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Recently, a new path integral formulation of loop quantum gravity (LQG) has been derived in M. Han
and H. Liu, Phys. Rev. D 101, 046003 (2020). from the reduced phase space formulation of the canonical
LQG. This paper focuses on the semiclassical analysis of this path integral formulation. We show that
dominant contributions of the path integral come from solutions of semiclassical equations of motion
(EOMs), which reduce to Hamilton’s equations of holonomies and fluxes hðeÞ, paðeÞ in the reduced

phase space Pγ of the cubic lattice γ: dhðeÞ
dτ ¼ fhðeÞ;Hg, dpaðeÞ

dτ ¼ fpaðeÞ;Hg, where H is the discrete
physical Hamiltonian. The semiclassical dynamics from the path integral becomes an initial value
problem of Hamiltonian time evolution in Pγ . Moreover when we take the continuum limit of the lattice
γ, these Hamilton’s equations reproduce correctly classical reduced phase space EOMs of gravity
coupled to dust fields in the continuum, as far as initial and final states are semiclassical. Our result
proves that the new path integral formulation has the correct semiclassical limit and indicates that the
reduced phase space quantization in LQG is semiclassically consistent. Based on these results, we
compare this path integral formulation and the spin foam formulation, and show that this formulation has
several advantages including the finiteness, the relation with canonical LQG, and the freedom from
cosine and flatness problems.

DOI: 10.1103/PhysRevD.102.024083

I. INTRODUCTION

In recent developments of loop quantum gravity (LQG),
tremendous progress has been obtained by the covariant
path integral approach (see e.g., [1] for a summary). The
covariant path integral approach of LQG focuses on
transition amplitudes of LQG states (such as spin net-
works). These amplitudes sum all possible evolution
histories of LQG states, reflecting the idea of Feynman’s
path integral. Moreover the path integral approach makes it
possible to bypass complications from the nonpolynomial
Hamiltonian constraint operator and possibly reduce diffi-
culties in computing physical quantities in LQG. Indeed,
the path integral trades the noncommutativity of quantum
operators for integrals of commutative c-numbers, and
thus may reduce complicated operator manipulations to

computable integrals. It is the reason why most develop-
ments of quantum field theories (QFTs) are made by using
path integral formulas.
A popular path integral approach in LQG is the spin

foam formulation [1,2]. This formulation constructs tran-
sition amplitudes of LQG on four-dimensional (4D) trian-
gulations, and all these spin foam amplitudes are made by
gluing elementary building blocks called vertex ampli-
tudes, in analogy with Feynman amplitudes made by gluing
vertices and propagators. This structure of spin foam
amplitudes allows them to be studied both analytically
and numerically. Semiclassical behaviors of spin foam
amplitudes, given by the large-j asymptotics, have been
extensively studied analytically and found a close relation
to the Regge calculus of discrete gravity (see e.g., [3–16]).
Numerical studies of spin foam amplitudes have been
developed in [17–20]. Spin foams have also been related
to quantum computations recently [21–23]. However,
extensive studies of spin foam amplitudes reveal several
severe problems:
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(1) Cosine problem: In the large-j limit, the emergent
(discrete) spacetime determined by the spin foam
amplitude with a fixed semiclassical boundary state
is highly nonunique in general, even when the
semiclassical boundary state specifies both metric
and extrinsic curvature at the boundary. Different
discrete spacetimes have different 4D orientations at
individual 4-simplices [6,7]. Although for a single
vertex amplitude the orientation can be fixed by the
boundary coherent state specifying both metric and
extrinsic curvature [24], it cannot be generalized to
many 4-simplices. If we view the spin foam as an
initial value problem, then its semiclassical time
evolution from a fixed initial condition in phase
space can give many different trajectories; thus it is
very different from classical physics.1

(2) Flatness problem: There are evidences indicating
that in the large-j limit, spin foam amplitudes
dominate at the flat spacetime and miss all other
curved spacetimes [27–31]. Although some other
work suggests that one may modify the large-j limit
and/or definitions of spin foams in order to avoid the
flatness problem [10,11,32], there is still no satis-
factory resolution to the problem in full generality.2

(3) Relation with canonical LQG: The spin foam
approach has been developed in parallel to the
canonical approach of LQG. It is not clear how to
relate spin foam amplitudes to any transition am-
plitude or physical inner product in the canonical
LQG (see e.g., [34–39] for some earlier attempts). It
is not clear about the unitarity of spin foam models.

(4) Divergence: Spin foam amplitudes are divergent
[40–42] unless the quantum Lorentz group (with real
q) is employed [43,44] (the quantum group relates to
cosmological constant [8,45]).

(5) Computational complexity: Numerical computations
are currently developed only for a single vertex
amplitude. Even for the vertex amplitude, the com-
putational complexity grows very fast as the spin j
increases [17]. The computational complexity grows
exponentially when the number of 4-simplices in-
creases. Quantum computing might help in this
perspective, but it is still at a very preliminary stage.

(6) Lattice dependence: There are infinitely many spin
foam amplitudes with the same boundary state.
These amplitudes are defined on different triangu-
lations (with the same boundary). It is not clear how
to remove the triangulation dependence and/or how
to take the continuum limit at the quantum level. The
diffeomorphism invariance is difficult to be imple-
mented in spin foam models. Group field theory
(GFT) provides an interesting proposal to sum over
all triangulations, but it seems still difficult to extract
all semiclassical smooth spacetimes from a fixed
GFT partition function (while some special cases
such as black holes and cosmology can indeed be
extracted from the general GFT formalism [46–48]).
There are also different approaches toward the spin
foam continuum limit via lattice refinement and
renormalization [20,49].

As a different approach, a new path integral formulation
of LQG has been proposed recently in [50]. This path
integral is derived from the reduced phase space formu-
lation of canonical LQG. The reduced phase space formu-
lation couples gravity to matter fields such as dusts or scalar
fields (clock fields), followed by a deparametrization
procedure, in which gravity variables are parametrized
by values of clock fields, and constraints are solved
classically. Results from the deparametrization are
(1) the reduced phase space P on which all phase space
functions are Dirac observables free of gauge redundancy
[except for the SU(2) gauge freedom when using con-
nection variables], and (2) the dynamics is governed by a
physical Hamiltonian H0 generating physical time evolu-
tion (the physical time is the value of a clock field). The
reduced phase space P of the gravity-matter system can be
quantized using the standard LQG technique and result in
the physical Hilbert space H. The physical Hamiltonian is
promoted to a positive self-adjoint Hamiltonian operator Ĥ
on H. The reduced phase space quantization of LQG has
been proposed conceptually in [51,52] and has been made
concrete in [53–58] (Sec. II provides a review of the
reduced phase space formulation).
The new path integral formula in [50] equals to the

transition amplitude of the unitary evolution generated
by Ĥ:

A½g�;½g0� ¼ hΨt
½g�j exp

�
−
i
ℏ
TĤ

�
jΨt

½g0�i ð1Þ

of semiclassical initial and final physical states Ψt
½g0� and

Ψt
½g�. Here Ψ

t
½g0� and Ψ

t
½g� are SU(2) gauge invariant coherent

states [59,60] in Hγ , the physical Hilbert space on a cubic
lattice γ. [g] and ½g0� label the gauge equivalence class of
initial and final data in the phase space (g is the complex
coordinate of the phase space). The path integral formula is
derived from A½g�;½g0� by the standard method: discretizing T

1There are arguments that the sum over orientations in the 3D
Ponzano-Regge model is necessary to properly implement the
constraints [25]. Heuristically one might argue that the spin
foam model should act as a projector onto the physical Hilbert
space, and thus is necessary to integrate over positive and
negative lapse and shift [26]. But the semiclassical analysis of
spinfoam models indicates that the lapse and shift are discrete so
orientations can jump from one simplex to another. This makes
semiclassical interpretations of geometries from spin foams
problematic.

2See also a recent numerical study toward understanding the
problem [33].
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into arbitrarily large N time steps and inserting the over-
completeness relation of coherent states. As a result, we
obtain a discrete path integral on a 4D hypercubic lattice
(see Sec. II for review):

A½g�;½g0�
kΨt

½g�kkΨt
½g0�k

¼
Z

dh
YNþ1

i¼1

dgi ν½g�eS½g;h�=t; ð2Þ

where we can extract a “classical action” S½g; h� from the
resulting path integral formula (see Sec. II B for details).R
dgiν½g� integrates coherent states intermediating the

quantum transition at different time steps τi ¼ i
N T. t ¼

l2
P=a

2 is a dimensionless semiclassicality parameter (it is
preferred to take limits with dimensionless parameters),
and a is a fixed length unit so that t is the numerical value of
l2
P measured in this unit (e.g., t ¼ 1.616 × 10−35 when

a ¼ 1m). The semiclassical limit ℏ → 0 corresponds to
t → 0 or lP ≪ a. Equation (2) has SU(2) integrals

R
dh

since the initial and final data have SU(2) gauge freedom.
This path integral formula is comparable to the spin

foam amplitude in the coherent state representation [6]
which is frequently used for analyzing the large-j behav-
ior. On the other hand, if we choose the clock field to be a
real massless scalar, Eq. (2) closely relates to the spin
foam model in [61].3 It is a matter of changing the
representation basis to cast the path integral (2) into a
shape similar to spin foams.
In this paper, we focus on the semiclassical analysis of

the path integral formulation Eq. (2), i.e., the behavior as
t → 0. By stationary phase approximation, dominant con-
tributions of the path integral come from solutions of
semiclassical equations of motion (EOMs) δS ¼ 0. These
semiclassical EOMs have been derived in [50] and shown
to admit time continuous limit Δτ ¼ T=N → 0; i.e., all
solutions can be approximated by continuous (and differ-
entiable) trajectories gðτÞ in the reduced phase space. In this
paper, we show that in the time continuous limit, semi-
classical EOMs derived from Eq. (2) become precisely the
Hamilton’s equation in the reduced phase space:

dhðeÞ
dτ

¼ fhðeÞ;Hg; dpaðeÞ
dτ

¼ fpaðeÞ;Hg; ð3Þ

where hðeÞ and paðeÞ are holonomy and gauge covariant
flux associated with the edge e in γ. hðeÞ and paðeÞ relate to
gðeÞ by gðeÞ ¼ e−ip

aðeÞτa=2hðeÞ, τa ¼ −iðPauliMatrixÞa.
f; g is the Poisson bracket of the reduced phase space
and reduces to the holonomy-flux algebra on γ. H is the
semiclassical limit of Ĥ.
In addition, we show in Sec. VI that when we take the

continuum limit of the lattice γ, EOMs (3) reproduce
classical reduced phase space EOMs of gravity coupled
to matter fields in the continuum, as far as initial and final
states Ψt

½g0� and Ψt
½g� are semiclassical in the sense that

½g0�; ½g� is within the classically allowed regime. The
classically allowed regime in the phase space satisfy certain
nonholonomic constraints required by the gravity-matter
system. Our result proves that the path integral formulation
Eq. (2) has the correct semiclassical limit and indicates that
the reduced phase space quantization in LQG is semi-
classically consistent. The procedure of limits in our
analysis and results are summarized in Fig. 1.
Given semiclassical initial and final states and by

Hamilton’s equations (3), the semiclassical dynamics from
A½g�;½g0� becomes an initial value problem of Hamiltonian
time evolution in the reduced phase space. Fixing the initial
condition ½g0�, the solution of EOMs (3), given by the
Hamiltonian flow of H, is unique up to SU(2) gauge
transformation.
If semiclassical initial and final data ½g0�; ½g� are con-

nected by the trajectory gðτÞ satisfying Eq. (3), as t → 0,
the path integral (51) dominates at this semiclassical
trajectory:

A½g�;½g0�
kΨt

½g�kkΨt
½g0�k

¼ ð2πtÞN =2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−HÞp ν½gðτÞ; h�eS½gðτÞ;h�=t½1þOðtÞ�;

ð4Þ

whereN is the total dimension of the integral in Eq. (2) and
H is the Hessian matrix at the solution. S½gðτÞ; h� is the
action evaluated at the solution gðτÞ; h, where the continu-
ous trajectory gðτÞ ≃ gi approximates the discrete solution
as Δτ small. If the initial and final data ½g0�; ½g� are not
connected by the trajectory gðτÞ, the amplitude is sup-
pressed exponentially as t → 0.
It is interesting to make a comparison between the new

path integral formulation of LQG (2) to the spin foam
formulation.
(1) Our path integral formulation is free of the cosine

problem. The initial state Ψt
½g0� determines a unique

FIG. 1. The procedure of limits in this paper to reproduce classical gravity coupled to clock fields (dusts). μ is the coordinate length of
lattice edges in the dust frame and used as the parameter for the lattice continuum limit.

3Namely Eq. (2) is the coherent state representation of the
amplitude in [61], if their derivation uses graph-preserving
Hamiltonian, and Ĥ is the Hamiltonian in [62].
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semiclassical trajectory [up to SU(e) gauge trans-
formations] given by the Hamiltonian flow of H.
The asymptotic formula has a single exponential
[integrated over SU(2) gauge transformations]. A
key reason is that here all solutions of semiclassical
EOMs admit a time continuous limit. Solutions with
discontinuous orientations are forbidden.

(2) Our path integral formulation is free of the flatness
problem. The semiclassical EOMs (3) from the path
integral reproduce the classical EOMs of the gravity-
matter system and admit all curved solutions that are
physically interesting. For instance, Refs. [50,63]
have demonstrated the homogeneous and isotropic
cosmology and cosmological perturbation theory
from solutions.

(3) There is a clear link between our path integral
formulation and the canonical LQG.4 The path
integral (51) is rigorously derived from the canonical
LQG. The unitarity is manifest because the path
integral equals the transition amplitude of unitary
evolution generated by Ĥ.

(4) The path integral formula (2) is finite for arbitrary
finite N, and because of the transition amplitude
A½g�;½g0� is manifestly finite. The finiteness is irrelevant
to the cosmological constant.

There are open issues: Computing quantum effects
within the path integral formulation (51) relies on knowl-
edge of the matrix elements and/or expectation values of Ĥ
with respect to coherent states. The nonpolynomial oper-
ator Ĥ may make computations highly involved. Second,
the path integral is constructed on the lattice γ, and it is not
clear at present if we are able to remove this lattice
dependence at the quantum level. Although gauge sym-
metries from Hamiltonian and diffeomorphism constraints
are resolved classically in the reduced phase space formu-
lation, they lead to infinitely many classical conserved
charges. But the discretization breaks these conservation
laws except the conservation ofH [57]. The limits in Fig. 1
can recover these classical conserved charges, but it is not
clear how to make them conserved at the quantum level as
well, due to the lattice dependence. This formulation may
still share issues of computational complexity and lattice
dependence with the spin foam formulation, at least at the
current stage. However, studies of the new path integral
formulation is still at a very preliminary stage, and research
on overcoming these issues will be carried out in the future.
Some discussions are given in Sec. VIII.
As a by-product from this work, we obtain an under-

standing of dusts or other clock fields from the LQG point
of view, particularly whether dusts are valid in the quantum
regime. Our attitude is that the quantum theory of LQG

defined by the Hamiltonian Ĥ should be the fundamental
theory and starting point of discussions. Although the
quantum theory is formally obtained by quantizing the
classical theory, the classical theory is not fundamental but
emergent from the fundamental quantum theory. From the
quantum point of view, both classical gravity and dust are
low-energy effective degrees of freedom produced from the
quantum theory via the semiclassical approximation, as
demonstrated in our work. Both classical gravity and dusts
are not fundamental and not valid in the quantum regime
but emergent at low energy, while what are valid in the
quantum regime are Ĥ defined on H.
This work mainly focuses on scenarios with clock fields

as Brown-Kuchař or Gaussian dusts. The generalization to
a massless scalar clock field should be straightforward
given that the formulation is defined for all three scenarios
[50]. The generalization of the present formulation to
include other matter fields, such as the Yang-Mills field
and fermions, is based on existing quantizations of matters
in the canonical LQG [66–68]. The detailed analysis is
currently undergoing work.
Many computations in this work are carried out with

Mathematica on high-performance-computing (HPC)
servers. Some intermediate steps and results contain long
formulas that cannot be shown in this paper. These
formulas and Mathematica codes can be downloaded
from [69].
The architecture of this paper is as follows: Section II

reviews the reduced phase space formulation of LQG and
the derivation of the new path integral formulation.
Section III reviews semiclassical EOMs from the path
integral and derives its time continuous limit in general
(new results of this paper start in Sec. III B). Section IV
shows that semiclassical EOMs are equivalent to
Hamilton’s equations (3). Section V shows that the time
continuous limit of the action S½g; h� gives a canonical
action with the Hamiltonian H, and demonstrates that the
variational principle and time continuous limit are com-
mutative when acting on S½g; h�. Section VI analyzes
semiclassical EOMs in the lattice continuum limit of γ
and demonstrates consistency with a classical gravity-
matter system. Section VIII compares the new path integral
formulation with the spin foam formulation.

