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Recently, a new path integral formulation of loop quantum gravity (LQG) has been derived in M. Han
and H. Liu, Phys. Rev. D 101, 046003 (2020). from the reduced phase space formulation of the canonical
LQG. This paper focuses on the semiclassical analysis of this path integral formulation. We show that
dominant contributions of the path integral come from solutions of semiclassical equations of motion
(EOMs), which reduce to Hamilton’s equations of holonomies and fluxes 4(e), p?(e) in the reduced

phase space P, of the cubic lattice y: %:) = {h(e),H}, d’%ﬁ") = {p“(e), H}, where H is the discrete
physical Hamiltonian. The semiclassical dynamics from the path integral becomes an initial value
problem of Hamiltonian time evolution in P,. Moreover when we take the continuum limit of the lattice
7, these Hamilton’s equations reproduce correctly classical reduced phase space EOMs of gravity
coupled to dust fields in the continuum, as far as initial and final states are semiclassical. Our result
proves that the new path integral formulation has the correct semiclassical limit and indicates that the
reduced phase space quantization in LQG is semiclassically consistent. Based on these results, we
compare this path integral formulation and the spin foam formulation, and show that this formulation has
several advantages including the finiteness, the relation with canonical LQG, and the freedom from

cosine and flatness problems.
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I. INTRODUCTION

In recent developments of loop quantum gravity (LQG),
tremendous progress has been obtained by the covariant
path integral approach (see e.g., [1] for a summary). The
covariant path integral approach of LQG focuses on
transition amplitudes of LQG states (such as spin net-
works). These amplitudes sum all possible evolution
histories of LQG states, reflecting the idea of Feynman’s
path integral. Moreover the path integral approach makes it
possible to bypass complications from the nonpolynomial
Hamiltonian constraint operator and possibly reduce diffi-
culties in computing physical quantities in LQG. Indeed,
the path integral trades the noncommutativity of quantum
operators for integrals of commutative c-numbers, and
thus may reduce complicated operator manipulations to

fhanrn@fau.edu
"liu.hongguang @ cpt.univ-mrs.fr

2470-0010/2020/102(2)/024083(27)

024083-1

computable integrals. It is the reason why most develop-
ments of quantum field theories (QFTs) are made by using
path integral formulas.

A popular path integral approach in LQG is the spin
foam formulation [1,2]. This formulation constructs tran-
sition amplitudes of LQG on four-dimensional (4D) trian-
gulations, and all these spin foam amplitudes are made by
gluing elementary building blocks called vertex ampli-
tudes, in analogy with Feynman amplitudes made by gluing
vertices and propagators. This structure of spin foam
amplitudes allows them to be studied both analytically
and numerically. Semiclassical behaviors of spin foam
amplitudes, given by the large-j asymptotics, have been
extensively studied analytically and found a close relation
to the Regge calculus of discrete gravity (see e.g., [3—-16]).
Numerical studies of spin foam amplitudes have been
developed in [17-20]. Spin foams have also been related
to quantum computations recently [21-23]. However,
extensive studies of spin foam amplitudes reveal several
severe problems:
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(1) Cosine problem: In the large-j limit, the emergent
(discrete) spacetime determined by the spin foam
amplitude with a fixed semiclassical boundary state
is highly nonunique in general, even when the
semiclassical boundary state specifies both metric
and extrinsic curvature at the boundary. Different
discrete spacetimes have different 4D orientations at
individual 4-simplices [6,7]. Although for a single
vertex amplitude the orientation can be fixed by the
boundary coherent state specifying both metric and
extrinsic curvature [24], it cannot be generalized to
many 4-simplices. If we view the spin foam as an
initial value problem, then its semiclassical time
evolution from a fixed initial condition in phase
space can give many different trajectories; thus it is
very different from classical physics.l

(2) Flatness problem: There are evidences indicating
that in the large-j limit, spin foam amplitudes
dominate at the flat spacetime and miss all other
curved spacetimes [27-31]. Although some other
work suggests that one may modify the large-j limit
and/or definitions of spin foams in order to avoid the
flatness problem [10,11,32], there is still no satis-
factory resolution to the problem in full generality.2

(3) Relation with canonical LQG: The spin foam
approach has been developed in parallel to the
canonical approach of LQG. It is not clear how to
relate spin foam amplitudes to any transition am-
plitude or physical inner product in the canonical
LQG (see e.g., [34-39] for some earlier attempts). It
is not clear about the unitarity of spin foam models.

(4) Divergence: Spin foam amplitudes are divergent
[40-42] unless the quantum Lorentz group (with real
q) is employed [43,44] (the quantum group relates to
cosmological constant [8,45]).

(5) Computational complexity: Numerical computations
are currently developed only for a single vertex
amplitude. Even for the vertex amplitude, the com-
putational complexity grows very fast as the spin j
increases [17]. The computational complexity grows
exponentially when the number of 4-simplices in-
creases. Quantum computing might help in this
perspective, but it is still at a very preliminary stage.

"There are arguments that the sum over orientations in the 3D
Ponzano-Regge model is necessary to properly implement the
constraints [25]. Heuristically one might argue that the spin
foam model should act as a projector onto the physical Hilbert
space, and thus is necessary to integrate over positive and
negative lapse and shift [26]. But the semiclassical analysis of
spinfoam models indicates that the lapse and shift are discrete so
orientations can jump from one simplex to another. This makes
semiclassical interpretations of geometries from spin foams
problematic.

See also a recent numerical study toward understanding the
problem [33].

(6) Lattice dependence: There are infinitely many spin
foam amplitudes with the same boundary state.
These amplitudes are defined on different triangu-
lations (with the same boundary). It is not clear how
to remove the triangulation dependence and/or how
to take the continuum limit at the quantum level. The
diffeomorphism invariance is difficult to be imple-
mented in spin foam models. Group field theory
(GFT) provides an interesting proposal to sum over
all triangulations, but it seems still difficult to extract
all semiclassical smooth spacetimes from a fixed
GFT partition function (while some special cases
such as black holes and cosmology can indeed be
extracted from the general GFT formalism [46-48]).
There are also different approaches toward the spin
foam continuum limit via lattice refinement and
renormalization [20,49].

As a different approach, a new path integral formulation
of LQG has been proposed recently in [50]. This path
integral is derived from the reduced phase space formu-
lation of canonical LQG. The reduced phase space formu-
lation couples gravity to matter fields such as dusts or scalar
fields (clock fields), followed by a deparametrization
procedure, in which gravity variables are parametrized
by values of clock fields, and constraints are solved
classically. Results from the deparametrization are
(1) the reduced phase space P on which all phase space
functions are Dirac observables free of gauge redundancy
[except for the SU(2) gauge freedom when using con-
nection variables], and (2) the dynamics is governed by a
physical Hamiltonian H(, generating physical time evolu-
tion (the physical time is the value of a clock field). The
reduced phase space P of the gravity-matter system can be
quantized using the standard LQG technique and result in
the physical Hilbert space H. The physical Hamiltonian is
promoted to a positive self-adjoint Hamiltonian operator H
on H. The reduced phase space quantization of LQG has
been proposed conceptually in [51,52] and has been made
concrete in [53-58] (Sec. II provides a review of the
reduced phase space formulation).

The new path integral formula in [50] equals to the
transition amplitude of the unitary evolution generated
by H:

i
Ayl = (¥l exp [‘ 7 TH} ¥l (1)

of semiclassical initial and final physical states ‘Pf 7 and

t t 1
‘I’[g]. Here ‘I‘[ 7] and ‘I‘[y]

states [59,60] in 'H,, the physical Hilbert space on a cubic
lattice y. [g] and [¢'] label the gauge equivalence class of
initial and final data in the phase space (g is the complex
coordinate of the phase space). The path integral formula is
derived from Ay 4 by the standard method: discretizing T

are SU(2) gauge invariant coherent

ql.[
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The procedure of limits in this paper to reproduce classical gravity coupled to clock fields (dusts). u is the coordinate length of

lattice edges in the dust frame and used as the parameter for the lattice continuum limit.

into arbitrarily large N time steps and inserting the over-
completeness relation of coherent states. As a result, we
obtain a discrete path integral on a 4D hypercubic lattice
(see Sec. II for review):

A[g N+1
—e dh dg;v| (2)
o= [ ol

where we can extract a “classical action” S[g, h] from the
resulting path integral formula (see Sec. II B for details).
[dgiv]g] integrates coherent states intermediating the
quantum transition at different time steps z; = %T. t=

£%/a? is a dimensionless semiclassicality parameter (it is
preferred to take limits with dimensionless parameters),
and a is a fixed length unit so that 7 is the numerical value of
£3 measured in this unit (e.g., 7 = 1.616 x 107> when
a = 1m). The semiclassical limit 7 — O corresponds to
t - 0 or £p < a. Equation (2) has SU(2) integrals f dh
since the initial and final data have SU(2) gauge freedom.

This path integral formula is comparable to the spin
foam amplitude in the coherent state representation [6]
which is frequently used for analyzing the large-j behav-
ior. On the other hand, if we choose the clock field to be a
real massless scalar, Eq. (2) closely relates to the spin
foam model in [61].> It is a matter of changing the
representation basis to cast the path integral (2) into a
shape similar to spin foams.

In this paper, we focus on the semiclassical analysis of
the path integral formulation Eq. (2), i.e., the behavior as
t — 0. By stationary phase approximation, dominant con-
tributions of the path integral come from solutions of
semiclassical equations of motion (EOMs) 6S = 0. These
semiclassical EOMs have been derived in [50] and shown
to admit time continuous limit Az =T/N — 0; i.e., all
solutions can be approximated by continuous (and differ-
entiable) trajectories g(7) in the reduced phase space. In this
paper, we show that in the time continuous limit, semi-
classical EOMs derived from Eq. (2) become precisely the
Hamilton’s equation in the reduced phase space:

dp“(e) a
4~ th(e).H}, R U

(e). H}, (3)

3Namely Eq. (2) is the coherent state representation of the
amplitude in [61], if their derivation uses graph-preserving
Hamiltonian, and H is the Hamiltonian in [62].

where h(e) and p“?(e) are holonomy and gauge covariant
flux associated with the edge einy. h(e) and p“(e) relate to
gle) by gle) = e P"©"/2p(e), 19 = —i(Pauli Matrix)?.
{,} is the Poisson bracket of the reduced phase space
and reduces to the holonomy-flux algebra on y. H is the
semiclassical limit of H.

In addition, we show in Sec. VI that when we take the
continuum limit of the lattice y, EOMs (3) reproduce
classical reduced phase space EOMs of gravity coupled
to matter fields in the continuum, as far as initial and final
states ‘I‘fg,] and ng] are semiclassical in the sense that

[d].[g] is within the classically allowed regime. The
classically allowed regime in the phase space satisfy certain
nonholonomic constraints required by the gravity-matter
system. Our result proves that the path integral formulation
Eq. (2) has the correct semiclassical limit and indicates that
the reduced phase space quantization in LQG is semi-
classically consistent. The procedure of limits in our
analysis and results are summarized in Fig. 1.

