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We study analytically the spacetime geometry of the black-hole formation and evaporation.
As a simplest model of the collapse, we consider a spherical thin shell, and take the backreaction
from the negative energy of the quantum vacuum state. For definiteness, we will focus on quantum effects
of s-waves. We obtain an analytic solution of the semiclassical Einstein equation for this model, that
provides an overall description of the black hole geometry form the formation to evaporation. As an
application of this result, we find its interesting implication that, after the collapsing shell enters
the apparent horizon, the proper distance between the shell and the horizon remains as small as the
Planck length even when the difference in their areal radii is of the same order as the Schwarzschild radius.
The position of the shell would be regarded as the same place to the apparent horizon in the semiclassical
regime of gravity.
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I. INTRODUCTION

Quantum effects around the black holes have been well
studied in the literature. A common feature of the quantum
effects in many models is that there is an incoming negative
vacuum energy flux around the apparent horizon [1,2], and
the outgoing positive vacuum energy flux (i.e., Hawking
radiation) appears well outside the apparent horizon. In this
scenario, when the collapsing matter falls under the
apparent horizon, there is no known mechanism to transfer
all the information of the collapsing matter into Hawking
radiation when the black-hole mass is still macroscopic,
unless there are high-energy events around the apparent
horizon [3,4].
The goal of this paper is to have a better understanding of

the spacetime geometry for black holes, in particular for the
region inside the apparent horizon. We study the quantum
effect of the vacuum energy-momentum tensor used in
Refs. [1,2], and take its backreaction to the geometry into
account. While there are works of numerical simulation,
e.g., Ref. [5], we take the analytic approach to see detailed
features of the geometry. As we will see, the analytic

solution will allow us to learn detailed feature which is
difficult to be found in numerical simulations. Throughout
this paper, we focus on spherically symmetric configura-
tions for simplicity.
An intuitive picture of the near-horizon geometry for a

dynamical black hole is already known in the literature.
With the backreaction of quantum effects taken into
consideration, the black-hole geometry outside the collaps-
ing matter has a wormholelike structure near the horizon
due to the negative vacuum energy [6–11]. For black holes
with spherical symmetry, it corresponds to a local mini-
mum of the areal radius which wewill refer to as the “neck”
of the near-horizon geometry. The areal radius a of the neck
is approximately the Schwarzschild radius associated with
the total mass of the collapsing matter. In the dynamical
process of the evaporation, the neck is shrinking with time,
and plays the role of the apparent horizon in the geometry.
This picture has been clearly demonstrated in numerical
simulation [5] as well as analytic calculation [12].
In this work, we aim at finding explicit analytic solutions

to the semiclassical Einstein equation that are more explicit
than existing results in the literature, with which one may
explore new features of the black-hole geometry. As a
simple example of the gravitational collapse, we consider a
collapsing thin shell with the spherical symmetry. We shall
provide explicit descriptions of the whole spacetime
geometry, from the interior of the collapsing shell to large
distances. We describe the geometry after the shell enters
the apparent horizon, until the black hole is evaporated to a
microscopic scale where the low-energy effective theory
breaks down.
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The geometry around the collapsing shell is obtained
by connecting the interior and exterior geometries at the
shell. The interior geometry is simply given by the flat
space as it is not affected by the collapsing shell. The
exterior geometry is the black hole geometry with back-
reaction, which is the semiclassical version of the (exterior)
Schwarzschild metric and contains the near-horizon geom-
etry explained above. We divide the exterior geometry into
3 regions: the asymptotically flat region, the region near the
neck, and the region deep inside the neck (See Fig. 1). The
semiclassical Einstein equation can be solved in different
regions by different perturbative expansions. The initial
condition is imposed in the past before the gravitational
collapse, and the boundary conditions for each region are
given by the junction conditions.
Our plan for this paper is as follows. In Sec. II, we

review the static geometry for a black hole. The vacuum
state, which is known as the Boulware vacuum, has no
divergence because the black-hole geometry is modified
from the classical solution by the backreaction from the
negative vacuum energy. The exterior geometry of an
evaporating black hole can then be obtained by introducing
the Hawking radiation to the static black-hole geometry. In
Sec. III, after reviewing the dynamical geometry outside the
neck [12], we study the time evolution of the geometry and
that of the shell. In Sec. IV, we consider the perturbative
expansion in the asymptotically flat region and explore the
junction condition to the region near the neck. The result
suggests that the difference between the areal radius at the

collapsing shell and that at the apparent horizon becomes
large as the shell moves to the deeper region, but their
proper distance remains as small as the Planck length. To
further verify this result, we investigate the region deep
inside the neck in Sec. V. The result is consistent with
Sec. IV. Section VI is devoted to the conclusion and
discussions.

II. STATIC BLACK-HOLE GEOMETRY

This section is a review of previous results included in
Refs. [8,9,12], where the s-wave approximation is used for
the matter fields and the vacuum energy-momentum tensor
is assumed to be given by the toy model proposed in
Refs. [1,13] based on 2-dimensional massless scalar fields.1

(The solution was presented in different coordinate systems
in Refs. [8,9], and here we use the same coordinate system
as Ref. [12].) As a preliminary of the review, we introduce
the vacuum energy-momentum tensor in Refs. [1,13] first.
We consider only spherically symmetric configurations

in 4D spacetime. The metric can always be written as

ds2 ¼ −Cðu; vÞdudvþ R2ðu; vÞdΩ2; ð2:1Þ

where u and v are retarded and advanced (null) time
coordinates which span the 2-dimensional subspace of the
temporal and radial directions, and dΩ2 is the metric on a
unit 2-sphere,

dΩ2 ≡ dθ2 þ sin2 θdϕ2: ð2:2Þ

We refer to the radius Rðu; vÞ of the symmetric 2-spheres as
the areal radius.
We assume that the semiclassical Einstein equation

Gμν ¼ κhTμνi ð2:3Þ

determines the spacetime geometry to a good approxima-
tion. The constant κ is related to the Newton constant GN
via κ ¼ 8πGN . Note that the quantum effect is taken into
consideration through the vacuum expectation value hTμνi
of the energy-momentum tensor.
As mentioned above, we choose hTμνi to be given by that

of the 2D scalar fields [1,13] as a concretemodel. Invacuum,
it is fixed by the conservation law and the Weyl anomaly up
to integration constants βðuÞ and γðvÞ as2 [1,13]

Areal radius R

Radial geodesic distance

Near neck

Asymptotically flat region
Deep inside neck

Neck

FIG. 1. The areal radius R and 3 regions, asymptotically flat,
near the neck and deep inside the neck. The areal radius has the
local minimum, which is the apparent horizon in the dynamical
case. The geometry near the neck is studied in [12], and the
relation between its time evolution and the junction condition at
the shell are discussed in Sec. III. The geometry outside the near-
neck region is referred to as the asymptotically flat region. The
geometry in this region will be analyzed by using the perturbative
expansion around the outgoing Vaidya metric in Sec. IV. The
areal radius becomes larger also inside the neck. We call this
region as the region deep inside the neck and investigate the
geometry in this region in Sec. V.

1The most general 4D static, spherically symmetric black-hole
solutions with vacuum energy-momentum tensor of 4D con-
formal matters are studied in Ref. [11]. The toy model studied
here is a special case belonging to the class of models with q < 0
in Ref. [11].

2For simplicity, we have chosen the normalization factor N to
be 24π so that α ¼ κ in the notation of Ref. [12].
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hTuui ¼ −
2

R2
C1=2∂2

uC−1=2 þ βðuÞ
R2

; ð2:4Þ

hTvvi ¼ −
2

R2
C1=2∂2

vC−1=2 þ γðvÞ
R2

; ð2:5Þ

hTuvi ¼ −
1

R2C2
½C∂u∂vC − ∂uC∂vC�; ð2:6Þ

hTθθi ¼ 0; ð2:7Þ

where C and R are functions defined in the metric (2.1).
At large distances where

r − a ≫
κ

a
; ð2:8Þ

hTμνi should be very small, and the metric is approximated
by the Schwarzschild metric,

ds2 ¼ −
�
1 −

a
r

�
dt2 þ dr2

1 − a
r

þ r2dΩ2; ð2:9Þ

where a is the Schwarzschild radius. However, the pertur-
bative correction is in general not weak around the
Schwarzschild radius when [11]

r − a ∼O
�
κ

a

�
: ð2:10Þ

A. Geometry around the neck

The vacuum state for the static geometry, which is
known as the Boulware vacuum, has neither incoming
nor outgoing radiation at large distances. It is given by the
condition

βðuÞ ¼ 0; γðvÞ ¼ 0 ð2:11Þ

in the vacuum energy-momentum tensor (2.4)–(2.7). It is
well known that the vacuum energy-momentum tensor of
the Boulware vacuum diverges at the horizon in the
perturbative calculation around the Schwarzschild back-
ground. But, in fact, no divergence appears if the back-
reaction of the vacuum energy is properly taken into
account [8]. Furthermore, the effect of the Hawking
radiation in the Unruh vacuum (βðuÞ ≠ 0) only introduces
slow u-dependence to this nonsingular static geometry in
the parameters, such as the Schwarzschild radius [12]. As
the dynamical geometry on each time slice has the same
structure to the static geometry, we review the static
geometry near the Schwarzschild radius [8,9,12].
Here, we consider the geometry near the Schwarzschild

radius with the backreaction from the vacuum energy-
momentum tensor. For static metrics, it is convenient to use
the time coordinate associated with the timelike Killing

vector. Since the areal radius R may not be a single-valued
function in the radial direction, it is better to take a different
radial coordinate. In terms of the tortoise coordinate x for
the radial direction, the metric Eq. (2.1) is expressed as

ds2 ¼ −CðxÞðdt2 − dx2Þ þ R2ðxÞdΩ2: ð2:12Þ

At large distances, we can consider the κ-expansion around
the Schwarzschild solution

C ≃ 1 −
a
R
: ð2:13Þ

In the near-horizon region where the areal radius R is
very close to the Schwarzschild radius, R − a ∼Oðκ=aÞ,
the Schwarzschild solution becomes comparable to its
quantum correction.
We should define the κ-expansion in the near-horizon

region as3

CðxÞ ¼ κC0ðxÞ þOðκ2=a4Þ; ð2:14Þ

RðxÞ ¼ aþ κR0ðxÞ þOðκ2=a3Þ: ð2:15Þ

In the following, from time to time, Oðκn=amÞ will be
denoted as OðκnÞ for simplicity, as the power m of a is
uniquely determined by the dimension of the quantity.
The solution to the semiclassical Einstein equations to

the 1st order has [8,9,12]

C0 ¼ c0ekx; ð2:16Þ

R0 ¼ a1 þ
c0
ak2

ekx −
k
4a

x: ð2:17Þ

To determine the parameters k, c0, and a1, we consider
the continuation of this solution to the region where the
κ-expansion around the Schwarzschild solution is valid.4

It was pointed out in Ref. [11] that, in terms of the
coordinate z defined by

ds2 ¼ −Cdt2 þ dz2 þ R2dΩ2; ð2:18Þ

the perturbative expansion around the Schwarzschild sol-
ution can be extended to the near-horizon region where
R − a ∼Oðκ=aÞ. The expansion to the first-order correc-
tion gives [11]

3The same ansatz is applicable for the near-horizon geometry
in other static vacua [8,11]. For example, the solution for the
Hartle-Hawking vacuum is given by a similar form as (2.16)–
(2.17) without the third term of (2.17).

