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We investigate the first law of thermodynamics in the stationary axisymmetric configurations composed
of two Kerr black holes separated by a massless strut. Our analysis employs the recent results obtained for
the extended double-Kerr solution and for thermodynamics of the static single and binary black holes. We
show that, similar to the electrostatic case, in the stationary binary systems the thermodynamic length l is
defined by the formula l ¼ L expðγ0Þ, where L is the coordinate length of the strut, and γ0 is the value of
the metric function γ on the strut.
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I. INTRODUCTION

In the paper [1], an important notion of thermodynamic
length was introduced which permits an elegant analytic
description of thermodynamics in different single black-hole
spacetimes. The usefulness of this notion has recently been
demonstrated in [2] in application to the binary configura-
tions of generic charged static black holes [3,4], for which
the first law of thermodynamics has been derived in a
concise form. Curiously, even in the absence of charges,
when the latter binary configurations are described by the
double-Schwarzschild solution [5], the work [2] gives for
this special vacuum case a representation of the first law
different from the one considered in the well-known paper of
Costa and Perry [6]. A natural question arises then, whether
the approach developed in the papers [1,2] can be further
extended to the binary systems of rotating black holes? In
the present paper we give a positive answer to this query.
Since the simplest rotating black hole is described by the

Kerr vacuum solution [7], in order to accomplish our
objective we can restrict ourselves to configurations of
two Kerr black-hole constituents kept apart in stationary
equilibrium by a massless strut [8]. Such configurations are
obtainable in principle from the double-Kerr solution of
Kramer and Neugebauer [9] by imposing in it the axis and
asymptotic flatness conditions; these, however, were not
solved analytically in the original parametrization of the
paper [9] without the additional condition of the balance of
sources [10] (absence of the strut), the fulfilment of which
makes the equilibrium of two Kerr black holes impossible
[11]. Sibgatullin’s integral method [12] of constructing the
exact solutions changed that unpleasant situation drasti-
cally, and thanks to it we now have at our disposal various
analytical solutions for a pair of interacting Kerr black
holes separated by a massless strut which are suitable for
the study of the thermodynamic length in the stationary
binary systems. Thus, in our paper we are going to consider

the configurations of two equal counterrotating Kerr black
holes [13,14], of two identical corotating Kerr black holes
[15,16], and also the binary system composed of generic
Kerr black holes [15,17,18]. We have decided to analyze
the configurations of equal counter- and corotating black
holes separately from the general case because the ther-
modynamical properties of these particular two-body
systems were already discussed earlier in the literature
[19,20], however, using exclusively the general formulas of
the usual double-Kerr solution [9] restricted to the sub-
extreme case only and not elaborating the explicit form of
the particular cases; besides, the thermodynamic analysis of
the corotating case in [20] is essentially based on numerical
calculations. Moreover, it is likely to reexamine the case of
corotating black holes because the recent paper [21]
presents an erroneous study of such system due to employ-
ing some quantities characteristic of exclusively the coun-
terrotating configuration and misinterpreting the form of
the angular momentum given in [15]. The simple repre-
sentations of the metrics describing the binary systems and
involving the physical parameters will allow us to obtain
the concise analytic expressions for the thermodynamic
length in all the cases under consideration.
The plan of our paper is as follows. In Sec. II we derive

the first law of thermodynamics for a pair of two equal
counterrotating black holes. Two possible ways of the
derivation of thermodynamic length are discussed. The
binary system of identical corotating Kerr black holes is
considered in Sec. III, and the binary configurations of
unequal Kerr black holes are analyzed in Sec. IV.
Concluding remarks are given in Sec. V.

