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We study the thermodynamics and the kinetics of the Hawking-Page phase transition in Einstein gravity
and in massive gravity based on the underlying free energy landscape. For Einstein gravity, Schwarzschild–
anti-de Sitter (AdS) black holes as well as thermal AdS space can be considered as macroscopic emergent
states or phases. The stability and phase transition of these states can be determined by free energy
landscape topography quantified by the barrier height between the state basins. Due to the thermal
fluctuations, a black hole or AdS space has the chance to escape from one phase to another phase. The first
passage process describes a system that undergoes such a kinetic process for the first time, and the mean
first passage time can typically be used to quantify the kinetic speed. The probabilistic evolution of such a
stochastic process can be described by the corresponding Fokker-Planck equation. We derive analytical
integral expressions for the mean first passage time and its fluctuations. The results show that the mean first
passage time and its fluctuations are closely related to free energy landscape topography through barrier
heights and the temperature. The conclusions for the Hawking-Page phase transition in massive gravity are
qualitatively similar to those in Einstein gravity. This study provides a systematic way of studying black
hole thermodynamics and kinetics of the black holes from free energy landscape topography.
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I. INTRODUCTION

In general relativity, black holes, which are intriguing
solutions to Einstein field equations, can be fully described
by their spacetime geometries. When taking the effect of
the quantum field into account, Hawking demonstrated that
the collapsing black holes can emit radiation from just
outside the event horizon in the form of a blackbody
spectrum [1]. This intriguing discovery revealed the ther-
mal nature of black holes and established a profound
relationship between gravity, thermodynamics, and statis-
tical physics. Thus, thermodynamics and statistical physics
may provide a complementary description of black hole
physics and could even supply some insights into the
quantum nature of gravity.
It is well known that macroscopic emergent phases and

phase transitions are extremely vital subjects in thermody-
namics and statistical physics [2]. If black holes are
identified as thermodynamic systems with physical temper-
ature and entropy as proposed by Bekenstein [3], it is very
natural to question whether thermodynamical phases can
emerge and whether phase transitions can take place in
black holes, and, furthermore, what type of kinetics is in the

phase transition process. The phase emergence and phase
transition of black holes in asymptotically flat spacetime
were first investigated by Hut [4] and Davies [5]. Since
then, studying the phase emergence and phase transition in
black holes has become an intriguing topic and attracted
much attention. In this regard, the remarkable analogy
between the van der Waals liquid-gas system and charged
black holes in AdS space have been extensively inves-
tigated [6–12], where the extended phase space thermo-
dynamics for charged AdS black holes was formulated by
treating the cosmological constant as thermodynamic
pressure.
The Hawking-Page phase transition [13] is another

type of phase transition that takes place in asymptotically
AdS space. By treating the black hole as a state in the
thermodynamic ensemble, it is shown that two stable
thermodynamic phases emerge: the thermal AdS space
phase and the large Schwarzschild-AdS black hole phase.
It has been found that there is a first order phase transi-
tion between the thermal AdS space and the large
Schwarzschild-AdS black hole at a certain critical temper-
ature. In the context of anti-de Sitter/conformal field theory
(AdS=CFT) correspondence [14–16], the Hawking-Page
transition can be properly explained as the confinement/
deconfinement transition in quantum chromodynamics
(QCD) [17]. The seminal work of Hawking and Page
has been generalized to the case of modified gravity
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theories [18–25]. Such a formation of a black hole in the
phase transition of thermal spacetime may play an impor-
tant role in the density fluctuation of the very early
Universe.
In an ordinary thermodynamic system, the liquid, gas,

or solid form of a material is made up of micromolecules.
The liquid, gas, or solid form of matter is the macroscopic
emergence state of the degrees of freedom from micro-
scopic molecules. A system under constant pressure and
temperature conditions can be best described by Gibbs free
energy. Various forms of materials may have different
Gibbs free energy characterized by different physical
properties such as density, viscosity, or molecular structure.
The phase transition can be easily analyzed by using the so-
called free energy landscape, which is a familiar and widely
used concept in physics, chemistry, and biology [26–29]. In
the formalism of the free energy landscape, the Gibbs free
energy is defined as the continuous function of the order
parameter or reaction coordinate of the system. The order
parameter or reaction coordinate may be considered as the
coarse-grained description which captures the essential
characteristics and the microscopic degrees of freedom
of the system. In general, in a system with a first order
phase transition, the free energy landscape topography, i.e.,
the shape of Gibbs free energy plotted as a function of the
order parameter or reaction coordinate, can have the shape
of double basins, with each representing one emergent
phase. The system in equilibrium will always stay in the
state of lowest Gibbs free energy. If there are two
degenerate basins in the free energy landscape topography,
the two phases can coexist. However, temperature can
change the shape of the Gibbs free energy landscape in
order parameter space. By adjusting the temperature, one
can raise or lower the free energy of the basins continu-
ously. The state or phase represented by the local basin
(minimum) of the free energy landscape has a good chance
of switching to the state or phase represented by the global
basin (minimum) of the free energy landscape under the
thermal fluctuation and vice versa, as long as the barrier
between these basins (minima) is small or comparable to
the thermal energy at that temperature. In this picture, any
state has a lifetime due to the chance of transition to other
states under thermal fluctuations.
We are interested not only in the thermodynamic phase

emergence and phase transitions of the black holes but also
in the dynamical scenario and kinetics of the black hole
phase transition. In this paper, we focus on the Hawking-
Page phase transitions in Einstein gravity and in massive
gravity. Our discussion is based on the free energy land-
scape formalism for the black hole system. Our main
assumptions and proposal are described in detail as follows.
First, we introduce the concept of the order parameter of

the AdS black hole. In fact, if we take the black hole
seriously as a thermodynamic entity, it is natural to propose
that the black hole is a macroscopic emergent state from the