II. REDUCED PHASE SPACE
FORMULATION OF LQG

A. Classical framework

The reduced phase space formulation couples
gravity to matter fields at a classical level. These matter
fields are often called clock fields. In this paper, we mainly
focus on two scenarios including coupling gravity to
Brown-Kuchař and Gaussian dust fields [57,58,70,71].
The action of gravity coupled to Brown-Kuchař dust is
given by

4Advantages from relating canonical and path integral formu-
lation can be seen from loop quantum cosmology (LQC) in
studying the physical inner product [64,65].

MUXIN HAN and HONGGUANG LIU PHYS. REV. D 102, 024083 (2020)

024083-4



S ¼ SGR þ SBKD: ð5Þ

The gravity action is given by the Holst action

SGR ¼ 1

16πG

Z
M
d4xeeμAe

ν
B

�
ΩAB

μν þ 1

2β
ϵABCDΩCD

μν

�
ð6Þ

where eμA is the tetrad, e is the determinant of eμA, andΩAB
μν is

the curvature of the so(1,3) connection ωAB
μ . β is the

Barbero-Immirzi parameter. SBKD is the action of
Brown-Kuchař dust:

SBKD½ρ;gμν;T;Sj;Wj�¼−
1

2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetðgÞj

p
ρ½gμνUμUνþ1�;

ð7Þ

Uμ ¼ −∂μT þWj∂μSj; ð8Þ

where scalars T; Sj¼1;2;3 form the dust coordinates of
time and space to parametrize physical fields. ρ;Wj are
Lagrangian multipliers. ρ is interpreted as the dust
energy density. When we couple SBKD to gravity (or
gravity is coupled to some other matter fields) and carry
out the Hamiltonian analysis [58], we obtain the following
constraints:

Ctot ¼ C þ 1

2

�
P2=ρffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
ρðqαβUαUβ þ 1Þ

�
¼ 0;

ð9Þ

Ctotα ¼ Cα þ PT;α − PjS
j
;α ¼ 0; ð10Þ

ρ2 ¼ P2

detðqÞ ð1þ qαβUαUβÞ−1; ð11Þ

Wj ¼ Pj=P; ð12Þ

where α and β are spatial coordinate indices, P and Pj are
momenta conjugate to T and Sj, qαβ is the three metric on
spatial slices, and C and Cα are Hamiltonian and diffeo-
morphism constraints of gravity (or gravity coupled to
some other matter fields). First Eq. (11) can be solved by

ρ ¼ ε
Pffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ð1þ qαβUαUβÞ−1=2; ε ¼ �1: ð13Þ

ε can be fixed to ε ¼ 1 by a physical requirement that U is
timelike and future pointing [55], so sgnðPÞ ¼ sgnðρÞ.
Inserting this solution into Eq. (9) and using Eq. (12)
lead to

C ¼ −P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qαβCαCβ=P2

q
: ð14Þ

Thus −sgnðCÞ ¼ sgnðPÞ ¼ sgnðρÞ. When we consider dust
coupling to pure gravity, we must have C < 0 and the
physical dust ρ; P > 0 to fulfill the energy condition as in
[70]. However, we may couple some additional matter
fields (e.g., scalars, fermions, gauge fields) to make C > 0,
and then ρ; P < 0 correspond to the phantom dust as in
[55,57]. The case of phantom dust may not violate the usual
energy condition due to the presence of additional matter
fields. We can solve P; Pj from Eqs. (9) and (10),

P ¼ h physical dust;

−h phantomdust;
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − qαβCαCβ

q
; ð15Þ

Pj ¼ −Sαj ðCα − hT;αÞ; ð16Þ

which are strongly Poisson commutative constraints. Sαj is
the inverse matrix of ∂αSj (α ¼ 1, 2, 3). In deriving the
above constraints, we find at an intermediate step that P2 ¼
C2 − qαβCαCβ > 0 constrains the argument of the square
root to be positive. Moreover the physical dust requires
C < 0 due to the energy condition while the phantom dust
requires C > 0. C2 − qαβCαCβ > 0 and C < 0 (C > 0) are
nonholonomic constraints for the reduced phase space.
We use Aa

αðxÞ, Eα
aðxÞ to be canonical variables of gravity,

where Aa
αðxÞ is the Ashtekar-Barbero connection and

Eα
aðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
det q

p
eαaðxÞ is the densitized triad. a ¼ 1, 2, 3

is the Lie algebra index of su(2). Dirac observables are
constructed relationally by parametrizing ðA;EÞ with
values of dust fields TðxÞ≡ τ, SjðxÞ≡ σj, i.e., Aa

j ðσ; τÞ ¼
Aa
j ðxÞjTðxÞ≡τ;SjðxÞ≡σj and Ej

aðσ; τÞ ¼ Ej
aðxÞjTðxÞ≡τ;SjðxÞ≡σj ,

where σ, τ are physical space and time coordinates in
the dust reference frame. Here j ¼ 1, 2, 3 is the dust
coordinate index (e.g., Aj ¼ AαSαj ). Intuitively, A

a
j ðσ; τÞ,

Ej
aðσ; τÞ depending only on values of dust fields should be

independent of choices of coordinates x, i.e., should be
gauge invariant. Indeed, they are proven to be invariant (on
the constraint surface) under gauge transformations gen-
erated by diffeomorphism and Hamiltonian constraints
[53,54,57]. Moreover Aa

j ðσ; τÞ and Ej
aðσ; τÞ satisfy the

standard Poisson bracket in the dust frame:

fEi
aðσ; τÞ; Ab

j ðσ0; τÞg ¼ 1

2
κβδijδ

b
aδ

3ðσ; σ0Þ; ð17Þ

where β is the Barbero-Immirzi parameter and κ ¼ 16πG.
Aa
j ðσ; τÞ and Ej

aðσ; τÞ are the conjugate pair in the reduced
phase space P.
The evolution in physical time τ is generated by the

classical physical Hamiltonian H0 given by integrating h
on the constant T ¼ τ slice S. The constant τ slice S is
coordinated by the value of dust scalars, and Sj ¼ σj thus is
referred to as the dust space [57,58]. From Eq. (15), we find
that H0 is negative for physical dust while it is positive for
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phantom dust. We flip the direction of the time flow τ → −τ
and thusH0 → −H0 for physical dust so we have a positive
Hamiltonian in every case:

H0 ¼
Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðσ; τÞ2 − 1

4

X3
a¼1

Caðσ; τÞ2
vuut : ð18Þ

Here C and Ca ¼ 2eαaCα are parametrized in the dust frame.
In terms of Aa

j ðσ; τÞ and Ej
aðσ; τÞ,

C¼1

κ
½Fa

jk−ðβ2þ1ÞεadeKd
jK

e
k�εabc

Ej
bE

k
cffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp þ2Λ
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
;

ð19Þ

Ca ¼
4

κβ
Fb
jk

Ej
aEk

bffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ; ð20Þ

where all the above quantities are Dirac observables. Ka
j is

the extrinsic curvature, and Fa
jk is the curvature of the

connection Aa
j . τ

a ¼ −iðPauli matrixÞa. β is the Barbero-
Immirzi parameter. Λ is the cosmological constant.
Coupling gravity to a Gaussian dust model can be

analyzed similarly, so we do not present the details here
(while details can be found in [58]). As a result the physical
Hamiltonian has a simpler expression,

H0 ¼
Z
S
d3σ Cðσ; τÞ: ð21Þ

In order to put discussions of both the Brown-Kuchař and
Gaussian dusts in a unified manner, we express the physical
Hamiltonian as the following:

H0 ¼
Z
S
d3σ hðσ; τÞ; ð22Þ

hðσ; τÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðσ; τÞ2 − α

4

X3
a¼1

Caðσ; τÞ2
vuut ;

�
α ¼ 1 Brown-Kuchař dust;

α ¼ 0 Gaussian dust:

The physical Hamiltonian H0 is manifestly positive in
Eq. (22). When C < 0, Eq. (22) is different from Eq. (21) by
an overall minus sign, thus the time flow τ → −τ for the
Gaussian dust is reversed compared to Brown-Kucha dust.
In both scenarios, the physical HamiltonianH0 generates

the τ-time evolution,

df
dτ

¼ ff;H0g; ð23Þ

for all phase space function f of Aa
j ðσ; τÞ and Ej

aðσ; τÞ. In
particular, the Hamilton’s equations are

dAa
j ðσ; τÞ
dτ

¼ −
κβ

2

δH0

δEj
aðσ; τÞ

;
dEj

aðσ; τÞ
dτ

¼ κβ

2

δH0

δAa
j ðσ; τÞ

:

ð24Þ

Functional derivatives on the right-hand sides of Eq. (24)
can be computed by

δH0 ¼
Z
S
d3σ

�
C
h
δC −

α

4

Ca
h
δCa

�
; ð25Þ

where C=h is negative for physical dust and positive for
phantom dust. Comparing δH to the variation of the
Hamiltonian HGR ¼ R

d3xðNC þ NαCαÞ of pure gravity
in the absence of dust motivates us to view

N ¼ C
h

ð26Þ

as the physical lapse function. N is negative (positive) for
the physical (phantom) dust. Negative N for the physical
dust relates to the flip τ → −τ for making the Hamiltonian
positive.
In the gravity-dust models, we resolve the Hamiltonian

and diffeomorphism constraints classically, while the SU(2)
Gauss constraint Gaðσ; τÞ ¼ DjE

j
aðσ; τÞ ¼ 0 still has to be

imposed to the phase space. In addition, nonholonomic
constraints are imposed to the phase space: Cðσ; τÞ2 −
α
4

P
3
a¼1 Caðσ; τÞ2 ≥ 0 and C < 0 for physical dust (C > 0

for phantom dust). Recall that nonholonomic constraints
come from P2 > 0 and the energy condition.
These constraints are preserved by the time evolution for

gravity coupled to the Brown-Kuchař dust. Indeed, first the
time evolution cannot break the Gauss constraint since
fGaðσ; τÞ;H0g ¼ 0. Second, both hðσ; τÞ and Cjðσ; τÞ ¼
1
2
eajCaðσ; τÞ are conserved densities on the Gauss constraint

surface [57]:

dhðσ; τÞ
dτ

¼ fhðσ; τÞ;H0g ¼ 0;

dCjðσ; τÞ
dτ

¼ fCjðσ; τÞ;H0g ¼ 0: ð27Þ
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Therefore Cðσ; τÞ2 − 1
4

P
3
a¼1 Caðσ; τÞ2 ¼ hðσ; τÞ2 ≥ 0 is

conserved in the time evolution. About the other non-
holonomic constraint C < 0 (C > 0), one can show that it is
also conserved. This can be seen as the following: suppose
C < 0 (C > 0) was violated in the time evolution; there
would exist a certain time τ0 that Cðσ; τ0Þ ¼ 0, but then
Cðσ; τÞ2 − 1

4

P
3
a¼1 Caðσ; τÞ2 would become negative if

Cjðσ; τÞ ≠ 0, contradicting the conservation of hðσ; τÞ
and the other nonholonomic constraint. If the conserved
Cjðσ; τÞ ¼ 0, hðσ; τÞ2 ¼ Cðσ; τÞ2 is conserved so it cannot
evolve from nonzero to zero. For gravity coupled to the
Gaussian dust, Cjðσ; τÞ is conserved. hðσ; τÞ and Cðσ; τÞ are
conserved only when Cjðσ; τÞ ¼ 0. C < 0 (C > 0) may be
violated in the time evolution for gravity coupled to the
Gaussian dust if Cjðσ; τÞ ≠ 0.
In our following discussion, we focus on pure gravity

coupling to dusts, thus we only work with physical dusts in
order not to violate the energy condition.

B. Quantization, transition amplitude, and coherent
state path integral

We construct a fixed cubic lattice γ which partitions the
dust space S. In this work, we consider S is compact and
has no boundary so that γ is a finite lattice. We denote by
EðγÞ and VðγÞ sets of (oriented) edges and vertices in γ. We
assign every edge a constant coordinate length μ evaluated
in the dust frame. μ → 0 relates to the lattice continuum
limit. Every vertex v ∈ VðγÞ is six-valent. At v there are
three outgoing edges eIðvÞ (I ¼ 1, 2, 3) and three incoming
edges eIðv − μÎÞ where Î is the coordinate basis vector
along the Ith direction when we adapt the dust coordinate
to the lattice. It is sometimes convenient to orient all six
edges at v to be outgoing from v and denote six edges by
ev;I;s (s ¼ �):

ev;I;þ ¼ eIðvÞ; ev;I;− ¼ eIðv − μÎÞ−1: ð28Þ

These notations are illustrated in Fig. 2.
We regularize canonical variables Aa

j ðσ; τÞ and Ej
aðσ; τÞ

on the lattice γ, by defining holonomy hðeÞ and gauge
covariant flux paðeÞ at every e ∈ EðγÞ:

hðeÞ ≔ P exp
Z
e
A;

paðeÞ ≔ −
1

2βa2
tr

�
τa

Z
Se

εijkdσi ∧ dσjhðρeðσÞÞEk
bðσÞτbhðρeðσÞÞ−1

�
; ð29Þ

where A ¼ Aaτa=2 and τa ¼ −iðPauli matrixÞa are two-dimensional anti-Hermitian matrices:

τ1 ¼
�
0 −i
−i 0

�
; τ2 ¼

�
0 −1
1 0

�
; τ3 ¼

�
0 −i
i 0

�
: ð30Þ

FIG. 2. (a) Notations of edges and vertices when all six edges are oriented toward positive directions of coordinates. (b) Notations of
edge and vertices when all six edges are oriented outgoing from v.
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Se is a two-face intersecting e in the dual lattice γ�. ρe is a
path starting at the source of e, traveling along e until
e ∩ Se, and then running in Se until σ⃗. a is a length unit for
making paðeÞ dimensionless. Note that because paðeÞ is
gauge covariant flux, we have

paðev;I;−Þ ¼
1

2
Tr½τahðev−Î;I;þÞ−1pbðev−Î;I;þÞτbhðev−Î;I;þÞ�:

ð31Þ

The Poisson algebra of hðeÞ and paðeÞ is called the
holonomy-flux algebra:

fhðeÞ; hðe0Þg ¼ 0; ð32Þ

fpaðeÞ; hðe0Þg ¼ κ

a2
δe;e0

τa

2
hðe0Þ; ð33Þ

fpaðeÞ; pbðe0Þg ¼ −
κ

a2
δe;e0εabcpcðe0Þ; ð34Þ

where hðeÞ and paðeÞ parametrize the reduced phase space
Pγ for the theory discretized on γ.
The LQG quantization defines the Hilbert space Hγ

spanned by gauge invariant (complex valued) functions of

all hðeÞ’s on γ, and is a proper subspace of H0
γ ¼

⊗e L2ðSUð2ÞÞ of non-gauge-invariant states. Hγ is
obtained by imposing the SU(2) Gauss constraint to H0

γ .
Hγ is the physical Hilbert space free of constraint because it
quantizes the reduced phase space. ĥðeÞ becomes multi-
plication operators on functions in H0

γ . p̂aðeÞ ¼ itR̂a
e=2

where R̂a
e is the right invariant vector field on SU(2):

RafðhÞ ¼ d
dε jε¼0fðeετahÞ. t ¼ l2

p=a2 is a dimensionless
semiclassicality parameter (l2

p ¼ ℏκ). a is a fixed length
unit so that t is the numerical value of l2

P measured in this
unit (e.g., t ¼ 1.616 × 10−35 when a ¼ 1m). The semi-
classical limit ℏ → 0 corresponds to t → 0 or lP ≪ a.
ĥðeÞ and p̂aðeÞ satisfy the commutation relations:

