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In this paper we consider the CPN−1 model confined to an interval of finite size at finite temperature
and chemical potential. We obtain, in the large-N approximation, a mixed-gradient expansion of the
one-loop effective action of the order parameter associated with the effective mass of the quantum
fluctuations. This expansion gives an expression for the thermodynamic potential density as a
functional of the order parameter, generalizing previous calculations to arbitrarily large order and to the
case of finite chemical potential and allows one to discuss some generic features of the ground state of
the model. The technique used here relies on analytic regularization and provides an efficient scheme to
extract the coefficients of the expansion. Once a solution for the ground state is known these
coefficients can be used to deduce some generic properties of the ground state as a function of external
conditions. We also show that there can be no transition to a massless phase for any value of the
external conditions considered and clarify a seemingly important point regarding the regularization of
the effective action connected to the appearance of logarithmic divergences and to the Mermin-Wagner-
Hoenberg-Coleman theorem.

DOI: 10.1103/PhysRevD.102.025004

I. INTRODUCTION

The CPN−1 model is 1þ 1 dimensional (d ¼ 1) field
theory, consisting of N complex scalar fields ni
(i ¼ 1; 2;…; N) with an action of the form

S ¼
Z

dxdtjDμnij2; ð1Þ

with Dμ ¼ ∂μ − iAμ, with the U(1) gauge field Aμ lacks at
classical level a kinetic term (in principle, a kinetic term
may reappear at one-loop). The fields ni are forced to obey
a constraint,

jnij2 ¼ r: ð2Þ

Original work on the model dates back at least to Refs. [1–6]
(see Refs. [7,8] for textbook introductions), but recent
years have seen a resurgence of interest in the properties of
its ground state when the model is confined to an interval
of finite size l (x ∈ ½0;l�) and fluctuations subjected to
boundary conditions or other external forcing, as for

example temperature variations. References [9,10] were
the first (to the best of our knowledge) to look into
questions related to this confined setup, and since then a
renewed interest and a very active debate have resurfaced
(see, for example, Refs. [11–31]) leading to various, and
sometimes contradictory, claims being made. While the
above references refer to large-N calculation, the CPN−1

model has also been the subject of extensive lattice
simulations [32–43] (see in particular Ref. [41] for a
lattice study of the CPN−1 model on S1 × S1). Issues being
currently debated have to do with whether the model can
develop a massless ground state for small enough interval
size, how the properties of the ground state depend on the
external conditions (i.e., size, boundary conditions and
temperature), and how everything fits under the umbrella
of the large-N approximation.
Our goal here is to reexamine the story and extend the

analysis to the case of finite density. We are motivated by
two main objectives. The first one is related to the
possibility that inhomogeneous phases, even if energeti-
cally disfavored at zero density, may become favored above
a critical density. This is known to happen for the Gross-
Neveu, Nambu-Jona Lasinio and quark-meson models (see,
for example, Refs. [44–48]) and it is quite reasonable to
expect a similar situation occurring for the CPN−1 model.
This may be interesting since it could lead to new features
in the geography of the phase diagram of the model (that is
the appearance of crossovers into regions characterized by
inhomogeneous phases), even for the case of periodic
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boundary conditions.1 The second reason is to inspect
whether a transition from a massive to a massless phase
may or may not occur and whether there is any clear
mechanism to exclude the existence of a massless phase
(both possibilities have been entertained in the literature
with differing conclusions; see Ref. [28] and references
given there). Extending the calculation to finite density
gives us an excuse to reconsider this debated matter.
The paper is structured as follows. In Sec. II, we

introduce the main setup and notation, and illustrate the
calculation of the effective action at finite temperature,
density, and size using zeta-regularization. This calculation
is essentially a repetition of that of Ref. [31] with two major
differences: the first being the inclusion of a chemical
potential, and the second being a different regularization
that allows to capture the infrared behavior of the model
and leads to the appearance of a logarithmic contribution.
This is an issue of some importance, since it is this term that
eventually prevents a massless ground state to be realized
and locks the system into a massive phase. Because of this,
in Sec. III, we will show how the presence of logarithmic
contributions can be understood on rather general grounds
using zeta-function regularization. This will be done by
exploiting the analytic structure of the zeta-function asso-
ciated with the problem by means of its Mittag-Leffler
representation in general dimensionality. In Sec. IV, we will
discuss the implications of the calculation for the ground
state. Some formulas involving polylogarithmic functions
used in the computation are given in Appendix.