microscopic degrees of freedom. From the macroscopic
perspective, there could be an order parameter that mea-
sures the essential characteristics and counts the micro-
scopic degrees of freedom of the black hole. It should be
noted that, by using the concept of the black hole molecule
[30–32], the number density of the black hole molecule is
introduced as an order parameter of the black hole, which is
closely related to the size or radius of the black hole. In the
present work, we propose the radius of the AdS black hole
as being the appropriate order parameter to formulate the
free energy landscape.
Second, we propose that, at the specific temperature,

there exists a series of black hole spacetimes, with the
horizon radius (the order parameter) ranging from zero to
infinity. For the Hawking-Page phase transition in Einstein
gravity, these spacetime states are the thermal AdS space,
the small and the large Schwarzschild-AdS black holes, and
the intermediate transient states during the phase transition,
which compose the canonical ensemble we are considering.
The value of the order parameter of the thermal AdS space
is zero because it does not have a horizon. The values of the
order parameters of the small and the large black holes are
determined by solving the Hawking temperature formula
[Eq. (4) in Sec. II] for the Schwarzschild-AdS black hole by
the replacement of the Hawking temperature with the
ensemble temperature. There is no direct relationship
between the order parameter of the intermediate transient
state and the ensemble temperature. In this sense, the
intermediate transient states are not solutions to the
Einstein field equation, and their order parameters can take
arbitrary values.
Third, we quantify the free energy landscape for the

Hawking-Page phase transition by specifying every space-
time state in the ensemble a Gibbs free energy. As a
solution to the Einstein field equation, the Gibbs free
energy of a Schwarzschild-AdS black hole, which can be
given by the thermodynamic relation or calculated directly
from the Euclidean action, is on shell. The Gibbs free
energies of the intermediates are off shell because they are
not the solutions to the Einstein field equation. Inspired by
the thermodynamics of a Schwarzschild-AdS black hole,
the off-shell Gibbs free energy is defined as the on-shell
Gibbs free energy by the replacement of the Hawking
temperature with the ensemble temperature. The resulting
Gibbs free energy can be expressed as the function of the
order parameter and ensemble temperature. Based on the
free energy landscape, we can uncover the emergence of
the phases and the associated phase transition. More
precisely, the extrema of the Gibbs free energy topography
are considered as the emerged equilibrium states which
represent the large or small Schwarzschild-AdS black
hole or the thermal AdS space, respectively. By exploring
the range of the ensemble temperatures, we can also
analyze the phase diagram and explore the thermodynamic
stability.
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Fourth, inspired by the barrier crossing picture in the free
energy landscape topography, we propose that it is possible
to study the stochastic dynamics of the Hawking-Page
phase transition under thermal fluctuations in terms of the
associated probabilistic Fokker-Planck equation on the free
energy landscape [33–35]. Notice that the phase transition
or the black hole instability here is caused by the intrinsic
thermodynamic fluctuations. In this regard, we can write
down the corresponding Fokker-Planck equation by treat-
ing the Gibbs free energy as the potential function. We can
further analyze the final equilibrium stationary distribution
of the spacetime states in the ensemble from the Fokker-
Planck equation, which is shown to be closely related to the
free energy landscape through the Boltzmann law.
Finally, we are interested in getting the information on

the speed of the state switching by quantifying the first
passage time and its fluctuation in the Hawking-Page phase
transition. The potential barrier crossing picture implies
that any state in the ensemble can have the chance of
switching to other states under thermal fluctuations; i.e.,
any state can have a lifetime. Since we are considering the
stochastic process, the first passage time will be a random
variable. The timescale of the phase transition process from
one macroscopic state to another can then be characterized
by the mean first passage time, which is defined as the
average timescale for a stochastic event to first occur. In this
regard, we derive analytical integral expressions for not
only the mean first passage time but also its fluctuations,
and we present the corresponding numerical results. The
results show that the mean first passage time and the
fluctuations are closely related to the free energy landscape
topography through the barrier heights and the temperature.
This paper is organized as follows. In Sec. II, we study

the thermodynamics of the Schwarzschild-AdS black hole
and Hawking-Page phase transition from the free energy
landscape perspective, giving the phase diagram and
stability analysis. In Sec. III, the stochastic probabilistic
Fokker-Planck equation on the free energy landscape is
presented, and the final stationary distribution is also
discussed. In Sec. IV, we study the kinetics as a first
passage time problem in the Fokker-Planck equation. The
analytical expressions and numerical results of the mean
first passage time and its fluctuation of kinetics are
discussed. In Sec. V, we study the thermodynamics and
kinetics of the Hawking-Page phase transition in massive
gravity. The conclusion and a discussion are presented in
the last section.

II. THERMODYNAMICS OF PHASE EMERGENCE
AND HAWKING-PAGE PHASE TRANSITION
BASED ON THE FREE ENERGY LANDSCAPE

We are interested in the phase emergence and the
corresponding Hawking-Page phase transition of four-
dimensional Schwarzschild-AdS black holes. The metric
is given by (G4 ¼ 1 units) [13]

ds2 ¼ −
�
1 −

2M
r

þ r2

L2

�
dt2

þ
�
1 −

2M
r

þ r2

L2

�−1
dr2 þ r2dΩ2; ð1Þ

where M is the black hole mass and L ¼
ffiffiffiffi
−3
Λ

q
is the AdS

curvature radius, with Λ being the cosmological constant.
The black hole horizon rþ is determined by the root of

the equation,

1 −
2M
r

þ r2

L2
¼ 0: ð2Þ

In the case of a Schwarzschild-AdS black hole, the above
equation shows that for any positive value of black holeM,
there exists only one black hole horizon rþ. In turn, the
mass of the black hole can be expressed by using the black
hole radius

M ¼ rþ
2

�
1þ r2þ

L2

�
: ð3Þ

The Hawking temperature is given by

TH ¼ 1

4πrþ

�
1þ 3r2þ

L2

�
: ð4Þ

This means that the Hawking temperature of a
Schwarzschild-AdS black hole has a minimal value