4In Ref. [12], these parameters are not determined from
the junction condition. Instead, they are fixed by assuming the
relation _aðuÞ ¼ −κβðuÞ between the time evolution of the
Schwarzschild radius aðuÞ and the Hawking radiation βðuÞ.
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C ¼ z2

4a2
þ � � � ; ð2:19Þ

R2 ¼ a2 þ 1

2
z2 þ κa2 − κ log

z
a
þ � � � ; ð2:20Þ

near the Schwarzschild radius. Although the first-order
correction to the areal radius R is comparable to the 0th-
order term (given by the Schwarzschild solution) at small z,
no higher-order correction is of a comparable order of
magnitude [11]. Hence, after the coordinate transformation
to the tortoise coordinate, the solution above reproduces
Eqs. (2.16) and (2.17).
In this way, the parameters in Eqs. (2.16) and (2.17) are

fixed such that

C ¼ 1

4
eðx−x0Þ=a þ � � � ; ð2:21Þ

R2 ¼ a2 þ a2

2
eðx−x0Þ=a −

κ

2a
ðx − x0Þ þ � � � ; ð2:22Þ

where the constant part of the 1st-order terms in R2 is
absorbed by a redefinition of a. (Without loss of generality,
one can set x0 to 0.)
The result above implies that the areal radius R has a

local minimum at

xneck ¼ x0 − a log

�
a2

κ

�
; ð2:23Þ

where

R2ðxneckÞ ¼ a2 þ κ

2

�
log

a2

κ
þ 1

�
þOðκ2Þ: ð2:24Þ

In the following, we will refer to this local minimum of R as
the “neck.”
Around the neck, there is no event horizon and the

vacuum energy-momentum tensor has no divergence.
However, Eqs. (2.21) and (2.22) provide a good approxi-
mation of the metric only in the near-horizon region where
R − a ∼OðκÞ. In the next subsection, we consider the
geometry deeper inside the neck.

B. Geometry deep inside the neck

In the previous subsection, we reviewed the static
spacetime geometry in vacuum around the neck of a black
hole. Here we turn to the region deep inside the neck (but
still in vacuum) [9], assuming that the surface of the star is
further deeper inside the neck.
Since the areal radius R is a local minimum at the neck, it

becomes larger as we go deeper inside the neck. When R is
close to the Schwarzschild radius so that R − a ∼OðκÞ, the
solution (2.21)–(2.22) is a good approximation. In this

subsection, we consider the geometry deeper inside the
neck where

R − a ∼Oðκ0Þ: ð2:25Þ

Although we refer to this region as “deep inside the neck,”
it does not imply that the proper distance in the radial
direction between the neck and a point in this region is
much larger than the Planck length. In fact, we will see in
Sec. V D that it is of the order of the Planck length.
If we naively extend the solution (2.21)–(2.22) for

R − a ∼OðκÞ to the deeper region where R − a ∼Oðκ0Þ,
we deduce from Eq. (2.22) that

jx − x0j ∼Oðκ−1Þ ð2:26Þ

(note that x − x0 < 0 inside the neck), so that logC∼
Oðκ−1Þ. Thus, we expect that C behaves as logC ∼Oðκ−1Þ
for R − a ∼Oðκ0Þ. Defining ρ by

C ¼ e2ρ; ð2:27Þ

we have the expansions

ρ ¼ κ−1ρ0 þ ρ1 þOðκÞ; ð2:28Þ

R ¼ R0 þ κR1 þOðκ2Þ; ð2:29Þ

deep inside the neck.
The solutions to the leading-order terms of the semi-

classical Einstein equation are found to be

ρ0 ¼ −c1ðx − x0Þ þ c2; ð2:30Þ

R2
0 ¼ c1ðx − x0Þ þ c3; ð2:31Þ

where c1, c2, and c3 are integration constants.
The result above implies that (2.21)–(2.22) give a good

approximation at the leading order even in this region. The
patching of this solution with Eqs. (2.21)–(2.22) around the
neck demands that

c1 ≃ −
κ

2a
; c2 ≃ 0; c3 ≃ a2: ð2:32Þ

It may appear strange that c1 is of the 1st order in κ, while,
by definition, R0 should be of the 0th order. This is simply a
result of Eq. (2.26) in this region. In terms of a properly
rescaled coordinate such as x̃ ¼ κðx − x0Þ, all the param-
eters and coordinates are of Oðκ0Þ.5
In the next section, we will study the geometry for the

Unruh vacuum by using the derivative expansion for the

5One may say that x is not a good coordinate to describe the
solution in this region, and x̃ is more appropriate, but the results
are equivalent.
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time derivative ∂u ∼OðκÞ. The expansion would not be
valid for the geometry deep inside the neck which is studied
in this subsection, since (2.26) implies that the x-derivative
will also be very small, ∂x ∼OðκÞ, effectively. Therefore,
we cannot use the same (derivative) expansion for this
region. We will consider another analysis for the geometry
deep inside the neck, without using the derivative expan-
sion, in Sec. V.

III. COLLAPSING SHELL

The geometry around the neck for a static black hole in
the Boulware vacuum was discussed above in Sec. II A. In
this section, we study the dynamical geometry around the
neck for a black hole with the backreaction from the
vacuum energy-momentum tensor for the Unruh vacuum.
The geometry is obtained by solving the semiclassical
Einstein equation in the κ-expansion for βðuÞ ≠ 0. It turns
out that the solution at the leading order takes the same
form as the static case of Sec. II A, but the effect of the
Hawking radiation introduces slow time evolution of the
parameters, e.g., the Schwarzschild radius. The slow time
evolution can be interpreted as a perturbation to the static
geometry. Our analysis will fail around the end of the
evaporation since the Hawking radiation will be very strong
and time evolution will no longer be slow. A fully quantum
treatment of gravity would be necessary around the end of
the evaporation and it is out of the scope of this work. We
will focus on the period earlier than the last moment of
the evaporation u ≪ uc, where uc is the time of the
complete evaporation, by using coordinates analogous to
the outgoing Eddington-Finkelstein coordinates.6

As a simple model for the collapsing matter, we consider
a thin shell falling at the speed of light. The matter
distribution in the radial direction is approximated by
the Dirac delta function.7 We will study the dynamical
geometry outside the collapsing matter [12]. The geometry
for a collapsing thin shell can be obtained by connecting
this exterior geometry with the interior geometry (which is
flat spacetime) at the collapsing shell. We will first consider
the generic amplitude βðuÞ of Hawking radiation, and then
determine the Hawking radiation by imposing the junction
condition on the collapsing shell.

A. Geometry outside collapsing shell

The geometry outside the shell is a solution to the
semiclassical Einstein equation (2.5)–(2.7). We impose the
initial condition that there are no incoming matter excita-
tions in the past null infinity other than the collapsing null
shell. By identifying the null coordinates u and vwith those
in the asymptotically flat spacetime with C → 1, the
integration constant γðvÞ in the incoming energy flow
hTvvi (2.5) should vanish:

γðvÞ ¼ 0; ð3:1Þ

as we assumed (2.11) for the static solution. The other
integration constant βðuÞ in the outgoing energy flow hTuui
(2.4) is identified with the Hawking radiation and should be
determined by the junction condition across the collapsing
matter.
As the u-dependence of the dynamical solution is turned

on by the nonzero βðuÞ, which contributes to the semi-
classical Einstein equation atOðκÞ, the u-dependence of the
solution must be very weak so that we can consider the
derivative expansion in powers of ∂u, with ∂u ∼OðκÞ.8
This assumption should be physically reasonable since the
evaporation of the black hole due to the Hawking radiation
is very slow. The geometry is approximately static and the
u-dependence can appear only in the higher-order correc-
tions from the viewpoint of an observer in the asymptoti-
cally flat region.
Now, the semiclassical Einstein equation can be solved

by using κ-expansion. We first make an ansatz for the near-
horizon region in a similar fashion to the static case

Cðu; vÞ ¼ κC0ðu; xÞ þOðκ2=a4Þ; ð3:2Þ

Rðu; vÞ ¼ aðuÞ þ κR0ðu; xÞ þOðκ2=a3Þ; ð3:3Þ

where x is viewed as a function of u and v:

x ¼ 1

2
ðv − uÞ þ x0ðuÞ: ð3:4Þ

The variables aðuÞ, C0ðu; xÞ, and R0ðu; xÞ all depend on u.
They are functions of Oðκ0Þ, while their u-derivatives,
_aðuÞ, ∂uC0ðu; xÞ, and ∂uR0ðu; xÞ, are assumed to be of
OðκÞ. It is straightforward to solve the semiclassical
Einstein equation for the Unruh vacuum, βðuÞ ≠ 0 and
γ ¼ 0, order by order in the κ-expansion. At the leading

6A similar structure can be found for the vacuum energy-
momentum tensor on the Schwarzschild geometry without the
backreaction. The Boulware vacuum diverges at the future
horizon while the Unruh vacuum is smooth there. The difference
of two vacua becomes very large and cannot be treated as a
perturbation near the future horizon. By using the outgoing
Eddington-Finkelstein coordinates, which does not cover the
future horizon, we can naturally focus on the other region where
the Unruh vacuum can be interpreted as a perturbation of the
Boulware vacuum.

7An infinitesimally thin shell introduces unphysical solutions
[14] but they are avoided in our perturbative approach.

8More precisely, in the ðt; xÞ coordinate system, the static
solution (2.12) depends on x but not on t. Clearly, the same
solution can be written in the ðu; xÞ coordinate system with no
dependence on u. When βðuÞ is turned on at Oðκ0Þ, the semi-
classical Einstein equation implies a u-dependence with
∂u ∼OðκÞ. This is not true in the ðu; vÞ coordinate system.
Whenever we say ∂u ∼OðκÞ, the u-derivative is taken with a
fixed radial coordinate.
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order, ðv; vÞ and ðu; vÞ-components of the semiclassical
Einstein equation is exactly the same as those for the
Boulware vacuum, as u-derivatives contribute only to the
next-to-leading order. The Hawking radiation contributes
only to the other part of the Einstein equation which gives a
constraint on the integration constants. Therefore, the
solution takes the same form as that in the static case,
(2.21) and (2.22), but the integration constants are now
u-dependent functions,9

Cðu; vÞ ¼ 1

4
eðx−x0ðuÞÞ=aðuÞ þOðκ2Þ; ð3:5Þ

Rðu; vÞ ¼ aðuÞ þ κa1ðuÞ þ
aðuÞ
4

eðx−x0ðuÞÞ=aðuÞ

−
κ

4aðuÞ2 ðx − x0ðuÞÞ þOðκ2Þ: ð3:6Þ

where x is now viewed as a function of u and v:

x ¼ 1

2
ðv − uÞ þ x0ðuÞ: ð3:7Þ

For more details on the derivation and higher-order
corrections, see [12]. The integration constant a1ðuÞ can
be absorbed by a redefinition of the Schwarzschild radius
aðuÞ and hence we can set it to 0. The reference point x0ðuÞ
of the x-coordinate can be absorbed by a coordinate
transformation of u. But we shall choose u to agree with
the u-coordinate in the asymptotically flat region, so x0ðuÞ
will not be set to zero. Note that the assumption ∂u ∼OðκÞ
now implies that _aðuÞ ¼ OðκÞ and _x0ðuÞ ¼ OðκÞ, where
the dots on _a and _x0 stand for the u-derivative. The junction
condition is consistent with these conditions as we will
see below.
The semiclassical Einstein equation gives constraints on

the boundary condition on a Cauchy surface. They are the
differential equations for the integration constants, aðuÞ
and x0ðuÞ. At the leading order, we have