II. ONE-LOOP EFFECTIVE ACTION AT FINITE
CHEMICAL POTENTIAL

In order to examine the effect of one-loop quantum
effects, we shall proceed by incorporating the constraint (2)
in the tree-level action (1) by means of a Lagrange
multiplier M2, leading to the following expression

S ¼
Z

dxdtðjDμnij2 þM2ðjnij2 − rÞÞ: ð3Þ

Variation of the action with respect to M2 enforces the
constraint. The quantity M2 plays the role of an effective
mass and it is initially assumed to be in principle a spatially
varying function; minimization of the effective action will
then determine whether a constant or inhomogeneous
configuration will be realized.
In the present work we set Aμ ¼ 0. While this is

consistent with the choice of periodic boundary conditions,
in general, the U(1) gauge symmetry of the CPN−1 model
may in general be broken by different boundary conditions.
Therefore fixing the gauge field a priori (rather than

through minimization of the (effective) action) may be
inconsistent with some choice of boundary conditions or
viewed as a restricting assumption. In the present case, our
focus is on periodic boundary conditions that do not break
such gauge invariance and allow us to set the gauge field to
zero. The same choice has been made in previous works
(See, for example, Refs. [16,25,28,31]).
Here, we follow Ref. [31] and perform a coordinate

transformation, x → x̃ ¼ x=l and τ → τ̃ ¼ τ=l (τ is the
Wick-rotated Euclidean time and β ¼ 1=T in the expres-
sion above represents the inverse temperature), in order to
rescale the interval to one of unit length. These rescaled
coordinates are dimensionless and we use the symbol
∇̃ð¼ l∇Þ to indicate differentiation with respect to the
rescaled coordinate x̃. In the following we choose the
background-field configuration along the k ¼ 1 direction,
i.e., nk ¼ σ × δ1k with k ¼ 1; 2;…; N with δik being the
Kronecker delta. This yields for the one-loop effective
action at large-N the following expression

SE
eff ¼

Z
β=l

0

dτ̃
Z

1

0

dx̃fð∇̃σÞ2 þ l2M2ðjσj2 − rÞ − l2μ2σ2g

þ δΓ; ð4Þ

where the quantity δΓ is the one-loop determinant

δΓ ¼ ðN − 1Þ
2

X
�
Tr log

�
−Δ̃ −

∂2

∂τ2 þ l2M2

− l2μ2 � 2l2μ
∂
∂τ
�
: ð5Þ

The above expression for the one-loop effective action
at large-N at finite temperature and chemical potential
is readily obtained after path-integration over the fields
nk and n�k and, for μ ¼ 0 coincides with those of
Refs. [16,25,28,31]. As explained at the beginning of this
section, the constraint (2) has been incorporated by means
of a Lagrange multiplierM2 (as δS=δM2 ¼ 0) that operates
as an effective mass. While we use throughout the paper the
terminology “massive” and “massless” phase or ground
state, these correspond to the “Coulomb/confinement”
phase (M2 ≠ 0, σ ¼ 0) and “Higgs (or deconfinement)
phase” (M2 ¼ 0, σ ≠ 0), respectively. The quantities M2

and σ are assumed to be time-independent, but otherwise
general functions of space. The sum over the functional
determinant goes over both � signs [49–51].
Here, we follow Ref. [52] and introduce a chemical

potential μ associated with the first component of the
complex ni, as this is analogue to a chemical potential
associated to a Uð1Þ symmetry of a free complex scalar
field. This is the simplest possible choice, and despite the
fact that it is not the most general configuration, it is
sufficient to understand whether at finite chemical potential
the ground state of the model (defined as the background

1Although technically non-trivial, it is obvious to expect, away
from periodic boundary conditions, the ground state to become
spatially modulated.
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field σ and the Lagrange multiplier M2 that extremize the
effective action and have lowest free energy) may acquire a
spatial dependence. More complex configurations (chemi-
cal potentials coupled to other or all conserved charges) can
be seen as a combination of several elementary configu-
rations as discussed in Ref. [52], but these come in at a
price of more involved calculations. Also, here we are
focusing on the regime of μ not large; addressing what
happens at large values of the chemical potential is certainly
worth of attention and will be considered elsewhere. Taking
the limits of μ → 0 and M → 0 in the previous formulas
recuperate, respectively, known formal expressions (See,
for example, Refs. [31,49–51]).
Using zeta-regularization, we can express the effective

action in terms of the zeta-function (see Refs. [53–55] for
textbook derivations)