Tmin ¼
ffiffiffi
3

p

2πL
: ð5Þ

The Bekenstein-Hawking entropy is given by the area of
the event horizon,

S ¼ πr2þ: ð6Þ
As discussed in the Introduction, we consider the

canonical ensemble at the specific temperature T composed
of a series of black hole spacetimes with an arbitrary
horizon radius. In order to construct the free energy
landscape, we need to specify every spacetime state a
Gibbs free energy. The on-shell Gibbs free energy, which
can be given by the thermodynamic relationship G ¼ M −
THS or calculated directly from the Euclidean action [13],
is generalized to the off-shell Gibbs free energy by
replacing the Hawking temperature TH with the ensemble
temperature T, which is explicitly given as follows:

G ¼ M − TS ¼ rþ
2

�
1þ r2þ

L2

�
− πTr2þ: ð7Þ

Note that the black hole radius is considered as the order
parameter describing the microscopic degree of freedom of
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the system. The off-shell free energy is expressed as a
function of the order parameter and ensemble temperature.
For T > Tmin, by replacing the Hawking temperature TH

with the ensemble temperature T in Eq. (4), one can obtain
the radii (the order parameters) of the small and the large
black holes in the ensemble [36],

rl;s ¼
T

2πT2
min

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T2
min

T2

r �
; ð8Þ

where l=s represents the large/small Schwarzschild-AdS
black hole phase.
The small Schwarzschild-AdS black hole is unstable,

which can be explicitly shown by computing the heat
capacity. The heat capacity is given by

C ¼ ∂M
∂TH

¼ 2πr2þð3r2þ þ L2Þ
ð3r2þ − L2Þ : ð9Þ

We have plotted the heat capacity as a function of the black
hole radius in Fig. 1. The heat capacity is divergent at the
radius where the large and the small black holes have the
same temperature Tmin. The heat capacity of the small black
hole branch (rþ < L=

ffiffiffi
3

p
) is always negative, while it is

positive on the large black hole branch (rþ > L=
ffiffiffi
3

p
). This

implies that the small black hole is thermodynamically
unstable and the large black hole is stable.
The Gibbs free energy landscape as a function of black

hole radius rþ [36,37] at different temperatures can be
plotted, as explicitly shown in Fig. 2. Without loss of
generality, we set the AdS curvature radius as L ¼ 1 in the
following. The Gibbs free energy landscape of the present
system is only modulated by the temperature. From these
plots, we can easily read off the phase diagram of the
system as discussed in the following.
When T < Tmin, there is only one global minimum of the

Gibbs free energy landscape at the origin, and the system is
in a pure radiation phase or thermal AdS space. At

T ¼ Tmin, the Gibbs free energy landscape exhibits an
inflection point at r ¼ L=

ffiffiffi
3

p
. Above this temperature, two

black hole phases emerge (large and small black holes) with
radii given by Eq. (8). When Tmin < T < THP, the small
black hole phase corresponds to a local maximum of the
Gibbs free energy, while the large black hole phase is
locally stable, being a local minimum on the free energy
landscape. The globally stable state phase is still the
thermal AdS state. At T ¼ THP, the Gibbs free energy
of a black hole phase with radius rþ ¼ L is degenerate with
the Gibbs free energy of a thermal AdS phase at the same
temperature. Here, THP ¼ 1

πL is known as the Hawking-
Page critical temperature. Since the order parameter of the
thermal AdS phase is discontinuous with the order param-
eter of the large black hole phase in the free energy
landscape topography, the associated derivative of the free
energy will diverge at the Hawking-Page critical temper-
ature, which is a signature of the first order phase transition.
Finally, for T > THP the large black hole phase becomes
the absolute minimum of the Gibbs free energy landscape
and is a globally stable state. In summary, below the critical
temperature THP, the thermal AdS phase is thermodynami-
cally stable, and above the critical temperature, the large
black hole phase is stable. At the critical temperature, both
the thermal AdS space phase and the large black hole phase
are stable with equal free energy basin depths.

III. PROBABILISTIC FOKKER-PLANCK
EQUATION FOR DESCRIBING THE
STOCHASTIC DYNAMICS ON THE

FREE ENERGY LANDSCAPE

In this section, we study the kinetics of the Hawking-
Page phase transition by treating the black hole phase as
well as the thermal AdS phase as states in a thermodynamic
ensemble. As shown in the last section, we know that the
Gibbs free energy landscape as a function of the black hole
radius exhibits a double basin shape when the temperature
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FIG. 1. Heat capacity of a Schwarzschild-AdS black hole as a
function of the black hole radius. The vertical line represents the
location rþ ¼ L=
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p
where heat capacity is divergent.
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FIG. 2. Gibbs free energy landscapes as a function of black hole
radius rþ at different temperatures.
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exceeds Tmin. One naturally regards the black hole radius as
the reaction coordinate or order parameter on the free
energy landscape.
We consider that there are a large number of states in a

thermodynamic ensemble in which one or a group of them
can represent a Schwarzschild black hole phase or a
thermal AdS phase or any intermediate transient states
during the Hawking-Page phase transition. The probability
distribution of these states evolving in time should be a
function of the order parameter rþ (black hole radius) and
time t. From now on, we use the symbol r to denote the
black hole radius rþ for the sake of simplicity. Thus, the
probability distribution is denoted by ρðr; tÞ. The stochastic
kinetics of states under the thermal fluctuation can be
described by the probabilistic Fokker-Planck equation,
which on the free energy landscape is explicitly given by

∂ρðr; tÞ
∂t ¼ D

∂
∂r
�
e−βGðrÞ

∂
∂r ½e

βGðrÞρðr; tÞ�
�
: ð10Þ

In the above equation, the diffusion coefficient D is given
by D ¼ kT=ζ, with k being the Boltzmann constant and ζ
being the dissipation coefficient. Without loss of generality,
we will take k ¼ ζ ¼ 1 in the following. Note that β ¼
1=kT is the inverse temperature of the system, and GðrÞ is
the off-shell Gibbs free energy as a function of the black
hole radius r modulated by the temperature.
The final stationary distribution of the probability is

determined by ρstðrÞ ∝ e−βGðrÞ, giving the equilibrium
Boltzmann distribution, which can be solved directly from

the Fokker-Planck equation by setting ∂ρðr;tÞ
∂t ¼ 0. The

thermodynamic stable state is then determined by the
global maximum of the final stationary equilibrium dis-
tribution. As shown in Fig. 2, if the initial probability is
mainly distributed at the local minimum, most of proba-
bility will move into the region of the global minimum.
However, there is also a certain probability that the state in
the global minimum can escape to the thermodynamically
less stable state in the local minimum due to the thermo-
dynamic fluctuations. In this regard, any state can have a
lifetime due to the chance of switching to other states under
the thermal fluctuations. The mean first passage time can be
used to describe the timescale in these kinetic switching
processes.