_aðuÞ ¼ −κβðuÞ þOðκ2Þ: ð3:8Þ

Thus, the condition _aðuÞ ¼ OðκÞ is consistent with the
junction condition if βðuÞ ¼ Oðκ0Þ. The other integration
constant x0ðuÞ should be fixed by the coordinate patch to
the asymptotically flat region for the u-coordinate.
The areal radius has a local minimum on constant-u

slices at

xAðuÞ ¼ x0ðuÞ − aðuÞ log
�
a2ðuÞ
κ

�
; ð3:9Þ

which coincides with Eq. (2.23), except that the parameters
depend onu here. Since the areal radius is always decreasing

with u, along constant-v lines, x ¼ xAðuÞ is the trapping
horizon (the trajectory of the apparent horizon).
The solution (3.5)–(3.6) must satisfy the ansatz (3.2)–

(3.3) above, or equivalently,

Cðu; vÞ ¼ OðκÞ; Rðu; vÞ ¼ aðuÞ þOðκÞ: ð3:10Þ

Therefore, (3.5)–(3.6) are not valid for arbitrary u and v,
but only in some specific regions. By using the position
of the apparent horizon xAðuÞ, the validity range of the
perturbative expansion (3.2)–(3.3), or equivalently, (3.10),
is the region

x − xAðuÞ ¼ OðaÞ: ð3:11Þ

It should be noted that the derivative expansion is valid at
each moment of u, and hence Eqs. (3.5) and (3.6) are valid
for arbitrary u as long as Eq. (3.11) is satisfied.
Since the solution (3.5)–(3.6) takes the same form as that

for the static case for the Boulware vacuum, but the
Hawking radiation introduces only the slow u-dependence,
the Hawking radiation can be considered as a perturbation
to the Boulware vacuum.10 It is also possible to treat u-
dependent parts as perturbations, by using the expansion
aðuÞ ¼ aðu1Þ þ ðΔuÞ _aðu1Þ þ � � � where u1 is a moment of
the retarded time u. Thus the solution (3.5)–(3.6) itself can
be interpreted as a perturbation of the static solution as long
as the difference of the retarded time Δu from the moment
u1 is not too long and satisfies Δu ¼ OðaÞ. Although the
solution cannot be approximated by the expansion by using
a constant Schwarzschild radius (or equivalently that at
u ¼ u1) if the duration Δu is longer, the expression (3.5)–
(3.6) with u-dependent Schwarzschild radius is valid for
arbitrary moments of time u except for the end of the
evaporation. The perturbation in fact breaks down around
the end of the evaporation, when the Hawking radiation
βðuÞ will be much larger than Oðκ0Þ. A fully quantum
gravity theory would also be necessary then, and hence it is
out of the scope of this work.
The solution (3.5)–(3.6) is valid only near the apparent

horizon (3.11). In the deeper region, R − a ¼ OðaÞ, the
geometry for the Unruh vacuum cannot be obtained by
the perturbation from the Boulware vacuum. We will see
the geometry in the deeper region in Sec. V.

9Although the integration constants depend on u, their u-
derivatives are OðκÞ.

10To be more precise, the solution (3.5)–(3.6) is not obtained as
a perturbation around the static solution for the Boulware
vacuum. However, we can in fact introduce the Hawking
radiation as a perturbation by using the double expansion in κ
and ϵ with ϵ ≪ 1, where ϵ is introduced as βðuÞ ¼ ϵβ0ðuÞ. The
solution at the 0th order of the ϵ-expansion is nothing but the
static solution and hence it is a perturbation around the static
solution. The solution (3.5)–(3.6) agrees with that of the double
expansion with ϵ → 1, at the leading order. In this sense, the
effect of the Hawking radiation in the solution (3.5)–(3.6) can be
viewed as the perturbation to the Boulware vacuum.
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B. Energy conservation on collapsing shell

For the dynamical geometry outside the collapsing shell
given by Eqs. (3.5)–(3.6), hTuvi (2.6) is calculated as11

hTuvi ¼ −
Cðu; vÞ

2a2ðuÞR2ðu; vÞ þOðκ2Þ: ð3:12Þ

while

hTuvi ¼ 0; ð3:13Þ

in the flat spacetime inside the collapsing shell.
Without loss of generality, we will choose the collapsing

shell to be located at v ¼ 0, and it passes through the point
x ¼ x0 at u ¼ 0. The energy-momentum tensor hTuvi is
expressed in terms of the step function Θ as

hTuvi ¼ −
C

2a2ðuÞR2ðu; vÞΘðvÞ þOðκ2Þ: ð3:14Þ

The conservation law

∂uðR2hTvviÞ ¼ −C∂vðC−1R2hTuviÞ; ð3:15Þ

gives

∂uhTvvi ¼
C

2aðuÞ2R2ðu; vÞ δðvÞ þ � � � ; ð3:16Þ

where we only keep the term proportional to the delta
function. Equation (3.16) implies that the energy on the
collapsing shell hTvvi is increasing, as the right-hand side
of Eq. (3.16) is positive, despite the fact that the total mass
of the black hole is decreasing. The increase of the energy
on the shell comes from the vacuum energy sitting on top of
the shell, and the total mass of the black hole decreases due
to the negative vacuum energy inflow.
The other component of the conservation equation is

∂vðR2hTuuiÞ ¼ −C∂uðC−1R2hTuviÞ: ð3:17Þ

If the collapsing shell directly loses energy into the
Hawking radiation, hTuui must have a discontinuity across
the shell. The equation above implies that a contribution
proportional to the delta function in hTuvi is necessary for
the discontinuity of hTuui. As the delta function is absent in
the vacuum contribution to hTuvi (3.14), the only chance
for hTuui to be discontinuous is that the collapsing shell
contributes a delta function term in hTuvi. Since the shell is
collapsing at the speed of light, or equivalently, it lies on a
null surface, the only component the shell can contribute to
is hTvvi. Therefore, hTuui has to be continuous on the

collapsing shell.12 Since the outgoing energy is zero in the
flat spacetime inside the collapsing shell (hTuui ¼ 0 at
v ¼ 0−), we must have

hTuui ¼ 0 ð3:18Þ

just outside of the collapsing shell at v ¼ 0þ. In the next
subsection, we will use this condition to determine the
magnitude of Hawking radiation.

C. Locus of collapsing shell

As the areal radius of the shell Rs is given by Eq. (3.6),
its time-derivative is expressed as

_RsðuÞ ¼ _aðuÞ − 1

8
e−

u−u0ðuÞ
2aðuÞ þ κ

8aðuÞ2 þOðκ2Þ; ð3:19Þ

where we have chosen the position of the shell as v ¼ 0,
and u0 comes from the redefinition of u.
The time evolution of the Schwarzschild radius _aðuÞ is

related to the outgoing radiation via Eq. (3.8). According to
Eq. (2.4), the outgoing energy flow hTuui at the neck is

hTuui ¼
1

R2

�
−

1

8a2ðuÞ þ βðuÞ þOðκÞ
�
: ð3:20Þ

The continuity condition of the outgoing energy flow
across the collapsing shell fixes βðuÞ as

βðuÞ ¼ 1

8a2ðuÞ ; ð3:21Þ

so that Eqs. (3.8) and (3.19) give

_a ¼ −
κ

8a2
þOðκ2Þ; ð3:22Þ

and

_Rs ¼ −
1

8
e−

u−u0ðuÞ
2aðuÞ þOðκ2Þ: ð3:23Þ

The radius of the shell continues to decrease even after
passing the neck (which is the local minimum of R with
respect to the variation in x). This is in fact necessary for the
continuity of R across the shell, as the areal radius of the
incoming null surface must be monotonically decreasing
from the viewpoint of an observer in the flat spacetime
inside the shell. In terms of the U coordinate in the flat
spacetime, Rs behaves as

∂URs ¼ −
1

2
; ð3:24Þ

11We need to take the higher-order corrections studied in
Ref. [12] into consideration to derive this expression.

12This is a consequence of the assumption of no pressure, i.e.,
hTθθi ¼ hTϕϕi ¼ 0.
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which is consistent with the junction condition

dU
du

¼ C ¼ 1

4
eðx−x0ðuÞÞ=aðuÞ: ð3:25Þ

It can be seen by comparing Eq. (3.23) with Eq. (3.22) that
since RsðuÞ decreases at a rate that becomes exponentially
small, the Schwarzschild radius aðuÞ will decrease much
faster than RsðuÞ. Thus the difference RsðuÞ − aðuÞ is
increasing while the radius RsðuÞ itself is decreasing.
In this section, we studied the geometry near the neck,

the junction condition at the shell and their time evolution.
The geometry is given by connecting the exterior geometry
(3.5) and (3.6) with flat interior spacetime at the collapsing
shell, v ¼ 0. The Schwarzschild radius aðuÞ has the time
evolution according to (3.22). The structure of the geom-
etry is shown in Fig. 2. The geometry is consistent with that
by Parentani and Piran, [5]. Thus the geometry of the
evaporating black hole is interpreted as the time evolution
of a space which has the structure of the “Wheeler’s bag
of gold.”
It should be noted that our result in this section relies on

the assumption that the time evolution of x0ðuÞ is suffi-
ciently small, _x0ðuÞ ¼ OðκÞ. According to Eq. (3.23), the
decrease in Rs from u1 to u2 isZ

u2

u1

du _Rs ≃
a
4
ðe−u1−u0

2a − e
u2−u0
2a Þ; ð3:26Þ

which is bounded from above by a=4 as long as u2 >
u1 > u0. This implies that the areal radius at the collapsing

shell is stillOðaÞ (while its decrease can be as large as a=4)
when the shell is still in the neighborhood (3.11) where
the approximation is good. It should however be noted
that the time evolution of x0ðuÞ is assumed to be slow;
_x0ðuÞ ¼ OðκÞ. If instead _x0ðuÞ ¼ Oðκ0Þ, Eq. (3.23)
becomes

_Rs ¼ −
1

8
e−

u
2aðuÞð1þ 2_x0ðuÞÞ þ

κ _x0ðuÞ
4a2ðuÞ þOðκ2Þ: ð3:27Þ

Thus, the discussion about RsðuÞ above depends on the
assumption on x0ðuÞ. In order to check whether _x0ðuÞ ¼
OðκÞ, we should study the junction condition in the
dynamical case in more details. In the next section, we
consider the perturbative expansion around the outgoing
Vaidya metric, which is valid for r − a ¼ OðaÞ outside the
apparent horizon, and show that the areal radius at the
collapsing shell is still large as long as the shell is still in
the neighborhood of the neck (3.11).