ζðsÞ ¼
X∞
k¼0

X∞
n¼−∞

ðpðsÞ
k þ ð2πnl=β�ilμÞ2Þ−ðD−dÞ ð6Þ

at D − d ¼ s, as

δΓ ¼ −ζ0�ð0Þ: ð7Þ

The (dimensionless) eigenvalues pðsÞ
k are defined by

ðΔ̃s þ l2M2Þfk ¼ ðpðsÞ
k Þ2fk

and encode the dependence on M, l and on the boundary
conditions. The operator Δ̃s is the regularized version of
Δ̃ ¼ lims→0 Δ̃s (similarly to what is done in dimensional
regularization, here we analytically continue the dimen-
sionality, d → D ¼ dþ s, and let s → 0 at the end).
The computation of the derivative of the zeta function

can be performed in the usual way by utilizing the Mellin
transform,

a−sΓðsÞ ¼
Z

∞

0

ts−1e−atdt; ð8Þ

to re-express the zeta function (6) in terms of the (inte-
grated) heat-kernel KsðtÞ (defined below) associated to the
operator ðΔ̃s þ l2M2Þ. Simple calculations give

ζ�ðsÞ ¼
1

ΓðsÞ
Z

∞

0

dt
t1−s

KsðtÞ
X∞
n¼−∞

e−ðΩ�
n Þ2t; ð9Þ

where we have defined

Ω�
n ¼ 2πnl=β�ilμ ð10Þ

and

KsðtÞ ¼
X
k

e−tðp
ðsÞ
k Þ2 ; ð11Þ

where KsðtÞ represents the heat-kernel in D ¼ dþ s
dimensions (In the present case, d ¼ 1 and the regulari-
zation parameter s is let to zero at the end of the
calculations).
The expression of the zeta function can be rearranged by

using the following identity:

X∞
n¼−∞

e−ðΩ�
n Þ2t ¼ β=lffiffiffiffiffiffiffi

4πt
p ϑ3

�
� iβμ

2
; e−

β2

4l2t

�
; ð12Þ

where ϑ is a Jacobi theta function [56]. Using Eq. (12) in
Eq. (9) we get

ζ�ðsÞ ¼
1

ΓðsÞ
β=lffiffiffiffiffiffi
4π

p
Z

∞

0

dt

t3=2−s
KsðtÞ × ϑ3

�
� iβμ

2
; e−

β2

4l2t

�
:

ð13Þ

To evaluate the derivative of the zeta function and the
effective action, we express the integrated heat kernel in
terms of the heat-kernel density, KsðtÞ ¼

R
dxKsðx; tÞ and

use the following small-t expansion

Ksðx; tÞ ¼
1

ð4πtÞdþs
2

X∞
k¼0

α̃ðsÞk tk: ð14Þ

The first four coefficients reduce in the limit s → 0 to (see,
for example, Ref. [57]):

α̃ð0Þ0 ¼ 1;

α̃ð0Þ1 ¼ −l2M2;

α̃ð0Þ2 ¼ 1

2
l4M4 −

1

6
Δ̃ðl2M2Þ;

α̃ð0Þ3 ¼ −
1

6
l6M6 þ 1

12
ð∇̃ðl2M2ÞÞ2 þ 1

6
l2M2Δ̃ðl2M2Þ

−
1

60
Δ̃2ðl2M2Þ:

The above heat-kernel expansion is a derivative expansion
and it is valid when higher order derivatives become less
important, that is when the function M2 is not a rapidly
varying function of the spatial coordinate. We stress that
this is an assumption here, based on the physical intuition
that rapidly varying functions are expected to have a higher
energy. However, in the limit of small size, one may expect
that this approximation breaks down. The present approach
does not allow to determine what is the scale below which
this approximation breaks down. A direct computation of
the effective action under the different assumption that M2