Given semiclassical initial and final states and by
Hamilton’s equations (3), the semiclassical dynamics from
Al [g) becomes an initial value problem of Hamiltonian
time evolution in the reduced phase space. Fixing the initial
condition [¢], the solution of EOMs (3), given by the
Hamiltonian flow of H, is unique up to SU(2) gauge
transformation.

If semiclassical initial and final data [¢'], [g] are con-
nected by the trajectory g(r) satisfying Eq. (3), as t — 0,
the path integral (51) dominates at this semiclassical
trajectory:

Ay (2rt)N/?
e, [I(IAII[‘GP] 0 det(—H)”[9<r),h]es[9")”’]/’[l+0(f)]v

(4)

where N is the total dimension of the integral in Eq. (2) and
H is the Hessian matrix at the solution. S[g(z), k| is the
action evaluated at the solution g(z), h, where the continu-
ous trajectory g(7) =~ g; approximates the discrete solution
as Az small. If the initial and final data [¢/], [g] are not
connected by the trajectory g(z), the amplitude is sup-
pressed exponentially as t — 0.

It is interesting to make a comparison between the new
path integral formulation of LQG (2) to the spin foam
formulation.

(1) Our path integral formulation is free of the cosine

problem. The initial state ‘I‘fg,] determines a unique
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semiclassical trajectory [up to SU(e) gauge trans-
formations] given by the Hamiltonian flow of H.
The asymptotic formula has a single exponential
[integrated over SU(2) gauge transformations]. A
key reason is that here all solutions of semiclassical
EOMs admit a time continuous limit. Solutions with
discontinuous orientations are forbidden.

(2) Our path integral formulation is free of the flatness
problem. The semiclassical EOMs (3) from the path
integral reproduce the classical EOMs of the gravity-
matter system and admit all curved solutions that are
physically interesting. For instance, Refs. [50,63]
have demonstrated the homogeneous and isotropic
cosmology and cosmological perturbation theory
from solutions.

(3) There is a clear link between our path integral
formulation and the canonical LQG.' The path
integral (51) is rigorously derived from the canonical
LQG. The unitarity is manifest because the path
integral equals the transition amplitude of unitary
evolution generated by H.

(4) The path integral formula (2) is finite for arbitrary
finite N, and because of the transition amplitude
A[g.[¢) 1s manifestly finite. The finiteness is irrelevant
to the cosmological constant.

There are open issues: Computing quantum effects
within the path integral formulation (51) relies on knowl-
edge of the matrix elements and/or expectation values of H
with respect to coherent states. The nonpolynomial oper-

ator H may make computations highly involved. Second,
the path integral is constructed on the lattice y, and it is not
clear at present if we are able to remove this lattice
dependence at the quantum level. Although gauge sym-
metries from Hamiltonian and diffeomorphism constraints
are resolved classically in the reduced phase space formu-
lation, they lead to infinitely many classical conserved
charges. But the discretization breaks these conservation
laws except the conservation of H [57]. The limits in Fig. 1
can recover these classical conserved charges, but it is not
clear how to make them conserved at the quantum level as
well, due to the lattice dependence. This formulation may
still share issues of computational complexity and lattice
dependence with the spin foam formulation, at least at the
current stage. However, studies of the new path integral
formulation is still at a very preliminary stage, and research
on overcoming these issues will be carried out in the future.
Some discussions are given in Sec. VIIL

As a by-product from this work, we obtain an under-
standing of dusts or other clock fields from the LQG point
of view, particularly whether dusts are valid in the quantum
regime. Our attitude is that the quantum theory of LQG

4Adva.ntages from relating canonical and path integral formu-
lation can be seen from loop quantum cosmology (LQC) in
studying the physical inner product [64,65].

defined by the Hamiltonian H should be the fundamental
theory and starting point of discussions. Although the
quantum theory is formally obtained by quantizing the
classical theory, the classical theory is not fundamental but
emergent from the fundamental quantum theory. From the
quantum point of view, both classical gravity and dust are
low-energy effective degrees of freedom produced from the
quantum theory via the semiclassical approximation, as
demonstrated in our work. Both classical gravity and dusts
are not fundamental and not valid in the quantum regime
but emergent at low energy, while what are valid in the
quantum regime are H defined on H.

This work mainly focuses on scenarios with clock fields
as Brown-Kuchar or Gaussian dusts. The generalization to
a massless scalar clock field should be straightforward
given that the formulation is defined for all three scenarios
[50]. The generalization of the present formulation to
include other matter fields, such as the Yang-Mills field
and fermions, is based on existing quantizations of matters
in the canonical LQG [66—68]. The detailed analysis is
currently undergoing work.

Many computations in this work are carried out with
Mathematica on high-performance-computing (HPC)
servers. Some intermediate steps and results contain long
formulas that cannot be shown in this paper. These
formulas and Mathematica codes can be downloaded
from [69].

The architecture of this paper is as follows: Section II
reviews the reduced phase space formulation of LQG and
the derivation of the new path integral formulation.
Section III reviews semiclassical EOMs from the path
integral and derives its time continuous limit in general
(new results of this paper start in Sec. III B). Section IV
shows that semiclassical EOMs are equivalent to
Hamilton’s equations (3). Section V shows that the time
continuous limit of the action S[g, h] gives a canonical
action with the Hamiltonian H, and demonstrates that the
variational principle and time continuous limit are com-
mutative when acting on S[g, h]. Section VI analyzes
semiclassical EOMs in the lattice continuum limit of y
and demonstrates consistency with a classical gravity-
matter system. Section VIII compares the new path integral
formulation with the spin foam formulation.

II. REDUCED PHASE SPACE
FORMULATION OF LQG

A. Classical framework

The reduced phase space formulation couples
gravity to matter fields at a classical level. These matter
fields are often called clock fields. In this paper, we mainly
focus on two scenarios including coupling gravity to
Brown-Kuchai and Gaussian dust fields [57,58,70,71].
The action of gravity coupled to Brown-Kuchar dust is
given by
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The gravity action is given by the Holst action

1

1
Ser = %A d*xeey ey (Qﬁf +_€ABCDQ/§DD> (6)

2p

where ¢/, is the tetrad, e is the determinant of ¢/, and Q7 is
the curvature of the so(1,3) connection a)‘;‘B. p is the
Barbero-Immirzi parameter. the action of
Brown-Kuchar dust:

SBKD 18

; 1
SBKD[pvgwavSJ’Wj]:_E d*x |det(g)|p[g””UﬂU,,—|—1],

(7)

where scalars 7,8/=1'23 form the dust coordinates of
time and space to parametrize physical fields. p, W; are
Lagrangian multipliers. p is interpreted as the dust
energy density. When we couple Sgxp to gravity (or
gravity is coupled to some other matter fields) and carry
out the Hamiltonian analysis [58], we obtain the following
constraints:

L[ P/p

cot—cq— | L2 1 /et Py Uz +1)| =0,

AN (@)r(q pt+1)
)
C = Cy+ PT 4 — P;S = 0, (10)

2 P? p 1

— 1 9 - 11
P det(q)( +4q UaUﬂ> 5 ( )

where a and f are spatial coordinate indices, P and P; are
momenta conjugate to 7 and S/, qap 1s the three metric on
spatial slices, and C and C, are Hamiltonian and diffeo-
morphism constraints of gravity (or gravity coupled to
some other matter fields). First Eq. (11) can be solved by

(1+q*U,U,)72, e==41.  (13)

= £—
r det(q)

€ can be fixed to € = 1 by a physical requirement that U is
timelike and future pointing [55], so sgn(P) = sgn(p).
Inserting this solution into Eq. (9) and using Eq. (12)

lead to
C=-P\/1+ q“ﬂCaCﬁ/Pz.

(14)

Thus —sgn(C) = sgn(P) = sgn(p). When we consider dust
coupling to pure gravity, we must have C < 0 and the
physical dust p, P > 0 to fulfill the energy condition as in
[70]. However, we may couple some additional matter
fields (e.g., scalars, fermions, gauge fields) to make C > 0,
and then p, P < 0 correspond to the phantom dust as in
[55,57]. The case of phantom dust may not violate the usual
energy condition due to the presence of additional matter
fields. We can solve P, P; from Egs. (9) and (10),

h hysical dust,
p=" PV h=\/C? - qC,Cp (15)
—h phantom dust,

Pj = =S*(Co— hT ), (16)

which are strongly Poisson commutative constraints. S7 is
the inverse matrix of 9,5/ (a =1, 2, 3). In deriving the
above constraints, we find at an intermediate step that P> =
C* — ¢*C,Cs > 0 constrains the argument of the square
root to be positive. Moreover the physical dust requires
C < 0 due to the energy condition while the phantom dust
requires C > 0. C? — q“ﬁC,,Cﬁ >0 and C <0 (C > 0) are
nonholonomic constraints for the reduced phase space.
We use A% (x), E4(x) to be canonical variables of gravity,
where A%(x) is the Ashtekar-Barbero connection and
E4%(x) = y/detge%(x) is the densitized triad. a =1, 2, 3
is the Lie algebra index of su(2). Dirac observables are
constructed relationally by parametrizing (A, E) with
values of dust fields 7'(x) =z, §/(x) = ¢/, i.e., AY(0,7) =

A?(x)|T(x)ET,S~’(x)Eaf and Efl(a’ T) = E'l]l(x)|T(x)Er,Sj(x)Eaf’
where o, 7 are physical space and time coordinates in
the dust reference frame. Here j =1, 2, 3 is the dust
coordinate index (e.g., A; = A,S%). Intuitively, A%(c, 7),

El (0. 7) depending only on values of dust fields should be
independent of choices of coordinates x, i.e., should be
gauge invariant. Indeed, they are proven to be invariant (on
the constraint surface) under gauge transformations gen-
erated by diffeomorphism and Hamiltonian constraints
[53,54,57]. Moreover Aj“-(a, 7) and E{l(a, 7) satisfy the
standard Poisson bracket in the dust frame:

{Ei (o, T),A?(UI,T)} = %Kﬁ5§-5253(6, ), (17)

where f is the Barbero-Immirzi parameter and x = 162G.
A¢(e,7) and El(c,7) are the conjugate pair in the reduced
phase space P.