IV. MEAN AND STATISTICAL FLUCTUATIONS
OF THE KINETICS FOR THE BLACK HOLE
STATE SWITCHING AND HAWKING-PAGE

PHASE TRANSITION

A. Mean kinetics for the black hole state switching and
Hawking-Page phase transition

In this subsection, we study the mean kinetics through
the mean first passage time for the black hole state
switching and Hawking-Page phase transition. Our task

is to find out the time that it takes for a state starting from
one local (global) stable phase to reach another global
(local) stable phase. Problems of this sort can be solved by
the first passage time. In general, the first passage time is
defined as the time required for a state from the local
(global) stable phase [described by the local (global)
minimum of Gibbs free energy] to reach the transition
state (an intermediate of a small black hole phase deter-
mined by the maximum of the Gibbs free energy or barrier
in the present case) for the first time. Since we are
considering a stochastic process caused by thermal fluc-
tuation, the first passage time will be a random variable.
Thus, we are particularly interested in the mean first
passage time. The mean first passage time quantifies an
average timescale for a stochastic event of switching to
first occur.
First, let us consider the first passage time of a state

starting from the thermal AdS phase and ending at the large
black hole phase. Define ΣðtÞ to be the probability that the
state has not made a first passage by time t. Suppose there is
a perfect absorber placed at the site rs where the Gibbs free
energy attains the local maximum. If the state makes the
first passage under the thermal fluctuation, this state leaves
the system. In this setup, we have made the assumption that
the time taken from the small black hole phase to the large
black hole phase is much smaller than the first passage
time. Because of the existence of an absorber, the nor-
malization of the probability distribution will not be
preserved in this setup. According to the definition, ΣðtÞ
is also the probability of a state being in the system at time
t. Thus, we have

ΣðtÞ ¼
Z

rs

0

ρðr; tÞdr: ð11Þ

At very late times, the total probability of a state still in the
system becomes zero, i.e., Σðr; tÞjt→þ∞ ¼ 0.
As claimed, the first passage time is a random variable.

We denote the distribution of first passage times by FpðtÞ.
Then, the distributions FpðtÞ can be given by

FpðtÞ ¼ −
dΣðtÞ
dt

: ð12Þ

It is obvious that FpðtÞdt is the probability that a state
passes through the intermediate small black hole phase for
the first time in the time interval ðt; tþ dtÞ.
With this time distribution, we can calculate the mean

first passage time and its fluctuation. The mean first
passage time is defined by

hti ¼
Z þ∞

0

tFpðtÞdt: ð13Þ

In general, the distribution of the first passage times can be
numerically simulated from the Fokker-Planck equation by
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imposing the appropriate boundary conditions. Then, the
mean first passage time and its fluctuations can be
calculated. Here, we present the analytical expressions
for the mean first passage time and its fluctuations [38].
By substituting the relations (11) and (12) between FpðtÞ
and ΣðtÞ into the definition of the mean first passage time
(13) and integrating by parts, one obtains the following
expression:

hti ¼
Z þ∞

0

ΣðtÞdt ¼
Z

rs

0

ρðr; s ¼ 0Þdr; ð14Þ

where ρðr; sÞ is the Laplace transformation of probability
distribution ρðr; sÞ,

ρðr; sÞ ¼
Z þ∞

0

ρðr; tÞe−stdt: ð15Þ

Using the Laplace transformation, we can rewrite the
Fokker-Planck equation (10) in the form

sρðr; sÞ − δðr − riÞ ¼ D
∂
∂r
�
e−βGðrÞ

∂
∂r
�
eβGðrÞρðr; sÞ

��
;

ð16Þ

where ri represents the order parameter of the initial phase.
Because we are considering the first passage process of a
state starting from the phase of the thermal AdS phase to
the large black hole phase, the initial condition of the order
parameter should be taken as the radius of the thermal AdS
phase, i.e., ri ¼ 0þ. To proceed, we can rewrite the above
equation as

sρðr; sÞ − δðr − riÞ ¼ −
∂
∂r jðr; sÞ; ð17Þ

where

jðr; sÞ ¼ −De−βGðrÞ
∂
∂r ½e

βGðrÞρðr; sÞ�: ð18Þ

The boundary condition at r ¼ 0 is set as the reflecting
boundary condition, jð0; sÞ ¼ 0, while the boundary con-
dition at r ¼ rs is set as the absorbing boundary condition,
ρðrs; sÞ ¼ 0. Integrating Eq. (17) from 0 to rs and using the
reflecting boundary condition gives

jðr; sÞ ¼ −
Z

rs

0

dr0½sρðr0; sÞ − −δðr0 − riÞ�: ð19Þ

Combining this expression with Eq. (18) and integrating
once more yields the expression for ρðr; sÞ as follows:

ρðr; sÞ ¼ −
1

D

Z
rs

r
dr0
Z

r0

0

dr00½sρðr00; sÞ − δðr00 − riÞ�

× eβðGðr00Þ−Gðr0ÞÞ: ð20Þ

Taking the limit of the above equation as s goes to zero
yields

ρðr; s ¼ 0Þ ¼ 1

D

Z
rs

r
dr0
Z

r0

0

dr00δðr00 − riÞeβðGðr00Þ−Gðr0ÞÞ:

ð21Þ

Substituting this equation into Eq. (14) and exchanging the
order of integration, one can finally obtain the analytical
integration expression for the mean first passage time,

hti ¼ 1

D

Z
rs

0

dr
Z

r

0

dr0eβðGðrÞ−Gðr0ÞÞ: ð22Þ

The analytical integral expressions for the mean first
passage time from the large black hole phase to the thermal
AdS phase can also be derived similarly as follows:

hti ¼ 1

D

Z
rl

rs

dr
Z þ∞

r
dr0eβðGðrÞ−Gðr0ÞÞ: ð23Þ

With these expressions, we can compute the mean first
passage time via numerical integration directly without
concern for the time distribution. The numerical results will
be presented in Sec. IV C.