IV. BACKREACTION TO VAIDYA METRIC

In the previous section, we have studied the black-hole
geometry near the neck. In this section, we aim at
connecting the geometry near the neck with the geometry
in the asymptotically flat region.
To do so, we study the spacetime geometry in a different

coordinate system, for which the most general spherically
symmetric metric in 4D spacetime is of the form

ds2 ¼ −fðu; rÞdu2 − 2dudrþ R2ðu; rÞdΩ2; ð4:1Þ

where we have imposed the gauge-fixing condition
gur ¼ gru ¼ −1. The geometry is assumed to be asymp-
totically flat, fðu; rÞ → 1 and Rðu; rÞ → r at the spatial
infinity r → ∞.
The coordinates in (4.1) is convenient for the outgoing

Vaidya metric, which describes the geometry of the evapo-
rating black hole around the asymptotic region, since only
the Hawking radiation would be important in the quantum
effects there. In order to solve the semiclassical Einstein
equation for the black-hole geometry, we will consider the
perturbation theory of the metric (4.1) starting with the
outgoing Vaidya metric. Although the areal radius R is
commonly identified as the radial coordinate r, by imposing
the gauge condition R ¼ r instead of gur ¼ gru ¼ −1, it is
not very useful to study the backreaction to the Vaidya
metric, because the areal radiusR has a localminimumand is
thus not single-valued if the backreaction is taken into
account. This is why we adopt another radial coordinate r in
the metric (4.1). As above, we assume that ∂u ∼OðκÞ in the
κ-expansion.
As the expansion around the outgoing Vaidya metric

is formally valid only for r−a¼OðaÞ outside the
Schwarzschild radius, we will consider another perturba-
tion for r − a ¼ OðκÞ in order to check the validity of the

FIG. 2. Lines of Rðu; vÞ ¼ const: in the geometry near the
neck. Lines are just omitted in the lower-right of the figure since
there are too many lines. The bold line is the collapsing thin shell.
The dotted line is the neck, or equivalently, the apparent horizon.
Lines on the upper side has smaller R than those on the lower side
since ∂R

∂u < 0. The lines on the right has larger R than those on the
left, namely ∂R

∂v > 0, except for the trapped region between the
collapsing shell and the apparent horizon, where ∂R

∂v < 0.
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result from the expansion around the outgoing Vaidya
metric.13 We will see that the expansion around the
outgoing Vaidya metric agrees with the result from another
perturbative calculation for r − a ¼ OðκÞ. We also find that
the integration constants are related to the validity of the
expansion at higher orders and should be chosen carefully.
The advantage of this approach is that its description about
the geometry around the neck is smoothly continued to the
asymptotic region at large distance.
The main results of this section to be derived below are

the following. The solution of the exterior geometry in the
form of (4.1) is obtained as

fðu; rÞ ≃ 1 −
aðuÞ
r

þ � � � ; ð4:2Þ

Rðu; rÞ ≃ r −
κ

4aðuÞ log
�
r − aðuÞ þ 2aðuÞ _aðuÞ

aðuÞ
�
þ � � � ;

ð4:3Þ

where higher-order corrections indicated by “� � �” are of
OðκÞ for r − a ¼ OðaÞ (far outside the apparent horizon)
but Oðκ2Þ for r − a ¼ OðκÞ (around the apparent horizon).
The geometry is given by connecting the solution above
with the flat spacetime at the collapsing shell (See Fig. 3.
The areal radius R increases as it goes further inside the

apparent horizon r ¼ aðuÞ (as the value of v gets smaller on
a constant-u curve), while it decreases along the collapsing
shell (as the value of u gets larger on a constant-v curve).
The rate of decrease of the areal radius Rs along the
collapsing shell is much smaller than that of the
Schwarzschild radius. We will see below that, although
the difference in their areal radii R will be as large asOðaÞ,
as the shell goes to deeper region inside the apparent
horizon, the shell is only separated from the neck by a
proper distance of the order of a Planck length.
While Eqs. (4.2) and (4.3) are not very useful deep inside

the neck where r − a ¼ OðaÞ, we will study the collapsing
shell deep inside the neck in more detail in Sec. V.

A. Perturbation of Vaidya metric

We first take into account the effect of the Hawking
radiation by introducing the outgoing energy at the leading
order of the expansion, so that the solution of the semi-
classical Einstein equation at the leading order is given by
the outgoing Vaidya metric. Then we treat the remaining
part of the vacuum energy-momentum tensor (including the
incoming negative vacuum energy flux) as a perturbation.
The energy-momentum tensor (2.4)–(2.7) is fixed by the

trace anomaly and the conservation law. For the metric
(4.1), it is equivalent to

hTuui ¼
1

R2

�
β þ γ þ f∂2

rf −
1

4
ð∂rfÞ2

�
þOðκÞ; ð4:4Þ

hTrri ¼
1

R2f2

�
2γ þ f∂2

rf −
1

2
ð∂rfÞ2

�
þOðκÞ; ð4:5Þ

hTuri¼ hTrui¼
1

R2f

�
γþf∂2

rf−
1

4
ð∂rfÞ2

�
þOðκÞ: ð4:6Þ

We solve the semiclassical Einstein equation order by
order in the κ-expansion. We expand fðu; rÞ and Rðu; rÞ as

fðu;rÞ¼ f0ðu;rÞþ κf1ðu;rÞþ κ2f2ðu;rÞþOðκ3Þ; ð4:7Þ

Rðu;rÞ¼R0ðu;rÞþκR1ðu;rÞþκ2R2ðu;rÞþOðκ3Þ: ð4:8Þ

At the leading order, the semiclassical Einstein equation is
solved by

R0ðu; rÞ ¼ R00ðuÞ þ R01ðuÞr; ð4:9Þ

f0ðu; rÞ ¼ R−2
01 ðuÞ −

aðuÞ
R0ðu; rÞ

; ð4:10Þ

where R00ðuÞ, R01ðuÞ, and aðuÞ are integration constants.
In the lowest-order approximation, aðuÞ corresponds to

the Schwarzschild radius. The other integration constants
R00ðuÞ and R01ðuÞ can be absorbed by the redefinition of
the ðu; rÞ-coordinates. Note that u-dependence is very slow

FIG. 3. Lines of Rðu; rÞ ¼ const: in the ðu; rÞ-coordinates. The
bold line is the collapsing thin shell, and the dotted line is the
neck, or equivalently, the apparent horizon. The distance between
the collapsing shell and apparent horizon is very small in these
coordinates. Strictly speaking, the distance in these coordinates is
different from the proper distance, it can be a very rough estimate
since fðu; rÞ in (4.1) is small near the apparent horizon. More
precise arguments are given in Sec. IV D and in Sec. V D.

13Here, we use the notation y ¼ OðxÞ to indicate that y is of the
same order as x, but not less. For instance, it also implies that
y ≫ Oðx2Þ for x ≪ 1.
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and contribute only to the higher-order corrections, for
example, _aðuÞ ¼ OðκÞ. We choose the gauge condition
R00ðuÞ ¼ 0 and R01ðuÞ ¼ 1 to obtain the standard expres-
sion of the outgoing Vaidya metric;

R0ðu; rÞ ¼ r; ð4:11Þ

f0ðu; rÞ ¼ 1 −
aðuÞ
r

: ð4:12Þ

At the next-to-leading order, the semiclassical Einstein
equation is solved by

R1ðu;rÞ¼R10ðuÞþR11ðuÞr

þ 1

8ra2ðuÞ½aðuÞ
2ð8γðuÞr2−3Þ

−2rðr−2aðuÞÞ logðrÞ
−2rðr−2aðuÞÞð4γðuÞaðuÞ2−1Þ logðr−aðuÞÞ�;

ð4:13Þ

f1ðu;rÞ¼
a1ðuÞ
r

þ 1

2r3a2ðuÞ ½a
2ðuÞðr−aðuÞ−2r3γðuÞÞ

þ2raðuÞ2ðaðuÞR10ðuÞ−2r2R11ðuÞÞ
þð−2r2aðuÞþ raðuÞ2þ r3Þ logr
þ rðr−aðuÞÞ2ð4aðuÞ2γðuÞ−1Þ logðr−aðuÞÞ�;

ð4:14Þ

_aðuÞ ¼ −κβðuÞ; ð4:15Þ

where R10ðuÞ, R11ðuÞ, and a1ðuÞ are the integration
constants, which will be set to 0’s as they can be absorbed
by the parameters R00ðuÞ, R01ðuÞ, and aðuÞ at the leading
order, respectively.
The first-order solution behaves in the asymptotic region

(r → ∞) as

R1ðu; rÞ ¼ γðr − r log rÞ þOðr0Þ; ð4:16Þ

f1ðu; rÞ ¼ −γð1 − 2 log rÞ þOðr−1Þ: ð4:17Þ

By imposing γ ¼ 0 (3.1), which corresponds to the con-
dition of no incoming energy in the past null infinity,
Eqs. (4.13) and (4.14) are smaller than the leading-order
solutions Eqs. (4.11) and (4.12), respectively, and hence the
perturbative expansion is valid for large r.
On the other hand, the first-order corrections (4.13) and

(4.14) behave near the Schwarzschild radius r ¼ aðuÞ as

R1ðu;rÞ¼−
1

8aðuÞ
�
3þ2 log

�
r−aðuÞ
aðuÞ

��
þOðr−aðuÞÞ;

ð4:18Þ

f1ðu; rÞ ¼
r − aðuÞ
2aðuÞ3 þOððr − aðuÞÞ2Þ: ð4:19Þ

For fðu; rÞ, the first-order correction is smaller than the
leading-order solution and the expansion is valid even
around r ¼ a. The negative vacuum energy introduces a
small correction:

fðu;rÞ¼ f0ðu;rÞþf1ðu;rÞþ �� �

¼
�

1

aðuÞþ
κ

2a3ðuÞ
�
ðr−aðuÞÞþOððr−aðuÞÞ2Þ:

ð4:20Þ

However, the correction term R1ðu; rÞ for the radius Rðu; rÞ
has a logarithmic divergence at r ¼ aðuÞ.
The areal radius Rðu; rÞ has a local minimum slightly

outside the point r ¼ aðuÞ where R1ðu; rÞ approaches
positive infinity. The local minimum of R (the neck) is
located at the point where

0 ¼ ∂rRðu; rÞ ≃ 1 −
κ

4aðuÞ½r − aðuÞ� þ � � � ; ð4:21Þ

which is solved by

r ¼ aðuÞ þ κ

4aðuÞ þOðκ2Þ: ð4:22Þ

This is consistent with the structure we have seen in
previous sections.
Now, we consider a collapsing shell at the speed of light.

The shell is located on an incoming null line r ¼ rsðuÞ,
which is a solution of the differential equation

drs
du

¼ −
1

2
fðu; rsÞ: ð4:23Þ

When the shell approaches the Schwarzschild radius
(rs − aðuÞ ¼ OðκÞ), the position of the shell rsðuÞ is
approximately given by

rsðuÞ ¼ aðuÞ þ se−
u

2aðuÞ − 2aðuÞ _aðuÞ þOðκ2Þ; ð4:24Þ

where s is an integration constant. Recall that the time
evolution of aðuÞ is slow; _aðuÞ ¼ OðκÞ. As the second
term is exponentially suppressed over time, the shell
approaches

r ≃ aðuÞ − 2aðuÞ _aðuÞ þOðκ2Þ: ð4:25Þ

This is slightly outside the point r ¼ aðuÞ as aðuÞ is
decreasing. The shell never reaches the value in Eq. (4.25)
within finite time, unless s ¼ 0 in Eq. (4.24). The null
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surface (4.25) can be interpreted as the past horizon of the
exterior geometry.14

The Hawking radiation βðuÞ can be calculated from the
junction condition on the collapsing shell. The condition is
given by hTuui ¼ 0 in ðu; vÞ-coordinates, that is,

0¼hTuuðu;vÞi

¼ hTuuðu;rsÞiþ2

�∂r
∂u

�
hTurðu;rsÞiþ

�∂r
∂u

�
2

hTrrðu;rsÞi

¼ βðuÞþað3a−4rsÞ
8r4s

þOðκÞ: ð4:26Þ

As Eq. (4.25) implies that rs − aðuÞ ¼ OðκÞ, the Hawking
radiation is estimated as

βðuÞ ¼ 1

8a2ðuÞ þOðκÞ; ð4:27Þ

in agreement with Eq. (3.21). Thus, the time derivative of
the Schwarzschild radius _aðuÞ is given by (4.15)

_aðuÞ ¼ −κβðuÞ ¼ −
κ

8a2ðuÞ : ð4:28Þ

According to Eq. (4.25), the position of the shell
approaches

rs ¼ aðuÞ þ κ

4aðuÞ : ð4:29Þ

This is nothing but the r-coordinate (4.22) of the neck.
Naively, this result seems to imply that the r-coordinate

at the collapsing shell differs from that at the apparent
horizon only by Oðκ2Þ after it gets inside the neck.
However, this naive expectation is incorrect for our
perturbative expansion. To find more precisely the relative
position between the collapsing shell and the apparent
horizon, we have to include the second-order effect. In the
next subsection, we will study the second-order correction
to argue that the difference between the areal radius at the
shell and that at the apparent horizon at the same u
increases with u.