The evolution in physical time 7 is generated by the
classical physical Hamiltonian H, given by integrating &
on the constant 7 = 7 slice S. The constant 7 slice S is
coordinated by the value of dust scalars, and S/ = ¢/ thus is
referred to as the dust space [57,58]. From Eq. (15), we find
that H, is negative for physical dust while it is positive for
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phantom dust. We flip the direction of the time flow 7 — —7
and thus Hy, — —H,, for physical dust so we have a positive
Hamiltonian in every case:

13
_ 3 2.
HO—/SdJ (0,7)? ZE: (0.7) (18)

Here C and C, = 2¢%C, are parametrized in the dust frame.
In terms of AY(c,7) and Ei(0,7),

_1 a 2 d e Ei)EIC{ 2A
C_K_[ij (:B +1)8adeKij]€abc det(q)+ X det(‘])7
(19)

4 ELEX

C,= b 20
Kp Jk\/det() (20)

a3

h(c,7) = ,|C(0,7)? _ZZC“(G’ 7)?%,

The physical Hamiltonian H, is manifestly positive in
Eq. (22). When C < 0, Eq. (22) is different from Eq. (21) by
an overall minus sign, thus the time flow = — —z for the
Gaussian dust is reversed compared to Brown-Kucha dust.

In both scenarios, the physical Hamiltonian H, generates
the 7-time evolution,

S rmy), 23)

for all phase space function f of A¢(e,7) and El(c,7). In
particular, the Hamilton’s equations are

dAj(o.z) _ xp oH, dEl (s, 7)

dz 2 5Ej (g 1) dz

_xp OH,
2 5A4(o,7)

(24)

Functional derivatives on the right-hand sides of Eq. (24)
can be computed by

C aC
H, = | dc(6c-272 2
6H, /Sd 0<h§C 4115C“>’ (25)

where C/h is negative for physical dust and positive for
phantom dust. Comparing 6H to the variation of the
Hamiltonian Hgg = [dx(NC + N°C,) of pure gravity
in the absence of dust motivates us to view

where all the above quantities are Dirac observables. K¢ is
the extrinsic curvature, and F' ‘;k is the curvature of the
—i(Pauli matrix)“.  is the Barbero-
Immirzi parameter. A is the cosmological constant.

Coupling gravity to a Gaussian dust model can be
analyzed similarly, so we do not present the details here
(while details can be found in [58]). As a result the physical
Hamiltonian has a simpler expression,

connection A?. T4 =

HO—/Sd3JC(0,T). (21)

In order to put discussions of both the Brown-Kuchat and
Gaussian dusts in a unified manner, we express the physical
Hamiltonian as the following:

H, — /S &6 h(o,7), (22)

a =1 Brown-Kuchar dust,
a =0 Gaussian dust.

N=1 (26)

as the physical lapse function. N is negative (positive) for
the physical (phantom) dust. Negative N for the physical
dust relates to the flip ¢ — —z for making the Hamiltonian
positive.

In the gravity-dust models, we resolve the Hamiltonian
and diffeomorphism constraints classically, while the SU(2)
Gauss constraint G,(c,7) = D jEfl(a, 7) = 0 still has to be
imposed to the phase space. In addition, nonholonomic
constraints are imposed to the phase space: C(o,7)? —
433 1 Cu(o,7)* >0 and C <0 for physical dust (C > 0
for phantom dust). Recall that nonholonomic constraints
come from P? > 0 and the energy condition.

These constraints are preserved by the time evolution for
gravity coupled to the Brown-Kuchar dust. Indeed, first the
time evolution cannot break the Gauss constraint since
{G.(6.7),Hy} = 0. Second, both %(s,7) and C;(0.7) =
%e?Ca (0, 7) are conserved densities on the Gauss constraint
surface [57]:

dhElo; ?) ={h(c,7),Hy} =0,
%‘:7) — {Cj(6,7),Ho} = 0. (27)
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Therefore C(o,7)? =153 Cu(0.7)* = h(c.7)* 20 s
conserved in the time evolution. About the other non-
holonomic constraint C < 0 (C > 0), one can show that it is
also conserved. This can be seen as the following: suppose
C <0 (C>0) was violated in the time evolution; there
would exist a certain time 7, that C(o,7y) = 0, but then
Clo.7)* =133 _Cu(0,7)* would become negative if
C;(0.7) #0, contradicting the conservation of h(c,7)
and the other nonholonomic constraint. If the conserved
Ci(0.7) =0, h(o,7)* = C(0,7)* is conserved so it cannot
evolve from nonzero to zero. For gravity coupled to the
Gaussian dust, C;(o, 7) is conserved. (o, 7) and C(o, 7) are
conserved only when C;(s,7) = 0. C <0 (C > 0) may be
violated in the time evolution for gravity coupled to the
Gaussian dust if C;(o,7) # 0.

In our following discussion, we focus on pure gravity
coupling to dusts, thus we only work with physical dusts in
order not to violate the energy condition.

h(e) := Pexp/A,

e

B. Quantization, transition amplitude, and coherent
state path integral

We construct a fixed cubic lattice y which partitions the
dust space S. In this work, we consider S is compact and
has no boundary so that y is a finite lattice. We denote by
E(y) and V(y) sets of (oriented) edges and vertices in y. We
assign every edge a constant coordinate length y evaluated
in the dust frame. u — O relates to the lattice continuum
limit. Every vertex v € V(y) is six-valent. At v there are
three outgoing edges ¢;(v) (I = 1, 2, 3) and three incoming
edges e;(v —ul) where T is the coordinate basis vector
along the Ith direction when we adapt the dust coordinate
to the lattice. It is sometimes convenient to orient all six
edges at v to be outgoing from v and denote six edges by
Culs (s ==

Cul+ = 61(1)), €l — = 6‘1(’U - /’ti)_l' (28)
These notations are illustrated in Fig. 2. _

We regularize canonical variables A (o, 7) and E4 (o, 7)
on the lattice y, by defining holonomy #i(e) and gauge
covariant flux p“(e) at every e € E(y):

1 4 4
p(e) == s [ / e’ A dafh(m(o))E;;(o)r"mpe(a))-l], (29)
a s,
where A = A% /2 and t* = —i(Pauli matrix)“ are two-dimensional anti-Hermitian matrices:

11—{-#@

v+ui

(@)

_(1)>, 13:(? _é>. (30)

v—pl

€v;3,+

v—,uﬁ v—i-,uﬁ

v-i—,ui
@
v—,uf’)

(b)

FIG. 2. (a) Notations of edges and vertices when all six edges are oriented toward positive directions of coordinates. (b) Notations of
edge and vertices when all six edges are oriented outgoing from v.
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S, is a two-face intersecting e in the dual lattice y*. p, is a
path starting at the source of e, traveling along e until
e N S,, and then running in S, until 6. a is a length unit for
making p“(e) dimensionless. Note that because p“(e) is
gauge covariant flux, we have

1 _
pa(ev;l,—) = ETr[Tuh(ev—i;I,Jr) 1pb(ev—?;I,Jr)Thh(61;—7;1,+)]'

(31)

The Poisson algebra of h(e) and p?(e) is called the
holonomy-flux algebra:

{h(e). h(e")} =0, (32)

(). b)) = S0, The) (33)

K
_;5€,€’€abcpc(el>v (34)

where h(e) and p“(e) parametrize the reduced phase space

P, for the theory discretized on y.
The LQG quantization defines the Hilbert space H,
spanned by gauge invariant (complex valued) functions of
J

all h(e)’s on y, and is a proper subspace of H) =
®, L*(SU(2)) of non-gauge-invariant states. H, is
obtained by imposing the SU(2) Gauss constraint to H(,).
H, is the physical Hilbert space free of constraint because it
quantizes the reduced phase space. fz(e) becomes multi-
plication operators on functions in HY. p(e) = itR¢/2
where ﬁ? is the right invariant vector field on SU(2):
ROf(h) =& |,_of (e h). t=1¢%/a* is a dimensionless
semiclassicality parameter (f%7 = hx). a is a fixed length
unit so that 7 is the numerical value of £% measured in this
unit (e.g., t = 1.616 x 107 when a = 1m). The semi-
classical limit 7 — O corresponds to t — 0 or £p < a.
h(e) and p“(e) satisfy the commutation relations:

[p7(e). (&) = i, (),
[p(e). PP ()] = =it veupep°(€'), (35)
as quantization of the holonomy-flux algebra.

The (non-graph-changing) physical Hamiltonian oper-
ators H are given by [57]

H, = ML (0)M_(0)]'*, (36)

1, Brown-Kuchar dust,
(37)

0, Gaussian dust.

In our notation, Hy = f S d*ch, C, and C, are the Hamiltonian, Hamiltonian constraint, and diffeomorphism constraint in the
continnum. H= )", H,, C,, and C,, are their discretizations on y at certain vertex v, while H =), H, C, and C,,are

quantizations of H, C,, and C,

N 1 A o o N
CO,v = T TLi0 Z slS2s3811IZI}Tr(h(av;I]sl.szz)h(ev;l3s3)[h(e1/;l3s3)_17 Vv])’ (38)
ipre, —+1
S1,82,53=
~ 2 A ~ ~ ~
Cov="""53>5 Z 5152538 BT (2 h( 0ty s, 15, ) 1 (€0itsy) [M(€0,s) ™ Vi), (39)
Pt .
§1,82,53=
N N 1 2 2A A ] N
Cl) = CO.U + —;ﬂ CL,L‘ +7VU’ K= # |: Z CO,vv Z VL:| s
: FLan) e
A 16
Coov=—"FT77sv 518253€N 1205
(’ﬁf%>3 sl,sg;:i]
X Tr(i/\l(ev;llsl)[il(ev;llsl )_17 f(]],:l(ev;lzsz)[],:[(ev;lzsz)_l’ fqi;l(ev;[;s;) [l,:l(ev;13s3)_1’ ‘A/v])’ (40)

where Cy , and C; , are Euclidean and Lorentzian terms in Thiemann’s Hamiltonian constraint operator (at the vertex » on

the cubic lattice), and V, is the volume operator at v,
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B Rgu:Zf RC

DY (41)

— RS

€34 v:3—

2

Vv = (Q
o i(PEY,, R R R
v 4 abc D)
= ﬂSaGSubc

In writing these operators, we have employed the notation
of edges in Fig. 2(b). We have made choices in é‘v and C‘ i
that (1) they are based on discretizations on the cubic lattice
y and are non-graph-changing operators, and (2) minimal
loops  a,.j 5,15, (around the plaquette bounded by
€152 €ril,s,) Carry the fundamental representation of
SU2).

The Hamiltonian operator H is positive semidefinite and
self-adjoint because M (v)M_(v) is manifestly positive
semidefinite and Hermitian, and therefore admits a self-
adjoint extension (Friedrich extension [72]).

Classical discrete C, and C,, are obtained from
Egs. (38)—(40) by mapping operators to their classical
counterparts and [f}, f»] — in{f,.f»}. Hence classical
discrete physical Hamiltonian H is given by

ﬁa(ev;l+) - ﬁa(ev;l—) ﬁh(ev;2+) B f?h(ey;z-) ﬁc(ev;3+) - ﬁc(evﬁ—)

4 4 (“42)

|
The absolute value in the square-root results from that
H is the classical limit of H defined on the entire H,
disregarding nonholonomic constraints in particular
C*—4%3 C2>0fora=1.