½ĥðeÞ; ĥðe0Þ� ¼ 0;

½p̂aðeÞ; ĥðe0Þ� ¼ itδe;e0
τa

2
hðe0Þ;

½p̂aðeÞ; p̂bðe0Þ� ¼ −itδe;e0εabcpcðe0Þ; ð35Þ

as quantization of the holonomy-flux algebra.
The (non-graph-changing) physical Hamiltonian oper-

ators Ĥ are given by [57]

Ĥ ¼
X

v∈VðγÞ
Ĥv; Ĥv ≔ ½M̂†

−ðvÞM̂−ðvÞ�1=4; ð36Þ

M̂−ðvÞ ¼ Ĉ†
vĈv −

α

4

X3
a¼1

Ĉ†
a;vĈa;v; α ¼

�
1; Brown-Kuchař dust;

0; Gaussian dust:
ð37Þ

In our notation,H0 ¼
R
S d

3σh, C, and Ca are the Hamiltonian, Hamiltonian constraint, and diffeomorphism constraint in the
continuum.H ¼ P

v Hv, Cv, and Ca;v are their discretizations on γ at certain vertex v, while Ĥ ¼ P
v Ĥv, Ĉv, and Ĉa;v are

quantizations of H, Cv, and Ca;v:

Ĉ0;v ¼ −
1

iβκl2
p

X
s1;s2;s3¼�1

s1s2s3εI1I2I3Trðĥðαv;I1s1;I2s2Þĥðev;I3s3Þ½ĥðev;I3s3Þ−1; V̂v�Þ; ð38Þ

Ĉa;v ¼ −
2

iβ2κl2
p

X
s1;s2;s3¼�1

s1s2s3εI1I2I3Trðτaĥðαv;I1s1;I2s2Þĥðev;I3s3Þ½ĥðev;I3s3Þ−1; V̂v�Þ; ð39Þ

Ĉv ¼ Ĉ0;v þ
1þ β2

2
ĈL;v þ

2Λ
κ
V̂v; K̂ ¼ i

ℏβ2

� X
v∈VðγÞ

Ĉ0;v;
X

v∈VðγÞ
Vv

�
;

ĈL;v ¼
16

κðiβl2
pÞ3

X
s1;s2;s3¼�1

s1s2s3εI1I2I3

× Trðĥðev;I1s1Þ½ĥðev;I1s1Þ−1; K̂�ĥðev;I2s2Þ½ĥðev;I2s2Þ−1; K̂�ĥðev;I3s3Þ½ĥðev;I3s3Þ−1; V̂v�Þ; ð40Þ

where Ĉ0;v and ĈL;v are Euclidean and Lorentzian terms in Thiemann’s Hamiltonian constraint operator (at the vertex v on
the cubic lattice), and V̂v is the volume operator at v,
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V̂v ¼ ðQ̂2
vÞ1=4; ð41Þ

Q̂v ¼ −i
�
βl2

P

4

�
3

εabc
Ra
ev;1þ − Ra

ev;1−

2

Rb
ev;2þ − Rb

ev;2−

2

Rc
ev;3þ − Rc

ev;3−

2

¼ β3a6εabc
p̂aðev;1þÞ − p̂aðev;1−Þ

4

p̂bðev;2þÞ − p̂bðev;2−Þ
4

p̂cðev;3þÞ − p̂cðev;3−Þ
4

: ð42Þ

In writing these operators, we have employed the notation
of edges in Fig. 2(b). We have made choices in Ĉv and Ĉj;v
that (1) they are based on discretizations on the cubic lattice
γ and are non-graph-changing operators, and (2) minimal
loops αv;I1s1;I2s2 (around the plaquette bounded by
ev;I1;s1 ; ev;I2;s2) carry the fundamental representation of
SU(2).
The Hamiltonian operator Ĥ is positive semidefinite and

self-adjoint because M̂†
−ðvÞM̂−ðvÞ is manifestly positive

semidefinite and Hermitian, and therefore admits a self-
adjoint extension (Friedrich extension [72]).
Classical discrete Cv and Ca;v are obtained from

Eqs. (38)–(40) by mapping operators to their classical
counterparts and ½f̂1; f̂2� → iℏff1; f2g. Hence classical
discrete physical Hamiltonian H is given by

H ¼
X

v∈VðγÞ
Hv; Hv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����C2
v −

α

4

X3
a¼1

C2
a;v

����
vuut : ð43Þ

The absolute value in the square-root results from that
H is the classical limit of Ĥ defined on the entire Hγ

disregarding nonholonomic constraints in particular
C2 − α

4

P
3
a¼1 C

2
a ≥ 0 for α ¼ 1.

An interesting quantity for quantum dynamics is the
transition amplitude

A½g�;½g0� ¼ hΨt
½g�j exp

�
−
i
ℏ
TĤ

�
jΨt

½g0�i: ð44Þ

For the purpose of semiclassical analysis, we focus on the
semiclassical initial and final states Ψt

½g0�, Ψ
t
½g� which are

gauge invariant coherent states [60,73]. The coherent state
label parametrizes the LQG phase space, and the overlap
function of these states behaves as a sharply peaked
Gaussian in phase space, thus building the link with phase
space dynamical variables in the semiclassical limit. Ψt

½g� is
expressed as

Ψt
½g�ðhÞ ¼

Z
SUð2ÞjVðγÞj

dh
Y

e∈EðγÞ
ψ t
h−1
sðeÞgðeÞhtðeÞ

ðhðeÞÞ; dh ¼
Y

v∈VðγÞ
dμHðhvÞ; ð45Þ

where dμHðhvÞ is the Haar measure on SU(2). The gauge invariant coherent state is labeled by gauge equivalence class [g]
generated by gðeÞ ∼ ghðeÞ ¼ h−1sðeÞgðeÞhtðeÞ at all e. Here gðeÞ is an SLð2;CÞ group element. ψ t

gðeÞðhðeÞÞ is the complexifier
coherent state on the edge e,

ψ t
gðeÞðhðeÞÞ ¼

X
je∈Zþ=2∪f0g

ð2je þ 1Þe−tjeðjeþ1Þ=2χjeðgðeÞhðeÞ−1Þ; ð46Þ

where gðeÞ is complex coordinate of Pγ and relates to hðeÞ, paðeÞ by5

gðeÞ ¼ e−ipaðeÞτa=2hðeÞ ¼ e−ip
aðeÞτa=2eθaðeÞτa=2; paðeÞ; θaðeÞ ∈ R3: ð47Þ

Applying Eq. (45) and using a discretization of time T ¼ NΔτ with large N and infinitesimal Δτ,

A½g�;½g0� ¼
Z

dhhψ t
gj½e− i

ℏΔτĤ�N jψ t
g0hi; ð48Þ

5For any polynomial Pol½ĥðeÞ; p̂aðeÞ� of ĥðeÞ and p̂aðeÞ, the coherent state expectation value is semiclassical:
hψ t

gðeÞjPol½ĥðeÞ;p̂aðeÞ�jψ t
gðeÞi¼Pol½hðeÞ;paðeÞ�þOðtÞ where hðeÞ and paðeÞ on the right-hand side relate to gðeÞ by Eq. (47) [74].
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¼
Z

dh
YNþ1

i¼1

dgihψ t
gjψ̃ t

gNþ1
ihψ̃ t

gNþ1
je−iΔτ

ℏ Ĥjψ̃ t
gN ihψ̃ t

gN je−
iΔτ
ℏ Ĥjψ̃ t

gN−1i � � � hψ̃ t
g2 je−

iΔτ
ℏ Ĥjψ̃ t

g1ihψ̃ t
g1 jψ t

g0hi; ð49Þ

where we have inserted N þ 1 overcompleteness relations of normalized coherent state ψ̃ t
g ¼⊗e ψ

t
gðeÞ=jjψ t

gðeÞjj:Z
dgijψ̃ t

giihψ̃ t
gi j ¼ 1H0

γ
; dgi ¼

�
c
t3

�jEðγÞj Y
e∈EðγÞ

dμHðhiðeÞÞd3piðeÞ; i ¼ 1;…; N − 1: ð50Þ

A path integral formula is derived in [50] from the above expression of A½g�;½g0�,

A½g�;½g0� ¼ kψ t
gkkψ t

g0 k
Z

dh
YNþ1

i¼1

dgiν½g�eS½g;h�=t; ð51Þ

where the “effective action” S½g; h� is given by

S½g; h� ¼
XNþ1

i¼0

Kðgiþ1; giÞ −
iκ
a2

XN
i¼1

Δτ
�hψ t

giþ1
jĤjψ t

gii
hψ i

giþ1
jψ t

gii
þ iε̃iþ1;i

�
Δτ
ℏ

��
; ð52Þ

Kðgiþ1; giÞ ¼
X
e∈EðγÞ

�
ziþ1;iðeÞ2 −

1

2
piþ1ðeÞ2 −

1

2
piðeÞ2

�
ð53Þ

with g0 ≡ g0h, gNþ2 ≡ g, and ν½g� is a measure factor. ε̃iþ1;i contains higher order contributions in
Δτ
ℏ (the exact form is given

in [50]): ε̃iþ1;iðΔτℏ Þ → 0 as Δτ → 0 and is negligible. In the above, ziþ1;iðeÞ and xiþ1;iðeÞ are given by

ziþ1;iðeÞ ¼ arccoshðxiþ1;iðeÞÞ; xiþ1;iðeÞ ¼
1

2
tr½giþ1ðeÞ†giðeÞ�: ð54Þ

The path integral Eq. (51) is constructed with discrete
time and space, and is a well-defined integration formula
for the transition amplitude A½g�;½g0� as long as Δτ is
arbitrarily small but finite. The time translation of γ with
finite Δτ makes a hypercubic lattice in four dimensions, on
which the path integral is defined. There is no issue of any
divergence in this path integral formulation of LQG, since it
is derived from a well-defined transition amplitude.

III. SEMICLASSICAL EQUATIONS OF MOTION

A. Discrete equations of motion

The main part of this work is to study the semiclassical
limit t → 0of the transitionamplitudeA½g�;½g0�.ByEq. (51)and
the stationary phase approximation, dominant contributions
to A½g�;½g0� as t → 0 come from semiclassical trajectories
satisfying the semiclassical equations of motion (EOMs).
Semiclassical EOMs has been derived in [50] by the

variational principle δS½g; h� ¼ 0 and expressed in the
following form:

(i) The variation with respect to gi using the holomor-
phic deformation

giðeÞ → gεi ðeÞ ¼ giðeÞeεai ðeÞτa ; εai ðeÞ ∈ C; ð55Þ

leads to the following equations from derivatives of
εai ðeÞ and ε̄ai ðeÞ, respectively:
(a) For i ¼ 1;…; N, at every edge e ∈ EðγÞ,

1

Δτ

�
ziþ1;iðeÞtr½τagiþ1ðeÞ†giðeÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1;iðeÞ−1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xiþ1;iðeÞþ1

p
−
piðeÞtr½τagiðeÞ†giðeÞ�

sinhðpiðeÞÞ
�

¼ iκ
a2

∂
∂εai ðeÞ

hψ t
gεiþ1

jĤjψ t
gεi
i

hψ t
gεiþ1

jψ t
gεi
i
����
ε⃗¼0

: ð56Þ

(b) For i ¼ 2;…; N þ 1, at every edge e ∈ EðγÞ,

1

Δτ

�
zi;i−1ðeÞtr½τagiðeÞ†gi−1ðeÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;i−1ðeÞ−1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;i−1ðeÞþ1

p
−
piðeÞtr½τagiðeÞ†giðeÞ�

sinhðpiðeÞÞ
�

¼−
iκ
a2

∂
∂ε̄ai ðeÞ

hψ t
gεi
jĤjψ t

gεi−1
i

hψ t
gεi
jψ t

gεi−1
i
����
ε⃗¼0

: ð57Þ
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(ii) The variation with respect to hv leads to the closure
condition at every vertex v ∈ VðγÞ for initial data,

−
X

e;sðeÞ¼v

pa
1ðeÞ þ

X
e;tðeÞ¼v

Λa
bðθ⃗1ðeÞÞpb

1ðeÞ ¼ 0; ð58Þ

whereΛa
bðθ⃗Þ∈SOð3Þ is given by eθcτc=2τae−θcτc=2¼

Λa
bðθ⃗Þτb.

The initial and final conditions are given by g1 ¼ g0h and
gNþ1 ¼ g. Here the gauge transformation h is arbitrary.
These semiclassical EOMs govern the semiclassical
dynamics of LQG in the reduced phase space formulation.
Semiclassical EOMs (56)–(58) are derived with finite

Δτ. We prefer to derive EOMs from the path integral
Eq. (51) with discrete time and space, because Eq. (51) is a
well-defined integration formula for the transition
amplitude.
The small-step transitions hψ̃ t

giþ1
j exp ð− i

ℏΔτĤÞjψ̃ t
gii in

Eq. (49) are dominated by overlaps hψ̃ t
giþ1

jψ̃ t
gii as Δτ is

arbitrarily small. jhψ̃ t
giþ1

jψ̃ t
giij decays exponentially fast to

zero unless giþ1 is within a small neighborhood at gi of
radius

ffiffi
t

p
[73] (a summary can be found in [75]). Therefore

for sufficiently large N, the dominant contribution to A½g�;½g0�
in Eq. (51) comes from the integral over the neighborhood
where all giþ1 are close to gi with a distance ofOð ffiffi

t
p Þ. This

neighborhood becomes arbitrarily small as t → 0. Within

this neighborhood, both quantities in square brackets in
Eqs. (56) and (57) have a single isolated zero at gi ¼ giþ1

(Lemma 4.1 in [50]). Therefore Δτ → 0 forces gi → giþ1,
given that the right-hand sides of Eqs. (56) and (57) are
always finite [50]. So any solution of Eqs. (56) and (57) can
be approximated arbitrarily well by the continuous function
gi ≃ gðτÞ, as Δτ is arbitrarily small. In the following we
apply this approximation, replace all gi by continuous
function gðτÞ, and take the time continuous limit Δτ → 0 of
Eqs. (56) and (57).

B. Time continuous limit

The time continuous limit leads to giþ1 → gi ¼ gðτÞ, so
that matrix elements hψ t

gεi
jĤjψ t

gεi−1
i on right-hand sides of

Eqs. (56) and (57) reduce to the expectation values
hψ t

gε jĤjψ t
gεi as Δτ → 0 (see [50] for proving that giþ1 →

gi commutes with holomorphic derivatives). Coherent state
expectation values of Ĥ have the correct semiclassical
limit6

lim
t→0

hψ̃ t
gjĤjψ̃ t

gi ¼ H½g�; ð59Þ
where H½g� is the classical discrete Hamiltonian (43)
evaluated at paðeÞ, hðeÞ determined by gðeÞ in Eq. (47).
Note that deriving the semiclassical behavior of hψ̃ t

gjĤjψ̃ t
gi

relies on a semiclassical expansion of volume operator
V̂v [75],

V̂v ¼ hQ̂vi2q
�
1þ

X2kþ1

n¼1

ð−1Þnþ1
qð1 − qÞ � � � ðn − 1þ qÞ

n!

�
Q̂2

v

hQ̂vi2
− 1

�n�
; q ¼ 1=4; ð60Þ

where hQ̂vi ¼ hψ t
gjQ̂vjψ t

gi. This expansion is valid when hQ̂vi ≫ l6
p.

