointlike
emitter e so that θe ¼ 0 in bookkeeper coordinates in (A1),
then specify the location of the observer O as ðro; θo;φoÞ
(Fig. 2). As shown in Appendix A, each light ray
connecting the emitter and the observer is always in an
rθ plane of constant φ by symmetry, and here, the constant
is φo. Suppose the baseline of the localized observer around
O is going in the θ direction about the z axis in this rθ plane
with a sufficiently small length such that the whole baseline
can be considered as on the sphere of r ¼ ro. In Fig. 2, one
can see that a light ray of the impact parameter b emitted by
a point source e and received by the observerO at the angle
of arrival θa has the tangent line rðsÞ ¼ ½ro cos θo þ
s cosðθo − θa þ πÞ; ro sin θo þ s sinðθo − θa þ πÞ� at O
(s ∈ R and rð0Þ ¼ ðro; θoÞ) in the rectangular coordinates
½z; x� ¼ ½r cos θ; r sin θ� on the rθ plane of φ ¼ φo. Suppose
another light ray from the same emitter e but with a slightly
different value of the impact parameter bε, where ε is a
small parameter and bε → b as ε → 0, is lying on the same
rθ plane of φ ¼ φo and reaches a slightly different
point ðro; θεoÞ on the baseline from O. The tangent line
of the second light ray at ðro; θεoÞ is rεðsεÞ¼ ½ro cosθεoþ
sε cosðθεo−θεaþπÞ;ro sinθεoþ sε sinðθεo−θεaþπÞ�, sε ∈ R.
These two tangent lines intersect at

s ¼ roðsin ½θεo − ðθεo − θεaÞ� − sin ½θo − ðθεo − θεaÞ�Þ
sin ½ðθεo − θεaÞ − ðθo − θaÞ�

¼ roθ0o cos θa
θ0o − θ0a

þOðεÞ; ð13Þ
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where θ0o≡ limε→0ðθεo−θoÞ=ε and θ0a≡ limε→0 ðθεa−θaÞ=ε.
Thus, the binocular distance determined by the infinitesi-
mal baseline in the θ direction for the observer O would be

dk ≡ NðθaÞro cos θa
θ0o

θ0o − θ0a
; ð14Þ

where a normalization factor NðθaÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A−1
o cos2θaþsin2θa

p
is introduced to match the radar distance r̃ around the
observer O (cf. Sec. IV). Given θa in (6), and notice that θεa
has the same form as θa except b is replaced by
bε ¼ bþ εb0 þOðε2Þ, one has

θ0a ¼
b0

ffiffiffiffiffiffi
Ao

p
r2offiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2o − b2
p

½Aoðr2o − b2Þ þ b2�
: ð15Þ

Consider a light ray started at R and received by the far
observer O represented as the black path in Fig. 2, where R
is on the rear surface of the shell with respect to the affine
distance for the observer. If we put a point source e at
another point than R on the same black path, then one of the
light rays emitted by e can go along the black path to reach
the observerO. Let us put an emitter e atO, and then slowly
bring e away from O toward R along the black path in
Fig. 2, while the z axis from C pointing to e varies
following the move of e. When the emitter e is still outside
the shell, given θo in (A16), one has

θ0o ¼ b0∂b

Z
ro

re

−bdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aor4 − b2r2 þ 2Mb2r

p
¼ −

Z
ro

re

b0Aor4dr

ðAor4 − b2r2 þ 2Mb2rÞ3=2 ; ð16Þ

since (re, θe) are fixed. Substitute (16) and (15) into (14),
one finds that the factor b0 cancels. As the emitter is brought
away from O along the black path in Fig. 2, the binocular
distance dk is a monotonically increasing function of the
affine distance dA ¼ Δλ for the observer, as shown in Fig. 6
(left). When dA is small, we have dk ≈ dA. As the path of
the light ray from e to O starts to bend on the rθ plane, the
value of dk becomes less than dA. As the emitter e goes
toward the spherical shell further, dk tends to saturate but
still increases all the way to the point that e touches F on
the front surface of the shell with respect to dA for the
observer. Indeed, as the emitter e is brought away from the
observerO along the black path in Fig. 2, θ0a=b0 is a positive
constant from (15), and the integrand of ð−θ0o=b0Þ is
positive definite from (16), so ð−θ0o=b0Þ is increasing
as ro − re increases from zero. Rewrite (14) into
dk ¼NðθaÞro cosθa× ð−θ0o=b0Þ=½ð−θ0o=b0Þþðθ0a=b0Þ�, and
the behavior of dk described above is obvious.
When the emitter e gets into the spherical shell, from

(A15), one has

θo ¼ θe −
Z

e

F

b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=Ao

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 − r2b2ðAs=AoÞ
p

−
Z

F

O

bdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aor4 − b2r2 þ 2Mb2r

p
¼ θe þ θdðbÞ − θinðbÞ −

Z
ro

rs

bdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aor4 − b2r2 þ 2Mb2r

p ;

ð17Þ

where θe ¼ 0 in our choice of the z axis, θin ¼
sin−1ð−b ffiffiffiffiffiffiffiffiffiffiffiffiffi

As=Ao

p
=rsÞ is the angle of incidence given in

(B2) (jθinj ¼ ∠CFe ¼ ∠CRe in Fig. 2), and θd is the angle
of departure (B1) (jθdj ¼ π −∠CeF ¼ ∠CeR in Fig. 2).
Note that θd ¼ θin when e ¼ F and θd ¼ −sgnðbÞπ − θin
when e ¼ R with sgnðbÞ ¼ 1 for b ≥ 0 and −1 for b < 0.
Then,

θ0o ¼ b0
�
κðlÞ −

Z
ro

rs

Aor4dr

ðAor4 − b2r2 þ 2Mb2rÞ3=2
�

ð18Þ

after some algebra, where

κðlÞ≡ 2

L

ffiffiffiffiffiffi
As

Ao

s
l

l − L
2

ð19Þ

with the depths lðbÞ and LðbÞ defined in (11). Inserting
(15) and (18) into (14), dk reads

dk ¼ NðθaÞro cos θa
κðlÞ þ ðθ0o=b0ÞjF

κðlÞ þ ðθ0o=b0ÞjF − ðθ0a=b0Þ
; ð20Þ

where ðθ0o=b0ÞjF denotes the value of θ0o=b0 when e is at F,
and still, θ0a=b0 is a positive constant independent of l or λ
from (15).