II. TWO EQUAL COUNTERROTATING KERR
BLACK HOLES

The solution describing a binary system of equal
counterrotating Kerr sources is the vacuum specialization
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of the Bretón-Manko electrovac solution [13] constructed
with the aid of Sibgatullin’s method, and its physical
parametrization was elaborated in the paper [14], the entire
metric being defined by the line element

ds2 ¼ f−1½e2γðdρ2 þ dz2Þ þ ρ2dφ2� − fðdt − ωdφÞ2;
ð1Þ

with the metric coefficients f, γ and ω of the form [14]

f ¼ AĀ − BB̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄

16R4σ4RþR−rþr−
; ω ¼ −

2Im½GðĀþ B̄Þ�
AĀ − BB̄

;

A ¼ M2½4σ2ðRþR− þ rþr−Þ þ R2ðRþrþ þ R−r−Þ� þ fðR − 2MÞ½Rðσ2 − a2Þ þ 2M3�
þ 4M2a2μgðRþr− þ R−rþÞ − 2iaσRðR − 2MÞðRþr− − R−rþÞ;

B ¼ 2MσRfσRðRþ þ R− þ rþ þ r−Þ − ½2M2 þ iaðR − 2MÞ�ðRþ − R− − rþ þ r−Þg;
G ¼ −zBþMσRf2M½2σðrþr− − RþR−Þ þ RðR−r− − RþrþÞ�

þ ðRþ 2σÞ½Rσ − 2M2 − iaðR − 2MÞ�ðRþ − r−Þ
þ ðR − 2σÞ½Rσ þ 2M2 þ iaðR − 2MÞ�ðR− − rþÞg;

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ
�

zþ 1

2
R� σ

�
2

s

; r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ
�

z −
1

2
R� σ

�
2

s

; ð2Þ

where M is the mass of each black hole, a is the angular
momentum per unit mass of the lower black hole (−a for
the upper black hole, see Fig. 1), R is the coordinate
distance between the centers of black holes, while the
constant quantity σ representing the half length of each
black hole’s horizon is given by the formula

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2μ
q

; μ≡ R − 2M
Rþ 2M

: ð3Þ

We would like to emphasize that the metric (1)–(3)
describes the configurations of two counterrotating black
holes or hyperextreme sources. However, since our interest

lies in the black-hole sector of the above solution, the
parameters M, a, and R must preserve the reality of σ,
which implies σ2 > 0.
It was shown in [14] that each black hole in the solution

(1)–(3) satisfies the well-known Smarr mass formula [22]

M ¼ 1

4π
κAþ 2ΩJ; ð4Þ

where κ is the surface gravity, A the area of the horizon, Ω
the lower black hole horizon’s angular velocity, and J the
angular momentum of the lower black hole (−Ω and −J in
the case of the upper black hole). Then J ¼ Ma, while for
A, κ, and Ω the paper [14] gives the expressions1

A ¼ 8πMðM þ σÞ
�

1þ 2M
R

�

;

κ ¼ Rσ
2MðM þ σÞðRþ 2MÞ ; Ω ¼ aμ

2MðM þ σÞ : ð5Þ

Formulas (5) together with the expression of the inter-
action force [23]

F ¼ M2

R2 − 4M2
ð6Þ

permit us to elaborate the first law of thermodynamics for
the binary system under consideration by following the
procedure similar to the one employed in the paper [2].
Passing from the area A to the entropy S via S ¼ 1

4
A

FIG. 1. Location of two equal conterrotating Kerr black holes
on the symmetry axis.

1Note that in [14] the letter S was used for denoting horizon’s
area, but in our paper S stands for the entropy.
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[24,25], we must take differentials of the quantities S, Ω
and F by considering these as functions of the parameters
ðM;a; RÞ or parameters ðM; J; RÞ. The second option
seems more simple, and to use it, one only has to change
a to J=M in the expressions of Ω and σ. After having
obtained the form of dS, dΩ, and dF in terms of dM, dJ,
dR, one has to solve the resulting algebraic system for dM,
dΩ, and dR, thus yielding the desired expression for dM in
terms of dS, dJ, and dF :

dM ¼ Rσ
4πMðRþ 2MÞðM þ σÞ dSþ Jμ

2M2ðM þ σÞ dJ

−
ðR − 2σÞðR2 − 4M2Þ

2R2
dF ; ð7Þ

so that we can introduce the temperature T by

T ¼ ∂M
∂S

�
�
�
�
J;F

¼ Rσ
4πMðRþ 2MÞðM þ σÞ ; ð8Þ

and from (5) it follows that the above T coincides with the
Hawking temperature T ¼ κ=ð2πÞ [25]. Therefore, taking
into account the equality of black holes, we finally arrive at
the first law of thermodynamics for the entire system in the
form

dMT ¼ 2TdSþ 2ΩdJ − ldF ;