B. Higher-order correction

In the perturbative expansion around the Vaidya metric
(4.1), the first-order correction of the areal radius R is
not much smaller than the leading order term in the region
where r − a ∼OðκÞ. In addition, another issue with the
first-order approximation is the following. The divergence

of the first-order correction to the areal radius R at r ¼ a
looks harmless as it is located inside the (nonexistent)
past horizon, hence outside the region of interest.
This is because the past horizon is moved by the first-
order correction slightly outward to r ¼ a − 2a _a > a.
However, this difference is only of OðκÞ, and the position
of the divergence in R can be read off from Eq. (4.13) only
up to an OðκÞ-correction, so the statement above about the
divergence is not reliable. To confirm the relative position
of the divergence in R with respect to the past horizon, the
second-order correction must be studied.
In this subsection, we investigate the second-order

correction. The second-order correction to R turns out to
have a pole at r ¼ a, which is comparable to the first order
term, and naively implies the breakdown of the perturbative
expansion. However, we can absorb the pole in the second-
order term by a shift of the logarithmic divergence in the
1st-order term. This implies that the pole at the second
order can be canceled by using an appropriate redefinition
of the coordinate r, or equivalently, by choosing integration
constants at the first order appropriately.
This is in fact related to the relative position between the

past horizon (4.25) and the logarithmic divergence of R in
Eq. (4.13). The relative position at OðκÞ is related to the
validity of the perturbative expansion at the second order.
As the leading-order term of the difference between the
r-coordinates of the collapsing shell and the apparent
horizon is OðκÞ, the second-order correction is important
to remove the ambiguity of the position at OðκÞ. The third-
order correction should be taken into consideration to
calculate the Oðκ2Þ-correction to the positions, etc. To
justify the assumption that the divergence in higher-order
terms can be canceled by using an appropriate definition of
the r-coordinate, we will consider another perturbative
expansion in Sec. IV C. In the end, the second-order result
in this subsection allows us to smoothly connect the
solution of the metric in the asymptotically flat region to
the near-horizon region.
The expectation value of the energy-momentum tensor is

expanded as

hTμνi ¼ Tð0Þ
μν þ κTð1Þ

μν þOðκ2Þ: ð4:30Þ

The leading-order terms Tð0Þ
μν are given by (4.4)–(4.6), in

which the u-derivatives are ignored as higher-order terms.

The linear-order corrections Tð1Þ
μν contains the effects of u-

derivatives of leading-order terms. By using the solution at

the leading order (4.11)–(4.12), Tð1Þ
μν is calculated via the

conservation law at the first order of the κ-expansion as

Tð1Þ
uu ¼ β1ðuÞþ

aðuÞ _aðuÞ
2κr2ðr−aðuÞÞ−

2aðuÞ
r3

f1ðu;rÞ

−
aðuÞ
2r2

∂rf1ðu;rÞ
�
1−

aðuÞ
r

�
∂2
rf1ðu;rÞ; ð4:31Þ

14The black-hole geometry for a collapsing null shell is
obtained by connecting this exterior geometry with flat spacetime
on the collapsing shell with s > 0. The past horizon (4.25) does
not really exist since this region of the exterior geometry is
replaced by the flat spacetime.
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Tð1Þ
rr ¼ r

r − aðuÞ γ1ðuÞ þ
2r _aðuÞ

κðr − aðuÞÞ3

þ aðuÞð2r − aðuÞÞ
rðr − aðuÞÞ3 f1ðu; rÞ −

aðuÞ
ðr − aðuÞÞ2 ∂rf1ðu; rÞ

þ r
r − aðuÞ ∂

2
rf1ðu; rÞ; ð4:32Þ

Tð1Þ
ur ¼Tð1Þ

ru ¼ 2r2

ðr−aðuÞÞ2 γ1ðuÞþ
_aðuÞ

κðr−aðuÞÞ2

þ a2ðuÞ
4r2ðr−aðuÞÞ2f1ðu;rÞ−

aðuÞ
2rðr−aðuÞÞ2∂rf1ðu;rÞ

þ∂2
rf1ðu;rÞ; ð4:33Þ

where β1 and γ1 are integration constants. The integration
constant β1 corresponds to the linear-order correction to the
Hawking radiation. The other constant γ1 is the linear-order
correction to the incoming energy at the past infinity; we
should choose γ1 ¼ 0.
Solving the semiclassical Einstein equation at the second

order, there is a divergence in the second-order term of
R. It is

R2ðu; rÞ ¼ −
_aðuÞ

2κðr − aðuÞÞ þOððr − aðuÞÞ0Þ; ð4:34Þ

which is large compared with the first-order correction to
the areal radius R if r − aðuÞ ¼ OðκÞ. Together with the
logarithmic term in R1ðu; rÞ,

R1ðu; rÞ ¼ −
1

4aðuÞ logðr − aðuÞÞ þ � � � ; ð4:35Þ

the pole in R2ðu; rÞ amounts to a shift of the location of the
logarithmic divergence in R1ðu; rÞ as

−
1

4aðuÞ logðr − aðuÞÞ − _aðuÞ
2ðr − aðuÞÞ

≃ −
1

4aðuÞ log ðr − aðuÞ þ 2aðuÞ _aðuÞÞÞ: ð4:36Þ

Although the pole in Eq. (4.34) can be interpreted as a
small shift of the logarithmic divergence in R1ðu; rÞ, it
seemingly breaks down the perturbative expansion since it
becomes too large as a second-order correction. This
interpretation above of the 2nd-order term (4.34) can be
justified more precisely as follows. To avoid the divergence
in R2ðu; rÞ, we need to keep the integration constant R10ðuÞ
in Eq. (4.13) as an arbitrary function of u, and then R2ðu; rÞ
would be found to be

R2ðu;r̃Þ¼−
R10ðuÞþ2aðuÞ _aðuÞ
4aðuÞκðr̃−aðuÞÞ þOððr̃−aðuÞÞ0Þ; ð4:37Þ

where we denoted the r-coordinate as r̃, in order to
distinguish from the r-coordinate used in the R10ðuÞ ¼ 0
gauge. Different choices of R10ðuÞ corresponds to different
definitions of the r-coordinates which are related to each
other by coordinate transformations, r → r̃ ¼ r − R10ðuÞ.
The integration constant R10ðuÞ should be chosen such that
the pole in (4.37) cancels;

R10ðuÞ ¼ −2aðuÞ _aðuÞ: ð4:38Þ

Then, the second-order correction is negligible and the
perturbation is valid. By using (4.38), or equivalently r̃, the
position of the logarithmic divergence is not shifted away
from r̃ ¼ aðuÞ. Since the r-coordinate in the R10ðuÞ ¼ 0
gauge is related to r̃, the r-coordinate in the gauge (4.38),
via the relation r ¼ r̃þ R10ðuÞ, the position of the diver-
gence is indeed shifted to

r ¼ aðuÞ − 2aðuÞ _aðuÞ: ð4:39Þ

On the other hand, fðu; rÞ does not have the divergence
in the second-order correction. By using Eq. (4.38),
instead of R10ðuÞ ¼ 0, Eq. (4.14) gives OðκÞ correction
to fðu; r̃Þ as

fðu; r̃Þ ¼ r̃ − aðuÞ − 2aðuÞ _aðuÞ þOðκ2Þ; ð4:40Þ

for r̃ − aðuÞ ¼ OðκÞ, which is equivalent to fðu; rÞ ¼
r − aðuÞ þOðκ2Þ after the coordinate transformation to
the R10ðuÞ ¼ 0 gauge.
Similarly, the position of the past horizon of the exterior

geometry is placed at the same position (4.25), up toOðκ2Þ.
The local minimum of the radius R is now placed at

r ¼ aðuÞ − 2aðuÞ _aðuÞ þ κ

4aðuÞ ; ð4:41Þ

as a second-order correction to Eq. (4.22).
In this subsection, we have seen that the r-coordinate

should be chosen appropriately for the validity of the
perturbation. The solutions (4.2) and (4.3) can be calculated
at the first order with an appropriate choice of the
integration constant, while the appropriate choice is found
by studying the second-order terms. Since the second-order
corrections are important to see the relative position of the
past horizon and the logarithmic divergence of the areal
radius to OðκÞ corrections, we expect that the third-order
corrections would be necessary only forOðκ2Þ correction to
the relative position. However, as there can be higher-order
divergences in higher-order terms, it is not totally obvious
that all higher-order corrections will never introduce a large
correction to the first-order solution at r − a ¼ OðκÞ in the
perturbative expansion around the Vaidya metric.
In the next subsection, we consider another expansion

focused on the neighborhood of r − a ¼ OðκÞ, and justify
our claim that the corrections to the second order are
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sufficient to describe the geometry near and outside the
apparent horizon, so that the Vaidya-like metric (4.1)
allows us to describe the geometry in the near-horizon
region r − a ¼ OðκÞ as well as in the asymptotically flat
region with good approximation.

C. Perturbation near the neck

In the perturbative expansion around the Vaidya metric
discussed above, it is implicitly assumed that r − aðuÞ∼
Oðκ0Þ, and it is not totally clear if the expansion is valid for
the smaller neighborhood where r − aðuÞ ∼OðκÞ, as we
have mentioned above. To clarify the subtlety involved, we
consider another perturbative expansion which is good
around the local minimum of R, and show that the results in
the previous subsection is indeed valid in this region.
Instead of Eq. (4.1), we consider the following metric:

ds2 ¼ −f̃ðu; zÞdu2 − 2κdudzþ R2ðu; zÞdΩ2: ð4:42Þ

Here, we focus on the small neighborhood around the neck.
We identify the radial coordinate z with the r-coordinate in
Eq. (4.1) via

r ¼ aðuÞ þ κz; ð4:43Þ

and so f̃ðu; zÞ is related to fðu; rÞ in Eq. (4.1) as

f̃ðu; zÞ ¼ fðu; rÞ þ 2_aðuÞ: ð4:44Þ

Around r ¼ aðuÞ, we have

f̃ðu; zÞ ¼ OðκÞ: ð4:45Þ

At the neck,

Rðu; zÞ ¼ aðuÞ þOðκÞ: ð4:46Þ

We consider the following expansion:

f̃ðu; zÞ ¼ κf̃0ðu; zÞ þOðκ2Þ; ð4:47Þ

Rðu; zÞ ¼ aðuÞ þ κR̃0ðu; zÞ þOðκ2Þ: ð4:48Þ

The leading-order terms of the semiclassical Einstein equa-
tion give the following differential equations for f̃0ðu; zÞ and
R̃0ðu; zÞ;