FIG. 6. Comparison of the affine distance dA (gray) with the
binocular distances dk (red), d⊥ (blue), and the trinocular distance
d3 (green dotted) of the emitter e for the observer O as e is
brought from O along the light ray (black) in Fig. 2 for e outside
(left plot) and inside the shell (right). Here, l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ao=As

p
Δλ.
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When e is started at F, κðl ¼ 0Þ ¼ 0, ðθ0o=b0ÞjF < 0
from (18), and so both the denominator and the numerator
of (20) are negative. Moving the emitter e from F toward R
along the black path of light ray in Fig. 2, l increases, and κ
runs from 0 down to −∞ as l → L

2
−. When e is passing

through the middle point between F and R, the observer
would perceive dk ¼ NðθaÞro cos θa. Then, as e is brought
from the middle point to R, κ runs from þ∞ down to
ð4=LÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

As=Ao

p
. If jðθ0o=b0ÞjF > ð4=LÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

As=Ao

p
, which is

always true when ro is sufficiently large and the shell radius
rs is close enough to 2M so that As=Ao is sufficiently small,
on the way that κ drops from positive infinity down, κ first
meets the value of ðθ0a=b0Þ − ðθ0o=b0ÞjF, causing a diver-
gence of dk at that point. Then, dk increases from negative
infinity up as l keeps increasing, until κ passes through the
value of −ðθ0o=b0ÞjF where dk ¼ 0. After that point, dk
becomes positive and still increases, all the way to the point
that e arrives at R where l ¼ L, κ ¼ ð4=LÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

As=Ao

p
,

ðθ0a=b0ÞjR > 0, and remarkably dkjR < dkjF.
In Fig. 6 (right), one can see that, when rs is sufficiently

close to 2M, the slope of dkðlÞ is approximately zero in
almost the whole domain 0 ≤ l ≤ L inside the shell except
the neighborhood of the singularity around the middle point
l ¼ L=2. This is because κðlÞ in (19) is suppressed by the
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=Ao

p
→ 0 when l is not very close to L=2. Thus,

it would become more and more difficult for the observer to
resolve the depth l of the emitter e from dk as rs → 2M,
unless e happens to be located around the singularity
of dkðlÞ.

When the interior emitter e, the shell center C, and the
observer O are lying on the same straight line, i.e., the z
axis on the rθ plane, one has θo ¼ 0 or π, and the direct
image of the emitter e concentrated around θa ¼ 0 for the
observer is produced by the light rays of b ≈ 0. In
particular, the binocular distance of this direct image for
the observer O with an infinitesimal baseline in the polar
direction is determined by the light rays of infinitesimal but
nonvanishing b. Taking the limit b → 0, Eq. (20) can be
expressed in closed form,

dk ¼
1ffiffiffiffiffiffi
Ao

p
�
ro −

rsðrs − lÞ
rs − ð1 − ffiffiffiffiffi

As
p Þl

	
; ð21Þ

with 0 < l < 2rs. The behavior of the above dkðlÞ is
similar to the one in Fig. 6 (right). For small l, the value of
dkðlÞ in (21) is close to the affine distance dAðlÞ ¼ ðro −
rs þ

ffiffiffiffiffi
As

p
lÞ= ffiffiffiffiffiffi

Ao
p

in (10) with the light ray of b ¼ 0.
For a near observer inside the photon sphere, the light

rays observed at the angles of arrival jθaj < θca behave
like those in the case with the far observer outside the
photon sphere. The light rays coming at the angles of
arrival θa ∈ ðθca; π − θcaÞ, on the other hand, are trapped
in the photon sphere and may have been going out of
and into the spherical shell several times from the
emitter inside the shell. Since θðλÞ is monotonic in
affine parameter λ, compare (17) and (18), one can
see that

θ0o ¼ b0
�
κðlÞ þ n

�
κðLÞ − 2

Z
rmax

rs

Aor4dr

ðAor4 − b2r2 þ 2Mb2rÞ3=2
	
−
Z

O

F

Aor4dr

ðAor4 − b2r2 þ 2Mb2rÞ3=2
�
; ð22Þ

for the light ray from e to O going out of and then into the
shell for n times before the last section to the observer O
totally outside the shell. Here,

R
O
F ¼ R

ro
rs

for jθaj ≤ π=2, andR
O
F ¼ R

rmax
rs

þ R
rmax
ro

for jθaj > π=2. Inserting the above θ0o
into (14), the perceived images of the emitters along this
kind of light rays in terms of the binocular distance dk
would distribute in a multilayer structure similar to those in
terms of the affine distance dA (e.g., Fig. 5). If we move an
emitter e from O along such a light ray, since the
contribution by the integrals in (22) is negative definite,
dk will increase as dA increases when e is outside the
spherical shell, and will behave like the one in Fig. 6 (right)
when e is passing through the inside of the shell. As
rs → 2M, all the κ functions are suppressed except the
singularities around the shell center, and so the perceived
thickness of each image layer of the interior emitters goes
to zero in terms of dk, too. The distance dk of the nth image
layer increases monotonically as n increases, and then

saturates to the value NðθaÞro cos θa as n → ∞. If the
observer is not too close to the shell surface, the gaps
between the image layers would always be clear, and the
direct images at jθaj ≤ θ1 in the nearest image layer would
be able to be identified easily by the near observer in terms
of dk, too.
The values of −ðθ0o=b0ÞjF of the light rays observed

around the boundary of the whole star image [see the
statement above (12)], θ̃a ¼ θ̃ca for a far observer and π −
θ̃ca for a near observer, diverge to positive infinity due to the
singularity of the integrand at r ¼ 3M in (18), while
ðθ0a=b0ÞjF, κjF, and κjR of the same light rays are finite.
So, the binocular distances dk in (20) for the front and rear
surfaces converge to the same value NðθcaÞro cos θca at the
boundary of the star image [Fig. 8 (lower right)]. For all
θ̃a < θ̃ca, dkjR is less than dkjF, so the front surface of the
shell with respect to the affine distance would be positioned
behind the rear surface in terms of dk for the observer.
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The images of the interior emitters between the front
surface and roughly the shell center in bookkeeper coor-
dinates would be located behind the perceived front sur-
face, as indicated in Fig. 6 (right), while the apparent
locations of the interior emitters at even deeper l would be
somewhere in front of the perceived rear surface, and so the
star looks inside out. Most of those emitter images look
very close to the shell surfaces, as shown in Fig. 8 (lower
right). As the shell radius rs goes to the Schwarzschild
radius 2M, the images of the shell surfaces and almost all
the interior emitters squeeze to a membrane in terms of dk,
except the emitters around the shell center C.
The zero value of the distance dk for an emitter around

the shell center does not imply that the observer would see
the image of that emitter in the vicinity of the observer. In
fact, the binocular distance dk at a fixed angle of arrival
θa ¼ θ̄a is ill defined around the zero of (13) or (20) where
l ¼ l0 ≈ κ−1ð−ðθ0o=b0ÞjFÞ from (20). The observer at (ro,
θo) is a focal point of the light rays around the angle of
arrival θ̄a from the interior emitter at depth l0, and the
vanishing value of dkðl0Þ is associated with a zero length of
baseline, which is beyond our assumption of infinitesimal
baseline. Suppose we introduce a small but finite baseline
in the polar direction with two telescopes situated at its two
ends and the observer O sitting in the middle. Then, as the
depth l of an emitter is approaching l0 along the interior
section of the null geodesic, one of the telescopes would
start to miss all the light rays in the neighborhood of the
angle of arrival θ̄a, and the binocular distance dk could not
be determined in the conventional binocular way, until l
gets to be sufficiently away from l0 and the missing image
reappears. According to such a kind of image missing in
one of the telescopes, anyway, the observer could still know
that the location of the emitter is around the shell center
l ≈ rs rather than at other depths even when rs is very close
to 2M.