is indeed a rapidly varying function is, in principle,
possible, but we will not consider it here.
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Proceeding in this way (details are given below) yields
the bulk part of the effective action from which the gap
equation (i.e., the equation for the function M2) can be
obtained. This part of the effective action is independent of
the boundary conditions (i.e., it is valid for any choice of
boundary conditions). As for the boundary conditions that
one needs to impose on the functionM2, these follow from
the boundary conditions imposed on the fields nk. These
induce an additional (boundary) contribution to the effec-
tive action, which determines how M2 behaves at the
boundary. In general, the boundary part of the effective
action can be obtained following an identical procedure,
once the boundary contribution to the heat-kernel coef-
ficients is included. For periodic boundary conditions, that
is our focus here, such a “boundary” part vanishes (in the
case of periodic boundary conditions, there is no boun-
dary). For other choices of boundary conditions (i.e.,
Dirichlet, Neumann, Robin, coupled), the boundary part
is nonvanishing and will result in a nontrivial condition for
M2 at the boundary. In the present case, we are interested in
periodic case and therefore simply ignore the boundary
contribution. Should one be interested in other boundary

conditions (say, leading to Dirichlet or Neumann or other
boundary conditions for M2), one can take the bulk
equation (obtained from the effective action obtained here)
and solve under the added requirement that any solution
must have the appropriate boundary behavior. Away from
periodic boundary conditions, such solutions will be
inhomogeneous. In the case of periodic boundary con-
ditions, both solutions (constant or inhomogeneous) are
possible and the usual expectation is that the constant
solution is the lower energy one. For the model at hand, this
point has been debated recently [27,28].
Returning to the computation of the effective action, the

next step to carry out the integration over t conveniently, we
express the theta function using the following series
representation:

ϑ3ðx; yÞ ¼ 1þ 2
X∞
n¼1

cosð2nxÞyn2 ; ð15Þ

which allows us to write the zeta-function as follows

ζ�ðsÞ ¼
1

ΓðsÞ
β=l

ð4πÞðdþ1þsÞ=2
X∞
k¼0

α̃ðsÞk

Z
∞

Λ−2

dt

tðdþ3−2k−sÞ=2

�
1þ 2

X∞
n¼1

cosh ðβμnÞe−β2n2

4l2t

�
; ð16Þ

with the limit Λ → ∞ understood. It is a good point to remark that in our dimensionless coordinates, the parameter Λ is also
dimensionless. Dimension-full quantities can be reintroduced by transforming back to the original coordinate system, as we
shall do later. Assumingℜs to be sufficiently negative and proceeding by analytical continuation, the integrals over t can be
performed exactly giving

ζ�ðsÞ ¼
β=l

ð4πÞðdþ1þsÞ=2ΓðsÞ
Xk⋆
k¼0

α̃ðsÞk

�
−

Λ−s−2kþdþ1

s=2þ k − ð1þ dÞ=2

þ2Γðð1þ dÞ=2 − k − s=2Þ
�
β

2l

�
sþ2k−d−1X∞

n¼1

cosh ð�βμnÞnsþ2k−d−1
�
;

where the sum over k extends to finite but arbitrarily large k ¼ k⋆. Defining z ¼ βμ and

ϖ�ðaÞ ¼
X∞
n¼1

cosh ð�znÞn−1þa; ð17Þ

and noticing that any term with k ≥ 2 is regular in the limit s → 0 allows us to write in the limit d → 1

lim
s→0

dζ�
ds

¼ β=l
4π

�
Ω�

0 þ
�
1

2
α̃ð0Þ1

�
−γE þ log π þ 2 log

�
β

l

�
þ 2 logΛ2 − 4ϖ0

�ð1Þ
�
− lim

s→0

dαðsÞ1

ds

�

þ
Xk⋆
k¼2

ð−1Þk
ΓðkÞ22k−3

β2k−2

l2k−2ϖ
0
�ð2k − 1Þα̃ð0Þk

�
:

In arriving at the above expression, we have used the following relations (these and the other relations involving the
functions ϖ� used here are derived in the Appendix)
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ϖ�ð3Þ ¼ ϖ�ð5Þ ¼ 0; ð18Þ

ϖ�ð1Þ ¼ −1=2; ð19Þ

and we have defined the quantity (for d → 1)

Ω�
0 ¼ lim

s→0

d
ds

α̃ðsÞ0

ð4πÞs=2ΓðsÞ
�
−

Λ−sþ2

s=2 − 1
þ Γ

�
1 −

s
2

��
β

2l

�
−2þs

ϖ�ðs − 1Þ
�
;

that is a divergent vacuum energy contribution, independent of M2 in the limit s → 0. We can now write