0 ¼ ð∂zf̃0ðu; zÞÞ2 − 2f̃0ðu; zÞð∂2
z f̃0ðu; zÞ

þ 2aðuÞf̃0ðu; zÞ∂2
zR̃0ðu; zÞÞ; ð4:49Þ

0 ¼ ð∂zf̃0ðu; zÞÞ2 − 4f̃0ðu; zÞ
× ½1 − aðuÞð∂zf̃0ðu; zÞÞð∂zR̃0ðu; zÞÞ�; ð4:50Þ

0 ¼ κβðuÞ þ aðuÞ _aðuÞ∂zf̃0ðu; zÞ; ð4:51Þ

where we have again assumed that the u-derivative is
small: ∂u ∼OðκÞ.
One of the solutions of the differential equations above is

trivial—the first-order correction of R is constant in the
radial direction, R̃0ðu; zÞ ¼ R̃0ðuÞ. The other nontrivial
solution is

f̃0ðu; zÞ ¼ f̃00ðuÞ þ f̃01ðuÞz; ð4:52Þ

R̃0ðu; zÞ ¼ R̃00ðuÞ þ
z

aðuÞf01ðuÞ
−

1

4aðuÞ log f̃0ðu; zÞ;

ð4:53Þ

where f̃00ðuÞ, f̃01ðuÞ and R̃00ðuÞ are arbitrary functions.
This result is consistent with the expansion around the
Vaidya metric, Eqs. (4.2)–(4.3). By using Eqs. (4.43) and
(4.44), Eqs. (4.2) and (4.3) give the same expressions as
Eqs. (4.52) and (4.53). The integration constants are fixed
by the relation to Eqs. (4.2) and (4.3) as

f̃0ðu; zÞ ¼ 2κ−1 _aðuÞ þ z
aðuÞ ; ð4:54Þ

R̃0ðu; zÞ ¼ −
3

8aðuÞ þ z −
1

4aðuÞ log
�
2κ−1 _aðuÞ þ z

aðuÞ
�
:

ð4:55Þ

Equation (4.51) implies that the Hawking radiation satisfies

_aðuÞ ¼ −κβðuÞ: ð4:56Þ

Therefore, we have verified that the expressions (4.2)–(4.3)
are indeed reliable even near the apparent horizon
r − a ¼ OðκÞ.
Now we consider the time-evolution of the collapsing

shell using Eqs. (4.2) and (4.3). Since the higher-order
corrections to fðu; rÞ is negligible even for r − a ¼ OðκÞ,
the locus of the collapsing shell is given by Eq. (4.24), and
the areal radius R there is calculated as

RsðuÞ≃rsðuÞ−
κ

4aðuÞ log
�
rsðuÞ−aðuÞþ2aðuÞ _aðuÞ

aðuÞ
�
þ���

ð4:57Þ

≃aðuÞ þ se−
u

2aðuÞ þ κu
8a2ðuÞ þ � � � ; ð4:58Þ

whose time evolution is

_RsðuÞ ¼ _aðuÞ − s
2aðuÞ e

− u
2aðuÞ þ κ

4a2ðuÞ þOðκ2Þ ð4:59Þ
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¼ −
s

2aðuÞ e
− u
2aðuÞ þOðκ2Þ: ð4:60Þ

Since s > 0, the areal radius at the shell is always
decreasing with time.

1. Validity of perturbation

So far, we calculated the solution of the semiclassical
Einstein equation for the Unruh vacuum, perturbatively. We
first assumed that the radius is not very close to the
Schwarzschild radius, r − a ¼ OðaÞ. The resulting pertur-
bative series of the metric components fðu; rÞ and Rðu; rÞ
would be valid even near the apparent horizon r − a ¼
OðκÞ since the higher-order terms are further suppressed
than the lower-order terms, for example, f0=f1 ≫ κ.
It turns out that it agrees with the result of another
κ-expansion for r − a ¼ OðκÞ. Although it is difficult to
show that the perturbative series converge, our result at
least gives a good approximation for r − a ¼ OðκÞ.
In order to find out the range of validity of the

perturbative expansion, we examine the expansion of some
geometric quantities. By using our results of the metric
components f and R, it is straightforward to calculate the
Ricci scalarR, Ricci tensorRμν and Riemann tensorRμνρσ.
Some scalar quantities are evaluated as

R ¼ −
2κaðuÞ
r5

þOðκ2Þ; ð4:61Þ

RμνRμν ¼ Oðκ2Þ; ð4:62Þ

RμνρσRμνρσ

¼ 12a2ðuÞ
r6

þ 12κ

r6

�
log

r − aðuÞ
r

þOððr − aðuÞÞ0Þ
�

þ 144a3ðuÞ _aðuÞ
r7

þOðκ2Þ: ð4:63Þ

Thus the perturbative expansion would be valid for

r − a ≫ ae−a
2=κ; ð4:64Þ

as long as _aðuÞ ¼ −κβðuÞ ¼ OðκÞ. (Notice that the second
term on the right-hand side of Eq. (4.63) is ∼κ log κ for
r − a ¼ OðκÞ ≫ ae−a

2=κ, which vanishes in the limit
κ → 0.) On the other hand, around the end of the evapo-
ration, when the Schwarzschild radius approaches to
the Planck length, the Hawking radiation becomes very
strong as βðuÞ ¼ 1

8a2ðuÞ ¼ Oðκ−1Þ, and then, the perturba-

tive expansion breaks down.

D. Distance between apparent horizon
and collapsing shell

In this subsection, we calculate more precisely the
distance from the collapsing shell to the apparent horizon.
In order to estimate the distance, we consider geodesics
between the collapsing shell and the apparent horizon.
In the previous sections, we have seen that the quantum

corrections become important in R but are negligible in f,
in the metric (4.1). So, f is simply given by Eq. (4.2) up to
the corrections of Oðκ2Þ. We expect that the higher-order
corrections of f would not give divergences around
r ¼ aðuÞ, unlike the areal radius R. Thus, naive perturba-
tion around the Vaidya metric implies that the expression
(4.2) would be good everywhere r ≥ aðuÞ, although the
perturbation breaks down due to the divergence in R. Here,
we focus on the 2-dimensional part of ðu; rÞ-directions.
Since R is irrelevant for this 2-dimensional part, we assume
that Eq. (4.2) even holds deep inside the neck, and consider
r − a ≤ OðκÞ (including r − a ≪ κ=a).15

It is convenient to introduce a new coordinate χ as

r ¼ aðuÞ − 2aðuÞ _aðuÞ þ κ

4aðuÞ χ
2; ð4:65Þ

or equivalently,

z ¼ −2κ−1aðuÞ _aðuÞ þ χ2

4aðuÞ ; ð4:66Þ

with χ ¼ Oð1Þ. Since we assume that variation of the
Schwarzschild radius with time is very slow ( _aðuÞ¼OðκÞ),
aðuÞ can be treated as a constant in the domain of the
approximation (3.11).
The (2-dimensional part of) the metric is expressed as

ds2 ¼ −κ
χ2

4a2
du2 − κ

χ

a
dχdu: ð4:67Þ

We define the τ-coordinate as

du ¼ dτ − 2a
dχ
χ
; ð4:68Þ

and the metric becomes

ds2 ¼ κ

4a2
ð−χ2dτ2 þ 4a2dχ2Þ: ð4:69Þ

This is nothing but the Rindler space.
In the original r-coordinate, the past horizon is located at

r ¼ aðuÞ − 2aðuÞ _aðuÞ: ð4:70Þ

15The divergence in R may affect the validity of the expression
(4.2) deep inside the neck. We will study the region deep inside
the neck in the next section. The conclusion remains the same.
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The collapsing shell is hence always located outside the
past horizon.16 The apparent horizon is located at

r ¼ aðuÞ − 2aðuÞ _aðuÞ þ κ

4aðuÞ ; ð4:71Þ

which corresponds to χ ¼ 1.
To calculate the proper distance, it is convenient to use

the coordinates of the flat spacetime;

T ¼ χ sinhðτ=2aÞ; X ¼ χ coshðτ=2aÞ; ð4:72Þ

in terms of which the metric is

ds2 ¼ κð−dT2 þ dX2Þ: ð4:73Þ

The apparent horizon, or equivalently the χ ¼ 1 line, is a
hyperbolic curve −T2 þ X2 ¼ 1. The distance between the
origin X ¼ T ¼ 0 to the apparent horizon χ ¼ 1 is always 1
in the Minkowski space up to the factor

ffiffiffiffiffi
κ

4a2
p

. Since the
collapsing shell is located on the future side of the past
horizon X þ T ¼ 0, the distance from any point on the
collapsing shell to the apparent horizon before the shell
crosses the future horizon is always smaller than that from
the origin. Thus the distance is smaller than lp ≡ κ1=2.
The calculation above about the Planckian distance

between the collapsing shell and the apparent horizon is
based on the metric derived for the near-horizon region.
(Furthermore, we have ignored the time-dependence by
dropping _a.) A priori it does not have to hold when the shell
is deep inside the horizon. More discussions on the scale of
this proper distance deep inside the horizon will be given in
the next section.

V. DEEP INSIDE THE NECK

So far, we have studied the spacetime geometry from
the asymptotic region to the near-horizon region, including
a small neighborhood slightly inside the apparent horizon
where R − a ¼ Oðκ=aÞ. In this section, we shall study the
geometry deeper inside the apparent horizon where
R − a ¼ OðaÞ.
Note that the phrase “deep inside the neck” in this paper

does not imply a large proper distance in the radial direction
between the apparent horizon and a point in this region. It
merely refers to a region inside the neck where the areal
radius R is significantly larger than its value at the neck.

A. Dynamical geometry deep inside the neck

In this subsection, we study the dynamical geometry
deep inside the neck in the sense that R − a is of order

Oðκ0Þ, for arbitrary β and γ in the semiclassical Einstein
equations (2.4) and (2.5). We will determine the values of β
and γ in the next subsection for a collapsing null shell.
According to Eq. (3.5), the red-shift factor C becomes

exponentially small when x0 − x ≫ aðuÞ. Therefore, in the
region deep inside the neck where Eq. (2.26) holds, higher-
order terms in the C-expansion can be ignored. With this
approximation, the semiclassical Einstein equation is
approximated by the following equations:

0 ¼ −2κβR2 þ ð∂uR2Þ2 þ 4R2ð∂uR2Þ∂uρ

− 2R2½ð∂uR2Þ2 − 2κð∂uρÞ2 þ 2κ∂2
uρ�; ð5:1Þ

0 ¼ −2κγR2 þ ð∂vR2Þ2 þ 4R2ð∂vR2Þ∂vρ

− 2R2½ð∂vR2Þ2 − 2κð∂vρÞ2 þ 2κ∂2
vρ�; ð5:2Þ

0 ≃ ∂u∂vR2 þ 2κ∂u∂vρ: ð5:3Þ

The first two equations (5.1) and (5.2) are exactly equiv-
alent to Guu ¼ κhTuui and Gvv ¼ κhTvvi. The third equa-
tion (5.3) is equivalent toGuv ¼ κhTuvi up to the term C=2,
which can be neglected for small C.
From Eq. (5.3), we obtain

ρ ≃ −
R2

2κ
þ FðvÞ þ F̄ðuÞ; ð5:4Þ

where FðvÞ and F̄ðuÞ are the integration constants.
Remarkably, the other two nonlinear differential equa-

tions (5.1), (5.2) can be solved exactly (to all orders in κ) by
using Eq. (5.4) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðR2 − κÞ

q
− α log ðRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − κ

p
Þ ¼ GðvÞ þ ḠðuÞ;

ð5:5Þ

where GðvÞ and ḠðuÞ are given by

GðvÞ ¼ �2κ

Z
v
dv0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F02ðv0Þ − F00ðv0Þ − 1