B. Baseline perpendicular to polar direction

With the same coordinate system chosen in Sec. III A,
suppose now the baseline of the localized observer at
ðro; θo;φoÞ is perpendicular to the plane of the light ray
φ ¼ φo with a small length roδφ extended in each direction
on the sphere of r ¼ ro along the great circle. Let the spatial
part of bookkeeper coordinates of the two ends of the
baseline be O� ¼ ðro;θoþΔθ;φo�ΔφÞ. Then, Δφð∼δφÞ
and Δθð∼ðδφÞ2 or less) are small for almost all θo except
jθo − nπj≲ 2δφ, n ∈ Z. Given a light ray connecting the
emitter e and the observer O in the φo plane such as the
black path in Fig. 2, a rotation Δφ or −Δφ about the z axis
joining the shell centerC and the emitter ewill give another
light ray from e to O� ¼ ðro; θo;φo � ΔφÞ, whose dis-
tance to the closer end of the baseline O� in book-
keeper coordinates is proportional to Δθ. Thus, when we
consider an infinitesimal baseline with δφ → 0, for almost

all θo except jθo − nπj → 0, we haveΔθ ≪ Δφ → 0 and so
O� → O�. In Fig. 2, one can see that the
tangent lines of the light rays at O�, which can be
written as rðsÞ¼½rocosð−θeþθoÞþscosð−θeþθo−θaþπÞ;
rosinð−θeþθoÞþssinð−θeþθo−θaþπÞ� (s ∈ R, θe ¼ 0) in
terms of the rectangular coordinates on the rθ plane of each
light ray (φ ¼ φo � Δφ), will intersect at X on the axis of
rotation. Therefore, s sin∠OXC ¼ ro sin∠OCX, or

s sin½π − ðθe − θo − πÞ − θa� ¼ ro sinðθe − θo − πÞ ð23Þ

equals the distance between O and the z axis in Fig. 2, and
the binocular distance determined by the infinitesimal
baseline perpendicular to the φo plane for the localized
observer O would be

d⊥ ≡ NðθaÞ
ro sinðθe − θoÞ

sinðθe − θo þ θaÞ
: ð24Þ

Here, θa and θe − θo on the rθ plane have been given in (6)
and (A15), respectively.
Our formula (24) does not work for jθo − θej ¼ nπ,

n ∈ Z, when the emitter e, the shell center C, and the
observer O are lying on a straight line (the z axis) in
bookkeeper coordinates. In these cases, one has Δφ ¼ π=2
and jΔθj ¼ δφ, and the baseline perpendicular to the φo
plane is actually in the polar direction in the plane of
φ ¼ φo � π=2. Each telescope at the two ends of this
baseline will see the single (for θa ¼ 0) or double image
(for θa ≠ 0) of the emitter e produced by the light rays
going in the degenerate plane of φ ¼ φo � π=2, and the
binocular distance for each image measured by the observer
using the above baseline would rather be the nonzero dk
determined on that plane, though (24) gives d⊥ ¼ 0 in
these cases.
As in Sec. III A, let us put the emitter e at the position of

the observer O and bring e slowly away from O along the
black path in Fig. 2, where O is outside the photon sphere
and the explicit expressions for θe − θo in (A16) and (17)
apply. One can see in Fig. 6 (left) that initially the emitter
would be perceived by the far observer O as an image at a
slowly growing binocular distance d⊥ (blue curve), whose
value is very close to the affine distance dA from O to e.
When the emitter e is sufficiently close to P∞ in Fig. 2, the
value of d⊥ starts to deviate from the affine distance dA, and
then diverges at P∞ where the z axis joining the emitter e
and the shell center C is parallel to the tangent line of the
light ray at O, such that θe − θo þ θa ¼ nπ, n ∈ Z, and the
incoming light rays from the emitter e are parallel to each
other around the two ends of the observer’s baseline. As the
emitter e is brought further from P∞ toward F, d⊥ becomes
negative and increases from negative infinity, while the
focal point of the rays emitted from e at different φ is
behind the observer and the tangents of the received rays
will not intersect in front of the observer as the observer is
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facing to the center of the shell. When the emitter e
approaches P0, which is exactly on the straight line joining
the shell center C and the observer O, d⊥ goes to zero, and
then (24) breaks down at e ¼ P0.
As the emitter is moved farther away from P0 toward F

in Fig. 2, the distance d⊥ would grow from zero to some
positive value [Fig. 6 (left)]. Before the emitter e arrives at
F on the front surface of the shell, the light rays outside the
shell from e to O may contain zero (small b) to many
(b → bc) intervals of negative d⊥ similar to ðP∞; P0Þ,
depending on the value of the impact parameter b and thus
the angle of arrival θa.
Inside the shell in Fig. 2, the black path crosses the

straight line going through C and parallel to OX (gray
dashed) at P0

∞, and crosses the straight line joining C andO
(black) at P0

0. The behavior of the binocular distance d⊥ of
the emitter e around the interval ðP0

∞; P0
0Þ is similar to those

in ðP∞; P0Þ for the observer O, as shown in Fig. 6 (right).
For every null geodesic of b ≠ 0 started at some R on the
rear surface, going across the interior of the star, and then
arriving at the observer O outside the shell, the section
inside the shell must contain at least one of P0

∞ and P0
0 if the

shell radius rs is sufficiently close to the Schwarzschild
radius 2M so that rmin → 0.
When the emitter e is right at the point F on the

front surface, the observer O would perceive d⊥jF ¼
NðθaÞ sinðθF − θoÞ= sinðθF − θo þ θaÞ. As we bring the
emitter e from F to R in Fig. 2, the depth l increases from
zero to L, and the behavior of the angle θe − θo in (17)
depends only on the angle of departure θd given in (B4)
(θe ¼ 0, and θin is a constant of l). When the emitter arrives

at R on the rear surface for the observer, the observer
would see d⊥jR ¼ NðθaÞ sinðθF − θo þ sgnðbÞπþ 2θinÞ=
sinðθF − θo þ sgnðbÞπþ 2θin þ θaÞ ¼ d⊥jF þ 2θin ×NðθaÞ
sinθa= sin2ðθF − θo þ θaÞ þOðθ2inÞ. In the cases with
sin2ðθF − θo þ θaÞ not very close to zero, called the “nor-
mal” cases in this paper [e.g., the blue dashed curve in Fig. 7
(middle)], one has d⊥jF > d⊥jR for sufficiently small jθinj
(¼ ∠CFR in Fig. 2) since θin sin θa < 0 for all b ≠ 0 from
(B5) and (6). This implies that in the normal cases the image
of the front surface of the shell with respect to the affine
distance dA, when perceived by the observer in d⊥, would be
positioned behind the image of the rear surface.Moreover, in
Fig. 8 (lower left), one can see that the interior emitters
situated between F and P0