ζ0þð0Þ þ ζ0−ð0Þ ¼
β=l
4π

�
δΩ0 þ

�
α̃ð0Þ1

�
−γE þ log π þ 2 log

�
β

l

�
þ 2 logΛ2 − 2ϖ0ð1Þ

�
− 2 lim

s→0

dα̃ðsÞ1

ds

�

þ
Xk⋆
k¼2

ð−1Þk
ΓðkÞ22k−3

β2k−2

l2k−2ϖ
0ð2k − 1Þα̃ð0Þk

�
; ð20Þ

where we have defined

δΩ0 ¼ Ωþ
0 þΩ−

0 ; ϖðzÞ ¼ ϖþðzÞ þϖ−ðzÞ: ð21Þ

The above results can be combined to arrive at the following expression for the one-loop effective action:

SE
eff ¼ β

Z
l

0

dx
�
ð∇σÞ2 þM2ðjσj2 − r⋆Þ − μ2σ2 −

ðN − 1Þ
4π

�
δΩ0 −

�
log

�
β2

l2

�
− 2ϖ0ð1Þ

�
M2

−M2 log ðl2M2Þ þ β2

4
ϖ0ð3ÞM4 þ β4

16
ϖ0ð5Þ

�
1

6
M6 þ 1

12
ð∇ðM2ÞÞ2

�
þ � � �

��
; ð22Þ

after appropriately reabsorbing terms proportional to M2

with constant coefficients and divergences into a renor-
malized coupling r⋆ and after eliminating total derivatives.
For μ → 0, formulas

ω�ðaÞ ¼ ζRð1 − aÞ and ωðaÞ ¼ 2ζRð1 − aÞ; ð23Þ

allow us to straightforwardly recover the result of
Ref. [31], with the exception of the logarithmic contribu-
tion M2 log ðl2M2Þ present here. This term arises from the
contribution lims→0 dα̃

ðsÞ
1 =ds in formula (20) and originates

from the regularization of the differential operator in (5)
analytically continued from d toD ¼ dþ s. Then, the heat-
kernel coefficients associated with the regularized operator
scale with the mass as in D ¼ dþ s dimensions. In the
present case, d ¼ 1, the only nontrivial contribution comes
from ãð1þdþsÞ=2. This term scales as ãð1þdþsÞ=2 ¼
ðlMÞ1þdþs that leads, in the effective action in d ¼ 1, to
the logarithmic term, M2 log ðl2M2Þ, in (22). All higher
(k ≥ 2) order contributions are regular in the limit s → 0,
while the k ¼ 0 contribution is divergent but M2 indepen-
dent, thus only resulting in a constant shift in the energy.

The logarithmic contribution is quite important in 1þ 1
dimensions since it is a manifestation of the Mermin-
Wagner-Hoenberg-Coleman theorem [58–60] (or, revers-
ing the logic, in the present setup the restrictions of the
theorem follow from this term that encodes an infrared
diverging behavior in theM → 0 limit). This is readily seen
once the constraint δSE

eff=δM
2 ¼ 0 is implemented: the

logarithmic correction yields a singularity, as logM2,
impeding any solution with M2 ¼ 0 to be realized and
thus excluding any massless phase from the spectrum.
Once the Lagrange multiplier is integrated out in the path
integral, such a zero mode must then be excluded. This
conclusion seems to be perfectly in tune with that of
Ref. [28] and the additional term is the missing ingredient
that brings to an agreement the results of Refs. [28,31].

III. LOGARITHMIC CONTRIBUTIONS AND THE
MITTAG-LEFFLER REPRESENTATION

The presence of the logarithmic contribution discussed
in the preceding section can be understood on rather
general grounds and quite easily in zeta-function
regularization.
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Here, we limit our consideration to a second order
differential operator of Laplace type D ¼ gμν∇μ∇ν þ E
in D ¼ dþ ϵ spatial dimensions, where ∇μ is a suitable
covariant derivative and E is an endomorphism. The
covariant derivative may include gauge potentials or con-
nection due to external fields or spacetime curvature, and
our consideration below are valid in general. The case
considered in the previous section refers to the one-dimen-
sional Laplacian operator with E ¼ M2. The one-loop
effective action ΓðDÞ can be formally written as [55]