We write giþ1ðeÞ ¼ giðeÞ½1þ ΔϕaðeÞτa� where ΔϕaðeÞ parametrizes the infinitesimal change of gðeÞ between two time
steps. Equations (56) and (57) reduce as follows (by using Lemma 4.1 in [50]):

−
ia2

κ
M1

a
bðgðeÞÞ

Δϕ̄bðeÞ
Δτ

¼ ∂
∂εaðeÞH½gε�

����
ε⃗¼0

; ð61Þ

−
ia2

κ
M2

a
bðgðeÞÞ

ΔϕbðeÞ
Δτ

¼ −
∂

∂ε̄aðeÞH½gε�
����
ε⃗¼0

; ð62Þ

where gεðeÞ ¼ gðeÞeεaðeÞτa , ðεaðeÞ ∈ CÞ. The left-hand sides become time derivatives as Δτ → 0, and

M1
a
bðgÞ ¼ 2Λa

cðθ⃗ÞΛb
dðθ⃗Þ

�
pc

p
pd

p
− iεcdepe þ p coshðpÞ

sinhðpÞ
�
δcd −

pc

p
pd

p

��
; ð63Þ

M2
a
bðgÞ ¼ 2Λa

cðθ⃗ÞΛb
dðθ⃗Þ

�
pc

p
pd

p
þ iεcdepe þ p coshðpÞ

sinhðpÞ
�
δcd −

pc

p
pd

p

��
; ð64Þ

6First, we can apply the semiclassical perturbation theory of [75] to Ô≡ Ĥ4
v [recall Eq. (36)] and all Ôn (n > 1):

hψ̃ t
gjÔnjψ̃ t

gi ¼ O½g�n þOðtÞ. Then by Theorem 3.6 of [74], limt→0hψ̃ t
gjfðÔÞjψ̃ t

gi ¼ fðO½g�Þ for any Borel measurable function on
R such that hψ̃ t

gjfðÔÞ†fðÔÞjψ̃ t
gi < ∞.
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where eθ
cτc=2τae−θ

cτc=2 ¼ Λa
bðθ⃗Þτb. The matrices M1

a
bðgÞ

and M2
a
bðgÞ are nondegenerate since

det ðM1;2ðgÞÞ ¼
sinh2ðpÞ

p2
≠ 0: ð65Þ

We can write ΔϕaðeÞ as a linear combination of infi-
nitesimal change of phase space variables using (47):
ΔpaðeÞ¼pa

iþ1ðeÞ−pa
i ðeÞ and ΔθaðeÞ ¼ θaiþ1ðeÞ − θai ðeÞ,

ΔϕaðeIÞ ¼ −
1

2
Trðg−1i ðeÞgiþ1ðeÞτaÞ

¼ J1abðeÞΔpaðeÞ þ J2abðeÞΔθaðeÞ ð66Þ

at leading orders of ΔpaðeÞ and ΔθaðeÞ. The holomorphic
deformation εaðeÞ has the similar expression

εaðeÞ ¼ −
1

2
Trðg−1ðeÞgεðeÞτaÞ

¼ J1abðeÞδpaðeÞ þ J2abðeÞδθaðeÞ; ð67Þ

where δpaðeÞ and δθaðeÞ relate to gεðeÞ by

gεðeÞ ¼ e−i½paðeÞþδpaðeÞ�τa=2e½θaðeÞþδθaðeÞ�τa=2: ð68Þ

J1 and J2 are 3 × 3 complex matrices whose elements
depend on paðeÞ and θaðeÞ. We define 6 × 6matrices J and
J̃ as

J ¼
�
J1 J2
J̄1 J̄2

�
; J̃ ¼

�
J̄1 J̄2
J1 J2

�
: ð69Þ

J and J̃ satisfy

�
εðeÞ
ε̄ðeÞ

�
¼ J

�
δpðeÞ
δθðeÞ

�
¼

�
J1 J2
J̄1 J̄2

��
δpðeÞ
δθðeÞ

�
; ð70Þ

�
Δϕ̄ðeÞ
ΔϕðeÞ

�
¼ J̃

�ΔpðeÞ
ΔθðeÞ

�
¼
�
J̄1 J̄2
J1 J2

��ΔpðeÞ
ΔθðeÞ

�
: ð71Þ

Here the bold letters p and θ denote the 3-vectors pa and θa.
Using the above matrices Eqs. (61) and (62) become

Tðp; θÞ
�ΔpðeÞ=Δτ
ΔθðeÞ=Δτ

�
¼ iκ

a2

� ∂H=∂pðeÞ
∂H=∂θðeÞ

�
; ð72Þ

where

Tðp; θÞ ¼
�
J1 J2
J̄1 J̄2

�T�M1 0

0 −M2

��
J̄1 J̄2
J1 J2

�
: ð73Þ

It is much more convenient to compute the right-hand side
of Eq. (72) than right-hand sides of Eqs. (61) and (62),
since H is expressed in terms of holonomies and fluxes.

By the time continuous limit Δτ → 0, ΔpðeÞ=Δτ →
dpðeÞ=dτ and ΔθðeÞ=Δτ → dθðeÞ=dτ, so the semiclassical
EOMs reduce to

Tðp; θÞ
�
dpðeÞ=dτ
dθðeÞ=dτ

�
¼ iκ

a2

� ∂H=∂pðeÞ
∂H=∂θðeÞ

�
: ð74Þ

The above computation is carried out analytically in
Mathematica. The matrix elements of J, J̃, and T are
lengthy. Their explicit formulas are given in [69].
As seen from Eq. (74), the approximation gðτÞ of any

solution gi of Eqs. (56) and (57) is not only continuous in τ
but also differentiable. Indeed, if a solution gi ≃ gðτÞ failed
to be differentiable, left-hand sides of Eq. (74) or Eqs. (56)
and (57) would have blown up with small Δτ and contra-
dicted the finiteness of right-hand sides; i.e., gi could not be
a solution.

IV. SEMICLASSICAL DYNAMICS AS
HAMILTONIAN EVOLUTION

A. Holonomy-flux Poisson algebra

Since the semiclassical EOMs are expressed in terms of
variables paðeÞ and θaðeÞ from the holonomy-flux algebra
Eqs. (32)–(34) by the relation hðeÞ ¼ eθ

aðeÞτa=2, the com-
putation can proceed as follows: We write Eq. (33) (at
e0 ¼ e) as

fpaðeÞ; θbðeÞg ∂hABðeÞ∂θbðeÞ ¼ κ

a2

�
τa

2
hðeÞ

�
AB
: ð75Þ

Among four matrix elements hABðeÞ, there are only three
independent h11ðeÞ, h12ðeÞ, h21ðeÞ. The above equations
with AB ¼ 11, 12, 21 form a matrix equation of three 3 × 3
matrices U, V, and W:

Ua
bVb

AB ¼ κ

a2
Wa

AB;

where Ua
b ¼ fpaðeÞ; θbðeÞg;

Vb
AB ¼ ∂hABðeÞ

∂θbðeÞ ;

Wa
AB ¼

�
τb

2
hðeÞ

�
AB
; ð76Þ

where AB ¼ 11, 12, 21. Solving U ¼ κ
a2 WV−1 gives the

following result:
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fpaðeÞ; θbðeÞg≡ Ua
bðθÞ

¼

0
BBBBBB@

2θ2
1
þθðθ2

2
þθ2

3
Þ cotðθ

2
Þ

2θ2
− θ3

3
þðθ2

1
þθ2

2
Þθ3þθ1θ2ðθ cotðθ2Þ−2Þ

2θ2
1
2

�
θ1θ3ð2−θ cotðθ2ÞÞ

θ2
þ θ2

�

θ3
3
þðθ2

1
þθ2

2
Þθ3þθ1θ2ð2−θ cotðθ2ÞÞ

2θ2
2θ2

2
þθðθ2

1
þθ2

3
Þ cotðθ

2
Þ

2θ2
1
2

�
θ2θ3ð2−θ cotðθ2ÞÞ

θ2
− θ1

�

− θ2θ
2
1
þθ2ðθ22þθ2

3
Þþθ3θ1ðθ cotðθ2Þ−2Þ
2θ2

θ3
1
þðθ2

2
þθ2

3
Þθ1þθ2θ3ð2−θ cotðθ2ÞÞ

2θ2
2θ2

3
þθðθ2

1
þθ2

2
Þ cotðθ

2
Þ

2θ2

1
CCCCCCA
; ð77Þ

where θa ≡ θaðeÞ and θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θaðeÞθaðeÞp

. With this
result we check that Eq. (75) with AB ¼ 21 is satisfied
automatically.
The holonomy-flux algebra Eqs. (32)–(34) implies the

following Poisson algebra between paðeÞ and θaðeÞ:

fθaðeÞ; θbðe0Þg ¼ 0; ð78Þ

fpaðeÞ; θbðe0Þg ¼ κ

a2
δe;e0Ua

bðθÞ; ð79Þ

fpaðeÞ; pbðe0Þg ¼ −
κ

a2
δe;e0εabcpcðe0Þ: ð80Þ

A straightforward computation demonstrates that
Eqs. (78)–(80) imply the holonomy-flux algebra
Eqs. (32)–(34). Thus the holonomy-flux algebra and the
Poisson algebra between paðeÞ and θaðeÞ in Eqs. (78)–(80)
are equivalent.

B. Hamilton’s equations

We would like to relate EOMs (74) to Hamilton’s
equations with the discrete physical Hamiltonian H and
symplectic structure of holonomy-flux algebra. First,

fpaðeÞ;Hg ¼ fpaðeÞ; pbðeÞg ∂H
∂pbðeÞ

þ fpaðeÞ; θbðeÞg ∂H
∂θbðeÞ ;

fθaðeÞ;Hg ¼ fθaðeÞ; pbðeÞg ∂H
∂pbðeÞ

þ fθaðeÞ; θbðeÞg ∂H
∂θbðeÞ : ð81Þ

We define the matrix

Pðp; θÞ ¼
� fpaðeÞ; pbðeÞg fpaðeÞ; θbðeÞg
fθaðeÞ; pbðeÞg 0

�
: ð82Þ

Applying P to the EOMs (74) gives

−
ia2

κ
Pðp; θÞTðp; θÞ

�
dpðeÞ=dτ
dθðeÞ=dτ

�
¼

� fpðeÞ;Hg
fθðeÞ;Hg

�
: ð83Þ

By using the explicit formula of Tðp; θÞ and Poisson
brackets in Pðp; θÞ, we obtain the following simple result:

−
ia2

κ
Pðp; θÞTðp; θÞ ¼ 16×6: ð84Þ

This shows that the semiclassical EOMs from the path
integral is equivalent to Hamilton’s equations with the
discrete physical Hamiltonian H:

dpaðeÞ
dτ

¼ fpaðeÞ;Hg; dθaðeÞ
dτ

¼ fθaðeÞ;Hg; ð85Þ

where the Poisson brackets are given by Eqs. (78)–(80), or
equivalently, by the holonomy-flux algebra Eqs. (32)–(34).
In general, the time evolution of any phase space function
fðpaðeÞ; θaðeÞÞ or fðpaðeÞ; hðeÞÞ is governed by

df
dτ

¼ ff;Hg: ð86Þ

Mathematica is employed for all the above computa-
tions, including computing fpaðeÞ; θbðeÞg, checking the
equivalence between Eqs. (78)–(80) and holonomy-flux
algebra, and verifying Eq. (84). The Mathematica files can
be found in [69].
Moreover the closure condition (58) is equivalent toP
3
I¼1

P
s¼� paðev;I;sÞ ¼ 0. The Hamiltonian flow gener-

ated byGa
v ≔

P
3
I¼1

P
s¼� paðev;I;sÞ in aPγ is SU(2) gauge

transformation. Since H is SU(2) gauge invariant,

dGa
v

dτ
¼ fGa

v;Hg ¼ 0: ð87Þ

So the closure condition (58) is preserved in the time
evolution. Given a solution paðτ; eÞ; θbðτ; eÞ satisfying
Eq. (86), its gauge transformation still satisfies Eq. (86):

fff;Ga
vg;Hg ¼ −ffGa

v;Hg; fg − ffH; fg; Ga
vg

¼
�
f;
dGa

v

dτ

	
þ
�
df
dτ

; Ga
v

	

¼ d
dτ

ff;Ga
vg: ð88Þ
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Recall that the initial state in Eq. (51) is labeled by the
gauge equivalence class ½g0�. The trajectory in the reduced
phase space determined by the Hamiltonian flow (86) is
unique up to SU(2) gauge transformations, in the
phase space regime where H is a smooth function in
pa, θa.
Note that due to the absolute value and square root inH,

H is nondifferentiable at C2
v − α

4

P
3
a¼1 C

2
a;v ¼ 0, at which

the uniqueness of the solution cannot be established. As it
is discussed in Sec. VI, these irregularities are avoided in
general if initial states Ψt

½g0� are semiclassical in the sense

that ½g0� is in the classically allowed regime of the phase
space. The classically allowed regime satisfies nonholo-
nomic constraints required by the classical gravity-dust
theory.

V. ACTION PRINCIPLE

Here we present another routine to derive the classical
EOMs [Hamilton’s equation (86)]. We are first going to
take the time continuous limit of the discrete action S½g; h�,
then derive EOMs, in contrast to the above procedure in
which discrete EOMs are derived first from the path
integral, and then take the time continuous limit. We will
show that these two methods lead to the same result, which
implies the time continuous limit and variational principle
are commutative when acting on S½g; h�.
Recall S½g; h� in Eq. (52); we write

gi ¼ gðτÞ; giþ1 ¼ gðτ þ ΔτÞ; ð89Þ

and expand summands in S½g; h� in Δτ:

hψ t
giþ1

jĤjψ t
gii

hψ i
giþ1

jψ t
gii

þ iε̃iþ1;i

�
Δτ
ℏ

�
¼ hψ t

gðτÞjĤjψ t
gðτÞi þOðΔτÞ; ð90Þ

Kðgiþ1; giÞ ¼ Δτ
X
e∈EðγÞ

iGabðθðτ; eÞÞpaðτ; eÞ dθ
bðτ; eÞ
dτ

þOðΔτ2Þ: ð91Þ

The 3 × 3 real matrix GabðθÞ is given by

0
BBB@

− ðθθ2
1
þðθ2

2
þθ2

3
Þ sinðθÞÞ

θ3
− ðθ1θ2ðθ−sinðθÞÞþθθ3ðcosðθÞ−1ÞÞ

θ3
ðθ1θ3ðsinðθÞ−θÞþθθ2ðcosðθÞ−1ÞÞ

θ3

θθ3ðcosðθÞ−1Þ−θ1θ2ðθ−sinðθÞÞ
θ3

− ðθθ2
2
þðθ2

1
þθ2

3
Þ sinðθÞÞ

θ3
− ðθ2θ3ðθ−sinðθÞÞþθθ1ðcosðθÞ−1ÞÞ

θ3

− ðθ1θ3ðθ−sinðθÞÞþθθ2ðcosðθÞ−1ÞÞ
θ3

ðθ2θ3ðsinðθÞ−θÞþθθ1ðcosðθÞ−1ÞÞ
θ3

− ðθθ2
3
þðθ2

1
þθ2

2
Þ sinðθÞÞ

θ3

1
CCCA; ð92Þ

where θa ≡ θaðeÞ and θ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θaðeÞθaðeÞp

.
We find that GabðθÞ closely relates to Ua

bðθÞ ¼ fpaðeÞ; θbðeÞg by

GðθÞTUðθÞ ¼ UðθÞGðθÞT ¼ −
κ

a2
13×3: ð93Þ

We define new variables

Xbðτ; eÞ ¼ Gabðθðτ; eÞÞpaðτ; eÞ; ð94Þ

and interestingly, we obtain the following result.
Theorem 1. The following (equal-time) Poisson algebra between Xa and θa is equivalent to the holonomy-flux algebra

fXaðeÞ; θbðe0Þg ¼ −
κ

a2
δabδe;e0 ; fXaðeÞ; Xbðe0Þg ¼ fθaðeÞ; θbðe0Þg ¼ 0: ð95Þ

XaðeÞ and θaðeÞ form local Darboux coordinates on the reduced phase space of LQG.
Proof: The first relation is equivalent to Eq. (78):

fXaðeÞ; θbðe0Þg ¼ GcaðθðeÞÞfpcðeÞ; θbðe0Þg ¼ GcaðθðeÞÞUc
bðθðeÞÞδe;e0 ¼ −

κ

a2
δabδe;e0 : ð96Þ

Second,
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fXaðeÞ; Xbðe0Þg ¼ fGcaðθðeÞÞpcðeÞ; Gdbðθðe0ÞÞpdðe0Þg

¼ GcaðθðeÞÞGdbðθðe0ÞÞfpcðeÞ; pdðe0Þg −Gdbðθðe0ÞÞpcðeÞ ∂GcaðθðeÞÞ
∂θfðeÞ fpdðe0Þ; θfðeÞg

þ GcaðθðeÞÞpdðe0Þ ∂Gdbðθðe0ÞÞ
∂θfðe0Þ fpcðeÞ; θfðe0Þg

¼ GcaðθðeÞÞGdbðθðe0ÞÞfpcðeÞ; pdðe0Þg þ κ

a2
δe;e0pcðeÞ

�∂GcaðθðeÞÞ
∂θbðeÞ −

∂GcbðθðeÞÞ
∂θaðeÞ

�
ð97Þ

is vanishing because

fpcðeÞ; pdðeÞg ¼ −
κ

a2
G−1

ac ðθðeÞÞG−1
bdðθðe0ÞÞ

�∂GeaðθðeÞÞ
∂θbðeÞ −

∂GebðθðeÞÞ
∂θaðeÞ

�
peðeÞ; ð98Þ

which can be checked straightforwardly. The Mathematica file for the above computation is provided in [69]. ▪
Although the Poisson algebra Eq. (95) is simple, SU(2) gauge transformations of XaðeÞ and θaðeÞ are complicated. In

contrast, the holonomy-flux algebra uses variables paðeÞ and hðeÞ that have simple SU(2) gauge transformations, but
sacrifices the simplicity of Poisson brackets.
As a result we obtain the following time continuous limit S½g; h� ¼ limΔτ→0 S½g; h�:

S½g; h� ¼ i
Z

T

0

dτ

� X
e∈EðγÞ

Xaðτ; eÞ dθ
aðτ; eÞ
dτ

−
κ

a2
hψ t

gðτÞjĤjψ t
gðτÞi

�

¼ i
Z

T

0

dτ

� X
e∈EðγÞ

Xaðτ; eÞ dθ
aðτ; eÞ
dτ

−
κ

a2
ðH½pðτÞ; θðτÞ� þOðℏÞÞ

�
; ð99Þ

where hψ t
gðτÞjĤjψ t

gðτÞi ¼ H½pðτÞ; θðτÞ� þOðℏÞ.