∞ will be perceived farther behind
the front surface, and the images of the emitters between P0

0

and R will be seen in front of the rear surface of the shell in
d⊥. Thus, the star looks insideout in terms ofd⊥ similar to the
observations in terms of dk.
As rs → 2M, jθinj goes to zero from (B5) so that the

images of the rear and front surfaces in term of d⊥ merge.
In this limit, θdðlÞ in (B4) behaves like a step function,
θdðlÞ → 0 for l < L=2 and θdðlÞ → −sgnðbÞπ for
l > L=2, and so d⊥ is approximately a constant for almost
all l ∈ ½0; L�. This implies that in the normal cases, as the
shell is about to form a black hole, the images of most
interior emitters would squeeze around the images of the
shell surfaces when perceived in d⊥, and from these
images, the observer O would not be able to resolve the
depth l of the interior emitters. The only exceptions are
those emitters in the core region around the shell center C,
in which P0

∞ and/or P0
0 as well as the sudden change of

FIG. 7. Along the black, gray, or the very-light-gray solid curve in the left plot, θe − θo þ θa ≈ π for the emitter inside the spherical
shell whose d⊥ðlÞ (blue solid curves in the middle plot) for the observer becomes monotonically increasing with its depth l. This
behavior is different from the normal cases (dashed curves, and the example in Fig. 6). Here, rs ¼ 2.1M;b ¼ 3.98548 (very-light-
colored curves), rs ¼ 2.01M; b ¼ 3.94182 (light colored), rs ¼ 2.001M; b ¼ 3.898 (black, blue, and red), rs ¼ 2.001M;b ¼
−1.37543 (dashed curves in all plots, normal case), with other parameters the same as those in Fig. 6. In the middle plot, one can
see that as rs → 2M (from very-light blue to blue) the slope of d⊥ðlÞ increases and l appears to be more easily resolvable. However, in
the right plot, d−1⊥ goes to zero in most values of l inside the shell in the same limit, and so the resolution of depth l from the directly
measurable quantity Δφa ∝ d−1⊥ is actually suppressed. We put dk and d−1k (red curves; see Sec. III A) in each cases for comparison.
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θe − θo around l ¼ L=2 occur. Those images may have the
distances d⊥ ranging from −∞ to∞when perceived by the
observer [Fig. 8 (lower left)].
Anomalous behavior occurs in the cases with

θF − θo þ θa ≈ nπ, n ∈ Z, when a small change in θe −
θo with l would be amplified by the denominator in (24),
and so the observer appears to be able to resolve d⊥ðlÞ. In
Fig. 7, we show an example of such light rays. In the left
plot, one can see that the sections of such light rays inside
the shell are roughly parallel to the tangent lines of the same
light rays at the observer O. Figure 7 (middle) shows that
the distances d⊥ of the emitters located along the sections
of those light rays inside the shell are monotonically
increasing with the depth l (blue solid curves) and very
different from the normal behavior mentioned above (blue

dashed curve). As rs → 2M, the slope ∂ld⊥ increases, and
the depths of the emitters along these rays appear to be
resolvable even more easily around each window of θaðbÞ
where θF − θo þ θa ≈ nπ for the observer. One may be
tempted to conclude that the observer can use these
windows and change the location ðθo;φoÞ to scan the
whole interior of the shell, or compare with the data from
other observers to get the depth information inside the shell.
Nevertheless, these ideas would not be practical because a
localized observer does not directly measure d⊥. Rather,
the observer infers d⊥ ¼ W=Δφa with the length of the
baseline W after directly measuring the difference Δφa
between the angles of arrival of the light rays at the two
ends of the baseline. As rs → 2M, while d⊥ðlÞ might be
running from negative infinity to positive infinity as l goes

FIG. 8. (Upper left) An array of emitters on the rθ plane of some constant φ, distributed evenly inside the spherical shell (gray-based
circle) of rs ¼ 2.01M andM ¼ 1. The far observer is localized at ro ¼ 8M, the same as Fig. 3. The colored spots represent the positions
of emitters here and the corresponding images in the lower row, where the shapes or Doppler effect of the images is not considered.
(Lower left) Observed ðd⊥; θ̃aÞ of the direct and first indirect images of the interior emitters on the r̃ θ̃ plane. The green and red-dashed
straight lines mark the angles of arrival θ̃a ¼ θ̃c and θ̃a ¼ θ̃1, respectively. The direct image of emitter S (tracing along the black-solid
ray with θ̃a < θ̃1 in the upper-left plot) and its first indirect image (along the black-dashed ray with θ̃a > θ̃1) are specified. (Lower-right)
Observed ðdk; θ̃aÞ of the direct and first indirect images of the emitters on the r̃ θ̃ plane. (Upper right) Comparison of the trinocular
distance d3 (green) and the affine distance dA (black) of the shell surfaces for the observer atO. For small angles of arrival θ̃a (≲θ̃1 in this
example), the maps of the front surface of the shell in terms of dA (black) and d3 (thick green dashed) almost coincide, while the rear
surface with respect to dA appears in front of the “front” surface when perceived in d3 (thick green solid). The gray solid and dashed
curves are the shell surfaces in d⊥ and dk which have been shown in the lower row.
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from 0 to L ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s − r2minðbÞ

p
in a window of θaðbÞ, the

angular difference Δφa ∝ 1=d⊥ is virtually zero for almost
all l except those of the rays coming from the region giving
d⊥ ≈ 0, where (24) breaks down [Fig. 7 (right)]. In fact,
what is happening in a normal case is similar: Δφa ∝ 1=d⊥
is almost a constant for most of l. Thus, in both cases, as rs
goes to 2M, the far observer eventually cannot resolve the
depth l of the emitters from d⊥ except those emitters
located around the shell center C.
For a near observer, the above descriptions are still valid

around each layer of images with respect to the affine
distance dA (e.g., Fig. 5). Unlike dk, however, the observed
order of the layers in d⊥ for θa ∈ ðθca; π − θcaÞ may be
different from the order in dA, and different layers may
intersect, due to the presence of the negative-d⊥ intervals
(P∞; P0) in the sections of light rays outside the shell. In
particular, when ro is sufficiently close to 2M such that
θ1 > π=2, even the light rays producing the nearest image
layer with respect to dA will get P∞ outside the shell for
θa ∈ ðπ=2; θ1Þ, where the distance d⊥ of the front surface
in the nearest layer can thus be negative. In spite of this, as
rs → 2M, the images of the emitters inside the shell but not
around the shell center will still squeeze around the merged
images of the front and rear surfaces of the shell in each
layer, and the depths of those interior emitters are not
resolvable by the observer from the binocular distance d⊥.