Γ ¼
X
λ

log ðμ̂−2λÞ; ð24Þ

where the summation over the eigenvalues λ of D is
understood as a regularized sum. In (24) we have assumed
that the eigenvalues have ½mass2� dimension and intro-
duced an arbitrary (renormalization) constant μ̂ to keep the
argument of the logarithm dimensionless. Introducing the
following zeta-function

ζðϵjDÞ ¼
X
λ

ðμ̂−2λÞ−ϵ; ð25Þ

allows one to write the above one-loop determinant as
follows

Γ ∼ lim
ϵ→0

ζ0ðϵjDÞ; ð26Þ

where the limit is understood in the sense of analytical
continuation. Now, it is possible to prove that if the operator
D is positive definite, then the zeta function is amenable of
an expansion of the form [61,62]

ζðϵjDÞ ¼ 1

ΓðϵÞ
�X∞
p¼0

αpðDÞ
p − ðDþ 1Þ=2þ F ðϵÞ

�
ð27Þ

known as Mittag-Leffler expansion [the assumption of a
strictly positive operator can be relaxed to a non-negative
operator with modified coefficients in the numerator of
(27)]. In the above expression, the quantities αkðDÞ are the
heat-kernel coefficients associated to the operator D and
F ðϵÞ is an entire function. Let us focus here on the case of
D odd (in the case of D even, and in the absence of
boundaries αðDþ1Þ=2 ¼ 0. This does not clash with the
Mermin-Wagner-Hoenberg-Coleman (MWHC) theorem,
since its restrictions do not apply in dimensions higher
than 3). Thus in Dþ 1 (even) spacetime dimensions,
αðDþ1Þ=2ðDÞ is the heat-kernel coefficient responsible for
the divergences and it scales as

αðDþ1Þ=2ðDÞ ∼ EðDþ1Þ=2 þ � � � ; ð28Þ
where in flat space and in absence of external gauge
potentials the dots denote mixed-derivative terms that
vanish in the limit E constant. The term (28) above is
sufficient to deal with the present situation of d ¼ 1. In

higher dimensionality in the presence of curvature of gauge
potentials additional terms (not vanishing in the limit of
E → constant) need to be accounted for [61,62], but the
argument given here does not change. Then, using (25),
(27), (28), the presence of the logarithm becomes apparent:

Γ ⊃ Eð1þdÞ=2 log ðE=μ2Þ: ð29Þ
In the preceding section we have been concerned with the
case of d ¼ 1, E ¼ M2 and μ̂ ¼ l−1, leading precisely to
theM2 logl2M2 term appearing in (22). These results have
interesting physical implications for the Casimir effect and
will be presented elsewhere [63].

IV. DISCUSSIONS

With the results of the preceding sections in hands, we
can examine some of the features of the ground state of
the model.
As we have already mentioned, the presence of the

logarithmM2 logl2M2 yields a logM2 divergence once the
constraint, δSE

eff=δM
2 ¼ 0, is implemented, impeding the

realization of a massless phase. This result is independent
of the external conditions, that is a massless (M2 ¼ 0)
phase cannot be realized by increasing the density, the
temperature or decreasing (or increasing) the size of
the interval. This is nothing but the manifestation of the
Mermin-Wagner-Hoenberg-Coleman theorem [58–60] that
becomes evident in the analytic regularization we have used
here. Importantly, this also shows that there is no clash
between the restrictions of the theorem and the large-N
approximation. This is reminiscent of Refs. [6].
In order to understand (to the present level of approxi-

mation) whether a spatially modulated M2 is energetically
favored can be understood directly from the form of the
effective action, similarly to Ref. [44–48]. However, two
things should be kept in mind. As discussed in Ref. [28],
when the effective action is extremized with respect to a
Lagrange multiplier (and assuming that no kinetic term is
generated at one- or higher-loop order), then one should
require that the extrema of the effective action is a
maximum (and not a minimum). The second and more
important point is that despite the fact that both constant
and inhomogeneous solutions are in principle allowed and
consistent with periodic boundary conditions (the EOM
admit both solutions), the argument of Ref. [28] yields a
proof of uniqueness of the ground state to be spatially
homogeneous. In this case, the spatial homogeneity of the
ground state indicates that the derivative terms are not only
sub-leading, but in fact vanishing for the ground state
solution of Ref. [28].
The question that remains is whether for more general