B. Statistical fluctuations of the kinetics for the black
hole state switching and Hawking-Page phase transition

In principle, we can calculate the fluctuations in kinetics
by the nth order moment of the time distribution function of
the first passage time by the relationship

htni ¼
Z þ∞

0

tnFPðtÞdt: ð24Þ

In the present paper, we will only concentrate on the n ¼ 2
cases and calculate the second order fluctuation of the first
passage time. By definition (24), one obtains

ht2i ¼ 2

Z
rs

0

dr
Z þ∞

0

dttρðr; tÞ; ð25Þ

where the boundary condition Σðr; tÞjt→þ∞ ¼ 0 is used in
the integration by parts. According to the Laplace trans-
formation, we have

∂
∂s ρðr; sÞjs¼0

¼ −
Z þ∞

0

dttρðr; tÞ: ð26Þ

Thus, we get

RAN LI and JIN WANG PHYS. REV. D 102, 024085 (2020)

024085-6



ht2i ¼ −2
Z

rs

0

dr
∂
∂s ρðr; sÞ

				
s¼0

¼ 2

D

Z
rs

0

dr
Z

rs

r
dr0
Z

r0

0

dr00ρðr; s ¼ 0ÞeβðGðr0Þ−GðrÞÞ

¼ 2

D2

Z
rs

0

dr
Z

rs

r
dr0
Z

r0

0

dr00
Z

rs

r00
dr000

×
Z

r000

0

dr0000δðr0000 − riÞeβðGðr000Þ−Gðr00ÞþGðr0Þ−GðrÞÞ:

ð27Þ
Then, by exchanging the integration order, we can reach the
following analytical integration expression, which can be
used to compute ht2i,

ht2i ¼ 2

D2

Z
rs

0

dr
Z

r

0

dr0
Z

rs

r0
dr00

×
Z

r00

0

dr000eβðGðrÞ−Gðr0ÞþGðr00Þ−Gðr000ÞÞ: ð28Þ

Finally, similar analytical integral expressions for the
first passage process from the large black hole phase to the
thermal AdS phase can be derived, given by

ht2i ¼ 2

D2

Z
rl

rs

dr
Z þ∞

r
dr0
Z

r0

rs

dr00

×
Z þ∞

r00
dr000eβðGðrÞ−Gðr0ÞþGðr00Þ−Gðr000ÞÞ: ð29Þ

C. Illustrations of the mean and fluctuations in kinetics
for the black hole state switching and Hawking-Page

phase transition

We numerically calculated the mean first passage time
hti and its second moment ht2i of the first passage process
from the thermal AdS phase to the small black hole phase
by utilizing the integral expressions derived in the last two

subsections. We mainly consider the temperature depend-
ence of the kinetic switching process through the first
passage times. The results are plotted in Fig. 3. Note that
the vertical axis in Fig. 3 is in the logarithmic scale. It is
shown that the mean first passage time hti, as well as its
second moment ht2i, is a monotonically decreasing func-
tion of the temperature.
It should be noted that, although the thermodynamic

stability is determined by the Gibbs free energy landscape,
the kinetics is determined by the barrier height between the
thermal AdS phase and the small black hole phase. The
barrier height between the thermal AdS phase and the small
black hole phase as a function of temperature is plotted in
the left panel of Fig. 4. It is obvious that the barrier height
between the thermal AdS phase and the small black hole
phase is also a monotonically decreasing function of
temperature.
From Fig. 3, we can see that the thermal AdS phase takes

less time to switch to the large black hole phase at higher
temperature. This is mainly due to the smaller barrier height
from the thermal AdS phase and the small black hole phase
at higher temperatures. The kinetic behavior on temperature
can also be attributed to the more effective thermal
diffusion process at higher temperatures. Since the mean
first passage time mainly depends on the barrier height and
the barrier height is continuous across the Hawking-Page
critical temperature, it is shown that the kinetics is smooth
across the critical temperature.
In the right panel of Fig. 4, we also plotted the correlation

between the kinetics of state switching quantified by the
mean first passage time and the barrier height. We can see a
strong quantitative correlation between the kinetic time and
the barrier height. The higher the barrier in between, the
longer it takes for the thermal AdS phase to switch to the
large black hole phase. Therefore, we can see that while
the free energy value determines the thermal weight or the
stability of the states, the free energy barrier determines the
kinetics of the state switching of the black holes.
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FIG. 3. Mean first passage time hti and ht2i from AdS space phase to the small black hole phase as a function of temperature T. The
temperature range is from Tmin to a temperature greater than the Hawking-Page critical temperature THP.
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The second order fluctuation ht2i − hti2 and the relative
second order fluctuation ðht2i − hti2Þ=hti2 of the first
passage time are depicted in Fig. 5. Note that the vertical
axis in the left panel of Fig. 5 is in the logarithmic scale.
The fluctuation is more significant near the minimal
temperature Tmin where the unstable small black hole
phase appears, and it decreases rapidly when the temper-
ature increases. At very high temperature, the fluctuation
approaches zero. The relative fluctuation is also a mono-
tonically decreasing function of temperature. However,
the changes of the relative fluctuations are not very
significant in the whole temperature range. This may be
due to the small changes of the corresponding barrier
height. The relative fluctuation reaches a nonzero limit
value at very high temperatures. We find at high temper-
ature, ðht2i − hti2Þ=hti2 ≈ 2=3, which implies ht2i ≈ 5

3
hti2.