An interesting quantity for quantum dynamics is the
transition amplitude

I
Ay = (Yl exp [—ETH] ) (44)

For the purpose of semiclassical analysis, we focus on the
semiclassical initial and final states ‘I‘f /1 ng] which are
gauge invariant coherent states [60,73]. Tlhe coherent state
label parametrizes the LQG phase space, and the overlap
function of these states behaves as a sharply peaked

a3 Gaussian in phase space, thus building the link with phase
H= Z H,, H,=,||C?- 1 Z Cﬁ,v . (43) space dynamical variables in the semiclassical limit. ‘Pfq] is
vev(r) a=1 expressed as
t _ t —
Wy = [ T vy, 0D =TT duah) (45)
e€E(y) veV(y)

where duy(h,) is the Haar measure on SU(2). The gauge invariant coherent state is labeled by gauge equivalence class [g]
generated by g(e) ~ ¢"(e) = h;<'e)g(e)h,(e> at all e. Here g(e) is an SL(2, C) group element. l//;(e>(h(e)) is the complexifier

coherent state on the edge e,

Wi (h(e) =

jEEZ+/2U{O}

(2o + D)e U072, (gle)h(e)™), (46)

where g(e) is complex coordinate of P, and relates to h(e), p®(e) by’

g(e) — e—ipa(e)r,,/Zh(e) — e—ip“(e)r”/2€6‘“(e)r”/2’

pile), 0%e) € R, (47)

Applying Eq. (45) and using a discretization of time 7 = NAr with large N and infinitesimal Ar,

Aglly) = / dh(yy|le BNyt b, (48)

For any polynomial Polli(e), p%(e)] of h(e) and p“(e), the coherent state expectation value is semiclassical:
(1//;<e>\Pol[h(e),ﬁ“(e)]h//;(e)):Pol[h(e),p“(e)]+0(t) where h(e) and p“(e) on the right-hand side relate to g(e) by Eq. (47) [74].
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N+] . A . A . A
= / di [ ] daitwrlivs, )., e~ ) g e W80, ) - - (e W80, ) 9 o) (49)

i=1

where we have inserted N + 1 overcompleteness relations of normalized coherent state 7y, =, <e)/ 7% (e)||:
o e\ Q) \ ,
[ asiw )l =g, o= (% dun(hi(e))@pile). i=1.N 1. (50)
e€E(y)

A path integral formula is derived in [50] from the above expression of A 41,

N+1

Mg = Wy [ an ][ dgwigleso, (51)
i=1
where the “effective action” S[g, h] is given by
N+1 . N t 1.,

K <l//g- ||H|V/q»> . At
Sloch] = > Klgirna) = 25> Ar| B i (4)]. (52)

; ’ a2 ; <l//91+1 l//tg,> " h

1 21 2
K(git1.9:) = Z Zis1,i(e) _Epi-&-l(e) _Epi(e) (53)
€€E(y)

with gy = ¢, gy.» = g, and v[g] is a measure factor. &;,1,; contains higher order contributions in % (the exact form is given

in [50]): &.1,;(55) — 0 as Az — 0 and is negligible. In the above, z;,;,(e) and x;; ;(e) are given by

1
zit1.i(e) = arccosh(x;; ;(e)), xir1i(e) = Etr[gm (e)Tgi(e)]. (54)
The path integral Eq. (51) is constructed with discrete leads to the following equations from derivatives of
time and space, and is a well-defined integration formula €¢(e) and &/ (e), respectively:
for the transition amplitude A,/ as long as Az is (a) Fori=1,...,N, at every edge e € E(y),
arbitrarily small but finite. The time translation of y with
ﬁm-te At makes.a hyperf:ublc lattice in fogr dlmen51ons, on 1 [ zipri(e)tegi () gi(e)]
which the path integral is defined. There is no issue of any Az 1 1
divergence in this path integral formulation of LQG, since it V¥isni(e) = Tv/xii(e) +
is derived from a well-defined transition amplitude. B pi(e)tr[z?gi(e)Tg;(e)]
sinh(p;(e))
II1. SEMICLASSICAL EQUATIONS OF MOTION i 0 <;//§f |ICI|1//;6>
[ i+1 i 56
A. Discrete equations of motion a*ef(e) (wi Nwg) lezo (56)
The main part of this work is to study the semiclassical
limit7 — Oofthe transitionamplitude A . By Eq.(51) and (b) For i =2,...,N + 1, at every edge e € E(y),
the stationary phase approximation, dominant contributions
to .A[g]:[g/] as t—>.0 001.ne from .semiclassic.al trajectories 1 Z,-,,-_l(e)tr[f"gi (6)1-91__1(8)]
satisfying the semiclassical equations of motion (EOMs). Ar 1 7
Semiclassical EOMs has been derived in [50] by the \/xi’i—l(d_ \/xi~i—1(e>+
variational principle 8S[g,h] =0 and expressed in the pi(e)tr[tig;(e)g;(e)]
following form: sinh(p;(e))
(i) The variation with respect to g; using the holomor- RPN
phic deformation LS 0 <‘l/g§ Hll/’gf;,> (57)
P05 (e) Wiylvly ) lemo

gi(e) = gi(e) = gi(e)e™ ™, ei(e) € C. (55)
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(i) The variation with respect to %, leads to the closure
condition at every vertex v € V(y) for initial data,

= > pile)+ Y A(Bi(e))ph(e) = 0. (58)

e,s(e)=v et(e)=v

where A%, (9) € SO(3) is given by e */2¢¢=0"7/2 =
A9, ()7t
The initial and final conditions are given by g, = ¢ and
gy+1 = g. Here the gauge transformation / is arbitrary.
These semiclassical EOMs govern the semiclassical
dynamics of LQG in the reduced phase space formulation.

Semiclassical EOMs (56)—(58) are derived with finite
Ar. We prefer to derive EOMs from the path integral
Eq. (51) with discrete time and space, because Eq. (51) is a
well-defined integration formula for the transition
amplitude.

The small-step transitions (jry,  |exp (—%ATICI)W/L,-) in
Eq. (49) are dominated by overlaps (W), |} ) as Az is
arbitrarily small. |, | |7}, )| decays exponentially fast to
zero unless g;,; is within a small neighborhood at g; of
radius /7 [73] (a summary can be found in [75]). Therefore
for sufficiently large N, the dominant contribution to Ay s
in Eq. (51) comes from the integral over the neighborhood
where all g, | are close to g; with a distance of O(+/7). This
neighborhood becomes arbitrarily small as t — 0. Within

2k+1

this neighborhood, both quantities in square brackets in
Eqgs. (56) and (57) have a single isolated zero at g; = g;
(Lemma 4.1 in [50]). Therefore At — 0 forces g; = g;,
given that the right-hand sides of Eqgs. (56) and (57) are
always finite [50]. So any solution of Egs. (56) and (57) can
be approximated arbitrarily well by the continuous function
g; ~ g(7), as At is arbitrarily small. In the following we
apply this approximation, replace all g; by continuous
function g(7), and take the time continuous limit Az — 0 of
Egs. (56) and (57).

B. Time continuous limit

The time continuous limit leads to g;,; — g; = g(7), so
that matrix elements (. |H|w, ]> on right-hand sides of

Egs. (56) and (57) reduce to the expectation values
<1//;g|I:I|1//;£> as Az — 0 (see [50] for proving that g; | —
g; commutes with holomorphic derivatives). Coherent state
expectation values of H have the correct semiclassical
limit®

lim (7} |HL|5) = H[g]. (59)

where HJg| is the classical discrete Hamiltonian (43)
evaluated at p“(e), h(e) determined by g(e) in Eq. (47).
Note that deriving the semiclassical behavior of <y7§|I:I|1/7§>
relies on a semiclassical expansion of volume operator
Vv, 1751,

7, = (0, [1 n

n=1

(—1)"“"(1_@”"(”_1“) << A%Z—lﬂ, g=1/4, (60)

0,)

where (0,) = (w!|0,|y"). This expansion is valid when (Q,) > £5.
We write g;,;(e) = gi(e)[l + A¢®(e)z?] where Ag?(e) parametrizes the infinitesimal change of g(e) between two time
steps. Equations (56) and (57) reduce as follows (by using Lemma 4.1 in [50]):

e LI )
e LI ©)
where ¢¢(e) = g(e)e' (™, (¢%(e) € C). The left-hand sides become time derivatives as Az — 0, and
M19) = 2L BN (0| 2 st 1 LEORE) (0 D)) (63)
R O | L R ] (64

®First, we can apply the semiclassical perturbation theory of [75] to O = H? [recall Eq. (36)] and all O" (n > 1):
(Wy|O"ry) = O[g]" 4 O(t). Then by Theorem 3.6 of [74], lim,_,(y|f(O)|¥;) = f(O[g]) for any Borel measurable function on

R such that (7| f(0)"f(O)|}) < co.
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07 /2 pa =0T /2 _

where e = A% (0)7. The matrices M,%;(g)
and M,%,(g) are nondegenerate since

sinh?
det (M, ,(g)) = S (P)

0. (65)

We can write A¢“(e) as a linear combination of infi-
nitesimal change of phase space variables using (47):

Ap*(e) =Pl (¢) = pie) and A0°(e) = B, () — B e).
A () = =3 TH (57 (s (€)2)
=J1%p(e)Ap?(e) + Jo",(e)A0(e)  (66)

at leading orders of Ap“(e) and A6“(e). The holomorphic
deformation &“(e) has the similar expression

(e) =~ Tr(g™ () (e)*)
= J1%(e)dp(e) + 127, (e)30%(e).  (67)
where 5p“(e) and 50“(e) relate to g°(e) b

F(e) = el @ @e 2 ool /2 (gg)

J; and J, are 3 x3 complex matrices whose elements
depend on p“(e) and 6“(e). We define 6 x 6 matrices J and

J as
J, J . I, T
J:(-‘ _2>, J:( : 2). (69)
Ji S Ji I

J and J satisfy
(s0) =2 (o) = G 7)) o
( )
28( )

A ~ Jy J A
( qb(e)) J< P€)> < 1 2>< p(e > (71)
A¢(€) €) J1 J2 A0(e
Here the bold letters p and € denote the 3-vectors p* and 6°.
Using the above matrices Eqs. (61) and (62) become

Ap(g)/m> :,'_,; <8H/8P(e)>’ (72)

T(p’0)<A0(e)/Ar OH/00(e)

where

Jo ILN\T/M; O Ji 7
It is much more convenient to compute the right-hand side

of Eq. (72) than right-hand sides of Egs. (61) and (62),
since H is expressed in terms of holonomies and fluxes.

By the time continuous limit Az — 0, Ap(e)/Ar —
dp(e)/dr and Af(e)/Atr — df(e)/dr, so the semiclassical
EOMs reduce to

dp(e)/dr) . (aH/ap@)). a4

T(p.6) (de(e) /dt OH/00(e)

The above computation is carried out analytically in
Mathematica. The matrix elements of J, J, and T are
lengthy. Their explicit formulas are given in [69].