boundary conditions, for which case the bulk part of the
effective action takes the same form as derived here, there
exist multiple inhomogeneous solutions. In this case, our
expansion together with the argument of Ref. [28] gives a
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criteria to select which of the solutions maximize or
minimize the effective action and therefore can be accepted
as ground state.
Practically, to inspect whether a spatially modulated

solution may become energetically disfavored, as external
conditions are varied, we need to compute the dependence
of the coefficients ϖ0ð1Þ, ϖ0ð3Þ and ϖ0ð5Þ on the temper-
ature and on the chemical potential (in the present case, the
relevant coefficients do not depend on the size, l). This can
be easily done either by using formula (A8) derived in
Appendix, or by brute force numerical computation,
starting from the definition of polylogarithmic functions
[56]. (Using this second approach will result in an
imaginary part for the function ϖ due to lack of choice
in performing the analytical continuation in our numerical
scheme. The imaginary part is then discarded and the real
part compared with the result obtained from formula (A8)
that gives a real value.) We have carried out the compu-
tation in both ways (numerics were carried out with an
accuracy of 10−7) and compared the results that perfectly
agreed. Results are shown in Fig. 1. We should remark that
the expansion has been carried out to order 6 in the heat-
kernel expansion. This implies that the parameters of the
expansion stay small (that is the combination of temper-
ature and chemical potential accompanying higher order
terms are small enough to be ignored), otherwise additional
terms in the expansion have computed. This is in fact
straightforward to do in our scheme, requiring only the
evaluation of higher order ω0ðzÞ coefficients.
In the present case, since no massless phase can be

realized, there is no phase transition. Then, the sign of the
coefficient of the M2 term simply dictates the gradient of
the potential for small M2. The coefficient of M4, that in
absence of the logarithm would determine the order of the
transition (and a change from second order forϖ0ð3Þ > 0 to
first order for ϖ0ð3Þ < 0), here simply controls the

concavity of the potential. The coefficient ϖ0ð5Þ is instead
more meaningful since it is the first term in the expansion
(22) multiplying a derivative contribution and thus signal-
ing when spatially modulated solutions (when they exist)
are energetically favored or disfavored. For z≳ zcrit ≈ 2.05,
ϖ0ð5Þ turns negative, indicating a decreases in the free
energy, keeping homogeneous solutions favored. For peri-
odic boundary conditions, this is the only possibility, as it
follows from the uniqueness argument of Ref. [28].
Another point worth noticing is the independence of the

coefficients of all powers of M2 in the expansion from the
size of the interval (with the exception of the logarithms).
While this can be explicitly observed from formula (22) for
the M4 and M6 coefficients, a proof that extends to all
coefficients is worked out very easily from formula (20)

and from the scaling of the coefficients α̃ð0Þk . This is a
reminder of the large-N volume independence for the
CPN−1 model (see [64]).

V. CONCLUSIONS

In this paper we have examined a number of issues,
recently debated (see Refs. [11–17,19–31]), on the features
of the ground state of the CPN−1 model at finite temper-
ature, (small) density and size. We have worked out an
expansion à la Ginzburg-Landau for the effective action as
a functional of the Lagrange multiplier M2, that enforces
the constraint on the fundamental fields of the model and
operates as an effective mass. Assuming M2 to be in
principle spatially varying, the coefficients of the expansion
easily allow one to determine whether there is any phase
transition as temperature, density and size vary. Using
analytical continuation based on zeta-function regulariza-
tion, we have been able to show that a logarithmic term of
the form M2 log ðl2M2Þ occurs in the one-loop effective
action. This term yields a divergent contribution once the
constraint is implemented, preventing the realization of a
massless phase in complete agreement with the Mermin-
Wagner-Hoenberg-Coleman theorem. To summarize, our
calculations indicate:

(i) the absence of a massless phase for any value of the
external conditions (therefore no phase transition
toward a massless phase);

(ii) at vanishing density, derivative terms increase the
energy of the ground state, therefore inhomogeneous
phases are energetically disfavored;

(iii) our expansion along with the uniqueness of the
ground state (as shown in Ref. [28]) implies that the
ground state is always spatially homogeneous at any
density, temperature, and size (when βμ ≤ 2π).