The Poisson algebra Eq. (95), or equivalently the
holonomy-flux algebra, can be obtained from the above
S½g; h� by the Legendre transformation. S½g; h� provides an
action principle for the LQG (reduced) phase space and the
quantization.
By the time continuous limit, the path integral formula

(51) becomes a standard phase space path integral

Z
½DXDθ�μ½X; θ�ei

t

R
T

0
dτ½
P

e∈EðγÞX
aðτ;eÞdθaðτ;eÞdτ − iκ

a2
ðHþOðℏÞÞ�

ð100Þ

up to OðℏÞ in the action and a measure factor μ½X; θ�
(containing ν½g� and the Jacobian for transforming
dg → dXdθ). The path integral formula becomes an infinite
dimension integral, and thus may be mathematically ill-
defined. This path integral relates to a starting point
in [34,36].
The variational principle δS ¼ 0 gives the Hamilton’s

equation [up to OðℏÞ]

dθaðeÞ
dτ

¼ κ

a2
∂H

∂XaðeÞ ;
dXaðeÞ
dτ

¼ −
κ

a2
∂H

∂θaðeÞ : ð101Þ

For any phase space function fðX; θÞ, its time evolution is
given by

df
dτ

¼ ff;Hg; ð102Þ

which is identical to Eq. (86). It shows that the time
continuous limit and variational principle are commutative
when acting on S½g; h�.
We emphasize that in our analysis the time continuum

limit is taken at the semiclassical level. One may want to
compare Eq. (100) with the discrete time path integral (51)
and understand the continuous time path integral (100) is
the time continuum limit of Eq. (100) at the quantum level.
It is indeed how path integrals of quantum field theories are
developed. But here we take a more conservative viewpoint
and hesitate to view (100) as the limit at the quantum level
because the precise relation between (51) and (100) relies
on the path integral measure which, however, is difficult to
make sense.

VI. LATTICE CONTINUUM LIMIT

In this section, we demonstrate the relation between the
semiclassical EOMs (74) [or equivalently (86)] from path
integral and classical reduced phase space EOMs (24) of
the gravity-dust system in the continuum. We are going to
take the continuum limit of the cubic lattice γ, i.e., send the
total number jVðγÞj of vertices to infinity, and show that
(74) recovers (24) in this limit. Defining μ ∼ jVðγÞj−3 to be
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the coordinate length of every lattice edge, the lattice
continuum limit is given by μ → 0. More precisely, recall
that semiclassical EOMs are derived with t ¼ l2

P=a
2 → 0

and hQ̂vi ∼ μ6 ≫ l6
P [see Eq. (60)], and the lattice con-

tinuum limit takes us to the regime

lP ≪ μ ≪ a; ð103Þ

where a is the macroscopic unit fixed from the beginning.
When keeping a fixed, the lattice continuum limit sends
μ → 0 after the semiclassical limit lP → 0 (from which
EOMs are derived) so lP ≪ μ is kept.
We rescale θaðeÞ and paðeÞ and define variables Aa

I ðvÞ
and EI

aðvÞ,

θaðeIðvÞÞ ¼ μAa
I ðvÞ; paðeIðvÞÞ ¼

2μ2

βa2
EI

aðvÞ; ð104Þ

where Aa
I ðvÞ and EI

aðvÞ behave as follows in the lattice
continuum limit, by relations between hðeÞ and paðeÞ in
Eq. (29) and smooth fields ðA;EÞ:

Aa
I ðvÞ ¼ Aa

I ðvÞ þOðμÞ; EI
aðvÞ ¼ EI

aðvÞ þOðμÞ:
ð105Þ

Here Aa
I ðvÞ ¼ Aa

j ðvÞ_eIðvÞj and EI
aðvÞ ¼ Ej

aðvÞ_eIðvÞj are
smooth fields ðA;EÞ evaluated at the vertex v. _eIðvÞ is the
tangent vector of eIðvÞ at v. Aa

I ðvÞ and EI
aðvÞ are coordinate

components of ðA;EÞ when we take _eIðvÞ≡ ∂=∂σI (I ¼ 1,
2, 3) as the coordinate basis. σI is such that the coordinate
length of eIðvÞ is μ.
Inserting the μ expansion of θaðeÞ, paðeÞ in Tðp; θÞ of

Eq. (74) gives

Tðp; θÞ ¼

0
BBBBBBBB@

0 0 0 −i 0 0

0 0 0 0 −i 0

0 0 0 0 0 −i
i 0 0 0 0 0

0 i 0 0 0 0

0 0 i 0 0 0

1
CCCCCCCCA

þOðμÞ: ð106Þ

So the left-hand side of Eq. (74) becomes

Tðp; θÞ
� dpðeIðvÞÞ

dτ

dθðeIðvÞÞ
dτ

�
¼ i

�−μ dAIðvÞ
dτ þOðμ2Þ

2μ2

βa2
dEIðvÞ
dτ þOðμ3Þ

�
: ð107Þ

On the right-hand side of Eq. (74),

∂H½p; θ�
∂paðeIðvÞÞ

¼ βa2

2μ2
∂H½E;A�
∂EI

aðvÞ
;

∂H½p; θ�
∂θaðeIðvÞÞ ¼

1

μ

∂H½E;A�
∂Aa

I ðvÞ
: ð108Þ

H½E;A� is obtained from H½p; θ� by changing variables
(104). Derivatives of H reduce to derivatives of Cv
and Ca;v,

∂H
∂EI

aðv0Þ
¼

X
v∈VðγÞ

sv

�
Cv

Hv

∂Cv

∂EI
aðv0Þ

−
α

4

X3
b¼1

Cb;v

Hv

∂Cb;v

∂EI
aðv0Þ

�
;

ð109Þ

∂H
∂Aa

I ðv0Þ
¼

X
v∈VðγÞ

sv

�
Cv

Hv

∂Cv

∂Aa
I ðv0Þ

−
α

4

X3
b¼1

Cb;v

Hv

∂Cb;v

∂Aa
I ðv0Þ

�
;

ð110Þ

where Hv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC2

v − α
4

P
3
a¼1 C

2
a;vj

q
and sv ¼ sgnðC2

v −
α
4

P
3
a¼1 C

2
a;vÞ. We have assumed that variations of EI

aðv0Þ
and Aa

I ðv0Þ (for computing above derivatives) do not make
any sv jump, so derivatives of sv are zero. Without this
assumption, Hamilton’s equations (85) is ill-defined
because H is not differentiable as sv jumps. Semiclassial
EOMs are singular at C2

v − α
4

P
3
a¼1 C

2
a;v ¼ 0.

Computing explicitly Poisson brackets hðeÞfhðeÞ−1;
Vvg and hðeÞfhðeÞ−1; Kg makes Cv and Ca;v as poly-
nomials generated by the following quantities:

hðeIðvÞÞ ¼ eμA
a
I ðvÞ; paðeIðvÞÞ ¼

2μ2

βa2
EI

aðvÞ; ð111Þ

Q
−1
2

v ¼ μ−3qðvÞ−1
2; qðvÞ ¼ 1

6
εIJKε

abcEI
aðvÞEJ

bðvÞEK
c ðvÞ;
ð112Þ

whereQv is the classical limit of Q̂v in Eq. (42). We assume
that the initial condition satisfies Qv > 0 at all v, and the
continuous time evolution does not flip sgnðQvÞ.7

7Evolving continuously from Qv > 0 to Qv < 0 implies
Qv ¼ 0 at a certain time, and violates the semiclassicality
condition Qv ≫ l6

P.
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In the following we often use the shorthand notation

FαðvÞ ¼ ðEI
aðvÞ;Aa

I ðvÞ; qðvÞ−
1
2Þ ¼ fαðvÞ þOðμÞ;

fαðvÞ ¼ ðEI
aðvÞ; Aa

I ðvÞ; qðvÞ−
1
2Þ; qðvÞ ¼ 1

6
εIJKε

abcEI
aðvÞEJ

bðvÞEK
c ðvÞ; ð113Þ

where α labels components in ð� � �Þ.
We apply Eqs. (111) and (112) toCv andCa;v and expand in terms of μ andFα.Cv andCa;v can bewritten as polynomials

of Fα and lattice derivatives ΔFα by reorganizing terms and truncating to μ3 (see Appendix for an explanation),

Cv or Ca;v ¼ μ
X

α;β;J;K;N�
J ;M

�
K

Fα;β
N�

J ;M
�
K
ðv⃗ÞΔJ;N�

J
Fαðṽ1ÞΔK;M�

K
Fβðṽ2Þ

þ μ2
X
α;J;N�

J

Fα
N�

J
ðv⃗ÞΔJ;N�

J
FαðṽÞ þ μ3Fðv⃗Þ þOðμ4Þ; ð114Þ

where Fα
Nþ

J ;N
−
J
ðv⃗Þ and Fðv⃗Þ are polynomials of Fα (explained below). ΔJ;N�

J
FαðṽÞ is the lattice derivative at ṽ in the J

direction, by the difference between Fα at two vertices ṽþ Nþ
J μĴ and ṽ − N−

J μĴ (N� ∈ Z),

ΔJ;N�
J
FαðṽÞ ¼ Fαðṽþ Nþ

J μĴÞ −Fαðṽ − N−
J μĴÞ: ð115Þ

v⃗ ¼ ðv1; v2;…Þ and ṽ; ṽ1; ṽ2 are some vertices whose
distance from v are of OðμÞ. − 3 ≤ N�

J ≤ 3 (Nþ
J ≠ −N−

J )
are integers and Ĵ is the lattice vector along the Jth
direction. Nonzero N�

J reflect interactions among variables
at neighboring vertices in Cv and Ca;v. Interactions are not
only among nearest neighbors. Fα

Nþ
J ;N

−
J
ðv⃗Þ and Fðv⃗Þ [with

v⃗ ¼ ðv1; v2;…Þ a finite sequence of vertices vi] are

polynomials of FαðviÞ where vi ¼ vþP
J NiðJÞμĴi

(Ji ∈ f1; 2; 3g and integer Ni ∈ ½−3; 3�) are vertices at or
near v. Parameters α, β, N�, M�, J, v⃗, and ṽ; ṽ1; ṽ2 are
determined by patterns of variables and Poisson brackets in
Cv,Ca;v, and thus are independent of v.
Recall that fαðvÞ are smooth fields, and the continuum

limit of (114) is of Oðμ3Þ,

Cv or Ca;v ¼ μ3
X

α;β;J;K

� X
N�

J ;M
�
K

ðNþ
J þ N−

J ÞðMþ
K þM−

KÞF α;β
N�

J ;M
�
K
ðvÞ

�
∂JfαðvÞ∂KfβðvÞ

þ μ3
X
α;J

�X
N�

J

ðNþ
J þ N−

J ÞF α
N�

J
ðvÞ

�
∂JfαðvÞ þ μ3F ðvÞ þOðμ4Þ: ð116Þ

F α;β
N�

J ;M
�
K
ðvÞ, F α

Nþ
J ;N

−
J
ðvÞ, and F ðvÞ denote continuum limits

of Fα;β
N�

J ;M
�
K
ðv⃗Þ, Fα

Nþ
J ;N

−
J
ðv⃗Þ, and Fðv⃗Þ, respectively:

Fα;β
N�

J ;M
�
K
ðv⃗Þ ¼ F α;β

N�
J ;M

�
K
ðvÞ þOðμÞ;

Fα
Nþ

J ;N
−
J
ðv⃗Þ ¼ F α

Nþ
J ;N

−
J
ðvÞ þOðμÞ;

Fðv⃗Þ ¼ F ðvÞ þOðμÞ: ð117Þ

They are given by Fα;β
N�

J ;M
�
K
ðv⃗Þ, Fα

Nþ
J ;N

−
J
ðv⃗Þ, and Fðv⃗Þ with all

vi → v and applying Eq. (105). F α;β
N�

J ;M
�
K
ðvÞ, F α

Nþ
J ;N

−
J
ðvÞ,

and F ðvÞ are polynomials of EI
aðvÞ, Aa

I ðvÞ, qðvÞ−
1
2. Let us

take an example for illustration,

qðv1Þ−1
2E2

1ðv2ÞE1
2ðv3Þ¼qðvÞ−1

2E2
1ðvÞE1

2ðvÞþOðμÞ: ð118Þ

The leading term on the right-hand side corresponds to a
term in F α;β

N�
J ;M

�
K
ðvÞ, F α

Nþ
J ;N

−
J
ðvÞ, or F ðvÞ.

We check that Cv, Ca;v, H, and Ga
v have correct

continuum limits [i.e., Eq. (116) recovers continuum
expressions of scalar and vector constraints CðvÞ and
CaðvÞ up to a prefactor μ3],

Cv ¼ μ3CðvÞ þOðμ4Þ; ð119Þ

Ca;v ¼ μ3CaðvÞ þOðμ4Þ; ð120Þ
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Hv ¼ μ3hðvÞ þOðμ4Þ ¼ μ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����CðvÞ2 − α

4

X3
a¼1

CaðvÞ2
����

vuut þOðμ4Þ; ð121Þ

H ¼
X
v

μ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����CðvÞ2 − α

4

X3
a¼1

CaðvÞ2
����

vuut þOðμ4Þ ≃
Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����CðσÞ2 − α

4

X3
a¼1

CaðσÞ2
����

vuut ; ð122Þ

Ga
v ¼

2μ3

βa2
DjE

j
aðvÞ þOðμ3Þ: ð123Þ

The prefactor μ3 is desired for correct continuum limits. Mathematica codes for deriving Eqs. (119) and (120) are given in
[69]. The last relation indicates that the closure condition (58) reduces to the Gauss constraint in the lattice continuum limit.
The continuum limit of sv is given by

sv ¼ sgn

�
C2
v −

α

4

X3
a¼1

C2
a;v

�
¼ sgn

�
CðvÞ2 − α

4

X3
a¼1

CaðvÞ2 þOðμÞ
�
: ð124Þ

C and Ca are smooth fields in the continuum.