As seen from Eq. (74), the approximation ¢(z) of any
solution g; of Egs. (56) and (57) is not only continuous in 7
but also differentiable. Indeed, if a solution g; =~ g(r) failed
to be differentiable, left-hand sides of Eq. (74) or Egs. (56)
and (57) would have blown up with small Az and contra-
dicted the finiteness of right-hand sides; i.e., g; could not be
a solution.

IV. SEMICLASSICAL DYNAMICS AS
HAMILTONIAN EVOLUTION

A. Holonomy-flux Poisson algebra

Since the semiclassical EOMs are expressed in terms of
variables p“(e) and 6“(e) from the holonomy-flux algebra
Eqs. (32)—(34) by the relation h(e) = e*'(©)/2, the com-
putation can proceed as follows: We write Eq. (33) (at
e =e) as

Ohyp(e K [7¢
(0.0 s = 5|

Among four matrix elements h,z(e), there are only three
independent h,(e), hy,(e), hoi(e). The above equations
with AB = 11, 12, 21 form a matrix equation of three 3 x 3
matrices U, V, and W:

K
a b _ a
UV = = W,

where U, = {p“(e),0"(e)},

(9h Blée
Vg = (99Ab(( )) )
)
Wéyp = [2 h(e)] " (76)

where AB = 11, 12, 21. Solving U =
following result:

LWV gives the
a
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{p(e).0°(e)} = U*,(0)

203+6(63+63) cot($)
207

03+(67463)05+6,0,(2—0 cot(9))
267

_ 020140,(63463) 40501 (0 cot(3)-2)

_ 3(07+63)05+6,0, (0 cot(§)-2)

=

— )
<9,93(2 (;}cot(z)) + 92>

20
202+6(63+63) cot(2) 1 [ 6:6:2-0co) 0 , (77)
207 2 2 |
0} +(63+63)0,+0,05(2=0 cot(§)) 202+0(0>+62) cot(d)

20?

where 6,=6%e¢) and 6= ./6%(e)0%(e). With this
result we check that Eq. (75) with AB = 21 is satisfied
automatically.

The holonomy-flux algebra Egs. (32)—(34) implies the
following Poisson algebra between p“(e) and 6(e):

{0°(e). 0"(e')} =0, (78)
[P0 ()}) = 55,,U%(0).  (79)

{P(e). ")} = =6, wenep(€). (80)

A straightforward computation demonstrates that
Egs. (78)—~(80) imply the holonomy-flux algebra

Egs. (32)—(34). Thus the holonomy-flux algebra and the
Poisson algebra between p“(e) and 6“(e) in Egs. (78)—(80)
are equivalent.

B. Hamilton’s equations

We would like to relate EOMs (74) to Hamilton’s
equations with the discrete physical Hamiltonian H and
symplectic structure of holonomy-flux algebra. First,

OH

ap’(e)
L {p(e).0"(e)) -]

o0t (e)’
OH

dp”(e)

+{6(e),0%(e)} agbr(le) .

{p?(e). H} = {p“(e). p’(e)}

{0°(e). H} = {6(e). p"(e)}

(81)

) 62

pe).H}
{maHJ'@”

We define the matrix

{pe(e). p"(e)} {p“(e).0"(e)}
{0°(e). p"(e)} 0

Applying P to the EOMs (74) gives

dp(e)/df)
df(e)/dr

P.0) = (

—%P@,O)T(p,@)(

(

20° 207

By using the explicit formula of T(p,€) and Poisson
brackets in P(p, @), we obtain the following simple result:

—%P(p,G)T(pﬁ) = lgye: (84)

This shows that the semiclassical EOMs from the path
integral is equivalent to Hamilton’s equations with the
discrete physical Hamiltonian H:

dp“(e)
dr

do“(e)
dr

= {p“(e), H},

={0%(e). H},  (85)

where the Poisson brackets are given by Egs. (78)—(80), or
equivalently, by the holonomy-flux algebra Eqs. (32)—(34).
In general, the time evolution of any phase space function

f(p“(e).0(e)) or f(p“(e). h(e)) is governed by

df

L= (). (56)

Mathematica is employed for all the above computa-
tions, including computing {p“(e), 6" (e)}, checking the
equivalence between Egs. (78)—(80) and holonomy-flux
algebra, and verifying Eq. (84). The Mathematica files can
be found in [69].

Moreover the closure condition (58) is equivalent to
>3 >y p(eyrs) = 0. The Hamiltonian flow gener-
ated by G¢ = 31, 3, p(e,,) ina P, is SU() gauge
transformation. Since H is SU(2) gauge invariant,

dGge
dz

= {G* H} =0. (87)

So the closure condition (58) is preserved in the time
evolution. Given a solution p®(z,e),0°(z,e) satisfying
Eq. (86), its gauge transformation still satisfies Eq. (86):

{{r. 67} 0y = —{{G7, °H}, /} - {{H, /}, 67}

) (L)
dr

dr
d a
a{f’ GU}

(88)
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Recall that the initial state in Eq. (51) is labeled by the
gauge equivalence class [¢/]. The trajectory in the reduced
phase space determined by the Hamiltonian flow (86) is
unique up to SU(2) gauge transformations, in the
phase space regime where H is a smooth function in
pe, 6°.

Note that due to the absolute value and square root in H,
H is nondifferentiable at C; —%>°3 | C;, = 0, at which
the uniqueness of the solution cannot be established. As it
is discussed in Sec. VI, these irregularities are avoided in

general if initial states ‘I‘fg,] are semiclassical in the sense

that [¢/] is in the classically allowed regime of the phase

V. ACTION PRINCIPLE

Here we present another routine to derive the classical
EOMs [Hamilton’s equation (86)]. We are first going to
take the time continuous limit of the discrete action S[g, A,
then derive EOMs, in contrast to the above procedure in
which discrete EOMs are derived first from the path
integral, and then take the time continuous limit. We will
show that these two methods lead to the same result, which
implies the time continuous limit and variational principle
are commutative when acting on S[g, h].

Recall S[g, 4] in Eq. (52); we write

space. The classically allowed regime satisfies nonholo- g = g(7), giv1 = 9(t + A7), (89)
nomic constraints required by the classical gravity-dust
theory. and expand summands in S[g, h] in Az:
|
(i M) (A ;
W Tt &, YA <V/;(T)|H|‘/’;(7)> + O(A7), (90)
i+1 i
. de’(z, e
K(gis1.0) = e Y iGoy(0(e.e))pe(r.0) T2 1 o(ar?) 1)
e€E(y)
The 3 x 3 real matrix G,;,(@) is given by
_ (067 +(63+63) sin(0)) _(010,(0-sin(0))+00; (cos(0)—=1))  (0105(sin(0)—0)+00,(cos(0)—1))
2 Z
005 (cos(6)—1)—0,0,(6—sin(6)) _ (663 +(67+63) sin(9)) _ (6205(6—sin(6))+60, (cos(6)-1)) (92)
0’ 0’ ’
(6165 (B—Sin(G))—&;Hﬁz(cos(B)—l)) (6,05 (sin(0)—0)+00, (cos(0)—1)) _ (99§+(9§+30§) sin(@))
0 0
where 8, = 6(e) and 0 = /6(e)6"(e).
We find that G, (0) closely relates to U, (0) = {p“(e),0"(e)} by
G(O)UO) = UO)GO) =~ 1. (93)
We define new variables
X'(z.e) = Gup(O(z. €)) (. ), (94)

and interestingly, we obtain the following result.

Theorem 1. The following (equal-time) Poisson algebra between X¢ and 6“ is equivalent to the holonomy-flux algebra

K
(X(e).07()} = =566, .

{X7(e). X*(¢)} = {6°(e). 0°(¢))} = 0.

(95)

X“(e) and 0“(e) form local Darboux coordinates on the reduced phase space of LQG.

Proof: The first relation is equivalent to Eq. (78):

{X%(e).0"(e")} = Gea(0(e)){p°(e). 0°(€')} = Ga(B(e)) U, (0(e))0,.0 = —%5“b5e,en

Second,

(96)
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(X9(0). ()} = (G.u(0())p"(e). Gar(O()p(e")
= G 0G0 (0. ()} = G0N () 28 g o)
+G@@)r() T (0).0/(¢)
= G (OGO . () + Sy (0)PSafOE) IO o)
is vanishing because
(00} = = 5 G0 G010 |2 - DO e 8
which can be checked straightforwardly. The Mathematica file for the above computation is provided in [69]. .

Although the Poisson algebra Eq. (95) is simple, SU(2) gauge transformations of X“(e) and 6“(e) are complicated. In
contrast, the holonomy-flux algebra uses variables p“(e) and h(e) that have simple SU(2) gauge transformations, but

sacrifices the simplicity of Poisson brackets.

As a result we obtain the following time continuous limit S [

Slg. ] _14 dT[ZX“

e€E(y

:i/ dr[ Zxa
0 eEE

= Hlp(x).0(c)] + O(h).

where (1//; - |ﬁ |1//; (T))

The Poisson algebra Eq. (95), or equivalently the
holonomy-flux algebra, can be obtained from the above
Slg, h] by the Legendre transformation. S[g, h] provides an
action principle for the LQG (reduced) phase space and the
quantization.

By the time continuous limit, the path integral formula
(51) becomes a standard phase space path integral

/ [DXDOJ[X, 0]t o H12 e X (=5 B0
(100)

up to O(h) in the action and a measure factor u[X, 0]
(containing v[g] and the Jacobian for transforming
dg — dXdé#). The path integral formula becomes an infinite
dimension integral, and thus may be mathematically ill-
defined. This path integral relates to a starting point
in [34,36].

The variational principle 6S = 0 gives the Hamilton’s
equation [up to O(h)]

dog“(e)
dr

a*0Xx“(e)’ dr :_;89“(6)' (101)

k OH dXx“(e) k OH
2

For any phase space function f(X, @), its time evolution is
given by

d9 (r e)

h} - limAr—>0 S[g’ h]

L)
- 5 (Hp(2).006)] + 0. (99)

df

L= (.}, (102)
which is identical to Eq. (86). It shows that the time
continuous limit and variational principle are commutative
when acting on S[g, A].

We emphasize that in our analysis the time continuum
limit is taken at the semiclassical level. One may want to
compare Eq. (100) with the discrete time path integral (51)
and understand the continuous time path integral (100) is
the time continuum limit of Eq. (100) at the quantum level.
It is indeed how path integrals of quantum field theories are
developed. But here we take a more conservative viewpoint
and hesitate to view (100) as the limit at the quantum level
because the precise relation between (51) and (100) relies
on the path integral measure which, however, is difficult to
make sense.