C. Baselines in other directions and trinocular distance

For an observer with the baseline not exactly parallel or
perpendicular to the polar direction, the tangent lines of the
rays arriving at the two ends of the baseline would not
intersect in general. In this case, the observer could simply
rotate the baseline to where dk and d⊥ can be defined. As
we learned earlier (e.g., Fig. 6), the value of d⊥ is generally
different from dk of the same emitter. Since there is no rule
to judge which one is better, the observer could further
average these two distances to get a trinocular distance such
as [23]

d3 ≡ 2

ð1=dkÞ þ ð1=d⊥Þ
: ð25Þ

In Fig. 6, one can compare the trinocular distance d3 (green
dotted) with the binocular distances d⊥ and dk, as well as
the affine distance dA of the emitter for the observer. As the
emitter e is brought away from the observer O along the
black path in Fig. 2, one can see that the trinocular distance
d3 can be very close to the affine distance dA before d⊥
approaches its first divergence at P∞. After P∞, the
behavior of the trinocular distance d3 becomes totally
different from dA. It diverges wherever d⊥ ¼ −dk and
vanishes wherever d⊥ or dk vanishes.
In Fig. 8, we show how a spherical shell with an array of

the emitters inside would be perceived in terms of d3, d⊥,

and dk by a far observer. For small angles of arrival θa, the
direct image of the front surface of the shell in terms of d3 is
much closer to the one in the affine distance dA [Fig. 8
(upper-right)] than the images in dk and d⊥ are. In the
region in which θa is small and far enough from the
direction of the first divergence of d⊥, the properties of
the images in terms of d3 are similar to dk and d⊥, and the
spherical shell with interior emitters would look inside out
for the observer. As rs → 2M, almost all the variations of
the perceived distances d⊥, dk, and d3 in the depth l
between the front and rear surfaces of the spherical shell go
to zero, and so the depth information of the interior emitters
is not resolvable from these distances except those emitters
around the shell center. A light ray emitted by a point
source in this core region around the center can get a
sufficiently low impact parameter jbj < bc whenever rs >
2M (see Appendix B). This allows it to easily go beyond
the potential barrier peaked at the photon sphere [propor-
tional to b2 in (3)] to reach the outside world even when the
shell radius rs is sufficiently close to the Schwarzschild
radius 2M. Nevertheless, the size of this core region would
go below the scale of any emitter in the same limit
rs → 2M. Without introducing quantum effect, the final
signals from this region right before the star becomes a
black hole may not contain any structure interesting at the
usual scale for the localized observer sufficiently far from
the shell surface, though the range of the binocular distance
d⊥, dk, or d3 of this region can be large when perceived by
the observer.

IV. OTHER MEASURES OF DISTANCE

So far, we have seen that a nearly black spherical shell
would be perceived like a membrane rather than a ball, with
the information of the event/emitter depths inside the shell
very hard to resolve in terms of the affine and binocular
distances by a localized observer outside the shell. One may
wonder if there is some way to extract the depth informa-
tion of the interior emitters or events more easily as the
nearly black shell is not truly black. It turns out that, at
least, the radar distance and the luminosity distance
can work.

A. Radar distance

Suppose the observer O sends a radar signal into the
spherical shell at some moment, assuming the energy input
by the radar signal would not turn the nearly black star into
a black hole. The wavelength of the radar signal will be
blueshifted as it drops into the shell. Suppose the mass of
the pointlike object to be observed inside the shell is much
greater than the energy of the blueshifted photons of the
radar signal, and the energy loss of the radar signal in the
scattering event e is negligible. Then, the echoes climbing
out the gravitational potential would be approximately at
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the same wavelength as the original radar signal when
received by the observer.
To obtain the radar distance of an event inside the shell,

we start with Eq. (A2), which implies ∂λðAðrÞ_tÞ ¼ 0 and so

_t ¼ a
AðrÞ ð26Þ

with a constant of integration a. The value of a cannot be
chosen freely because of the constraint (A6). Inserting (26),
(A9), and (A12) into (A6), one can see that a ¼ ffiffiffiffiffiffi

2E
p ¼ffiffiffiffiffiffi

Ao
p

in our normalization for the affine parameter λ. Thus,
for our localized observer at r ¼ ro, the radar distance of a
scattering event e is half of the duration from emitting to
receiving the radar signals in the localized observer’s
proper time (c ¼ 1) [24–26], namely, with Δτo ¼

ffiffiffiffiffiffi
Ao

p
Δt,

dR ¼ Δτo
2

¼
���� ffiffiffiffiffiffi

Ao

p Z
e

O

a
AðrÞ dλ

����
¼ Ao

Z
e

O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðrÞ

2AðrÞðE − VðrÞÞ

s
dr; ð27Þ

from (A12) [cf. Eq. (8)]. Here,
R
e
O dr ¼ R

ro
re
dr for jeFj ≤

jeRj and R
e
O dr ¼ ðR re

rmin
þ R

ro
rmin

Þdr for jeFj > jeRj in Fig. 2
with rmin given in (5). The inside-shell section of the null
geodesic of the radar signal contributes

dinR ¼ Ao

Z
e

F
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2AsðE − VðrÞÞ

s

¼ Aoffiffiffiffiffi
As

p
Z

e

F
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ao − ðAsb2=r2Þ

s
¼ l

ffiffiffiffiffiffi
Ao

As

s
ð28Þ

with the depth l defined earlier in (10) and (11). The
echoes from two events at different l along the same null
geodesic inside the shell could be easily distinguished by
the observer’s clock even if the shell radius is close to the
Schwarzschild radius 2M, since the perceived time interval
ΔdinR=c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ao=ðcAsÞ
p

Δlwill be dilated by a factor 1=
ffiffiffiffiffi
As

p
and become significant for the observer as As → 0.
Therefore, the depth information of an event inside the
nearly black star is in principle resolvable if the observer
describes it in terms of the radar distance dR, together with
the angle of arrival θ̃a of the echo of the radar signal.