Given v0 ∈ VðγÞ, we assume v0 is inside a neighborhood
U ⊂ S, such that sv ¼ sU is a constant for all v ∈ U and the
coordinate distance rðv0; ∂UÞ between v0 and any point in
∂U satisfies rðv0; ∂UÞ ≫ μ. This is an assumption for
phase space points at which derivatives in Eqs. (109)
and (110) are computed. This assumption is necessary
for the lattice continuum limit of Eqs. (109) and (110),
because otherwise as μ → 0, v0 approaches the boundary
where C2

v − α
4

P
3
a¼1 C

2
a;v ¼ 0, and then sv0 jumps by

variations for computing derivatives of H thus invalidate
Eqs. (109) and (110).
We compute the following term in Eq. (109): the sum inP
v∈VðγÞ sv

Cv
Hv

∂Cv∂EI
aðv0Þ is nontrivial only inside the neighbor-

hood U [because Cv that depends on Eðv0Þ is located at v
whose distance to v0 is a multiple of μ], so sv can be moved
outside the sum by the above assumption:

X
v∈VðγÞ

sv
Cv

Hv

∂Cv

∂EI
aðv0Þ

¼ μsU
X
v∈U

Cv

Hv

X
α;β;J;K;N�

J ;M
�
K

X
i

∂Fα;β
N�

J ;M
�
K
ðv⃗Þ

∂EI
aðviÞ

δv0;viΔJ;N�
J
Fαðṽ1ÞΔK;M�

K
Fβðṽ2Þ

þμsU
X
v∈U

Cv

Hv

X
α;β;J;K;N�

J ;M
�
K

Fα;β
N�

J ;M
�
K
ðv⃗Þ

�∂Fαðv0Þ
∂EI

aðv0Þ
δv0;ṽ1þNþ

J μĴ
−
∂Fαðv0Þ
∂EI

aðv0Þ
δv0;ṽ1−N−

J μĴ

�
ΔK;M�

K
Fβðṽ2Þ

þμsU
X
v∈U

Cv

Hv

X
α;β;J;K;N�

J ;M
�
K

Fα;β
N�

J ;M
�
K
ðv⃗ÞΔJ;N�

J
Fαðṽ1Þ

�∂Fβðv0Þ
∂EI

aðv0Þ
δv0;ṽ2þMþ

KμK̂
−
∂Fβðv0Þ
∂EI

aðv0Þ
δv0;ṽ2−M−

KμK̂

�

þμ2sU
X
v∈U

Cv

Hv

X
α;J;N�

J

X
i

∂Fα
N�

J
ðv⃗Þ

∂EI
aðviÞ

δv0;viΔJ;N�
J
FαðṽÞ

þμ2sU
X
v∈U

Cv

Hv

X
α;J;N�

J

Fα
N�

J
ðv⃗Þ

�∂Fαðv0Þ
∂EI

aðv0Þ
δv0;ṽþNþ

J μĴ
−
∂Fαðv0Þ
∂EI

aðv0Þ
δv0;ṽ−N−

J μĴ

�
þμ3sU

X
v∈U

Cv

Hv

X
i

∂Fðv⃗Þ
∂EI

aðviÞ
δv0;vi

þOðμ4Þ: ð125Þ

Two sums
P

v and
P

α;β;J;K;N�
J ;M

�
K
(or

P
α;J;N�

J
and

P
i) can

be interchanged since α, J, Nþ
J , N

−
J , Ni are independent

of v. Kronecker deltas in Eq. (125) are nonzero only if v is
inside U by the assumption rðv0; ∂UÞ ≫ μ, since distances
from vi, ṽ, ṽ1;2 to v are of OðμÞ. Pv∈U in the result can be

freely extended to
P

v over all v ∈ VðγÞ, because v outside
U has no contribution.
In the first term in the result of Eq. (125), δvi;v0 restricts

v ¼ v0 − δi, where δi ¼ vi − v ¼ P
J NiðJÞμĴi. We denote

by δ̃1;2 ¼ ṽ1;2 − v ∼OðμÞ that δi and δ̃1;2 are independent
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of v. Carrying out
P

v, the first term in Eq. (125) becomes

μsU
X

α;β;J;K;N�
J ;M

�
K

X
i

Cv0−δi
Hv0−δi

∂Fαβ
N�

J ;M
�
K
ðv0 − δi



!Þ

∂EI
aðv0Þ

ΔJ;N�
J
Fαðv0 − δi þ δ̃1ÞΔK;M�

K
Fβðv0 − δi þ δ̃2Þ

¼ μ3sU
X

α;β;J;K;N�
J ;M

�
J

Cðv0Þ
hðv0Þ

∂F αβ
N�

J ;M
�
K
ðv0Þ

∂EI
aðv0Þ

ðNþ
J þ N−

J ÞðMþ
K þM−

KÞ∂Jfαðv0Þ∂Kfβðv0Þ þOðμ4Þ; ð126Þ

where Fαβ
N�

J ;M
�
K
ðv0 − δi



!Þ is from the expansion of Cv0−δi . Note that all vertices in v0 − δi




!
are inside U. Fαβ

N�
J ;M

�
K
ðv⃗Þ is a

polynomial ofFαðviÞ. Derivatives ∂Fαβ
N�

J ;M
�
K
=∂EI

a have continuum limit ∂F αβ
N�

J ;M
�
K
=∂EI

a. Thanks to summing over all v ∈ U,P
i in Eq. (126) sums over vertices v0 − δi at which ∂Fαβ

N�
J ;M

�
K
ðv0 − δi



!Þ=∂EI

aðv0Þ are nonzero, and reduces to the Leibniz rule
of ∂F αβ

N�
J ;M

�
K
ðv0Þ=∂EI

aðv0Þ.
In the second term in the result of Eq. (125), δv0;ṽ1�N�

J μĴ
restricts v ¼ v0 − δ̃1 ∓ N�

J μĴ ≡ v�J . Carrying out
P

v in the
second term in Eq. (125) gives

μsU
X

α;β;J;K;N�
J ;M

�
K

�CvþJ

HvþJ

Fαβ
N�

J ;M
�
K
ðv⃗þJ ÞΔK;M�

K
FβðvþJ þ δ̃2Þ −

Cv−J

Hv−J

Fαβ
N�

J ;M
�
K
ðv⃗−J ÞΔK;M�

K
Fβðv−J þ δ̃2Þ

� ∂Fαðv0Þ
∂EI

aðv0Þ

¼ −μ3sU
X

α;β;J;K;Nþ
J ;N

−
J

ðNþ
J þ N−

J ÞðMþ
K þM−

KÞ∂J

�
C
h
F αβ

N�
J ;M

�
K
∂Kfβ

�
ðv0Þ ∂fαðv

0Þ
∂EI

aðv0Þ
þOðμ4Þ: ð127Þ

The third and fifth terms in Eq. (125) are treated similar to the second term, while the fourth and sixth terms are treated
similar to the first term. As results,

3rd term ¼ −μ3sU
X

α;β;J;K;Nþ
J ;N

−
J

ðNþ
J þ N−

J ÞðMþ
K þM−

KÞ∂K

�
C
h
F αβ

N�
J ;M

�
K
∂Jfα

�
ðv0Þ ∂fβðv

0Þ
∂EI

aðv0Þ
þOðμ4Þ;

4th term ¼ μ3sU
X

α;J;Nþ
J ;N

−
J

Cðv0Þ
hðv0Þ

∂F α
Nþ

J ;N
−
J
ðv0Þ

∂EI
aðv0Þ

ðNþ
J þ N−

J Þ∂Jfαðv0Þ þOðμ4Þ;

5th term ¼ −μ3sU
X

α;J;Nþ
J ;N

−
J

ðNþ
J þ N−

J Þ∂J

�
Cðv0Þ
hðv0ÞF

α
Nþ

J ;N
−
J
ðv0Þ

� ∂fαðv0Þ
∂EI

aðv0Þ
þOðμ4Þ;

6th term ¼ μ3
Cðv0Þ
hðv0Þ

∂F ðv0Þ
∂EI

aðv0Þ
þOðμ4Þ: ð128Þ
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On the other hand, we apply the functional derivative to C using Eq. (116),

Z
U
d3σ

CðσÞ
hðσÞ

δCðσÞ
δEI

aðv0Þ
¼

X
α;β;J;K;N�

J ;M
�
J

Cðv0Þ
hðv0Þ

∂F αβ
N�

J ;M
�
K
ðv0Þ

∂EI
aðv0Þ

ðNþ
J þ N−

J ÞðMþ
K þM−

KÞ∂Jfαðv0Þ∂Kfβðv0Þ

−
X

α;β;J;K;Nþ
J ;N

−
J

ðNþ
J þ N−

J ÞðMþ
K þM−

KÞ∂J

�
C
h
F αβ

N�
J ;M

�
K
∂Kfβ

�
ðv0Þ ∂fαðv

0Þ
∂EI

aðv0Þ

−
X

α;β;J;K;Nþ
J ;N

−
J

ðNþ
J þ N−

J ÞðMþ
K þM−

KÞ∂K

�
C
h
F αβ

N�
J ;M

�
K
∂Jfα

�
ðv0Þ ∂fβðv

0Þ
∂EI

aðv0Þ

þ
X

α;J;Nþ
J ;N

−
J

Cðv0Þ
hðv0Þ

∂F α
Nþ

J ;N
−
J
ðv0Þ

∂EI
aðv0Þ

ðNþ þ N−Þ∂Jfαðv0Þ

−
X

α;J;Nþ
J ;N

−
J

ðNþ þ N−Þ∂J

�
Cðv0Þ
hðv0ÞF

α
Nþ

J ;N
−
J
ðv0Þ

� ∂fαðv0Þ
∂EI

aðv0Þ
þ Cðv0Þ
hðv0Þ

∂F ðv0Þ
∂EI

aðv0Þ
: ð129Þ

Comparing Eq. (129) with (126)–(128), we obtain the following result:

X
v∈VðγÞ

sv
Cv

Hv

∂Cv

∂EI
aðv0Þ

¼ μ3
Z
U
d3σsU

CðσÞ
hðσÞ

δCðσÞ
δEI

aðv0Þ
þOðμ4Þ: ð130Þ

The derivation of Eq. (130) only uses general patterns of Cv and Cj;v in Eq. (114) and their continuum limit, so it can

easily be generalized to
P

v
Cb;v

Hv

∂Cb;v

∂EI
aðv0Þ and derivatives with respect to Aa

I ðv0Þ. Therefore

∂H
∂EI

aðv0Þ
¼ μ3

Z
U
d3σsU

�
CðσÞ
hðσÞ

δCðσÞ
δEI

aðv0Þ
−
α

4

X3
b¼1

CbðσÞ
hðσÞ

δCbðσÞ
δEI

aðv0Þ
�
þOðμ4Þ

¼ μ3
δ

δEI
aðv0Þ

Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����CðσÞ2 − α

4

X3
b¼1

CbðσÞ2
����

vuut þOðμ4Þ; ð131Þ

∂H
∂Aa

I ðv0Þ
¼ μ3

Z
U
d3σsU

�
CðσÞ
hðσÞ

δCðσÞ
δAa

I ðv0Þ
−
α

4

X3
b¼1

CbðσÞ
hðσÞ

δCbðσÞ
δAa

I ðv0Þ
�
þOðμ4Þ ð132Þ

¼ μ3
δ

δAa
I ðv0Þ

Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����CðσÞ2 − α

4

X3
b¼1

CbðσÞ2
����

vuut þOðμ4Þ: ð133Þ
R
U can be replaced by

R
S because the functional derivative is local. This result shows that the lattice continuum limit of

partial derivatives in discrete variables gives the functional derivatives in smooth fields.
Recall Eqs. (107) and (108), where we obtain the lattice continuum limit of discrete semiclassical EOMs (74),

−
dAa

I ðvÞ
dτ

¼ κβ

2

δ

δEI
aðvÞ

Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����CðσÞ2 − α

4

X3
a¼1

CaðσÞ2
����

vuut þOðμÞ; ð134Þ

dEI
aðvÞ
dτ

¼ κβ

2

δ

δAa
I ðvÞ

Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����CðσÞ2 − α

4

X3
a¼1

CaðσÞ2
����

vuut þOðμÞ: ð135Þ

The result recovers the classical EOMs (24) of the gravity-dust system in the continuum when CðσÞ2 − α
4

P
3
a¼1 CaðσÞ2 > 0.

The above derivation replies on the assumption that v0 ∈ U, rðv0; ∂UÞ ≫ μ, and sv ¼ sU is constant on U. But if we
violate this assumption, i.e., let v0 ∈ U, rðv0; ∂UÞ ∼ μ, and sv changes sign outside U, then in the lattice continuum limit
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μ → 0, v0 belongs to the boundary where sv jumps and
CðσÞ2 − α

4

P
3
a¼1 CaðσÞ2 ¼ 0. Semiclassical EOMs at this v0

cannot relate to Eqs. (134) and (135) by the lattice
continuum limit, because the functional derivative is ill-
defined at v0.
In our quantization, nonholonomic constraints CðσÞ2 −

α
4

P
3
a¼1 CaðσÞ2 > 0 and C < 0 are not imposed to the

Hilbert space Hγ . Therefore H are defined on the entire
phase space Pγ , and thus the continuum limit Eqs. (134)
and (135) extend the continuum theory to the regime where
nonholonomic constraints are not valid. The relation
between Eqs. (134) and (135) and the classical EOMs
(24) is sensitive to the choice of initial condition. Here the
initial condition is given by ½g0� at which the initial coherent
state Ψt

½g0� is peaked. Ψt
½g0� is semiclassical if ½g0� is in the

classical allowed regime of the phase space, while the
classical allowed regime satisfies the nonholonomic con-
straints required by the classical gravity-dust system.
Equations (134) and (135) indeed coincide with classical
EOMs (24) of the continuum theory, if the initial data g0
satisfies (discretized) nonholonomic constraints:

(i) For gravity coupled to Brown-Kuchař dust, if the
initial data g0 at τ ¼ 0 satisfies C2

v − 1
4

P
3
a¼1 C

2
a;v >

0 and Cv < 0 at all v ∈ VðγÞ, these two nonholo-

nomic constraints are still going to be satisfied by the
solution to EOMs (134) and (135) within a finite
time period τ ∈ ½0; T0�, simply because the solution
is a continuous function in τ. Therefore jj in (134)
and (135) can be removed at least within this time
period.

On the other hand, although C2
v − 1

4

P
3
a¼1 C

2
a;v is

not exactly conserved in (74) [or (86)] due to the
anomaly from discretization [57], it is approximately
conserved up to OðμÞ because its continuum limit
C2 − 1

4

P
3
a¼1 C

2
a is conserved by the continuum limit

Eqs. (134) and (135).Cv cannot flip sign by a similar
reason. Therefore C2

v − 1
4

P
3
a¼1 C

2
a;v > 0 and Cv < 0

can continuously be satisfied by the solution at and
even after T0. By adding another time period
½T0; 2T0�, repeating the argument iteratively, we
can extend the time period to entire ½0; T� in which
C2
v − 1

4

P
3
a¼1 C

2
a;v > 0 and Cv < 0 are satisfied,

when μ is sufficiently small.8 Then semiclassical
EOMs from A½g�;½g0� reproduce classical EOMs (24)
for gravity coupled to Brown-Kuchař dust in the
continuum limit,

−
dAa

I ðvÞ
dτ

¼ κβ

2

δ

δEI
aðvÞ

Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðσÞ2 − 1

4

X3
a¼1

CaðσÞ2
vuut þOðμÞ; ð136Þ

dEI
aðvÞ
dτ

¼ κβ

2

δ

δAa
I ðv0Þ

Z
S
d3σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðσÞ2 − 1

4

X3
a¼1

CaðσÞ2
vuut þOðμÞ: ð137Þ

(ii) A similar reasoning applies to gravity coupled to
Gaussian dust, when the initial data g0 of A½g�;½g0�
satisfy Cv < 0 and Ca;v ¼ 0; both Cv and Ca;v are
approximately conserved if μ is sufficiently small,
since they are conserved in the continuum limit, and
thus Cv < 0 is preserved by the time evolution for
sufficiently small μ. Then semiclassical EOMs of
reduced phase space LQG with Gaussian dust
reproduce classical EOMs (24) in the continuum
limit up to a flip of time direction

dAa
I ðvÞ
dτ

¼ κβ

2

δ

δEI
aðvÞ

Z
S
d3σCðσÞ þOðμÞ; ð138Þ

−
dEI

aðvÞ
dτ

¼ κβ

2

δ

δAa
I ðv0Þ

Z
S
d3σCðσÞ þOðμÞ: ð139Þ

Recall that time direction has been flipped to flow
backward in Sec. II in order to obtain a positive
Hamiltonian.