VI. LATTICE CONTINUUM LIMIT

In this section, we demonstrate the relation between the
semiclassical EOMs (74) [or equivalently (86)] from path
integral and classical reduced phase space EOMs (24) of
the gravity-dust system in the continuum. We are going to
take the continuum limit of the cubic lattice y, i.e., send the
total number |V (y)| of vertices to infinity, and show that
(74) recovers (24) in this limit. Defining i ~ |V (y)|~3 to be
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the coordinate length of every lattice edge, the lattice
continuum limit is given by 4 — 0. More precisely, recall
that semiclassical EOMs are derived with t = £%/a* — 0
and (Q,) ~u® > 5 [see Eq. (60)], and the lattice con-
tinuum limit takes us to the regime

Cp<<pu<a, (103)

where a is the macroscopic unit fixed from the beginning.
When keeping a fixed, the lattice continuum limit sends
u — 0O after the semiclassical limit £p — 0 (from which
EOMs are derived) so ¢p < p is kept.

We rescale 0“(e) and p“(e) and define variables ¢ (v)
and G/ (v),

2
0“(er(v)) = pUi(v),  pes(v)) Z%@é(v), (104)

p

where ¢(v) and G/ (v) behave as follows in the lattice
continuum limit, by relations between h(e) and p“(e) in
Eq. (29) and smooth fields (A, E):

Aj(v) = Af(v) + O(n).  Ci(v) = Eq(v) + Olu).

(105)

Here A¢(v) = A%(v)é;(v) and El(v) = Ej(v)é;(v) are
smooth fields (A, E) evaluated at the vertex v. ¢;(v) is the
tangent vector of ¢;(v) at v. A(v) and E’,(v) are coordinate
components of (A, E) when we take ¢;(v) = 9/00' (I = 1,
2, 3) as the coordinate basis. ¢’ is such that the coordinate
length of ¢;(v) is p.

Inserting the u expansion of §%(e), p“(e) in T(p,0) of
Eq. (74) gives

00 0 —-i 0 O
000 0 —-i O
000 0 0 -—i
T(p,0) = + O(u). 106
PO=|. 00 o o olFOW (106
0O ¢ 0 O O O
00 ¢ 0O O O
So the left-hand side of Eq. (74) becomes
dp(e;(v)) A g2
i . M4 + (/”)
T(p’a)<d—"<€1<”>>) _l<%‘m’<’”>+0(ﬂ3) B

dr pa*  dr

On the right-hand side of Eq. (74),

OH[p,0]  pa’ OH[G, ]
ap“(er(v))  2u® OCL(v)
OH[p.6]  1H[G.¥]
96°(e;(v))  u OUf(v)

(108)

H[G, 2] is obtained from Hlp, ] by changing variables
(104). Derivatives of H reduce to derivatives of C,
and C,,,

OH C, 0C, ax~C,, 0C,,
oCL(v) 25 [Eac%(v') ‘Zzﬂ—va@zw’)}’

veV(y) b=1

(109)

OH [CL, oC, a~C,, ac,,v]
= Sv 75 a -7 ; a . ’
oA7 (v') e;(y) H, 0U7 (V') 4,; H, oAj(v')

(110)

where H, = \/|C% —433 ,CZ,| and s, =sgn(Ci-
433 | C2,). We have assumed that variations of G/ (v')
and A¢(v") (for computing above derivatives) do not make
any s, jump, so derivatives of s, are zero. Without this
assumption, Hamilton’s equations (85) is ill-defined
because H is not differentiable as s, jumps. Semiclassial
EOMs are singular at C3 —4>73 | C%, =0.

Computing explicitly Poisson brackets h(e){h(e)!,
V,} and h(e){h(e)~',K} makes C, and C,, as poly-
nomials generated by the following quantities:

2
P(er(v)) = 2= 61 (0).

h(el(v)) = 6”2[?(“), ﬂaz

(111)

1 1
0 =i a0 (o) = ceure €L ()6 (1)6K ().

(112)
where Q,, is the classical limit of Qv in Eq. (42). We assume

that the initial condition satisfies Q, > 0 at all v, and the
. . . . 7
continuous time evolution does not flip sgn(Q,)).

"Evolving continuously from Q, >0 to Q, <0 implies
Q,=0 at a certain time, and violates the semiclassicality
condition Q, > £5.
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In the following we often use the shorthand notation

Balv) = (€4(0). Af(v).q(v) ) =

fa(v) = (Eq(v).Af(v). ¢

where a labels components in (- - ).

q(v) = 6511K€abcEfz(U)Ei(”)E§(”>,

fa(v) + O(u),

: (113)

We apply Eqgs. (111) and (112) to C,, and C,, , and expand in terms of y and . C,, and C,, ,, can be written as polynomials
of &, and lattice derivatives A%, by reorganizing terms and truncating to x> (see Appendix for an explanation),

C, or Cpp=p Z F;§9M1i< (E)AJ,NJi%a(il)AK.MIi(%ﬂ(TJZ)

(l,ﬂ,J,K.N;,M%

Y F

+
a,J,N5

a
where F NT NS

(V)A ) n:8a(D) + W F(7) + O(u?),

(114)

(v) and F(¥) are polynomials of &, (explained below). A s~ Ba(D) is the lattice derivative at ? in the J

direction, by the difference between &, at two vertices # + NjuJ and & — NyuJ (N* € 2),

AJ,Nf %a(f])

v = (v,v,,...) and ,7,D, are some vertices whose
distance from v are of O(u). —3 < NT¥ <3 (N} # —N7)
are integers and J is the lattice vector along the Jth
direction. Nonzero N7 reflect interactions among variables
at neighboring vertices in C,, and C,,. Interactions are not

:%a(b—l_Nj:uj)

~ B0 = Nyud). (115)

polynomials of F,(v;) where v, = v+ 3, N:(J)uJ;
(J; €{1,2,3} and integer N; € [-3, 3]) are vertices at or
near v. Parameters a, §, N*, M*, J, ¥, and ¥, 9, D, are
determined by patterns of variables and Poisson brackets in
C,.C,.,, and thus are independent of v.

only among nearest neighbors. F¢ N, N_(v) and F(7) [with Recall that f,(v) are smooth fields, and the continuum
. . . 3
U= (vy,v5,...) a finite sequence of vertices v;] are limit of (114)is of o),
|
Coor Cop=4’ ) [ > (NF+ N M+ M) FRL (0 ﬂ 011 a(0)0xc S p(v)
ap.J K ENE ME
0S|SO+ NDF (0] 00) 4 0 F () + 066 (116)
a,J N;x
|
:,f Mi(v) T, N_( v), and F(v) denote continuum limits  q(v1)72G3(v,)GL(v3) = q(v) 2E3(v) EL(v) + O(x). (118)
of FNf Mi(_') FN7 N;(E), and F(7), respectively:

a.fp -\ raf
FNJi.MIi((U) - ‘,’tNli,Mli(<U) + 0(1“)7

F(3) = F(v) + O(u). (117)

They are given by F’ N, Mi< v), F% N; (v), and F(7) with all
v; = v and applying Eq. (105). J’:%Mi( ), J’-'X,+ N_( v),

and F (v) are polynomials of EL(v), A%(v), g(v)72. Let us
take an example for illustration,

The leading term on the right-hand side corresponds to a
term in ]:NiMi< v), F%. - (v), or F(v).

NNy

We check that C,, C,,, H, and Gj have correct
continuum limits [i.e., Eq. (116) recovers continuum
expressions of scalar and vector constraints C(v) and

C,(v) up to a prefactor z?],

C, =w’C(v) + O (119)

Cow = 1Co(v) + O (), (120)
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3
Hy = 2h(o) + Ot =2, [0 =5 3 Culo?| + 06 (121)
3 3
=300, 02 - 532 + 0t = [ o letor -5 cutor|. (122)
1 a=1 a=1
Gt = 2, El(0) + 04 (123)

The prefactor y* is desired for correct continuum limits. Mathematica codes for deriving Eqs. (119) and (120) are given in
[69]. The last relation indicates that the closure condition (58) reduces to the Gauss constraint in the lattice continuum limit.

The continuum limit of s, is given by

s =sen(C2 —jg i) =sen(Cwr - 43 C. 0 + o))

C and C, are smooth fields in the continuum.

Given v/ € V(y), we assume ¢’ is inside a neighborhood
U c S, such that s, = sy is a constant for all v € U and the
coordinate distance r(v', OU) between v' and any point in
OU satisfies r(v',0U) > u. This is an assumption for
phase space points at which derivatives in Egs. (109)
and (110) are computed. This assumption is necessary
for the lattice continuum limit of Eqgs. (109) and (110),
because otherwise as y — 0, v/ approaches the boundary

where C2-9%73 C%,=0, and then s, jumps by
|
8F"’ﬂ (*)
P Byl DI B L
1 Su 1
veV(y) H@@ LGU YapJ KNEME 865

(124)

variations for computing derivatives of H thus invalidate
Eqgs. (109) and (110).
We compute the following term in Eq. (109): the sum in

ZUGV 1;1-1 ()(gl( ")
hood U [because C, that depends on €(v') is located at v
whose distance to 1/ is a multiple of u], so s, can be moved
outside the sum by the above assumption:

is nontrivial only inside the neighbor-

1) v,AJNiga( )AKM*%/i( )

: . _ [08a () 9Fa(v")
1 . a a
+’MSUZ Z FNJi,MIi{ (U) |:a@(Il(v/) 5v’.i)1+N7,ﬂ - 8@{1(1)/) 61} =Ny ul Mi%ﬁ(vz)

vEU Y a,pJ KN+ M

OFp(v") _9y(v) }

1) B —
+MSUZ Z FNJi,MIi((’U)AJ,Nf%a( )|:a(g]( /) 51} Dyt MEuk — a(gl( /) 51’.1‘)2—M};4f(

et aﬁJKNiMi

EDONDS Za@

velU “ JNi i

+/" SUZ Z Ni

beU ajNi

+O0(u?).

Two sums 3, and 3, 55 k v+, Vi (or > g+ and 3 ) can
be interchanged since a, J, N 7> N7, N; are independent

of v. Kronecker deltas in Eq. (125) are nonzero only if v is
inside U by the assumption r(v', QU) > u, since distances
from v;, 9, ¥y, to v are of O(u). >,y in the result can be

a%(l( /) 7)
|:a(gl /) 5@’.6+N}y]_a@(11(v/) by B=N7ul +Iu Uz 28@1

L L',~AJ.NJi %a(b)

8%(1 ( U/)

(125)

[

freely extended to >, over all v € V(y), because v outside
U has no contribution.