2
γðv0Þ

r
; ð5:6Þ

ḠðuÞ ¼ �2κ

Z
u
du0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̄02ðu0Þ − F̄00ðu0Þ − 1

2
βðu0Þ

r
: ð5:7Þ

Since we are considering the geometry deep inside the
neck, where the areal radius is significantly larger than the
Schwarzschild radius a, Eq. (5.5) is approximated by

R2¼GðvÞþ ḠðuÞ− κ logRþOðκ2Þ;
¼GðvÞþ ḠðuÞ− κ

2
logðGðvÞþ ḠðuÞÞþOðκ2Þ; ð5:8Þ

where some constants are absorbed by redefining GðvÞ and
ḠðuÞ. Using Eq. (5.4), ρ is given by

16The spacetime geometry (4.69) under consideration only
applies to the exterior space of the collapsing shell. (The interior
space is flat spacetime.) Hence the past horizon actually does not
exist.
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ρ ¼ FðvÞ þ F̄ðvÞ − 1

2κ
ðGðvÞ þ ḠðuÞÞ − 1

2
logRþOðκÞ:

ð5:9Þ

The integration constants FðvÞ and F̄ðuÞ are related to
the choice of the null coordinates u and v. We consider the
coordinate transformation to ðU;VÞ-coordinates for which
the metric is expressed as

ds2 ¼ C̃dUdV þ R2dΩ2; ð5:10Þ

where C̃ is related to C via

C̃ ¼ ∂u
∂U

∂v
∂V C: ð5:11Þ

Then, ρ transforms to ρ̃ ¼ 1
2
log C̃ as

ρ̃ ¼ ρ −
1

2
log

�
dU
du

�
−
1

2
log

�
dV
dv

�
: ð5:12Þ

The solution for ρ is expressed as

ρ̃ ¼ −
R2

2κ
þ F̃ðVÞ þ ¯̃FðUÞ; ð5:13Þ

where the integration constants FðvÞ and F̄ðuÞ are trans-

formed to F̃ðVÞ and ¯̃FðUÞ as

FðvÞ ¼ F̃ðVÞ þ 1

2
log

�
dV
dv

�
; ð5:14Þ

F̄ðuÞ ¼ ¯̃FðUÞ − 1

2
log

�
dU
du

�
: ð5:15Þ

The solution for R2 is given by the same equation (5.5)
but now G and Ḡ should be replaced by those for the new
coordinates U and V as

G̃ðVÞ ¼ �2κ

Z
V
dV 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃02ðV 0Þ − F̃00ðV 0Þ − 1

2
γ̃ðV 0Þ

r
;

ð5:16Þ

¯̃GðUÞ ¼ �2κ

Z
U
dU0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
¯̃F02ðU0Þ − ¯̃F00ðU0Þ − 1

2
β̃ðU0Þ

r
:

ð5:17Þ

Since the first terms in the expressions (2.4) and (2.5)
are not covariant, β̃ and γ̃ receive corrections under the
coordinate transformation as

β → β̃ ¼
�
du
dU

�
2
�
β þ 1

2
fU; ug

�
; ð5:18Þ

γ → γ̃ ¼
�
dv
dV

�
2
�
γ þ 1

2
fV; vg

�
; ð5:19Þ

where ff; xg is the Schwarzian derivative of f with respect
to x. By using Eqs. (5.14), (5.15), (5.18), and (5.19), it is
straightforward to see that, according to their definitions
(5.16), (5.17), (5.6), and (5.7),

GðvÞ ¼ G̃ðVÞ; ḠðuÞ ¼ ¯̃GðUÞ: ð5:20Þ

B. Junction condition

The solution (5.4)–(5.7) of the semiclassical Einstein
equation for the region deep inside the neck is given in
terms of two arbitrary functions FðvÞ and F̄ðuÞ, which are
related to the definition of the coordinates v and u,
respectively. They can be determined by fixing the coor-
dinates. The relation between the coordinate in this deep
region and that in the outer region is determined by the
junction condition of the metric. In this subsection, we shall
choose the same coordinates u and v in the asymptotically
flat region, which is defined as u ¼ t − r and v ¼ tþ r in
the asymptotic Minkowski space. Near the Schwarzschild
radius, they are related to the tortoise coordinate x in
Sec. II–III via (3.7).

1. Static case

We first consider the static case and check that the static
solution in Sec. II B is a special case of the general
dynamical solution obtained above. The static solution is
independent of the time t, and the null coordinates can be
chosen such that u ¼ t − x and v ¼ tþ x. Since FðvÞ þ
F̄ðuÞ is independent of t, we have

FðvÞ ¼ k0 þ
1

4κ
k1v; F̄ðuÞ ¼ k̄0 −

1

4κ
k1u; ð5:21Þ

where k0, k̄0, and k1 are constants. Since the null coor-
dinates u and v are chosen such that they are identical to
those in the asymptotically flat region, we have βðuÞ ¼
γðvÞ ¼ 0 for the static solution. Substituting this static
condition (5.21) to Eqs. (5.4)–(5.7) the static solution is
obtained as

ρ ¼ k0 þ k̄0 þ κ−1k1x; ð5:22Þ

R2 ¼ k0 þ k̄0 þ k2 − k1x; ð5:23Þ

where the signs in Eqs. (5.6) and (5.7) are chosen such that
R2 is independent of t, and that ρ is nontrivial.17 This is
consistent with Eqs. (2.30) and (2.31). After patching the

17There is another solution for which ρ is a constant at the
leading order.
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geometry with that near the neck, the constants above are
fixed as

k0 þ k̄0 ≃ −
x0
2a

; k1 ≃
κ

2a
; k2 ≃ a2: ð5:24Þ

2. Dynamical case

Now, we look for explicit expressions of the metric
functions ρ andR for the dynamical case through Eqs. (5.6),
(5.7), (5.8), and (5.9) by investigating the junction condition.
In the previous subsection, we have chosen the signs in

Eqs. (5.6) and (5.7) by using the static condition of R2 and
the condition of the nontrivial behavior of ρ. However, it is
not obvious that ρ should not be a constant, and the signs
should be chosen by the junction condition near the neck.
For the static case, the radius R inside the neck increases
along incoming null lines and decreases along outgoing
null lines;

�∂R2

∂v
�

u
≃G0ðvÞ< 0;

�∂R2

∂u
�

v
≃ Ḡ0ðuÞ> 0; ð5:25Þ

and the signs in Eqs. (5.6) and (5.7) are consistent with
this condition. On the other hand, the geometry for the
collapsing shell is constructed by connecting the dynamical
solution (5.4)–(5.7) to the flat spacetime through the
collapsing shell. The junction condition implies that R
on the shell in the geometry (5.4)–(5.7) must be consistent
with that in the flat spacetime. As the radius must decrease
along the incoming null line in the flat spacetime, R must
also decrease in the solution (5.4)–(5.7). Hence, we have
the conditions

�∂R2

∂v
�

u
≃G0ðvÞ< 0;

�∂R2

∂u
�

v
≃ Ḡ0ðuÞ< 0; ð5:26Þ

and both signs in Eqs. (5.6) and (5.7) must be minus.
Now, we consider the junction condition to the near-

neck region. Near the neck where R − a ¼ OðκÞ, using
Eqs. (3.5), (3.7), we have

ρ ¼ v − u
4aðuÞ þ const:þOðκÞ: ð5:27Þ

This expression is valid near the neck where R − a ¼ OðκÞ,
and can be extended to the slightly deeper region with
R − a ∼ −κ log κ, where C ∼Oðκ2Þ.
Using the expression (5.9), ρ has the following general

form deep inside the neck for R − a ∼OðaÞ:

ρ ¼ WðvÞ þ W̄ðuÞ − 1

2
logRþOðκÞ: ð5:28Þ

This expression is consistent with Eq. (5.27) around the
neck. Hence it can be continuously patched with the

solution (5.27) over the region from R − a ∼OðκÞ to
R − a ∼ −κ log κ. The patching requires WðvÞ and W̄ðuÞ
to be approximately given by

WðvÞ ≃
Z

v dv0

4ãðv0Þ ; W̄ðuÞ ≃ −
Z

u du0

4aðu0Þ ; ð5:29Þ

where ãðvÞ ¼ aðuAðvÞÞ and uAðvÞ is the u-coordinate of
the apparent horizon for a given value of v.18 Since the
apparent horizon is located at x≡ 1

2
ðv − uÞ ¼ xA, uAðvÞ is

given by

uAðvÞ ¼ v − 2xAðvÞ; ð5:30Þ

As the time evolution of xA is of OðκÞ, u- or v-dependence
of xA can be treated as a higher-order correction. We have
used the integration in Eq. (5.29) so that Eq. (5.28) agrees
with Eq. (5.27) over a short period of time ofOðaÞ in which
aðuÞ is almost a constant up to OðκÞ. After the patching is
done, the expression (5.28) holds everywhere inside the
neck in vacuum where C is sufficiently small.
We impose the conditions (5.28)–(5.29) to the solution

(5.4)–(5.7). For FðvÞ, we impose the initial condition that
there is no incoming energy in the past null infinity, γ ¼ 0.
For F̄ðuÞ, we impose the junction condition on the shell that
the outgoing energy is continuous at the shell and hence
hTuui ¼ 0. Together with these boundary conditions, we
obtain

FðvÞ ≃
Z

v dv0

8ãðv0Þ ; F̄ðuÞ ≃ −
Z

u du0

4aðu0Þ : ð5:31Þ

GðvÞ and ḠðuÞ are calculated as

G0ðvÞ ≃ −2κF0ðvÞ ≃ −
κ

4ãðvÞ ; ð5:32Þ

Ḡ0ðuÞ≃−2κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−F̄00ðuÞ

q
≃−2κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

_aðuÞ
4a2ðuÞ

s
¼Oðκ2Þ: ð5:33Þ

Equation (5.33) implies that the areal radius R is almost
constant along the null lines of v ¼ const. By using the
expressions above, it is straightforward to see that the
formula for the Hawking radiation (3.22) is still valid even
if the collapsing shell is deep inside the neck. Thus, we
obtain

F̄ðuÞ ≃
Z

u
2κ−1aðu0Þ _aðu0Þdu0 ¼ κ−1a2ðuÞ; ð5:34Þ

and, similarly for FðvÞ and GðvÞ,

18It should be noted that aðuÞ ¼ aðuAðvÞÞ only at the apparent
horizon.
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GðvÞ ¼ 2κFðvÞ þ const: ≃ ã2ðvÞ: ð5:35Þ

Thus, ρ and R are expressed as

ρ¼ κ−1ða2ðuÞ− ã2ðvÞÞþ x̃AðuÞ−x0ðuÞ
2aðuÞ −

1

2
log ãðvÞþOðκÞ;

ð5:36Þ

R ¼ ãðvÞ þOðκÞ; ð5:37Þ

where x̃AðuÞ is defined by the junction condition such that
Eq. (5.36) is consistent with C (3.5) [with Eq. (3.9)] at the
apparent horizon, and it is given by

x̃AðuÞ ¼ x0ðuÞ − aðuÞ log
�
4aðuÞ
κ

�
: ð5:38Þ

Hence, C is now obtained as19

C ≃
κ

4aðuÞãðvÞ e
2ða2ðuÞ−ã2ðvÞÞ=κ: ð5:39Þ

The scalar curvature R, squares of the Ricci tensor Rμν

and Riemann tensor Rμνρσ are estimated as

R≃
2

ã2ðvÞ ; RμνRμν≃
2

ã4ðvÞ ; RμνρσRμνρσ ≃
4

ã4ðvÞ :

ð5:40Þ

The expressions of the curvature invariants above are valid
deep inside the apparent horizon. For a given value of v
outside the collapsing shell, as long as ãðvÞ ¼ aðuAðvÞÞ is
large, the curvature is small for any u > uAðvÞ, even when
aðuÞ is approaching the Planck scale.