B. Luminosity distance

If the emitters are some standard candles well known or
even sent by the observer into the shell, then the apparent
luminosity of the emitters can also reveal the information of
their depths inside the shell to the observer.
The luminosity l of an isotropic emitter observed by an

infinitesimal antenna of area dA is proportional to the solid

angle dΩ that all the emitted light rays hitting the antenna
pointing to some angle of arrival went through earlier on
the unit sphere surrounding the emitter. In (3þ 1)-dimen-
sional Minkowski space, dA ¼ r2LdΩ, where rL is the
distance from the emitter to the localized observer. For an
emitter e as the standard candle of unit radiated power
inside the spherical shell, the apparent luminosity that the
radiated power experienced by an antenna of the observer
O at ro outside the shell would be ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

As=Ao

p Þ2 × l due to
gravitational redshift [27]. Thus, the luminosity distance dL
of the emitter for the observer O would be

dL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dA

ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
As=Ao

p Þ2dΩ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ao

As

���� roθ0o × ro sin θodφ
θ0d sin θddφ

����
s

ð29Þ

(see Fig. 2). From (B1), (17), and (18), one finds that the
factors

θ0o
θ0d

¼ θ0o
b0

����
F

ffiffiffiffiffiffi
Ao

As

s 

l −

L
2

�
þ 2

L
l ð30Þ

and

sin θo
sin θd

¼ 1

b

ffiffiffiffiffiffi
Ao

As

s 

l −

L
2

�
sin ð−θin þ θojFÞ

þ cos ð−θin þ θojFÞ ð31Þ

are both linear in the depth l, and so the luminosity
distance dLðlÞ is nearly linear in l in a large portion of its
range. The contrast between different values of l will be
enhanced by a factor of Ao=As and so the relative depths the
standard candles could be resolved more easily by the
observer as rs → 2M, though the overall apparent lumi-
nosity ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

As=Ao

p Þ2 × l goes to zero in this limit.

V. SUMMARY AND DISCUSSION

To see how a nearly black star would be perceived by a
localized observer outside the star, we have investigated a
simple model of a semitransparent spherical shell with a
few pointlike light emitters distributed inside. In Secs. II
and III, we found that, in terms of the affine distance and
the binocular distance determined by the outgoing light
rays from the interior emitters, a localized observer outside
the shell would perceive that almost all of the images of the
interior emitters squeeze around the shell surfaces, while
the distance between the images of the front and rear
surfaces goes to zero as the shell radius rs in bookkeeper
coordinates is approaching the Schwarzschild radius 2M.
The resolution of depth from the star surface for each
interior emitter is decreasing as the star is turning to a black
hole, while the whole star is perceived more and more like a
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2D membrane rather than a 3D ball for the observers
outside.
For the binocular distance, this phenomenon is a conse-

quence of the fact that, as rs → 2M, only the light rays going
nearly in the radial and opposite directions from the inside of
the spherical shell can go far enough to reach an observer
localized outside the shell (Sec. II B and Appendix B). Such
a behavior of null geodesics in this limit is not restricted in
the specific mass distribution of our model.
Nevertheless, using alternativemeasures such as the radar

distance or the luminosity distance, the depth information of
the interior emitters is in principle resolvablewhen the star is
not exactly a black hole, as shown in Sec. IV.

A. Full knowledge about the signal

One may be tempted to conclude that the radar and
luminosity distances simply do better than the binocular
and affine distances, and the entropy of the nearly black star
simply jumps from a volume-scaling quantity to some area-
scaling quantity with a totally different nature when the star
becomes a black hole. Such conclusion might be somewhat
naive, anyway. Recall that, to determine the radar distance
from the observer to an event, the event must have both the
past and future causal connections with the observer, and
the observer must refer to the full knowledge of each
received signal (echo), such as the emission time and other
identities of the original radar signals, input earlier by
herself. To determine the luminosity distance precisely, the
observer has to know the properties of the standard candles.
This cannot be fully achieved unless the standard candles
were sent into the shell earlier by the observer herself or by
other agents who can exchange the information with the
observer. In other words, the standard candles must have
two-way causal connections with the observer, too.
Actually, if the emitters inside the shell are smart enough
to measure the relative locations of each other by them-
selves and report to the observer, then the observer certainly
will know the full information of depth of the interior of the
star—if she can receive and understand the report. This
again requires two-way causal connections earlier between
the smart emitters and the observer. In contrast, the full
knowledge about a received signal is not needed in
determining the binocular or affine distance (some physical
assumptions on the signal source inside the shell would still
be needed, though). Only the future causal connection from
the emitting event to the receiving observer is sufficient.
Thus, the observer’s full knowledge about the signal
coming out of a nearly black star, or the autocorrelation
between the ingoing and outgoing signals, is crucial in
estimating the number of degrees of freedom of the star for
the outside observer. If an observer has the knowledge
about the probes sent into a nearly black star earlier, by
including or ignoring it, the observer could switch her
estimates of the field degrees of freedom in the star between

a volume law and a quasi-area law when analyzing the
outgoing signals from the probes.
This may be related to recent observations in black hole

thermodynamics: if an observer far from a black hole has a
sufficiently longmemory to see the autocorrelations between
theHawking radiation and thevacuum fluctuations before the
black hole formed or after the black hole evaporates, then
the observer will find theHawking radiation nonthermal, and
the effective temperature would not be exactly proportional
to the surface gravity of the black hole [28,29].

B. Area law at late times of gravitational collapse

When the collapsing star is so close to a black hole that
each signal from its interior is too weak or too redshifted to
be detected or resolved by any observer outside, all those
distances to the interior emitters or events will not be
measurable in the outside world. Before this happens,
however, the radar and luminosity distances would have
been harder to determine than the binocular distance
because of the need of a very long memory. For example,
a radar signal may spend a time for a round trip much
longer than the observer’s lifetime in her clock, and the
standard candles sent by the observer may take a similar
timescale in the observer’s clock to spread inside the star in
order to explore the interior volume. Further, when the star
is about to become a black hole, sending energy such as
radar signals or standard candles into the star may turn the
star to a black hole, such that the echoes of the radar signals
or the light emitted by the standard candles would never
reach the outside world. Thus, for the observers witnessing
the last stage of black hole formation, more likely, they
would perceive the star like a 2D membrane rather than a
3D ball according to the binocular distance, and the area
law of entropy would eventually dominate after the thick-
ness of the membrane is below the Planck length and not
resolvable. At late times, when every observer outside the
star fails to keep or learn any historical knowledge of the
received signals before they are emitted or scattered from
the interior, the physical entropy of the nearly black star for
the outside world would follow the area law.