In the first term in the result of Eq. (125), 5, restricts
v =1 —&;, where 8, = v; — v = 3., N;(J)uJ;. We denote
by 815 = T, — v~ O(u) that §; and &, , are independent
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of v. Carrying out ), the first term in Eq. (125) becomes

OF_ (v =65,
Cr’—é NEME i

HSy Z ZH// a(gl( /) AJ’NJi%G(’U/_5i+31)AK»M§%ﬂ(U/_5i+Sz)
aBJKNEME @ VO p

() OF ey ()

N*F Mi
OEq (V')

=uwsy Z

o (] + N7 (M + MR)Osfu()Oxfyle) + O). (126)
apJ K.NEME

ap o ) i
where F N Mi( —&;) is from the expansion of C,_s. Note that all vertices in v’ —§; are inside U. F N, Mi(v) is a
polynomial of &, (v;). Derivatives 8F Mi/ OG! have continuum limit 8F Lt /OE! . Thanks to summing over all v € U,
>, in Eq. (126) sums over vertices v' — §; at which OF X,/ji v (v -6))/ 8(5{1(1) ) are nonzero, and reduces to the Leibniz rule
of af;;/i (0 V') /OEL(V).

In the second term in the result of Eq. (125), &, 5 4y, restricts v = v' — 8, F NjuJ = v;. Carrying out >, in the
second term in Eq. (125) gives

C . . 5 C o N z a%a(y/)
iy Y [ v FN[i s (D) Ak B0 +55) = & F,vﬁi oz (V1) Ak Ep(vy +02) a6 (1)
apJ.KNEM; :

afa(v/)
OEL (V")

— sy Y ) +N,><M,t+MK>6,[Cf;iMiaKfﬂ] ) o0, (127)

. h
apJ KN .N;

The third and fifth terms in Eq. (125) are treated similar to the second term, while the fourth and sixth terms are treated
similar to the first term. As results,

C n OFp(V
sudterm = sy S (N] 4+ N7+ M0k [ 0t () G+ 06
apJ KN} .Ny a(l
c() 8‘7:Z+,N‘(U/>
— 3 JoN + — / 4
4thterm_ﬂ SUaJ;Ni h(v’) 8E§(v’) (NJ +NJ>8Jfa(U)+0(ﬂ )7
C(v' | Of (v
Sthterm = —’sy, Z (N7 +NJ)8J[ E ,;.7:%7.]\,;(1] )] 82’2 /; + o).
aJ.Nj.Ny all
thterm = * S OF () o4y, (128)

h(v') OEL (v")
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On the other hand, we apply the functional derivative to C using Eq. (116),

Clo) 8C(o C /35”%’1”#( )
LdSQ ()_ Z ()

T - _ , ,

The L), e ) DB () (TN M MRk
- - C afa(v/)
ST N M) {z ” MiaKfﬂ] ) gt

)
- Z (N7 +N7) (Mg +M1<)81<[i NiMiana:|( )21]; E l/i

apJ KN Ny
N(v’)
D Fiir (Ve N fa(0)
aJN*N‘
CW) py ] OFal) | C) OF ()
i Z(N NI [ 0] S R BT (129

Comparing Eq. (129) with (126)—(128), we obtain the following result:
c, 0cC, 3 C(o) 8C(o)
g » "= | Bosy—+ 4. 130
“H, 06w L SUhioysEL () T W) (130

veV(y)

The derivation of Eq. (130) only uses general patterns of C, and C; , in Eq. (114) and their continuum limit, so it can

easily be generalized to 3, Cé’ aé();?;") and derivatives with respect to 2¢(v’). Therefore
OH s [Cle) 8Cl6)  aCylo) 8Cy(o) .
e K e 32 o) st OO
o ae
— 3 3 2_2 2 4 131
Wz 0o e WAL (131)
OH 3/ 3 {C(a) 8C(6)  a~x=Cy(o) 5Cb(0)} s
_ = Bosy |[—= = P2+ 0 132
() " o he) 541 () T a4 o) aag(er)) T W) 132)
o ae
=u o ‘Caz— Cy(0)*| + O(u*). 133
¥ i o8 0P =52 euor |+ o (133

Ji can be replaced by [ because the functional derivative is local. This result shows that the lattice continuum limit of
partial derivatives in discrete variables gives the functional derivatives in smooth fields.
Recall Egs. (107) and (108), where we obtain the lattice continuum limit of discrete semiclassical EOMs (74),

dA{(v) kB & / ag
- = & 2.2 240 134
T O A\ S WG ) (134)
dEL(v) kB 5 ag
: d*c — 2+ 0( 135
dr 25A”v)/ 4§:: (6)%] + O(u). (135)
The result recovers the classical EOMs (24) of the gravity-dust system in the continuum when C(0)? =433, C,(0)* > 0.

The above derivation replies on the assumption that v € U, r(v',0U) > u, and s, = sy is constant on U. But if we
violate this assumption, i.e., let ' € U, r(v',0U) ~ u, and s, changes sign outside U, then in the lattice continuum limit
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u — 0, v/ belongs to the boundary where s, jumps and
C(0)* =432, C,(0)* = 0. Semiclassical EOMs at this o/
cannot relate to Egs. (134) and (135) by the lattice
continuum limit, because the functional derivative is ill-
defined at v'.

In our quantization, nonholonomic constraints C(c)? —
433 1Cy(6)>>0 and C <0 are not imposed to the
Hilbert space H,. Therefore H are defined on the entire
phase space P,, and thus the continuum limit Eqgs. (134)
and (135) extend the continuum theory to the regime where
nonholonomic constraints are not valid. The relation
between Eqs. (134) and (135) and the classical EOMs
(24) is sensitive to the choice of initial condition. Here the
initial condition is given by [¢/] at which the initial coherent
state W) is peaked. W[, is semiclassical if [¢/] is in the

classical allowed regime of the phase space, while the

classical allowed regime satisfies the nonholonomic con-

straints required by the classical gravity-dust system.

Equations (134) and (135) indeed coincide with classical

EOMs (24) of the continuum theory, if the initial data ¢’
satisfies (discretized) nonholonomic constraints:

(i) For gravity coupled to Brown-Kuchar dust, if the

initial data ¢’ at 7 = 0 satisfies C3 — >3, C3, >

0 and C, <0 at all v € V(y), these two nonholo-

|

RUCIE Sy
S

dr 2 SEL(v)

dE;(v) _ xp

(i1) A similar reasoning applies to gravity coupled to
Gaussian dust, when the initial data ¢ of Ajg1g]
satisfy C, <0 and C,, = 0; both C, and C,, are
approximately conserved if u is sufficiently small,
since they are conserved in the continuum limit, and
thus C, < 0 is preserved by the time evolution for
sufficiently small yx. Then semiclassical EOMs of
reduced phase space LQG with Gaussian dust
reproduce classical EOMs (24) in the continuum
limit up to a flip of time direction

dAf(v) _kp 6
dr 2 8EL(v)

/9(130'6(6) +O0(u), (138)

T = oo is more subtle because accumulating errors of O(u)
over an infinite amount of time might cause a finite change of
C2—1573 ,C2, and flip the sign.

nomic constraints are still going to be satisfied by the
solution to EOMs (134) and (135) within a finite
time period 7 € [0, Ty, simply because the solution
is a continuous function in 7. Therefore || in (134)
and (135) can be removed at least within this time
period.

On the other hand, although C2 — 1573, C2 s
not exactly conserved in (74) [or (86)] due to the
anomaly from discretization [57], it is approximately
conserved up to O(u) because its continuum limit
C?— 1373, C2is conserved by the continuum limit
Egs. (134) and (135). C, cannot flip sign by a similar
reason. Therefore C2 — 133 | C2, > 0andC, <0
can continuously be satisfied by the solution at and
even after 7. By adding another time period
[Ty,2T,), repeating the argument iteratively, we
can extend the time period to entire [0, 7] in which
C2-153 C2,>0 and C, <0 are satisfied,
when u is sufficiently small.® Then semiclassical
EOMs from Ay, 4 reproduce classical EOMs (24)
for gravity coupled to Brown-Kuchaf dust in the
continuum limit,

(136)

(137)

(iii)
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dEL(v) kB 6
de 2 6A%(v)

/S BoC(o) + O(n). (139)

Recall that time direction has been flipped to flow
backward in Sec. II in order to obtain a positive
Hamiltonian.

If the initial data do not satisfy nonholonomic
constraints, ng'] is not semiclassical anymore. The
continuum limit of semiclassical EOMs derived
from A 4 cannot be related to classical EOMs
(24) of the gravity-dust system. The existence of
nonclassical solutions has been anticipated in [57]
and viewed as analogs of negative energy states in
relativistic QFT, because when Eq. (15) is viewed
as constraint, it can be written as P>+ (C—
q“ﬁCaCﬁ) =0 whose quantization would be an
analog of the Klein-Gordan operator. But whether
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nonclassical solutions appear or disappear is deter-
mined by initial conditions, similar to the situation
of negative energy states in QFT.
Some examples of solutions of semiclassical EOMs and
their continuum limit are studied in cosmological pertur-
bation theory in [63].

VII. ASYMPTOTICS OF TRANSITION
AMPLITUDE

Assuming initial and final states ‘I‘f /] and ‘Pfg] are both

semiclassical in the sense that both [¢/] and [g] are within
the classical allowed regime, if [g], [¢/] are connected by the
trajectory ¢(r) satisfying Eq. (85), as 7 — 0, the path
integral (51) dominates at this semiclassical trajectory,

- izzf; vlg(e). ReSU L+ 0(0)),

Algllg]

ERIE]

(140)

where N is the total dimension of the integral in Eq. (51)
and H is the Hessian matrix at the solution. S[g(), h] is the
action evaluated at the solution g(z), h, where the continu-
ous trajectory ¢(z) ~ g; approximates the discrete solution
as Az small. We can set for the solution # = 1 by setting
representatives g and ¢ such that g(7) = g and ¢(0) = ¢

If the initial and final data [¢'], [g] are not connected by
any trajectory ¢(z) satisfying Eq. (85), the amplitude is
suppressed as t — 0,

Alglg)

B o),
IR

VM>0 (141

VIII. COMPARISON WITH SPIN FOAM
FORMULATION AND OUTLOOK

The above analysis demonstrates the semiclassical con-
sistency of the new path integral formulation from reduced
phase space LQG. If we compare our results to the spin
foam formulation, we find the following advantages of our
path integral formulation:

(1) Our path integral formulation is free of the cosine

problem. The initial condition [¢/] given by the
semiclassical initial state ‘I‘f J] determines a unique

solution of semiclassical EOMs up to SU(2) gauge
freedom. Therefore the asymptotic formula (140)
has only a single exponential in the integrand.

A key reason why we obtain a unique solution and
avoid the cosine problem is that all solutions of
discrete EOMs (56) and (57) admit the time con-
tinuous limit. If spin foam formulation admitted the
time continuous limit or anything similar, the con-
tinuous time EOMs (critical equations) would have

forbidden the 4D orientation to jump and suppressed
contributions from orientation-changing evolutions
to spin foam amplitude.