C. Collapsing shell deep inside the neck

In the previous section, we have seen that the areal radius
is almost constant along the incoming null lines, v ¼ const.
Although R is decreasing along the collapsing shell, its
decreasing rate is of Oðκ2Þ and the Schwarzschild radius
aðuÞ is decreasing much faster. This situation continues as
long as aðuÞ is sufficiently larger than the Planck length.
Hence, when aðuÞ becomes much smaller than its initial
value (but still larger than the Planck length), the areal
radius of the shell is still large at the same time u, so the
interior space inside the neck (including the space occupied
by the collapsing matter) is still large. Naively, this large
interior space inside the neck either becomes disconnected
from the outside world as the neck shrinks to 0 eventually,
resulting in the event horizon, or they remain connected to
the outside world through tiny necks as remnants.

However, the expression (5.33) implies that the decreas-
ing rate of the areal radius along the incoming null lines can
be large when the Schwarzschild radius a approaches the
Planck length lp. The semiclassical approximation will be
invalid, and the outgoing energy of the Hawking radiation
ð∼1=a2Þ will be at the Planck scale. Although the expres-
sion (5.33) would not be reliable when a ∼ lp, there would
not be the problem of the cutoff scale if we focus on the
locus of the collapsing shell. When the areal radius starts
decreasing again, it is still much larger than the Planck
length and comparable to the Schwarzschild radius for the
initial mass of the shell. The outgoing energy Tuu is also
zero just on the shell. Thus it would be possible to study the
behavior of the shell without referring to aðuÞ.
In this subsection, we check that the areal radius at the

shell starts to decrease again. Note that the new coordinate
for u-direction at the shell cannot be connected to that in
the asymptotic region when aðuÞ ¼ OðκÞ, since the semi-
classical approximation would not be valid around the
apparent horizon in between.
By choosing a suitable coordinate system ðũ; ṽÞ, we can

set F̃ðṽÞ ¼ 0 and ¯̃FðũÞ ¼ 0, so that the solution is simply
given by [for R2 ≫ OðαÞ]

ρ ≃ −
R2

2κ
; ð5:41Þ

R2 ≃GðṽÞ þ ḠðũÞ; ð5:42Þ

where

GðṽÞ ¼ −2κ
Z

ṽ
dv0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
γ̃ðv0Þ

r
ð5:43Þ

ḠðũÞ ¼ −2κ
Z

ũ
du0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
β̃ðu0Þ

r
; ð5:44Þ

Note that the coordinates ũ and ṽ in the expressions
above are different from the original null coordinates, and
γ̃ðṽÞ and β̃ðũÞ are different from the incoming and outgoing
radiation in the asymptotically flat past and future null
infinities [see Eqs. (5.18), (5.19)]. The outgoing energy-
momentum tensor is calculated as

R2hTuui ¼ 2β̃ðũÞ þ ð−2β̃ðũÞÞ−1=2 _̃βðũÞ: ð5:45Þ
Since hTuui must be continuous across the incoming null
shell, we impose the junction condition hTuui ¼ 0, and
then, β̃ðũÞ is solved as

β̃ ¼ −
1

2ðũ − ũ0Þ2
: ð5:46Þ

The solution for β is negative, so that ḠðũÞ is real. Ḡ0ðũÞ is
monotonically increasing or decreasing depending on

19Note that a2ðuÞ − a2ðuAðvÞÞ < 0 for ðu; vÞ inside the ap-
parent horizon.
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whether ũ > ũ0 or ũ < ũ0. By comparing with (5.33),
Ḡ0ðũÞ should decrease with time. In this case, the areal
radius R on the shell behaves as

R2 ¼ ḠðũÞ þ const: ≃ κ logðũ0 − ũÞ þ const:; ð5:47Þ

which goes to zero at some point, ũ ¼ ũe < ũ0. Therefore,
the collapsing shell eventually reaches R ¼ 0 in the exterior
geometry.

D. Distance between apparent horizon
and collapsing shell

In this subsection, using the explicit metric derived
above deep inside the horizon, we will show that the
proper distance from the shell to the apparent horizon is
indeed very short even when the collapsing shell has moved
to the deeper region.
Now, we calculate the proper distance between the

collapsing shell and the apparent horizon. Using the
explicit form of (5.39), we can see that the ðu; vÞ-subspace
is 2D flat spacetime:

ds2 ¼ κ

4aðuÞãðvÞ e
2ða2ðuÞ−ã2ðvÞÞ=κdudv ¼ κdUdV; ð5:48Þ

where the new coordinates U and V are defined as

UðuÞ¼−
Z

uc

u

1

2aðu0Þe
2a2ðu0Þ=κdu0;

VðvÞ¼
Z

v

vs

1

2ãðvÞe
−2ã2ðv0Þ=κdv0; ð5:49Þ

where v ¼ vs is the position of the collapsing null shell,
and u ¼ uc is the retarded time at the evaporation.20 Recall
that aðuÞ and ãðvÞ ¼ aðuAðvÞÞ stand for the areal radius of
the apparent horizon at u and v, respectively, and hence,
satisfy a2ðuÞ − ã2ðvÞ ≤ 0 since a is decreasing with time.
By using the formula of the Hawking radiation (3.22), U
and V are expressed as

UðuÞ¼ ð1−e2a
2ðuÞ=κÞ; VðvÞ¼ ðe−2ã2ðvÞ=κ−e−2a

2
0
=κÞ;
ð5:50Þ

where a0 is the Schwarzschild radius for the initial mass of
the shell, or equivalently, the maximum of a.
Consider two arbitrary points ðu; vÞ and ðu0; v0Þ inside

the apparent horizon with a spacelike separation. Their
proper distance L is bounded from above by

L2 ¼ −κðUðuÞ −Uðu0ÞÞðVðvÞ − Vðv0ÞÞ
< κðe2a2ðuÞ=κ − e2a

2ðu0Þ=κÞðe−2ã2ðvÞ=κ − e−2ã
2ðv0Þ=κÞ

< κe2ða2ðuÞ−ã2ðvÞÞ=κ ≤ κ ¼ l2
p: ð5:51Þ

(Without loss of generality, we assume that ðu0; v0Þ is
deeper inside the horizon than ðu; vÞ, i.e., u0 > u and
v0 < v.) Therefore, the proper distance between two arbi-
trary points inside the apparent horizon is of OðlpÞ.

VI. CONCLUSION AND DISCUSSION

In this paper, we have studied effects of the vacuum
energy-momentum tensor in the formation and evaporation
of a black hole. We have considered a thin shell which
collapses at the speed of light as a convenient idealization.
The geometry is obtained by connecting the flat spacetime
inside the shell with the black-hole geometry outside
the shell.
We have focused on the spherically symmetric configu-

rations, and used the s-wave approximation. The vacuum
energy-momentum tensor is assumed to be approximated
by that of the 2-dimensional scalar field, so all angular
components vanish.21 The geometry is then uniquely fixed
by the initial condition in the past null infinity and the
junction condition at the collapsing shell. By taking the
initial condition such that the incoming energy is absent
in the asymptotic region, the negative vacuum energy
appears near the Schwarzschild radius, and the areal radius
has a local minimum slightly larger than the Schwarzschild
radius on each null surface of constant retarded time
(u ¼ const).
Assuming that the angular components of the energy-

momentum tensor vanish on the collapsing null shell, the
outgoing energy Tuu must be continuous across the shell,
and hence it has to be zero just outside the shell. This
implies that the Hawking radiation can take no energy
directly from the shell. Furthermore, the quantum energy-
momentum tensor on top of the shell is positive and
increasing such that the total (delta functional) incoming
energy on the shell is increasing. The shell collapses
without losing its mass.
The presence of the negative energy outside the shell

leads to the structure of Wheeler’s bag of gold. The neck of
the bag is nothing but the local minimum of the areal
radius. It also plays the role of the apparent horizon in the
time-dependent case. If the neck continues to shrink and
finally closes at some point, the interior of the neck is
disconnected from the external universe, and there would
be an event horizon. However, the semiclassical Einstein
equation is only the low-energy effective theory for
scales much larger than the Planck length. The neck

20To be more precise, uc should be the cutoff time when the
Schwarzschild radius aðuÞ becomes sufficiently small but still
larger than the Planck scale.

21This model for the vacuum energy-momentum tensor is
widely studied in the literature for 4D black-hole geometry; see,
e.g., [1,5,7,15–17].
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may stop shrinking at a finite size possibly of the Planck
scale. We cannot tell within the framework of the low-
energy effective theory whether or not there would be an
event horizon.
It is interesting to know whether the scale of the

interior space is still large when the black hole is nearly
completely evaporated. Our results show that the decreas-
ing rate of the areal radius of the collapsing shell
becomes nearly zero while the difference of the areal
radii between the shell and the horizon becomes large.
That is, the areal radius of the shell can become much
larger than that at the apparent horizon at the same time
(in terms of the u-coordinate). In [12], it was argued that
there are two possible scenarios depending on whether
the size of the interior space shrinks together with the
neck, which are shown in Figs. 4 and 5. Our result in this
paper implies that in terms of the areal radius, the
scenario of Fig. 4 is realized for the gravitational collapse
of the thin shell. This is related to the fact that the energy
of the shell cannot be turned into Hawking radiation in
the absence of high-energy events, and the shell keeps its
initial mass until it can no longer be described in the low-
energy effective theory. A crucial assumption related to
this conclusion is that the energy-momentum tensor on
the shell does not have nonzero angular components. If
the collapsing shell has tangential pressure in the angular
directions, the outgoing energy flux can be discontinuous
across the shell without violating energy conservation. In
this case, it is possible that the outgoing energy appears
just outside the shell and the Hawking radiation can
directly take the energy of the shell away, as the case of
the model proposed in Refs. [18,19].
As the proper size inside the collapsing shell is deter-

mined by its areal radius since the spacetime is flat inside
the shell, the size of the space inside the apparent horizon is
much larger than what is suggested by the size of the neck
when a large portion of the black-hole mass is evaporated.
Our calculation suggests that the proper distance

between the collapsing shell and the apparent horizon is

as small as the Planck length.22 The positive energy of the
shell and the negative vacuum energy are placed within this
small region of the Planck scale. In particular, most of the
vacuum negative energy is placed in the deeper region
whose size in proper length is much smaller than the Planck
scale. Since the semiclassical picture of the spacetime is not
good for such a small region, the positive and negative
energy in this small region should be course-grained as a
more appropriate picture of the spacetime in the low-energy
effective theory.
Strictly speaking, the Planck-scale separation between

the apparent horizon and the shell means that we cannot
really distinguish the location of the collapsing shell from
that of the neck in the context of a low-energy effective
theory with a cutoff length scale larger than the Planck
length. Whether the collapsing matter has entered the
apparent horizon is thus a question beyond the scope of
low-energy effective theories. We can only conclude that
the apparent horizon and the collapsing shell are approx-
imately around the same place. It is hence interesting to
note that, in the model proposed in Refs. [18,19] (with a
different assumption about the vacuum energy-momentum
tensor), the collapsing matter stays outside the apparent
horizon by a Planckian distance, so that in fact the apparent
horizon does not emerge. The difference between models
with and without apparent horizons might be subtler than
what people have expected.
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