MT ¼ 2M; l ¼ ðR − 2σÞðR2 − 4M2Þ=R2: ð9Þ

The last term on the right-hand side in (9) determines
the contribution of the conical singularity into the first law,
and it represents elementary work performed by the strut. It
can be easily seen that the thermodynamic length l reduces
in the static limit to the respective l for two equal
Schwarzschild black holes (see formula (4.5) of [2] in
the case m ¼ M).
By observing that R − 2σ is the coordinate length of the

strut, and ðR2 − 4M2Þ=R2 is equal to expðγ0Þ, γ0 being the
value of the metric function γ on the strut (the part − 1

2
Rþ

σ ≤ z ≤ 1
2
R − σ of the symmetry axis), we arrive at the

remarkable conclusion that l is defined by the same
formula as obtained in [2] for the static case:

l ¼ Leγ0 ; ð10Þ

where L ¼ R − 2σ. Of course, this could be a mere
coincidence which might be attributed to the same form
of the interaction force (6) as in the case of two equal
Schwarzschild black holes. So, further evidence is still
needed to make sure that (10) holds generically for other
stationary binary systems of black holes too.
To conclude this section, we would like to remark that

the derivation of the first law (9) can be also performed
directly using the parameter set ðM; a; RÞ which enters the

formulas (2)–(3). This possibility, as will be seen later, is
highly important when the rotational parameter a is related
in a complicated way to the angular momentum J. Since in
our case J is simplyMa and hence dJ ¼ Mdaþ adM, one
will be able to arrive at the correct result for dM in (7)
by substituting the differentials da by ðdJ − adMÞ=M
throughout the calculations.

III. TWO EQUAL COROTATING KERR
BLACK HOLES

The case of two identical corotating Kerr black holes is
described by the exact solution worked out in two different
representations in the papers [15,16]. The representation
involving physical parameters, which is of interest to us for
our purposes, is defined by the formulas

f ¼ AĀ−BB̄
ðAþBÞðĀþ B̄Þ ; e2γ ¼ AĀ−BB̄

K2
0RþR−rþr−

;

ω¼ 4a−
2Im½GðĀþ B̄Þ�

AĀ−BB̄
;

A¼ R2ðRþ −R−Þðrþ − r−Þ− 4σ2ðRþ − rþÞðR− − r−Þ;
B¼ 2Rσ½ðRþ 2σÞðR− − rþÞ− ðR− 2σÞðRþ − r−Þ�;
G¼ −zBþRσ½2RðR−r− −RþrþÞþ 4σðRþR− − rþr−Þ

− ðR2 − 4σ2ÞðRþ −R− − rþ þ r−Þ�;

R� ¼ −Mð�2σþRÞ þ id
2M2 þ ðRþ 2iaÞð�σþ iaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ
�

zþ 1

2
R� σ

�
2

s

;

r� ¼ −Mð�2σ −RÞ þ id
2M2 − ðR− 2iaÞð�σþ iaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ
�

z−
1

2
R� σ

�
2

s

;

K0 ¼
4σ2½ðR2 þ 2MRþ 4a2Þ2 − 16M2a2�

M2½ðRþ 2MÞ2 þ 4a2� ; ð11Þ

where the constant quantities σ and d have the form

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2 þ d2ðR2 − 4M2 þ 4a2Þ−1
q

;

d ¼ 2MaðR2 − 4M2 þ 4a2Þ
R2 þ 2MRþ 4a2

: ð12Þ

Like in the previous case of counterrotating black holes,
the parameters M and R denote, respectively, the mass
of each black hole and the coordinate distance between
the centers of black holes (see Fig. 2); however, now
the rotational parameter a is not equal exactly to the
angular momentum J of the black hole per unit mass M,
but its relation to J is determined by the following cubic
equation:

J ¼ Ma½ðRþ 2MÞ2 þ 4a2�
R2 þ 2MRþ 4a2

: ð13Þ
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The black-hole sector of the metric (11)–(12) corresponds
to the real-valued σ, while the hyperextreme Kerr sources,
which are of no interest to us in this paper, are described
by the pure imaginary σ.
Each black hole in the binary system verifies identi-

cally the Smarr formula (4), and the known thermo-
dynamical characteristics which we will need for the
derivation of the first law of thermodynamics are written
down below:

S ¼ 2πM½ðRþ 2MÞ2 þ 4a2�½ðRþ 2MÞðM þ σÞ − 2a2�
ðRþ 2σÞðR2 þ 2MRþ 4a2Þ ;

T ¼ σðRþ 2σÞðR2 þ 2MRþ 4a2Þ
4πM½ðRþ 2MÞ2 þ 4a2�½ðRþ 2MÞðM þ σÞ − 2a2� ;

Ω ¼ ðM − σÞðR2 þ 2MRþ 4a2Þ
2Ma½ðRþ 2MÞ2 þ 4a2� ;

F ¼ M2½ðRþ 2MÞ2 − 4a2�
ðR2 − 4M2 þ 4a2Þ½ðRþ 2MÞ2 þ 4a2� ; ð14Þ

where we have given the expression of the entropy S
instead of the horizon area A,2 and the temperature T
instead of the surface gravity κ.
The parameter set that we must employ during the

calculations is ðM; a; RÞ which does not include explicitly

the angular momentum J. Therefore, we have to follow the
procedure outlined at the end of the previous section, i.e.,
we should treat the quantities S, Ω, and F as functions of
M, a, and R, and after taking differentials dS, dΩ, and dF
we must change the differential da to the combination of
the differentials dJ, dM, and dR via the formula obtainable
from (13), namely,

da ¼ 1

M½RðRþ 2MÞ3 þ 8a2ðR2 þMR − 2M2 þ 2a2Þ�
× fðR2 þ 2MRþ 4a2Þ2dJ
− a½ðRþ 2MÞ2ðR2 þ 4MRþ 8a2Þ
þ 16a2ðm2 þ a2Þ�dM
þ 2M2a½ðRþ 2M2Þ2 − 4a2�dRg: ð15Þ

Then it only remains to solve the system of three
algebraic equations for dM, dΩ, and dR, and the expression
for dM multiplied by 2 (due to equality of black holes)
finally provides us with the first law of thermodynamics for
the binary configuration of two identical corotating Kerr
black holes:

dMT ¼ 2TdSþ 2ΩdJ − ldF ;

MT ¼ 2M;

l ¼ ðR − 2σÞðR2 − 4M2 þ 4a2Þ½ðRþ 2MÞ2 þ 4a2�
ðR2 þ 2MRþ 4a2Þ2 − 16M2a2

;

ð16Þ

with the coefficients T and Ω defined by (14). One can see
that the first law (16) has the same structure as in (9).
Although the thermodynamic length l in (16) has a more
complicated form than the respective l in (9), it is still
not difficult to verify that the new l obeys formula (10)
too: the coordinate length L of the strut is the same as in
the previous “counterrotating” case (L ¼ R − 2σ) and the
value of expðγ0Þ calculated with the aid of formulas
(11)–(12) coincides with l=L in (16).
We now turn to the general case of rotating Kerr

black holes.

IV. TWO GENERIC KERR BLACK HOLES

The general solution describing a system of two aligned
Kerr black holes separated by a massless strut is defined by
the formulas [15,17,18]

FIG. 2. Location of two identical corotating Kerr black holes on
the symmetry axis.

2There is a misprint in the formula (26) of [15] for horizon’s
area: the last term in the numerator must read −2a2.
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f ¼ AĀ − BB̄
ðAþ BÞðĀþ B̄Þ ; e2γ ¼ AĀ − BB̄

16jσ1j2jσ2j2K2
0R̃þR̃−r̃þr̃−

; ω ¼ 2a −
2Im½GðĀþ B̄Þ�

AĀ − BB̄
;

A ¼ ½R2 − ðσ1 þ σ2Þ2�ðRþ − R−Þðrþ − r−Þ − 4σ1σ2ðRþ − r−ÞðR− − rþÞ;
B ¼ 2σ1ðR2 − σ21 þ σ22ÞðR− − RþÞ þ 2σ2ðR2 þ σ21 − σ22Þðr− − rþÞ