(2) Our path integral formulation is free of the flatness
problem. The semiclassical analysis of the path
integral has been shown to reproduce the classical
EOMs (24), which are Einstein equation formulated
in the reduced phase space. Semiclassical EOMs
(86) admit all curved solutions that are physically
interesting. For instance, [50] has demonstrated the
homogeneous and isotropic cosmology as a solution,
while [63] obtains cosmological perturbation theory
from solutions. Note that the flat spacetime is not a
solution of semiclassical EOMs because of the
presence of a physical dust field with positive energy
density.

(3) There is a clear link between our path integral
formulation and the canonical LQG. The path
integral (51) is rigorously derived from the canonical
formulation in the reduced phase space. The unitar-
ity is manifest because the path integral is the
transition amplitude of unitary evolution generated
by the Hamiltonian H.

(4) The path integral formula (51) is clearly
finite (irrelevant to the cosmological constant),
because the transition amplitude Ay /) =
(¥, exp[—%TﬁH‘Pf ) is finite. All ingredients

Pl Pl exp[—+ TH], and (-|) are well-defined.

Our formulation may still have issues of computational
complexity and lattice dependence similar to the spin foam
formulation, at least at the present stage. However, studies
of the new path integral formulation are still at a very
preliminary stage, and research on overcoming these issues
will be carried out in the future. Research in progress and in
the near future focus on generalizing the present work to
other matter couplings, investigating quantum corrections,
and studying various physical situations such as cosmology
and black holes:

(1) The generalization to include standard matter
couplings can be carried out by following the
existing quantization of matters in the canonical
LQG [66-68]. It is straightforward to construct H
for LQG coupled to all standard model matters (and
it has been done [57,67]). The only gap of deriving a
coherent state path integral formula is computing the
overlap of Yang-Mills coherent states with a higher-
rank gauge group. This task is currently in progress.
Once the path integral formula is obtained, the
semiclassical limit will be studied to contact with
the standard model.

(2) At the level of discrete path integral (51), the action
Slg, h] depends on the nonpolynomial operator H
and its matrix element, which is hard to compute.
However, because At is arbitrarily small, we may
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consider a formal time continuous limit at the level
of the path integral, as in the standard QFT. The
resulting path integral formula integrates over con-
tinuous paths, and then the matrix element of H in
Slg, h] reduces to the coherent state expectation
value (y/;|lfl|y/;>, which is computable as a pertur-
bative expansion in ¢ by using the method in [75].
Therefore perturbative techniques in QFT (more
precisely, the lattice perturbation theory) should
be applied to our path integral formulation to
compute quantities such as correlation functions
and quantum effective action as power expansions
in ¢. Contributions of higher order in ¢ give quantum
corrections predicted from LQG.

(3) Our path integral formulation depends on the cubic
lattice y even after taking the time continuous limit.
Currently the lattice continuum limit at the quantum
level is not clear for our formulation (in Sec. VI, the
lattice continuum limit g — 0 is taken after the
semiclassical limit /p, — 0). We expect to see the
effects of the lattice continuum limit at the quantum
level order by order in ¢ in perturbative computa-
tions. It is also interesting to apply the refinement
and renormalization techniques [20,49] to our path
integral formulation.

(4) Another interesting direction is to study solutions of
semiclassical EOMs from the path integral and
extract physical consequences. In [50,63], we have
applied the EOMs to cosmology and cosmological
perturbation theory. The research in progress is to
apply the EOMs to other situations, and in particular
black holes. The studies are likely to be done
numerically.
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APPENDIX: PROOF OF EQ. (114)

There are two useful properties of C, and C, ,:

(i) C, and C,, are polynomials of h(e), p“(e), and
Q}/z. By applying Eq. (111) and expanding in u, C,
and C,, become series of yu and &, (v).

(ii)) In the continuum limit C, = u3C(v) + O(u*),
Cop = wCu(v) + O(u*) where the leading order
is of O(y*) and both C and C, are polynomials of
f, and their first order derivatives.” Each term in C
and C, contain no more than two derivatives.

We extract arbitrarily two terms at O(u") in the expan-

sion of C, and C,,. Generically they may be written as

%l (Ul)%Z(UZ) e %n(vn)%n+l (UnJrl) T %m(vm)
and  F1(v])F2(v5) -+ Fu (V) E i1 (Vy) - g (v)-
(A2)

They may share gq,...,5, although locations of
S1s - Bn> v, and v, may be different between these
two terms. Distances from v to v;, v are of O(u). §; and
are factors not shared by these two terms. If the relative sign
between these two terms is negative, we can perform the
following reduction:

S1(v1)82(v2) -+ En (V)1 (Vns1) - (Vi) = F1 (V1) E2(v2) -+ T (V) w1 (V1) -+ Ty (v5)
= B1(v1)B2(v2) - B (V) F1 (V1) -~ Fon (V) = F1(V1)B2(v2) - - B (V) Tt (V1) - - Fon (V)

+ %I(U/])%Z(H/Z) e %n(v;)%n+l(vn+l) T %m(vm)

= &1 (W)E2(v2) - (V)T w1 (V1) -+ Fg(v)

= [B1(v1)E2(2) -+ o (vi) = F1 (V1) E2(v3) - - B (V)| Fos1 (V1) -+~ Fon (V)

+ E1(0)B2(v2) - F(00) [ 1 (Vi) - (Vi) = F a1 (V1) - &g (vg)]-

(A3)

The quantity in the first square bracket of the above result is the difference of two monomials & (v;)F2(v2) - - - &, (v,) and
T1 (V) F2 (V) - - - Fu(v),) sharing the same set of &, . ,, and can be further reduced

’F¢, has only first order derivatives of A¢. K¢ = A% —T¢ where

1 1
f = e BLEY, ~ B, + E§E{EL )| + e EL | 2E}

(det(E)), ., (det(E)
det(E) 7 det(E

))” . (A1)

det(E)),

Here det(E(v)) = g(v), the inverse E¢(v) = det(E(v))~" (quadatic polynomial of EL(v)), and det(E) W = %8,(11/2 [we assume

q(v) > 0].
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1 (01)B2(v2) - Fu(v,) = B () G2(0) - Fn(v))
=81(v1)F2(v2) - Fu(va) = F1 (V) B2 (03) - Fu () + F1(v1)F2(v3) - Fu(vn) = F1(v1)F2(v3) -+ Fu ()
=1 (v)[Fa(v2) -+ Fu(vn) = Fa(v3) -+ Fu(v3)] + &1 (v1) = B1 (0))182(v3) -~ B (V)

= z": Fi1(v1) - Fic (vin)[Si(vi) = Fi(V)]Fi1 (Vi) - Tu (). (Ad)

Inserting this result back into Eq. (A3) gives
F1(1)B2(02) - G (0)Bwss (001) -+ Bon(0) = BrODF2) - B (U)F s (V) - B (81)
- _"lem B (o) [ 00) = BB () -+ Bl
B Ba08) B (Bt B0~ Fos (o) B (45)

while there is no reduction for the second square bracket. Here the point of this reduction is to manifest the difference
i(v;) — &:(v}) in the formula.

We insert the above result back into C, and C,, so that they become polynomials of &, and
AF (v, V) = Fo(v) — Fa(v'). We make a further similar reduction as above, by including A%, as one of generators
of the polynomial. As a result from iteration, we obtain at O(u")

o |Poly () + SPO(B AB) + 3 Pl A5 475,

p>0 k>0,/>0

= u" {Poln(m + ) WPl (T AZu/1) + D pPO (0 AT/t AT/ 1) |- (A6)

p>0 k>0,1>0

A%F, = AZ, (v, V') — AF,(7,7) and AF,/u, A>F,/u* are lattice derivatives. Pol,(&,) is a polynomial of .
Pol? (&, AZ,,) is a polynomial homogeneous in AJ,, of degree p. Polk!(Fy. AT, AZF,) is a polynomial homogeneous
in AZ, and A’ of degree k and [, respectively. We stop the reduction at A%, and do not try to get A>F, (even if we get
A, its coefficient vanishes as y — 0 since C, and C,, do not contain a third derivative).

Importantly, we assume that when Pol,, (&), Pol? (&, AZ,), and Polt! (&, AT, A2F,) are nonzero, Pol,(§,) and the

coefficients of AJ, and A2, (as polynomials of F,) in Pol? (Fy. AF,).Polt! (&Fy. AT, A2F,) do not vanish as u — 0,
because otherwise they can be further reduced to higher order in A%,.

We are interested in expansions of C,, and C,, , truncated up to O(u?) to be relevant to their continuum limit. So we focus
on

n<3, n+p <3, n+k+20<3. (A7)

Continuum limits of C, and C,, contain no terms of three derivatives, so it imposes in addition
k=0, =1, p <2. (A8)
Moreover C,, C,, ~ ¢* in the continuum limit. So at n = 0, Poly(F,), Pol}) (F. AF,). and Pollg’l(%a, A, A’F,) have to

vanish, since otherwise they produce a nonzero continuum limit at O(u°), O(u'), O(u?),

2
Poly(fo) + D POl (for Of o) + H2POIY" (f 4 Of gr 0P £ o)- (A9)

p=1

By similar arguments, Pol; (&) and Pol}($,, AF,) have to vanish at n = 1, and Pol,({,) has to vanish at n = 2. As a
result, C, and C, , can be written as
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p[POB (For AB,) + Pol)! (Fon AFr A2F )] + 1Pl (For AF) + 3P0l (Fo) + O ()
— W2 [POB(f 4. Of o) + PO (f 4. Of 4. 02 f ) + POLs(f4 Of 4) + Pol3 (fo)] + O(u*). (A10)

Recall that continuum limits of C, and C, ,, C and C,,, contain no second order derivative. So Pol?’1 (B AB s A%, has to
vanish. Finally we obtain

C, or C,,=puPol}(Fu. AF,) + u*Poly(Fe. AF,) + *Poly(F) + O(u). (A11)
Given any vy, v, of O(u) distance from v (;ﬂ with J = 1, 2, 3 are lattice vectors),
U :U+M1MT+N1/AQ+P1/J§, 1)2:7)+M2/.l,1\+N2[42+P2ﬂ§, (A]Z)

where M, ,, N,, Py, € Z, we define

vy = v+ Mpul + Nu2 + Pu3, vy = v+ Mpl + Nou2 + Pou3, (A13)

so that
vi— vy = (v1 —v3) + (v3 = va4) + (v4 — v2), (Al4)
AFa(v1,v2) = D301, v3) + BoFu(v3, 04) + A1Fa(v4, v2), (A15)

where AT, (v, 13), AFa(v3,v4), A1Fa(vs, v2) are differences along the 3,2,1 directions, respectively. Inserting
Eq. (A15) and expanding, Eq. (A11) can be rewritten as

C, or C,,=uPoly (Fs A;Fa) + #Poly (For As8o) + 1'Pol3 (o) + O(u?), (Al6)

where every difference A; is along the J = 1, 2, 3 direction.
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