(iii) If the initial data do not satisfy nonholonomic
constraints, Ψt

½g0� is not semiclassical anymore. The
continuum limit of semiclassical EOMs derived
from A½g�;½g0� cannot be related to classical EOMs
(24) of the gravity-dust system. The existence of
nonclassical solutions has been anticipated in [57]
and viewed as analogs of negative energy states in
relativistic QFT, because when Eq. (15) is viewed
as constraint, it can be written as P2 þ ðC −
qαβCαCβÞ ¼ 0 whose quantization would be an
analog of the Klein-Gordan operator. But whether

8T → ∞ is more subtle because accumulating errors of OðμÞ
over an infinite amount of time might cause a finite change of
C2
v − 1

4

P
3
a¼1 C

2
a;v and flip the sign.

SEMICLASSICAL LIMIT OF NEW PATH INTEGRAL … PHYS. REV. D 102, 024083 (2020)

024083-21



nonclassical solutions appear or disappear is deter-
mined by initial conditions, similar to the situation
of negative energy states in QFT.

Some examples of solutions of semiclassical EOMs and
their continuum limit are studied in cosmological pertur-
bation theory in [63].

VII. ASYMPTOTICS OF TRANSITION
AMPLITUDE

Assuming initial and final states Ψt
½g0� and Ψt

½g� are both

semiclassical in the sense that both ½g0� and [g] are within
the classical allowed regime, if ½g�; ½g0� are connected by the
trajectory gðτÞ satisfying Eq. (85), as t → 0, the path
integral (51) dominates at this semiclassical trajectory,

A½g�;½g0�
kΨt

½g�kkΨt
½g0�k

¼ ð2πtÞN =2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−HÞp ν½gðτÞ; h�eS½gðτÞ;h�=t½1þOðtÞ�;

ð140Þ

where N is the total dimension of the integral in Eq. (51)
and H is the Hessian matrix at the solution. S½gðτÞ; h� is the
action evaluated at the solution gðτÞ; h, where the continu-
ous trajectory gðτÞ ≃ gi approximates the discrete solution
as Δτ small. We can set for the solution h ¼ 1 by setting
representatives g and g0 such that gðTÞ ¼ g and gð0Þ ¼ g0.
If the initial and final data ½g0�; ½g� are not connected by

any trajectory gðτÞ satisfying Eq. (85), the amplitude is
suppressed as t → 0,

A½g�;½g0�
kΨt

½g�kkΨt
½g0�k

¼ OðtMÞ; ∀ M > 0: ð141Þ

VIII. COMPARISON WITH SPIN FOAM
FORMULATION AND OUTLOOK

The above analysis demonstrates the semiclassical con-
sistency of the new path integral formulation from reduced
phase space LQG. If we compare our results to the spin
foam formulation, we find the following advantages of our
path integral formulation:
(1) Our path integral formulation is free of the cosine

problem. The initial condition ½g0� given by the
semiclassical initial state Ψt

½g0� determines a unique

solution of semiclassical EOMs up to SU(2) gauge
freedom. Therefore the asymptotic formula (140)
has only a single exponential in the integrand.
A key reason why we obtain a unique solution and

avoid the cosine problem is that all solutions of
discrete EOMs (56) and (57) admit the time con-
tinuous limit. If spin foam formulation admitted the
time continuous limit or anything similar, the con-
tinuous time EOMs (critical equations) would have

forbidden the 4D orientation to jump and suppressed
contributions from orientation-changing evolutions
to spin foam amplitude.

(2) Our path integral formulation is free of the flatness
problem. The semiclassical analysis of the path
integral has been shown to reproduce the classical
EOMs (24), which are Einstein equation formulated
in the reduced phase space. Semiclassical EOMs
(86) admit all curved solutions that are physically
interesting. For instance, [50] has demonstrated the
homogeneous and isotropic cosmology as a solution,
while [63] obtains cosmological perturbation theory
from solutions. Note that the flat spacetime is not a
solution of semiclassical EOMs because of the
presence of a physical dust field with positive energy
density.

(3) There is a clear link between our path integral
formulation and the canonical LQG. The path
integral (51) is rigorously derived from the canonical
formulation in the reduced phase space. The unitar-
ity is manifest because the path integral is the
transition amplitude of unitary evolution generated
by the Hamiltonian Ĥ.

(4) The path integral formula (51) is clearly
finite (irrelevant to the cosmological constant),
because the transition amplitude A½g�;½g0� ¼
hΨt

½g�j exp½− i
ℏTĤ�jΨt

½g0�i is finite. All ingredients

Ψt
½g�, Ψ

t
½g0�, exp½− i

ℏTĤ�, and h·j·i are well-defined.
Our formulation may still have issues of computational

complexity and lattice dependence similar to the spin foam
formulation, at least at the present stage. However, studies
of the new path integral formulation are still at a very
preliminary stage, and research on overcoming these issues
will be carried out in the future. Research in progress and in
the near future focus on generalizing the present work to
other matter couplings, investigating quantum corrections,
and studying various physical situations such as cosmology
and black holes:
(1) The generalization to include standard matter

couplings can be carried out by following the
existing quantization of matters in the canonical
LQG [66–68]. It is straightforward to construct Ĥ
for LQG coupled to all standard model matters (and
it has been done [57,67]). The only gap of deriving a
coherent state path integral formula is computing the
overlap of Yang-Mills coherent states with a higher-
rank gauge group. This task is currently in progress.
Once the path integral formula is obtained, the
semiclassical limit will be studied to contact with
the standard model.

(2) At the level of discrete path integral (51), the action
S½g; h� depends on the nonpolynomial operator Ĥ
and its matrix element, which is hard to compute.
However, because Δτ is arbitrarily small, we may
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consider a formal time continuous limit at the level
of the path integral, as in the standard QFT. The
resulting path integral formula integrates over con-
tinuous paths, and then the matrix element of Ĥ in
S½g; h� reduces to the coherent state expectation
value hψ t

gjĤjψ t
gi, which is computable as a pertur-

bative expansion in t by using the method in [75].
Therefore perturbative techniques in QFT (more
precisely, the lattice perturbation theory) should
be applied to our path integral formulation to
compute quantities such as correlation functions
and quantum effective action as power expansions
in t. Contributions of higher order in t give quantum
corrections predicted from LQG.

(3) Our path integral formulation depends on the cubic
lattice γ even after taking the time continuous limit.
Currently the lattice continuum limit at the quantum
level is not clear for our formulation (in Sec. VI, the
lattice continuum limit μ → 0 is taken after the
semiclassical limit lP → 0). We expect to see the
effects of the lattice continuum limit at the quantum
level order by order in t in perturbative computa-
tions. It is also interesting to apply the refinement
and renormalization techniques [20,49] to our path
integral formulation.

(4) Another interesting direction is to study solutions of
semiclassical EOMs from the path integral and
extract physical consequences. In [50,63], we have
applied the EOMs to cosmology and cosmological
perturbation theory. The research in progress is to
apply the EOMs to other situations, and in particular
black holes. The studies are likely to be done
numerically.
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APPENDIX: PROOF OF EQ. (114)

There are two useful properties of Cv and Ca;v:
(i) Cv and Ca;v are polynomials of hðeÞ, paðeÞ, and

Q1=2
v . By applying Eq. (111) and expanding in μ, Cv

and Ca;v become series of μ and FαðvÞ.
(ii) In the continuum limit Cv ¼ μ3CðvÞ þOðμ4Þ,

Ca;v ¼ μ3CaðvÞ þOðμ4Þ where the leading order
is of Oðμ3Þ and both C and Ca are polynomials of
fα and their first order derivatives.9 Each term in C
and Ca contain no more than two derivatives.

We extract arbitrarily two terms at OðμnÞ in the expan-
sion of Cv and Ca;v. Generically they may be written as

F1ðv1ÞF2ðv2Þ � � �FnðvnÞFnþ1ðvnþ1Þ � � �FmðvmÞ
and F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞF0

nþ1ðv0nþ1Þ � � �F0
qðv0qÞ:
ðA2Þ

They may share F1;…;Fn although locations of
F1;…;Fn, vi, and v0i may be different between these
two terms. Distances from v to vi; v0i are ofOðμÞ.Fi andF0

i
are factors not shared by these two terms. If the relative sign
between these two terms is negative, we can perform the
following reduction:

F1ðv1ÞF2ðv2Þ � � �FnðvnÞFnþ1ðvnþ1Þ � � �FmðvmÞ −F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞF0
nþ1ðv0nþ1Þ � � �F0

qðv0qÞ
¼ F1ðv1ÞF2ðv2Þ � � �FnðvnÞFnþ1ðvnþ1Þ � � �FmðvmÞ −F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞFnþ1ðvnþ1Þ � � �FmðvmÞ

þF1ðv01ÞF2ðv02Þ � � �Fnðv0nÞFnþ1ðvnþ1Þ � � �FmðvmÞ −F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞF0
nþ1ðv0nþ1Þ � � �F0

qðv0qÞ
¼ ½F1ðv1ÞF2ðv2Þ � � �FnðvnÞ −F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞ�Fnþ1ðvnþ1Þ � � �FmðvmÞ

þF1ðv01ÞF2ðv02Þ � � �Fnðv0nÞ½Fnþ1ðvnþ1Þ � � �FmðvmÞ −F0
nþ1ðv0nþ1Þ � � �F0

qðv0qÞ�: ðA3Þ

The quantity in the first square bracket of the above result is the difference of two monomialsF1ðv1ÞF2ðv2Þ � � �FnðvnÞ and
F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞ sharing the same set of F1;…;n, and can be further reduced

9Fa
IJ has only first order derivatives of Aa

I . βK
a
I ¼ Aa

I − Γa
I where

Γa
I ¼

1

2
ϵabcEJ

c½Eb
I;J − Eb

J;I þ EK
b E

d
I E

d
K;J� þ

1

4
ϵabcEJ

c

�
2Eb

I

ðdetðEÞÞ;J
detðEÞ − Eb

J

ðdetðEÞÞ;I
detðEÞ

�
: ðA1Þ

Here detðEðvÞÞ ¼ qðvÞ, the inverse Ea
I ðvÞ ¼ detðEðvÞÞ−1 (quadatic polynomial of EI

aðvÞ), and detðEÞ ðdetðEÞÞ;JdetðEÞ ¼ −2
q ∂Iq1=2 [we assume

qðvÞ > 0].
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F1ðv1ÞF2ðv2Þ � � �FnðvnÞ −F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞ
¼ F1ðv1ÞF2ðv2Þ � � �FnðvnÞ −F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞ þF1ðv1ÞF2ðv02Þ � � �Fnðv0nÞ −F1ðv1ÞF2ðv02Þ � � �Fnðv0nÞ
¼ F1ðv1Þ½F2ðv2Þ � � �FnðvnÞ −F2ðv02Þ � � �Fnðv0nÞ� þ ½F1ðv1Þ −F1ðv01Þ�F2ðv02Þ � � �Fnðv0nÞ
¼ � � �

¼
Xn
i¼1

F1ðv1Þ � � �Fi−1ðvi−1Þ½FiðviÞ −Fiðv0iÞ�Fiþ1ðv0iþ1Þ � � �Fnðv0nÞ: ðA4Þ

Inserting this result back into Eq. (A3) gives

F1ðv1ÞF2ðv2Þ � � �FnðvnÞFnþ1ðvnþ1Þ � � �FmðvmÞ −F1ðv01ÞF2ðv02Þ � � �Fnðv0nÞF0
nþ1ðv0nþ1Þ � � �F0

qðv0qÞ

¼
Xn
i¼1

F1ðv1Þ � � �Fi−1ðvi−1Þ½FiðviÞ −Fiðv0iÞ�Fiþ1ðv0iþ1Þ � � �Fnðv0nÞ

þF1ðv01ÞF2ðv02Þ � � �Fnðv0nÞ½Fnþ1ðvnþ1Þ � � �FmðvmÞ −F0
nþ1ðv0nþ1Þ � � �F0

qðv0qÞ�; ðA5Þ

while there is no reduction for the second square bracket. Here the point of this reduction is to manifest the difference
FiðviÞ −Fiðv0iÞ in the formula.
We insert the above result back into Cv and Cv;a so that they become polynomials of Fα and

ΔFαðv; v0Þ≡FαðvÞ −Fαðv0Þ. We make a further similar reduction as above, by including ΔFα as one of generators
of the polynomial. As a result from iteration, we obtain at OðμnÞ

μn
�
PolnðFαÞ þ

X
p>0

PolpnðFα;ΔFαÞ þ
X

k≥0;l>0

Polk;ln ðFα;ΔFα;Δ2FαÞ
�

¼ μn
�
PolnðFαÞ þ

X
p>0

μpPolpnðFα;ΔFα=μÞ þ
X

k≥0;l>0

μkþ2lPolk;ln ðFα;ΔFα=μ;Δ2Fα=μ2Þ
�
: ðA6Þ

Δ2Fα ¼ ΔFαðv; v0Þ − ΔFαðṽ; ṽ0Þ and ΔFα=μ, Δ2Fα=μ2 are lattice derivatives. PolnðFαÞ is a polynomial of Fα.
PolpnðFα;ΔFαÞ is a polynomial homogeneous in ΔFα of degree p. Pol

k;l
n ðFα;ΔFα;Δ2FαÞ is a polynomial homogeneous

in ΔFα and Δ2Fα of degree k and l, respectively. We stop the reduction at Δ2Fα and do not try to get Δ3Fα (even if we get
ΔFα, its coefficient vanishes as μ → 0 since Cv and Cv;a do not contain a third derivative).
Importantly, we assume that when PolnðFαÞ, PolpnðFα;ΔFαÞ, and Polk;ln ðFα;ΔFα;Δ2FαÞ are nonzero, PolnðFαÞ and the

coefficients of ΔFα and Δ2Fα (as polynomials of Fα) in PolpnðFα;ΔFαÞ,Polk;ln ðFα;ΔFα;Δ2FαÞ do not vanish as μ → 0,
because otherwise they can be further reduced to higher order in ΔFα.
We are interested in expansions of Cv and Cv;a truncated up toOðμ3Þ to be relevant to their continuum limit. So we focus

on

n ≤ 3; nþ p ≤ 3; nþ kþ 2l ≤ 3: ðA7Þ

Continuum limits of Cv and Cv;a contain no terms of three derivatives, so it imposes in addition

k ¼ 0; l ¼ 1; p ≤ 2: ðA8Þ

Moreover Cv, Cv;a ∼ μ3 in the continuum limit. So at n ¼ 0, Pol0ðFαÞ, Polp0 ðFα;ΔFαÞ, and Polk;l0 ðFα;ΔFα;Δ2FαÞ have to
vanish, since otherwise they produce a nonzero continuum limit at Oðμ0Þ, Oðμ1Þ, Oðμ2Þ,

Pol0ðfαÞ þ
X2
p¼1

μpPolp0 ðfα; ∂fαÞ þ μ2Pol0;10 ðfα; ∂fα; ∂2fαÞ: ðA9Þ

By similar arguments, Pol1ðFαÞ and Pol11ðFα;ΔFαÞ have to vanish at n ¼ 1, and Pol2ðFαÞ has to vanish at n ¼ 2. As a
result, Cv and Cv;a can be written as
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μ½Pol21ðFα;ΔFαÞ þ Pol0;11 ðFα;ΔFα;Δ2FαÞ� þ μ2Pol12ðFα;ΔFαÞ þ μ3Pol3ðFαÞ þOðμ4Þ
→ μ3½Pol21ðfα; ∂fαÞ þ Pol0;11 ðfα; ∂fα; ∂2fαÞ þ Pol12ðfα; ∂fαÞ þ Pol3ðfαÞ� þOðμ4Þ: ðA10Þ

Recall that continuum limits of Cv and Cv;a, C and Ca, contain no second order derivative. So Pol
0;1
1 ðFα;ΔFα;Δ2FαÞ has to

vanish. Finally we obtain

Cv or Cv;a ¼ μPol21ðFα;ΔFαÞ þ μ2Pol12ðFα;ΔFαÞ þ μ3Pol3ðFαÞ þOðμ4Þ: ðA11Þ

Given any v1, v2 of OðμÞ distance from v (μĴ with J ¼ 1, 2, 3 are lattice vectors),

v1 ¼ vþM1μ1̂þ N1μ2̂þ P1μ3̂; v2 ¼ vþM2μ1̂þ N2μ2̂þ P2μ3̂; ðA12Þ

where M1;2, N1;2, P1;2 ∈ Z, we define

v3 ¼ vþM1μ1̂þ N1μ2̂þ P2μ3̂; v4 ¼ vþM1μ1̂þ N2μ2̂þ P2μ3̂; ðA13Þ

so that

v1 − v2 ¼ ðv1 − v3Þ þ ðv3 − v4Þ þ ðv4 − v2Þ; ðA14Þ

ΔFαðv1; v2Þ ¼ Δ3Fαðv1; v3Þ þ Δ2Fαðv3; v4Þ þ Δ1Fαðv4; v2Þ; ðA15Þ

where Δ3Fαðv1; v3Þ, Δ2Fαðv3; v4Þ, Δ1Fαðv4; v2Þ are differences along the 3,2,1 directions, respectively. Inserting
Eq. (A15) and expanding, Eq. (A11) can be rewritten as

Cv or Cv;a ¼ μPol012 ðFα;ΔJFαÞ þ μ2Pol012 ðFα;ΔJFαÞ þ μ3Pol3ðFαÞ þOðμ4Þ; ðA16Þ

where every difference ΔJ is along the J ¼ 1, 2, 3 direction.
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[18] P. Donà, F. Gozzini, and G. Sarno, Searching for classical
geometries in spin foam amplitudes: A numerical method,
Classical Quantum Gravity 37, 094002 (2020).