Both the behaviors of the mean and fluctuations in
kinetics of switching from the thermal AdS phase to the
large black hole phase are determined by the free energy
landscape topography through the barrier height. However,

the magnitudes of the relative fluctuations in kinetics, as
well as the changes in the relative fluctuations in kinetics
with respect to the temperatures, are not very large. This
indicates that the influence of the thermal fluctuations on
the kinetics of switching from the thermal AdS phase to the
large black hole phase is limited.
The behavior of the mean first passage time and its

second moment from the large black hole phase to the
thermal AdS phase as a function of temperature is shown in
Fig. 6. In this case, the mean first passage time and its
second moment become larger and larger at higher temper-
ature. These trends for the mean first passage time and its
second moment imply that it is more difficult for the large
black hole phase to escape to the thermal AdS phase at
higher temperatures. This is due to the fact that the barrier
height from the large black hole phase to the thermal AdS
phase becomes higher at higher temperatures, as shown in
the left panel of Fig. 7. In the same figure, the right panel
shows that the higher the barrier in between, the longer it
takes for the large black hole phase to switch to the thermal
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FIG. 5. Fluctuation ht2i − hti2 and relative fluctuation ðht2i − hti2Þ=hti2 of first passage time from the thermal AdS phase to the large
black hole phase as a function of temperature T.

0.5 1.0 1.5 2.0
–8

–6

–4

–2

0

0.02

0.04

0.06

0.08

0.060.02 0.04 0.08

B
ar

ri
er

H
ei

gh
t

L
og

<
t>

Barrier HeightT

FIG. 4. Left panel: Barrier height from the thermal AdS phase to the large black hole phase as a function of temperature T. Right panel:
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AdS phase. Therefore, the large black hole becomes more
and more stable when increasing the temperature, which is
consistent with the results from the free energy landscape
topography.
The fluctuation and relative fluctuation of the first

passage process from the large black hole to the thermal

AdS phase are depicted in Fig. 8. The fluctuation and the
relative fluctuation behave differently. The fluctuation is
shown to be a monotonic decreasing function of temper-
ature. Similar to the behavior of the relative fluctuation
shown in Fig. 6, it will reach a nonzero limit value at high
temperature. We find, at high temperature, ht2i ≈ 2hti2.
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FIG. 7. Left pane: Barrier height from the large black hole phase to the thermal AdS phase as a function of temperature T. Right panel:
Correlation between the mean kinetic time and the barrier height.
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This relation is dramatically different from the relation of
the first passage process from the AdS space phase to the
large black hole phase, which implies that the time
distributions of these two processes at high temperature
are different.
The relative fluctuations at low temperatures become

large. This indicates the large fluctuations in kinetics. Both
the behaviors of the mean and fluctuations in kinetics of
switching from the large black hole phase to the thermal
AdS phase are determined by the free energy landscape
topography through the barrier height. The relative fluc-
tuations in kinetics of switching from the thermal AdS
phase to the large black hole phase and from the large black
hole phase to the thermal AdS phase depend on how the
thermal energy is compared to the barrier height. In Fig. 9,
we show the barrier height divided by the temperature as a
function of temperature for the AdS space to the large black
hole process and that for the inverse process. The red line
shows the minor changes of the barrier height divided by
the temperature from the AdS space to the large black hole
transition process. As a result, the relative fluctuation is not
significant in the whole temperature range. The blue line
shows that, at low temperatures, the barrier height divided
by the temperature is almost close to zero for the process
from the large black hole to the AdS space. At low
temperatures, we can see that the free energy barrier from
the large black hole phase to the thermal AdS phase
becomes much smaller compared to the thermal energy,
leading to an almost downhill kinetic process. Therefore,
the thermal fluctuations will be more significant. The
kinetics and associated fluctuations will be more influenced
by the thermal fluctuations rather than the barrier height.
Therefore, larger relative thermal fluctuations can give rise
to larger kinetic fluctuations.

V. THERMODYNAMICS AND KINETICS OF
HAWKING-PAGE PHASE TRANSITION IN

MASSIVE GRAVITY

A linear massive gravity theory was developed by Fierz
and Pauli [39] by adding interaction terms in the linearized
level of general relativity, where the interaction terms
were interpreted as the mass terms for the gravitons.
Unfortunately, this linear massive gravity theory suffered
from the van Dam-Veltman-Zakharov discontinuity prob-
lem at the linear level [40,41] and the Boulware-Deser
ghost problem at the nonlinear level [42,43]. Recently, a
nonlinear massive gravity theory was constructed in
[44,45], in which the Boulware-Deser ghost field was
eliminated by introducing higher order interaction terms
into the Einstein-Hilbert action. It was found that the
massive gravity theory has a nontrivial black hole solution
with a negative cosmological constant [46]. This solution
has been applied to investigate the holographic super-
conductor model in massive gravity [47,48]. A class of
generalized black hole solutions in massive gravity was
also constructed, and the thermodynamical properties and
phase structure were studied [24] (see [23] for a discussion
of the Hawking-Page phase transition in holographic
massive gravity). In this section, we will discuss the
Hawking-Page phase transition in massive gravity based
on the free energy landscape and further study the corre-
sponding kinetics of state switching.