þ 4Rσ1σ2ðRþ þ R− − rþ − r−Þ;
G ¼ −zBþ σ1ðR2 − σ21 þ σ22ÞðR− − RþÞðrþ þ r− þ RÞ

þ σ2ðR2 þ σ21 − σ22Þðr− − rþÞðRþ þ R− − RÞ
− 2σ1σ2f2R½rþr− − RþR− − σ1ðr− − rþÞ þ σ2ðR− − RþÞ�
þ ðσ21 − σ22Þðrþ þ r− − Rþ − R−Þg;

r� ¼ μ−10
ð�σ1 −m1 − ia1Þ½ðRþMÞ2 þ a2� þ 2a1½m1aþ iMðRþMÞ�
ð�σ1 −m1 þ ia1Þ½ðRþMÞ2 þ a2� þ 2a1½m1a − iMðRþMÞ� r̃�;

R� ¼ −μ0
ð�σ2 þm2 − ia2Þ½ðRþMÞ2 þ a2� − 2a2½m2a − iMðRþMÞ�
ð�σ2 þm2 þ ia2Þ½ðRþMÞ2 þ a2� − 2a2½m2aþ iMðRþMÞ� R̃�;

r̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ
�

z −
1

2
R� σ1

�
2

s

; R̃� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ
�

zþ 1

2
R� σ2

�
2

s

; ð17Þ

where the constants K0 and μ0 have the form3

K0 ¼
½ðRþMÞ2 þ a2�½R2 − ðm1 −m2Þ2 þ a2� − 8m1m2a2

m1m2½ðRþMÞ2 þ a2� ;

μ0 ¼
RþM − ia
RþM þ ia

; ð18Þ

and the quantities σ1 and σ2 representing the half lengths of
the horizons of black holes are given by the expressions

σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 − a21 þ 4m2a1d1

q

σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
2 − a22 þ 4m1a2d2

q

;

d1 ¼
½m1ða1 − a2 þ aÞ þ Ra1�½ðRþMÞ2 þ a2� þm2a1a2

½ðRþMÞ2 þ a2�2 ;

d2 ¼
½m2ða2 − a1 þ aÞ þ Ra2�½ðRþMÞ2 þ a2� þm1a2a2

½ðRþMÞ2 þ a2�2 :

ð19Þ
The arbitrary real parameters of the metric (17)–(19) are

m1,m2, a1, a2, and R, five in total, and the upper black hole
has mass m1 and angular momentum per unit mass a1,
while the lower black hole is endowed with mass m2 and
angular momentum per unit mass a2, so that a1 ¼ j1=m1,
a2 ¼ j2=m2, j1 and j2 being angular momenta of the upper
and lower black hole, respectively (see Fig. 3); we note that
these masses and angular momenta are Komar quantities
[26]. As usual, the parameter R denotes the coordinate

distance between the centers of black holes. The total mass
M and total angular momentum J of the binary system have
the form

M ¼ m1 þm2; J ¼ m1a1 þm2a2; ð20Þ

and a is related to the aforementioned five parameters by
the cubic equation

ðR2 −M2 þ a2Þða1 þ a2 − aÞ þ 2ðRþMÞðJ −MaÞ ¼ 0;

ð21Þ

FIG. 3. Location of two unequal Kerr black holes on the
symmetry axis. The coordinate length of the strut L is equal
to R − σ1 − σ2.

3We have rectified misprints in the formula (13) of [17] for K0

and formulas (5) of [17] for d1 and d2.
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so that its role is similar to that of a from the previous sec-
tion. Note that the particular case of equal counterrotating
black holes follows from the general formulas by setting
m1 ¼ m2 ¼ M, a2 ¼ −a1 ¼ α, a ¼ 0, while the corotating
case of equal black holes corresponds to the parameter

choice m1 ¼ m2 ¼ M, a1 ¼ a2 ¼ α, with a formal redefi-
nition a → 2a and changing α to a by means of (21).
For the entropies ðS1; S2Þ, temperatures ðT1; T2Þ, hori-

zon’s angular velocities ðΩ1;Ω2Þ of each black hole, and
the interaction force F we have the expressions

S1
π

¼ σ1
2πT1

¼ fðm1 þ σ1Þ½ðRþMÞ2 þ a2� − 2m1a1ag2 þ a21ðR2 −M2 þ a2Þ2
½ðRþMÞ2 þ a2�½ðRþ σ1Þ2 − σ22�

;

S2
π

¼ σ2
2πT2

¼ fðm2 þ σ2Þ½ðRþMÞ2 þ a2� − 2m2a2ag2 þ a22ðR2 −M2 þ a2Þ2
½ðRþMÞ2 þ a2�½ðRþ σ2Þ2 − σ21�

;

Ω1 ¼
m1 − σ1
2m1a1

; Ω2 ¼
m2 − σ2
2m2a2

;

F ¼ m1m2½ðRþMÞ2 − a2�
ðR2 −M2 þ a2Þ½ðRþMÞ2 þ a2� ; ð22Þ

that must now be cleverly used for the derivation of the first
law of thermodynamics. To avoid the resolution of the
cubic equation (21), it appears that the best strategy to
tackle the derivation problem is to work with the parameter
set fm1; m2; j1; R; ag, for which purpose it is necessary first
to change a1 and a2 to j1=m1 and j2=m2 in the formulas
(22), as well as in the expressions for σ1 and σ2. Then we
have to solve equation (21) for j2, yielding

j2 ¼
m2fm1a½ðRþMÞ2 þ a2�− j1½ðRþm1Þ2 −m2

2 þ a2�g
m1½ðRþm2Þ2 −m2

1 þ a2� ;

ð23Þ

and make another substitution in the formulas involved, this
time changing j2 by means of (23). As a result, we have the
necessary formulas rewritten in the desired parameter set
and can proceed in a standard way. We must take differ-
entials of the quantities S1, S2, Ω1, Ω2 and F by consid-
ering these as functions of m1, m2, j1, R, a and changing
the differentials da to dj2 by means of (23). The resulting
system of five algebraic equations must be solved for dm1,
dm2, dΩ1, dΩ2, and dR, thus giving us the first law of
thermodynamics as the sum of dm1 and dm2:

dM¼T1dS1þT2dS2þΩ1dj1þΩ2dj2−ldF ;

M¼m1þm2;

l¼ ðR−σ1−σ2ÞðR2−M2þa2Þ½ðRþMÞ2þa2�
ðR2þMRþa2Þ2− ðm1−m2Þ2ðRþMÞ2−4m1m2a2

:

ð24Þ

Therefore, as it follows from (24), the structure of the
thermodynamic length l in the general case remains the
same as in two previous particular cases—it is determined
by the formula (10) because the coordinate length of the

strut for the unequal black holes is L ¼ R − σ1 − σ2, and
the part l=L in (24) coincides exactly with the correspond-
ing value of expðγ0Þ, as can be easily verified. It is quite
surprising that the very cumbersome intermediate calcu-
lations have eventually led us to an elegant final result for l
proving the universal character of the formula (10).

V. CONCLUDING REMARKS

In the present paper we have succeeded in extending
the notion of thermodynamic length l further to binary
stationary systems of black holes and found the explicit
concise form of l in the case of three different binary
configurations. The thermodynamic length permits one to
derive analytically the first law of thermodynamics in a
consistent way, and the physical parametrization of the
solutions describing the systems of black holes simplifies
considerably the derivation procedure. It is remarkable that
l in the stationary case turns out to be determined by the
same formula (10) as in the static vacuum and electrostatic
cases, and it admits the same geometrical interpretation as
given in [2]—the area of the worldsheet of the strut per unit
time. This suggests in particular that most probably the
notion of thermodynamic length is also applicable to the
stationary electrovac configurations of black holes as well.
At least this is certainly true in the case of the Bretón-
Manko solution [13] for two equal counterrotating Kerr-
Newman black holes [27]. Using the physical parametriza-
tion of this solution obtained in [28] it can be actually
shown that the corresponding first law of thermodynamics
and the thermodynamic length have the form

dMT ¼ 2TdSþ 2ΩdJ þ 2ΦdQ − ldF ;

MT ¼ 2M l ¼ ðR − 2σÞðR2 − 4M2 þ 4Q2Þ=R2;

ð25Þ
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(Q is the charge and Φ the electric potential) and l verifies
formula (10). In the absence of rotation, one recovers the
result obtained for l in [2]. We are going to consider the
thermodynamics of rotating charged binary black holes in a
separate publication.
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