C. Estimate of field degrees of freedom in a black hole

For a far observer, the observational data on the interior
points at the angle of arrival θ̃a ≥ θ̃1 are repeating (all are
indirect images; see Fig. 3 and Sec. II B), and so they
should not count in the number of field degrees of freedom
in the star. When the shell radius rs is sufficiently close to
the Schwarzschild radius 2M, all the direct images
observed at the angles of arrival from θ̃a ¼ 0 to θ̃1 can
be mapped back to the region of the shell surface with θ
between 0 and π=2 in bookkeeper coordinates, namely, the
half sphere facing the observer. Since the depth information
of the points cannot be resolved, the number of the field
degrees of freedom of the star would be proportional to the
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area of the half-sphere A=2 with A ¼ 4πr2s . In Ref. [5],
Bekenstein argued that the minimum increase in area of a
Kerr black hole by dropping a particle into it is 2ℏ.
Interestingly enough, if we take 2ℏ as the unit area element
of a black hole horizon, or the specific area of a field, then for
the outside world, the field degrees of freedom in the black
hole evolved from our spherical star could be estimated as
ðA=2Þ=ð2ℏÞ ¼ A=ð4ℏÞ, which has the same value as the
Bekenstein-Hawking entropy, although how the field
degrees of freedom is proportional to entropy is not clear
here yet.
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APPENDIX A: NULL GEODESICS IN A
SPHERICALLY SYMMETRIC (3 + 1)-

DIMENSIONAL SPACETIME

Suppose a spherical star collapses radially in a very slow
rate, so slow that in the period of our interest the spacetime
geometry can be approximately described by the static,
spherically symmetric metric,

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ðA1Þ
A light ray in this background geometry satisfies the
geodesic equations3

̈tþ A0

A
_r _t ¼ 0; ðA2Þ

̈rþ A0

2B
_t2 þ B0

2B
_r2 −

r
B
_θ2 −

r
B
sin θ _φ2 ¼ 0; ðA3Þ

θ̈ þ 2

r
_r _θ− sin θ cos θ _φ2 ¼ 0; ðA4Þ

φ̈þ 2

r
_r _φþ2 cot θ _φ _θ ¼ 0 ðA5Þ

and the null condition

−A_t2 þ B_r2 þ r2 _θ2 þ r2 sin2 θ _φ2 ¼ 0; ðA6Þ
where the dots and primes denote the derivatives with
respect to some affine parameter λ and the r coordinate,

respectively. Equation (A5) implies ∂λðr2 sin2 θ _φÞ ¼ 0, and
so along the light ray, one has

r2 sin2 θ _φ ¼ K; ðA7Þ
which is a constant interpreted as the effective (with respect
to the affine parameter λ rather than proper time) azimuthal
angular momentum “per unit mass” of the light. If K is not
zero, we can insert _φ ¼ K=ðr2 sin2 θÞ into Eq. (A4) and
then multiply the equation by _θ to obtain ∂λfr2½ðr_θÞ2þ
ðr sin θ _φÞ2�g ¼ ∂λ½r4 _θ2 þ ðK2= sin2 θÞ� ¼ 0, or

r4 _θ2 ¼ J2 −
K2

sin2 θ
; ðA8Þ

where J is another constant of motion, interpreted as the
effective total angular momentum of the light.
Suppose an observer is localized at some point outside

the star, and we choose the z axis joining the center of the
star [the origin in bookkeeper coordinates [31] given in
(A1)] and the localized observer. Then, in bookkeeper
coordinates, the observer would be localized around a point
of sin θ ¼ 0 while r ≠ 0. Since we are looking into how the
star light would be perceived by the observer, we are only
interested in the light rays passing through the localized
observer. However, for any finite J2 and nonzero K, the
right-hand side of (A8) diverges to negative infinity as
sin θ → 0, while the left-hand side is positive definite.
Thus, K has to be zero for the light rays seen by the
observer, and these light rays must have _φ ¼ 0 off the z axis
from (A7). In other words, each light ray from a pointlike
emitter to the localized observer on the z axis will be lying
on a constant-φ hypersurface by symmetry.
Allowing that θ can be negative while requiring _φ ¼ 0 in

Eq. (A4), we find ∂λðr2 _θÞ ¼ 0, and so

r2 _θ ¼ b ðA9Þ
with a constant b, interpreted as the effective polar angular
momentum of the light. Eliminating _t2 by (A6) and then
introducing (A9), Eq. (A3) becomes

∂Λ∂Λr ¼ −V 0ðrÞ; ðA10Þ

where ∂Λ ≡ ffiffiffiffiffiffiffi
AB

p ∂λ can be thought of as the effective time-
derivative operator and

VðrÞ ¼ b2AðrÞ
2r2

ðA11Þ

can be thought of as the effective potential for radial motion
of a particle of unit mass. Multiplying both sides of (A10)
by ∂Λr, one finds ∂Λ½12 ð∂ΛrÞ2 þ V� ¼ 0, and thus

1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p
_rÞ2 þ VðrÞ ¼ E ðA12Þ3A more efficient derivation for (A6)–(A14) directly using the

symmetry of the system can be found in, e.g., Ref. [30].
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with a constant of motion E, interpreted as the effective
total energy of that particle.4

Denote the radius of the star by rs and the position of the
localized observer O by ðro; θoÞ with ro > rs and θo ¼ 0
on the rθ plane of constant φ. To match the affine parameter
λ to the local radar distance (cf. Sec. IVA) around the
observer determined by the observer’s proper time
dτ2o ¼ AðroÞdt2, we impose the normalization condition

_r2jr¼ro ¼
1

BðroÞ
ð1 − r2o _θ

2ðroÞÞ ðA13Þ

from (A6) for λ. In this normalization, Eq. (A12) is simply

E ¼ AðroÞ
2

≡ Ao

2
ðA14Þ

after (A9) is inserted. Given the metric components AðrÞ
and BðrÞ, and the position of the localized observer ro, the
only free parameter for the null geodesics of our interest
is b.
In practice, one obtains the light ray from the event/

emitter e at (re, θe) to the observer O on the rθ plane in
bookkeeper coordinates by first solving rðλÞ from (A12)
with (A14) and the initial conditions (A13) and r ¼ ro at
λ ¼ 0, then integrating (A9) to get

θe − θo ¼
Z

θe

θo

dθ ¼
Z

e

O

b
r2
dλ ¼

Z
e

O

b
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

2ðE − VðrÞÞ

s
dr:

ðA15Þ

Here,
R
e
O denotes that the integration should be done from

O to e along the null geodesic in the direction of increasing
λ. According to (A9), θe − θo should be positive when
b > 0. For example, if e is outside the spherical shell in
Sec. II and O is outside the photon sphere (ro > 3M; see
Fig. 1), then r will be a single-valued function of λ.
Inserting (1), (3), and (A14) into (A15), and denoting r< ¼
minfro; reg and r> ¼ maxfro; reg, one has

θe − θo ¼
Z

r>

r<

x
bdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aor4 − b2r2 þ 2Mb2r
p ; ðA16Þ

which is an elliptic integral and can easily be calculated
numerically. For the cases with both the emitter e and the
observer O being inside the photon sphere (2M < rs <
ro < 3M), the r integration in (A15) may not be that simple
since rðλÞ could oscillate in an interval ðrmin; rmaxÞ contain-
ing re and ro. In these cases, the r integration in (A15) would
be done piecewise over subdomains in each of which rðλÞ is

single valued, and one should take care of the sign in each
piece of the r integration to make the result monotonic in λ.
Suppose the observer O is very far from the shell

(ro ≫ 2M); then, Ao ≈ 1. For r ≫ b, Eq. (A16) implies
θðrÞ − 0 ≈

R
∞
r bdr0=r02 ¼ b=r asymptotically, such that the

constant b ≈ rθ ≈ r sin θ ¼ ρ is the distance from the point
ðr; θ;φÞ on the light ray to the z axis joining the shell center
C and the localized observer O in bookkeeper coordinates.
Thus, b can be interpreted as the impact parameter for the
incident photons from r → ∞.