A. Hawking-Page phase transition based on the free
energy landscape

We start with a brief review of the recently proposed
massive gravity. The action of the four-dimensional ghost-
free massive gravity is given by [44–46]

IG ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ 6

L2
þm2

g

X4
i¼1

ciU iðg; fÞ
�
; ð30Þ

where ci are constants and mg is the mass of the
graviton. The terms Uiðg; fÞ are defined in terms of the
symmetric polynomials of the eigenvalues of the matrix
Kμ

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gμλfλν

p
, with the reference metric fμν being a fixed

rank-2 symmetric tensor. The terms U iðg; fÞ are explicitly
given by

U1 ¼ ½K�;
U2 ¼ ½K�2 − ½K2�;
U3 ¼ ½K�3 − 3½K�½K2� þ 2½K3�;
U4 ¼ ½K�4 − 6½K2�½K�2 þ 8½K3�½K� þ 3½K2�2 − 6½K4�;

where K2
μν ¼ KμαKα

ν , and the rectangular brackets denote
traces.
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The reference metric can be chosen as fμν ¼
diagð0; 0; 1; sin2 θÞ in order to preserve homogeneity and
isotropy on the spatial sphere (with the angular coordinates
θ and φ parametrizing the spatial sphere), as well as general
r − t diffeomorphism invariance. The spherical symmetric
black hole solution (with c3 ¼ c4 ¼ 0) is given by [24]

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dΩ2; ð31Þ

where the metric function fðrÞ is given by

fðrÞ ¼ 1þ r2

L2
−
2M
r

þ c1
2
μ2rþ c2μ2: ð32Þ

The vacuum solution can be obtained by setting M ¼ 0,
and then the corresponding metric function fðrÞ is given by

f0ðrÞ ¼ 1þ r2

L2
þ c1

2
μ2rþ c2μ2: ð33Þ

Note that the vacuum solution is not an AdS space
unless μ2 ¼ 0.
The black hole horizon which is a null hypersurface is

determined by the equation fðrÞjr¼rþ ¼ 0. Then the mass
of the black hole can be expressed as

M ¼ rþ
2

�
1þ r2þ

L2
þ c1

2
μ2rþ þ c2μ2

�
: ð34Þ

The Hawking temperature of the black hole can be
easily obtained from the surface gravity formula κ ¼
1
2
f0ðrÞjr¼rþ as

TH ¼ 1

4πrþ

�
1þ 3r2þ

L2
þ c1μ2rþ þ c2μ2

�
: ð35Þ

The Bekenstein-Hawking entropy is still given by the area
of the horizon. Following the strategy of generalizing the
on-shell free energy, the off-shell Gibbs free energy in
massive gravity is then given by

G ¼ M − TS ¼ rþ
2

�
1þ r2þ

L2
þ c1

2
μ2rþ þ c2μ2

�
− πTr2þ:

ð36Þ

For simplicity, we set all the parameters c1, c2, and μ2 to
be positive. In this case, the vacuum solution is a regular
solution without a horizon. The vacuum phase is the analog
of the thermal AdS space phase in the Einstein gravity case.
There is a Hawking-Page phase transition between the
vacuum phase and the black hole phase [23,24]. The phase
transition can be observed from the plots of the free energy
landscape versus the black hole radius rþ as depicted
in Fig. 10.

From the expression of the temperature, Eq. (35), one
can easily obtain the minimal temperature of the black hole,
which is given by

Tmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ c2μ2Þ

p
2πL

þ c1μ2

4π
: ð37Þ

For T > Tmin a pair of black holes (large/small) or black
hole phases can emerge, with radii given by

rl;s ¼
ð1þ c2μ2Þ

2π

ðT − c1μ2

4π Þ
ðTmin −

c1μ2

4π Þ
2

×

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
4πTmin − c1μ2

4πT − c1μ2

�
2

s !
; ð38Þ

where l=s represents the large/small black hole phase. We
can also see the small and large black hole phases from the
free energy landscape with the small black hole phase
corresponding to the local maximum (unstable) and the
large black hole phase corresponding to the local or global
minimum depending (stable) on the temperature.
The analysis of the Hawking-Page phase transition in

massive gravity based on the free energy landscape is
qualitatively similar to that of the phase transition in
Einstein gravity. When T < Tmin, there is only one stable
phase, i.e., the vacuum phase, corresponding to the global
minimum of the Gibbs free energy landscape at the origin.
At T ¼ Tmin, the Gibbs free energy landscape exhibits
an inflection point at rþ ¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2μ2

p
=
ffiffiffi
3

p
. When

T > Tmin, there are three phases, i.e., the vacuum phase,
the small black hole phase, and the large black hole phase.
The stable phase is then determined by the free energy
landscape. At the Hawking-Page phase transition temper-
ature, the Gibbs free energy of the large black hole phase is
degenerate with the Gibbs free energy of the vacuum phase.
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FIG. 10. Gibbs free energy landscapes for the black hole
solutions in massive gravity. We take the parameters c1 ¼ c2 ¼
1 and μ2 ¼ 0.5.
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The Hawking-Page temperature in massive gravity is then
given by

THP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2μ2

p
πL

þ c1μ2

4π
: ð39Þ

When Tmin < T < THP, the globally stable phase is still the
vacuum phase. For T > THP, the large black hole phase
becomes the absolute minimum of the Gibbs free energy
landscape and is the globally stable phase. At the critical
temperature, both the vacuum phase and the large black
hole phase are stable with equal free energy basin depths.
Therefore, by analyzing the free energy landscape topog-
raphy, we can conclude that there is a phase transition from
the vacuum phase to the large black hole phase at the
Hawking-Page critical temperature.

B. Mean and statistical fluctuations of the kinetics
for state switching and Hawking-Page phase

transition in massive gravity

Now we discuss the kinetics of the Hawking-Page phase
transition in massive gravity. From the viewpoint of the free
energy landscape, any state can have the chance to switch
to other states under the thermal fluctuations. The switch-
ing process can be described by the Fokker-Planck equa-
tion on the free energy landscape, and the kinetics of the
phase transition is then related to the first passage problem.
The analytical expressions of the mean and statistical
fluctuations of the kinetics, which are explicitly given by
Eqs. (22), (23), (28), and (29), are still applicable to the
present case. In the following, we will briefly present the
numerical results of the mean and statistical fluctuations of
the kinetics in the Hawking-Page phase transition in
massive gravity.
Without loss of generality, we fix the parameters as

c1 ¼ c2 ¼ 1. Then we have only one free parameter μ that
can vary. In Fig. 11, the mean first passage times hti and
ht2i from the thermal vacuum phase to the large black hole