In all of the above we have taken periodic boundary
conditions. Beyond periodic boundary conditions, the
ground state naturally develops spatial inhomogeneities.
While the bulk part of the effective action we have derived
here is still valid, the addition of boundary terms must be

FIG. 1. Profiles of the coefficients ϖ0ð1Þ, ϖ0ð3Þ and ϖ0ð5Þ as a
function of z ¼ β × μ calculated using the representation (A8)
(continuous curves) and numerically starting from the definition
of polylogarithmic function points (dots). The agreement has
been verified up to accuracy of 10−7.
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included and the boundary part of the action can be easily
worked out for the present setup following a procedure
similar to Ref. [31]. Whether multiple solutions are
possible and transitions between inhomogeneous grounds
states may occur remains to be seen.
In conclusion, we should remark that the scheme

presented here is limited by the validity of the derivative
expansion (that is in essence an expansion in powers of
β=l) and by the series representation of the functionϖ (that
is valid for βμ ≤ 2π). It would certainly be desirable to
improve the results of this paper in order to be able to
extend the present expansion to the case of large chemical
potential, a problem that requires finding the correct
analytical continuation of the ϖ0ðzÞ coefficients beyond
the case studied here. Beyond the case of periodic boundary
conditions it may also be interesting to look at rapidly
varying solutions, that can, in principle, be done by re-
summing certain classes of derivative terms in the heat-
kernel expansion. Another interesting point concerns the
interplay between the restrictions resulting from Mermin-
Wagner-Hoenberg-Coleman theorem and the Casimir
force, particularly in dimensions greater than 2. We hope
to report on these in forthcoming work [63].
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APPENDIX: SERIES REPRESENTATION
OF THE FUNCTION ϖðsÞ

In order to compute the coefficients ϖ0ð1Þ, ϖ0ð3Þ, and
ϖ0ð5Þ, we shall start from the following expression

fða; xÞ ¼ 2
X∞
n¼1

cosh ðxnÞn−1þa ¼ Li1−aðe−xÞ þ Li1−aðexÞ;

ðA1Þ
where 0 ≤ jxj < 2π. Using the expression above and
tabulated values of polylogarithmic functions [56], it is
easy to verify that

ω�ð1Þ ¼ −1=2: ðA2Þ

Using the following identity

Li1−nðe−zÞ þ ð−1ÞnLi1−nðezÞ ¼ 0; ðA3Þ

with n ∈ N, it follows that

ω�ð3Þ ¼ ω�ð5Þ ¼ 0: ðA4Þ

Formulas (A2) and (A4) are those used in (18) and (19).
To compute the coefficients ϖ0ðpÞ, we shall adopt the

following series representation of the polylogarithmic
function:

Li1−aðexÞ ¼ ΓðaÞð−xÞ−a þ
X∞
k¼0

1

k!
ζRð1 − a − kÞxk; ðA5Þ

valid for a ∈ C=N and jxj ∈ ð0; 2πÞ [65]. In the domain
1 − a ≤ 0 with a ∉ N, the representation above is an
analytic function and the series converge absolutely for
all jxj ≤ 2π. For a ∈ N, it is possible to extend the domain
by analytical continuation. The properties of the above
series representations have been discussed in various
references (see, for example, [66] and the list of references
given there). Using the above relation (A5) and defining

x� ¼ �jxj ðA6Þ

we can easily arrive at

ϖðaÞ ¼ ϖþðaÞ þϖ−ðaÞ
¼ 2ΓðaÞjxj−að1þ cos ðπaÞÞ

þ 4
X∞
k¼0

1

ð2kÞ! ζRð1 − a − 2kÞjxj2k; ðA7Þ

where we have analytically continued ϖþðaÞ from the top
and ϖ−ðaÞ from the bottom. From the above expression is
easy to obtain for the coefficients ϖ0ðaÞ the following
formula:

ϖ0ðaÞ ¼ −4
X∞
k¼0

1

ð2kÞ! ζ
0
Rð1 − a − 2kÞjxj2k: ðA8Þ

The above representation is regular and can be compared
against a brute force numerical computation carried out
using the definition of the polylogarithmic function.
Finally, notice that for z ¼ 0 (corresponding to μ ¼ 0)
we have

ω0ðaÞ ¼ −4ζ0Rð1 − aÞ:
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