APPENDIX B: REFRACTION AND ESCAPE
CONES

When a light ray departs from a pointlike emitter situated
at radius re < rs in the spherical shell, the angle of
departure θd about the radial direction of the shell in
bookkeeper coordinates (see Fig. 2) is given by

tan θd ¼
r_θ
_r

����
r→re

: ðB1Þ

Later, when the light ray is crossing the shell surface from
the inside to the outside of the spherical shell, the angle of
incidence θin and the angle of transmission θout around the
shell surface on the rθ plane are given by

tan θin ¼
r_θ
_r

����
r→rs−

; tan θout ¼
r_θ
_r

����
r→rsþ

: ðB2Þ

Since r_θ ¼ b=r from (A9) is continuous around r ¼ rs, one
may arrange (B2) into the form of Snell’s law of refraction,
ngðrs−ϵÞsinθin¼ngðrsþϵÞsinθout¼r_θjr¼rs ¼b=rs, where
ϵ → 0þ and the effective index of refraction on the rθ plane
is defined as

ngðRÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ r2 _θ2

p
jr¼R: ðB3Þ

It is obvious that ngð∞Þ ¼ 1 for the observer at ro → ∞
from (A9), (A12), and (3), which also yield

θd ¼ tan−1
�


L
2
− l

�
n−g
b

	
− sgnðbÞ π

2
ðB4Þ

θin ¼ −sin−1
b

rsn−g
; θout ¼ −sin−1

b
rsnþg

; ðB5Þ

with the depths lðbÞ and LðbÞ defined in (11), and the
effective indices of refraction n−g ≡ ngðrs − ϵÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2E=As

p
and nþg ≡ ngðrs þ ϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2Mb2=r3s

p
. We have an

overall minus sign in each angle in (B5) because in our
parametrization the affine parameter λ is monotonically
decreasing along the null geodesic started at the emitter e
(recall λ≡ 0 at O). Without considering any specific

4Conventionally, one writes E ¼ ðE=mÞ2=2 for the geodesic of
a massive particle of energy per unit mass E=m, which goes to 1
as ro → ∞ [31].
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observer, E does not have to be Ao=2 here but is
a free parameter satisfying the condition E ≥ VðreÞ ¼
b2As=ð2r2eÞ from (A12). Note that nþg here depends

on b, as θin, θout, and θd all do. Although nþg =n−g ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Asð1þMb2=ðEr2sÞÞ

p
< 1 for all rmin < rs and rs > 2M

from (5), there is no total internal reflection around the shell
surface. Indeed, θout ¼ sin−1fð2E=b2Þr2s þ 1 − Asg−1=2 ≤
sin−1fAsðr2s − r2eÞ=r2e þ 1g−1=2 < π=2 whenever As > 0
and re < rs.
When the spherical shell is gravitationally intense

(2M < rs < 3M), only the light rays emitted with E ≥
Vð3MÞ ¼ b2=ð54M2Þ can cross the barrier of the effective
potential V around the photon sphere r ¼ 3M and escape to
future null infinity. These light rays must have their impact
parameters b less than bc given in (4), and so their jθdj,
jθinj, and jθoutj will not exceed

θcd ≡ tan−1
�

r2e
27M2As

− 1

	−1=2
¼ sin−1

3
ffiffiffiffiffiffiffiffi
3As

p
M

re
; ðB6Þ

θcin≡ sin−1
3

ffiffiffiffiffiffiffiffi
3As

p
M

rs
; θcout≡ tan−1

�
r2s

27M2
−As

	−1=2
;

ðB7Þ

respectively. An interior emitter at re > 3
ffiffiffiffiffiffiffiffi
3As

p
M has two

“escape cones” [14,17,32] in the �r directions bounded by
θ ¼ θcd and π − θcd, respectively, in bookkeeper coordinates.
For an emitter situated in the vicinity of the shell center
with re ≤ 3

ffiffiffiffiffiffiffiffi
3As

p
M, Eq. (B6) breaks down, and the light rays

sourced from this emitter can escape to null infinity
in all directions since E ≥ VðreÞ ¼ b2As=ð2r2eÞ ≥ b2As=
ð2ð3 ffiffiffiffiffiffiffiffi

3As
p

MÞ2Þ ¼ Vð3MÞ for all b here. As rs → 2M, both
θcd and θcin go to zero for re > 3

ffiffiffiffiffiffiffiffi
3As

p
M → 0. Thus, for

almost all the interior emitters but those at the shell center,
only the light rays emitted in the radial and opposite
directions in bookkeeper coordinates can escape the photon
sphere and reach a far observer localized at ro > 3M.
For a near observer inside the photon sphere

(2M < rs < ro < 3M), the situation is similar. Consider

the light rays started at an emitter at r ¼ re with the angle of
departure θd. Rewrite (B4) as

b ¼ −

ffiffiffiffiffiffi
2E
As

s
re sin θd: ðB8Þ

Then, the maximal r that the light ray can reach, rmax,
satisfies VðrmaxÞ ¼ E from (A12), or

Asr3max ¼ r2e sin2 θdðrmax − 2MÞ ðB9Þ
after (A11) is inserted. Given a fixed value of
ro ∈ ð2M; 3MÞ, Eq. (B9) implies that the light rays of
θd significantly deviate from 0 or π (i.e., sin2 θd is not too
small) from an interior emitter off the shell center (i.e., re is
not too small) can never be seen by the observer (i.e.,
2M ≲ rmax < ro) when rs is sufficiently close to 2M [i.e.,
As → 0 and the left-hand side of (B9) is negligible]. θin of
the same light ray is squeezed to zero in the same limit since
jθinj ¼ jðre=rsÞθdj < jθdj from (B5). These ensure that
once a localized observer at r ¼ ro is not too close to
the shell surface rs, even if she is inside the photo sphere,
the inside-shell section(s) of each light ray observed by her
must have gone almost along some diameter(s) passing
through the center of the nearly black star.
Therefore, when the spherical shell is about to form a

black hole, the distance-determination schemes using
different view angles of objects do not work for an outside
observer looking at the pointlike emitters or events inside
the shell (except those emitters at the shell center). A
localized observer outside the shell cannot determine the
relative depths of two emitters by comparing the difference
of the relative positions of their direct images and those of
their indirect images, and the binocular distances of almost
all the emitters along a diameter of the star passing through
the shell center become indistinguishable for the localized
observer. In terms of the binocular distances, the direct
images of the emitters inside the nearly black star would be
seen by different observers outside the shell as the same
pattern distributed in a 2D membrane up to a translation of
the image center of the whole star together with the periodic
boundary. Each observed pattern can be mapped back to the
half-sphere of the shell facing the observer.
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