[19] P. Dona and G. Sarno, Numerical methods for EPRL spin
foam transition amplitudes and Lorentzian recoupling
theory, Gen. Relativ. Gravit. 50, 127 (2018).

[20] B. Bahr and S. Steinhaus, Numerical Evidence for a Phase
Transition in 4d Spin Foam Quantum Gravity, Phys. Rev.
Lett. 117, 141302 (2016).

[21] L. Cohen, A. J. Brady, Z. Huang,H. Liu, D.Qu, J. P. Dowling,
andM. Han, Simulation of loop quantum gravity—A scalable
linear-optical approach, arXiv:2003.03414.

[22] K. Li, Y. Li, M. Han, S. Lu, J. Zhou, D. Ruan, G. Long, Y.
Wan, D. Lu, B. Zeng, and R. Laflamme, Quantum spacetime
on a quantum simulator, Commun. Phys. 2, 122 (2019).

[23] J. Mielczarek, Spin foam vertex amplitudes on quantum
computer—Preliminary results, Universe 5, 179 (2019).

[24] E. Bianchi, E. Magliaro, and C. Perini, Spinfoams in the
holomorphic representation, Phys. Rev. D 82, 124031
(2010).

[25] K. Noui and A. Perez, Three-dimensional loop quantum
gravity: Physical scalar product and spin foam models,
Classical Quantum Gravity 22, 1739 (2005).

[26] D. Oriti, The Feynman Propagator for Spin Foam Quantum
Gravity, Phys. Rev. Lett. 94, 111301 (2005).

[27] V. Bonzom, Spin foam models for quantum gravity from
lattice path integrals, Phys. Rev. D 80, 064028 (2009).

[28] C. Perini, Holonomy-flux spinfoam amplitude, arXiv:
1211.4807.

[29] F. Hellmann and W. Kaminski, Holonomy spin foam
models: Asymptotic geometry of the partition function, J.
High Energy Phys. 10 (2013) 165.

[30] M. Han, Covariant loop quantum gravity, low energy
perturbation theory, and Einstein gravity with high curvature
UV corrections, Phys. Rev. D 89, 124001 (2014).

[31] M. Han, On spinfoam models in large spin regime, Classical
Quantum Gravity 31, 015004 (2014).

[32] E. Magliaro and C. Perini, Emergence of gravity from
spinfoams, Europhys. Lett. 95, 30007 (2011).

[33] P. Dona, F. Gozzini, and G. Sarno, Numerical analysis of
spin foam dynamics and the flatness problem, arXiv:
2004.12911.

[34] M. Han and T. Thiemann, On the relation between operator
constraint–, master constraint–, reduced phase space–, and
path integral quantisation, Classical Quantum Gravity 27,
225019 (2010).

[35] M. Han and T. Thiemann, On the relation between rigging
inner product and master constraint direct integral decom-
position, J. Math. Phys. (N.Y.) 51, 092501 (2010).

[36] M. Han, Canonical path-integral measures for Holst and
Plebanski gravity. II. Gauge invariance and physical inner
product, Classical Quantum Gravity 27, 245015 (2010).

[37] J. Engle, M. Han, and T. Thiemann, Canonical path integral
measures for Holst and Plebanski gravity. I. Reduced phase
space derivation, Classical Quantum Gravity 27, 245014
(2010).

[38] E. Alesci, T. Thiemann, and A. Zipfel, Linking covariant
and canonical LQG: New solutions to the Euclidean scalar
constraint, Phys. Rev. D 86, 024017 (2012).

[39] T. Thiemann and A. Zipfel, Linking covariant and canonical
LQG II: Spin foam projector, Classical Quantum Gravity
31, 125008 (2014).

[40] P. Dona, Infrared divergences in the EPRL-FK Spin Foam
model, Classical Quantum Gravity 35, 175019 (2018).

[41] L.-Q. Chen, Bulk amplitude and degree of divergence in 4d
spin foams, Phys. Rev. D 94, 104025 (2016).

[42] A. Riello, Self-energy of the Lorentzian Engle-Pereira-
Rovelli-Livine and Freidel-Krasnov model of quantum
gravity, Phys. Rev. D 88, 024011 (2013).

[43] M. Han, 4-dimensional spin-foam model with quantum
Lorentz group, J. Math. Phys. (N.Y.) 52, 072501 (2011).

[44] W. J. Fairbairn and C. Meusburger, Quantum deformation of
two four-dimensional spin foam models, J. Math. Phys.
(N.Y.) 53, 022501 (2012).

[45] M. Han, Cosmological constant in loop quantum gravity
vertex amplitude, Phys. Rev. D 84, 064010 (2011).

[46] D. Oriti, D. Pranzetti, and L. Sindoni, Black holes as
quantum gravity condensates, Phys. Rev. D 97, 066017
(2018).

[47] S. Gielen and D. Oriti, Cosmological perturbations from full
quantum gravity, Phys. Rev. D 98, 106019 (2018).

[48] D. Oriti, L. Sindoni, and E. Wilson-Ewing, Bouncing
cosmologies from quantum gravity condensates, Classical
Quantum Gravity 34, 04LT01 (2017).

[49] B. Dittrich, The continuum limit of loop quantum gravity—
A framework for solving the theory, in Loop Quantum
Gravity: The First 30 Years, edited by A. Ashtekar and J.
Pullin (World Scientific, 2017), pp. 153–179, https://doi
.org/10.1142/10445.

[50] M. Han and H. Liu, Effective dynamics from coherent state
path integral of full loop quantum gravity, Phys. Rev. D 101,
046003 (2020).

[51] C. Rovelli, What is observable in classical and quantum
gravity? Classical Quantum Gravity 8, 297 (1991).

[52] C. Rovelli, Partial observables, Phys. Rev. D 65, 124013
(2002).

[53] B. Dittrich, Partial and complete observables for Hamil-
tonian constrained systems, Gen. Relativ. Gravit. 39, 1891
(2007).

[54] T. Thiemann, Reduced phase space quantization and Dirac
observables, Classical Quantum Gravity 23, 1163 (2006).

[55] K. Giesel, S. Hofmann, T. Thiemann, and O. Winkler,
Manifestly gauge-invariant general relativistic perturbation
theory. I. Foundations, Classical Quantum Gravity 27,
055005 (2010).

[56] K. Giesel, S. Hofmann, T. Thiemann, and O. Winkler,
Manifestly gauge-invariant general relativistic perturbation
theory. II. FRW background and first order, Classical
Quantum Gravity 27, 055006 (2010).

MUXIN HAN and HONGGUANG LIU PHYS. REV. D 102, 024083 (2020)

024083-26

https://doi.org/10.1103/PhysRevD.86.104040
https://doi.org/10.1103/PhysRevD.97.084055
https://doi.org/10.1103/PhysRevD.97.084055
https://doi.org/10.1016/j.nuclphysb.2009.07.016
https://doi.org/10.1016/j.nuclphysb.2009.07.016
https://doi.org/10.1103/PhysRevD.100.106003
https://doi.org/10.1088/1361-6382/ab7ee1
https://doi.org/10.1007/s10714-018-2452-7
https://doi.org/10.1103/PhysRevLett.117.141302
https://doi.org/10.1103/PhysRevLett.117.141302
https://arXiv.org/abs/2003.03414
https://doi.org/10.1038/s42005-019-0218-5
https://doi.org/10.3390/universe5080179
https://doi.org/10.1103/PhysRevD.82.124031
https://doi.org/10.1103/PhysRevD.82.124031
https://doi.org/10.1088/0264-9381/22/9/017
https://doi.org/10.1103/PhysRevLett.94.111301
https://doi.org/10.1103/PhysRevD.80.064028
https://arXiv.org/abs/1211.4807
https://arXiv.org/abs/1211.4807
https://doi.org/10.1007/JHEP10(2013)165
https://doi.org/10.1007/JHEP10(2013)165
https://doi.org/10.1103/PhysRevD.89.124001
https://doi.org/10.1088/0264-9381/31/1/015004
https://doi.org/10.1088/0264-9381/31/1/015004
https://doi.org/10.1209/0295-5075/95/30007
https://arXiv.org/abs/2004.12911
https://arXiv.org/abs/2004.12911
https://doi.org/10.1088/0264-9381/27/22/225019
https://doi.org/10.1088/0264-9381/27/22/225019
https://doi.org/10.1063/1.3486359
https://doi.org/10.1088/0264-9381/27/24/245015
https://doi.org/10.1088/0264-9381/27/24/245014
https://doi.org/10.1088/0264-9381/27/24/245014
https://doi.org/10.1103/PhysRevD.86.024017
https://doi.org/10.1088/0264-9381/31/12/125008
https://doi.org/10.1088/0264-9381/31/12/125008
https://doi.org/10.1088/1361-6382/aad38f
https://doi.org/10.1103/PhysRevD.94.104025
https://doi.org/10.1103/PhysRevD.88.024011
https://doi.org/10.1063/1.3606592
https://doi.org/10.1063/1.3675898
https://doi.org/10.1063/1.3675898
https://doi.org/10.1103/PhysRevD.84.064010
https://doi.org/10.1103/PhysRevD.97.066017
https://doi.org/10.1103/PhysRevD.97.066017
https://doi.org/10.1103/PhysRevD.98.106019
https://doi.org/10.1088/1361-6382/aa549a
https://doi.org/10.1088/1361-6382/aa549a
https://doi.org/10.1142/10445
https://doi.org/10.1142/10445
https://doi.org/10.1142/10445
https://doi.org/10.1103/PhysRevD.101.046003
https://doi.org/10.1103/PhysRevD.101.046003
https://doi.org/10.1088/0264-9381/8/2/011
https://doi.org/10.1103/PhysRevD.65.124013
https://doi.org/10.1103/PhysRevD.65.124013
https://doi.org/10.1007/s10714-007-0495-2
https://doi.org/10.1007/s10714-007-0495-2
https://doi.org/10.1088/0264-9381/23/4/006
https://doi.org/10.1088/0264-9381/27/5/055005
https://doi.org/10.1088/0264-9381/27/5/055005
https://doi.org/10.1088/0264-9381/27/5/055006
https://doi.org/10.1088/0264-9381/27/5/055006


[57] K. Giesel and T. Thiemann, Algebraic quantum gravity
(AQG). IV. Reduced phase space quantisation of loop
quantum gravity, Classical Quantum Gravity 27, 175009
(2010).

[58] K. Giesel and T. Thiemann, Scalar material reference
systems and loop quantum gravity, Classical Quantum
Gravity 32, 135015 (2015).

[59] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao, and T.
Thiemann, Coherent state transforms for spaces of con-
nections, J. Funct. Anal. 135, 519 (1996).

[60] T. Thiemann, Gauge field theory coherent states (GCS): 1.
General properties, Classical Quantum Gravity 18, 2025
(2001).

[61] M. Kisielowski and J. Lewandowski, Spin-foam model for
gravity coupled to massless scalar field, Classical Quantum
Gravity 36, 075006 (2019).

[62] M. Assanioussi, J. Lewandowski, and I. Makinen, New
scalar constraint operator for loop quantum gravity, Phys.
Rev. D 92, 044042 (2015).

[63] M. Han, H. Li, and H. Liu, Manifestly gauge-invariant
cosmological perturbation theory from full loop quantum
gravity, arXiv:2005.00883.

[64] A. Ashtekar, M. Campiglia, and A. Henderson, Casting loop
quantum cosmology in the spin foam paradigm, Classical
Quantum Gravity 27, 135020 (2010).

[65] A. Henderson, C. Rovelli, F. Vidotto, and E. Wilson-Ewing,
Local spinfoam expansion in loop quantum cosmology,
Classical Quantum Gravity 28, 025003 (2011).

[66] T. Thiemann, QSD 5: Quantum gravity as the natural
regulator of matter quantum field theories, Classical Quan-
tum Gravity 15, 1281 (1998).

[67] K. Giesel and T. Thiemann, Algebraic quantum gravity
(AQG). I. Conceptual setup, Classical Quantum Gravity 24,
2465 (2007).

[68] H. Sahlmann and T. Thiemann, Towards the QFT on curved
space-time limit of QGR. 1. A general scheme, Classical
Quantum Gravity 23, 867 (2006).

[69] M. Han and H. Liu, https://github.com/LQG-Florida-
Atlantic-University/Classical-EOM (2020).

[70] J. D. Brown and K. V. Kuchar, Dust as a standard of space
and time in canonical quantum gravity, Phys. Rev. D 51,
5600 (1995).

[71] K. V. Kuchar and C. G. Torre, Gaussian reference fluid and
interpretation of quantum geometrodynamics, Phys. Rev. D
43, 419 (1991).

[72] M. Reed and B. Simon, II: Fourier Analysis, Self-
Adjointness, Methods of Modern Mathematical Physics
(Academic Press, London, 1975).

[73] T. Thiemann and O. Winkler, Gauge field theory coherent
states (GCS). 2. Peakedness properties, Classical Quantum
Gravity 18, 2561 (2001).

[74] T. Thiemann and O. Winkler, Gauge field theory coherent
states (GCS): 3. Ehrenfest theorems, Classical Quantum
Gravity 18, 4629 (2001).

[75] K. Giesel and T. Thiemann, Algebraic quantum gravity
(AQG). III. Semiclassical perturbation theory, Classical
Quantum Gravity 24, 2565 (2007).

SEMICLASSICAL LIMIT OF NEW PATH INTEGRAL … PHYS. REV. D 102, 024083 (2020)

024083-27

https://doi.org/10.1088/0264-9381/27/17/175009
https://doi.org/10.1088/0264-9381/27/17/175009
https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1088/0264-9381/32/13/135015
https://doi.org/10.1006/jfan.1996.0018
https://doi.org/10.1088/0264-9381/18/11/304
https://doi.org/10.1088/0264-9381/18/11/304
https://doi.org/10.1088/1361-6382/aafcc0
https://doi.org/10.1088/1361-6382/aafcc0
https://doi.org/10.1103/PhysRevD.92.044042
https://doi.org/10.1103/PhysRevD.92.044042
https://arXiv.org/abs/2005.00883
https://doi.org/10.1088/0264-9381/27/13/135020
https://doi.org/10.1088/0264-9381/27/13/135020
https://doi.org/10.1088/0264-9381/28/2/025003
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.1088/0264-9381/15/5/012
https://doi.org/10.1088/0264-9381/24/10/003
https://doi.org/10.1088/0264-9381/24/10/003
https://doi.org/10.1088/0264-9381/23/3/019
https://doi.org/10.1088/0264-9381/23/3/019
https://github.com/LQG-Florida-Atlantic-University/Classical-EOM
https://github.com/LQG-Florida-Atlantic-University/Classical-EOM
https://github.com/LQG-Florida-Atlantic-University/Classical-EOM
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1103/PhysRevD.51.5600
https://doi.org/10.1103/PhysRevD.43.419
https://doi.org/10.1103/PhysRevD.43.419
https://doi.org/10.1088/0264-9381/18/14/301
https://doi.org/10.1088/0264-9381/18/14/301
https://doi.org/10.1088/0264-9381/18/21/315
https://doi.org/10.1088/0264-9381/18/21/315
https://doi.org/10.1088/0264-9381/24/10/005
https://doi.org/10.1088/0264-9381/24/10/005