phase as functions of the temperature T are presented. It can
be observed that, for different parameters μ, the mean first
passage time hti and its second moment ht2i are mono-
tonically decreasing functions of temperature. The reason
behind this is that the barrier height between the vacuum
phase and the small black hole phase is a monotonically
decreasing function of temperature. In Fig. 10, it is shown
that the Gibbs free energy of the small black hole decreases
with increasing temperature, while the Gibbs free energy of
the thermal vacuum solution is fixed at zero. Therefore, the
effective barrier (i.e., the Gibbs free energy difference
between the small black hole phase and the thermal vacuum
phase) is lowered at high temperatures, which shortens the
timescale of the state switching.
In Fig. 12, we show the numerical results of the

fluctuation ht2i − hti2 and the relative fluctuation ðht2i −
hti2Þ=hti2 of the first passage time from the thermal vacuum
phase to the large black hole phase. The fluctuation and the
relative fluctuation are monotonically decreasing functions
of temperature. However, the fluctuations change signifi-
cantly in the whole temperature range, while the relative
fluctuation does not change very significantly. At very high
temperatures, although the parameter μ is different, the
fluctuation approaches zero while the relative fluctuation
reaches a nonzero limit value. We find that the relation
between hti2 and ht2i at very high temperatures is still given
by ht2i ≈ 5

3
hti2.

In Fig. 13, we present the numerical results of the mean
first passage times hti and ht2i from the large black hole
phase to the thermal vacuum phase. It is shown that the
mean first passage times hti and ht2i are monotonically
increasing functions of temperature. This is due to the fact
that the barrier height between the small black hole phase
and the large back hole phase increases with the temper-
ature. As shown in Fig. 10, the Gibbs free energy of the
large black hole is significantly affected by the temperature.
Meanwhile, the Gibbs free energy of the small black hole is
less sensitive to the temperature. Therefore, the barrier
height between the small black hole phase and the large
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FIG. 11. Mean first passage times hti and ht2i from the thermal vacuum phase to the large black hole phase as functions of temperature
T. The blue, red, and black lines represent the cases of μ2 ¼ 0.1, 0.3, and 0.5, respectively.
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black hole phase increases with temperature, which leads to
a longer timescale of the state switching.
The fluctuation ht2i − hti2 and the relative fluctuation

ðht2i − hti2Þ=hti2 of the first passage time from the large

black hole phase to the thermal vacuum phase are shown in
Fig. 14. The fluctuation is the monotonically increasing
function of temperature, while the relative fluctuation is
the decreasing function of temperature. Once again, it is
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FIG. 13. Mean first passage times hti and ht2i from the large black hole phase to the thermal vacuum phase as functions of temperature
T. The blue, red, and black lines represent the cases of μ2 ¼ 0.1, 0.3, and 0.5, respectively.
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observed that the relative fluctuation will reach a nonzero
limit value at high temperature. The relation between hti2
and ht2i at very high temperatures is given by ht2i ≈ 2hti2.
As discussed in the last section, the relative fluctuation is
determined by the competition between the thermal energy
and the barrier height. We illustrate the barrier height over
temperature ΔG=T as a function of temperature for the
process from the vacuum phase to the large black hole
phase and the inverse process in Fig. 15. The red line shows
that ΔG=T is not sensitive to temperature, which implies
that the relative fluctuation does not change significantly in
the whole temperature range for the process from the
thermal vacuum phase to the large black hole phase.
The blue line indicates that at low temperature the inverse
process from the large black hole phase to the thermal
vacuum phase is more influenced by the thermal fluctuation
rather than the barrier height.
In summary, the tendencies of the first mean time, its

second moment, the fluctuation, and the relative fluctuation
for different parameters μ and for different first passage
processes in massive gravity are all qualitatively similar to
those of the Hawking-Page phase transition in Einstein
gravity. This conclusion indicates that the formalism of the
free energy landscape in analyzing the Hawking-Page
phase transition is universal.

VI. CONCLUSION

In this paper, we have studied both the thermodynamic
through the free energy landscape and the kinetic switching

process of black hole states and the Hawking-Page
phase transition. For Einstein gravity, we consider the
Schwarzschild-AdS black holes as well as the thermal AdS
state as macroscopic emergent phases. The emergence and
Hawking-Page phase transitions are determined by the
underlying free energy landscape. Under thermodynamic
fluctuations, there is always a chance for black hole or
thermal AdS phase switching from one phase to another on
the free energy landscape. Any state can have a lifetime due
to the chance of switching to other states. The mean first
passage time, which is defined as the average timescale for
a stochastic event to first occur, is related to the lifetime of
the black hole phase or the thermal AdS phase. In order to
calculate the mean first passage time, we quantify the free
energy landscape for the Hawking-Page phase transition.
The kinetics of the black hole state switching can be
described by the probabilistic Fokker-Planck equation if
treating this process as a stochastic event. Starting with the
Fokker-Planck equation, we derive the analytical formulas
for the mean first passage time and its second moment. The
numerical results show that the timescales and the asso-
ciated fluctuations are closely related with the topography
of the Gibbs free energy landscape through barrier heights.
As an additional example, we also consider the thermo-
dynamics and the kinetics of the Hawking-Page phase
transition in massive gravity. The conclusions are qualita-
tively similar to those obtained in Einstein gravity. This
study provides a systematic way of studying the black hole
thermodynamics and kinetics from the perspective of the
free energy landscape.
There are still certain unsolved issues. In the present

work, the effect of Hawking radiation is not taken into
account. It is natural to consider the effect of Hawking
radiation on the stochastic thermal dynamic phase tran-
sition between the Schwarzschild-AdS black hole and the
thermal AdS phase. The second issue is how to relate the
first passage time or switching time to the real lifetime or
the stability of the black hole. This type of relationship can
help us to establish a concrete foundation for studying the
black hole phase transition from the stochastic dynamics
perspective. These issues deserve future investigation.
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