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The static traversable wormhole should be made out of some type of exotic matter which satisfies the
Morris-Thorne conditions. Although the characteristic size of the region with the exotic matter can be made
arbitrary small, the calculations performed so far suggest that the Morris-Thorne conditions are quite
restrictive and it is hard to find the matter with the desired properties. Traditionally, the quantized fields are
considered as the best candidates because they can violate the weak-energy condition. In this paper we
employ the Schwinger-DeWitt expansion to construct and examine the approximate stress-energy tensor of
the quantized massive scalar (with an arbitrary curvature coupling), spinor and vector field in the spacetime
of the Damour-Solodukhin wormhole. We find that for the scalar field there is a region in a parameter space
in which the stress-energy tensor has the desired properties. That means that of the twenty-one cases
considered so far (the seven types of the wormhole geometries and the three types of the massive fields)
only in the four cases (for certain values of the parameters) the stress-energy tensor does satisfy the Morris-
Thorne conditions.

DOI: 10.1103/PhysRevD.102.024082

I. INTRODUCTION

Typically, in order to construct the traversable wormhole
some amount of the strange matter is needed. This assertion
follows from the analysis of the Einstein field equations for
the general static line element describing a spherically
symmetric wormhole [1,2] (see also [3,4])

ds2¼−e2ΦðrÞdt2þ
�
1−

bðrÞ
r

�
−1
dr2þr2dθ2þr2sin2θdϕ2;

ð1Þ

where ΦðrÞ is a redshift function and bðrÞ is a shape
function. In the static orthonormal frame the Einstein field
equations assume simple form
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ðρ − τÞ d

dr
ϕ −

d
dr

τ

�
; ð4Þ

for the energy density, the tension and the lateral pressure,
respectively. Now, denote by ρ0 and τ0 the energy density
and the tension at the throat. As is well known, the
traversability of a wormhole requires that the following
minimal set of conditions is satisfied:

τ0 − ρ0
jρ0j

≥ 0; ð5Þ

and

τ0 > 0: ð6Þ

The second condition follows from the absence of the event
horizon and finiteness of the energy density ρ0 whereas the
first one is essentially the flaring-out condition [1,2]. The
problem with the above conditions is that it is not an easy
task to find matter fields satisfying them. Because of that
the forms of matter satisfying the traversability conditions
are called exotic. Since the quantized fields frequently
violate the energy conditions they are among the most solid
candidates for the exotic mater. In general, to construct such
a wormhole one has to solve the semiclassical Einstein field
equations with the stress-energy tensor of the quantized
field. The first (numerical) calculations of this type were
carried out by Hochberg, Popov and Sushkov in Ref. [5]. It
is a very important result showing that it is possible to
construct the self-consistent solution of the semiclassical
Einstein field equations describing a Lorentzian wormhole*jurek@kft.umcs.lublin.pl; jirinek@gmail.com
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connecting two asymptotically flat regions. Unfortunately,
being numerical, this approach does not give much infor-
mation about the geometry of the thus obtained wormhole.
On the other hand however, it seems to be extremely hard,
if not impossible, to construct the analytic solution. The
main difficulty arises because the right-hand side of the
semiclassical Einstein equations should depend function-
ally on a general metric tensor or, at least, on a wide class of
metrics. Moreover, of the all approximations of the stress-
energy tensor only the one based on the Schwinger-DeWitt
expansion has the desired properties. The second difficulty
is related to the fact that the stress-energy tensor is very
complicated and involves higher derivatives of the metric,
that practically prevents construction of the analytic sol-
utions. However, one still can gain valuable information
from the analysis of the stress-energy tensor of the quantized
fields. Specifically, one can deduce if the energy density and
the tension have the appropriate form support a traversable
wormhole spacetime. If the Morris-Thorne conditions are
not satisfied the quantum fields tend to destroy a wormhole
and make it less operable. Various aspects of the quantum
field theory in the wormhole spacetimes have been studied,
for example, in Refs. [6–14]. A comprehensive discussion
of general properties of wormholes can be found in
Refs. [15–18].
It should be emphasized once again that the inequalities

(6) and (5) are quite restrictive. Indeed, as have been shown
in Refs. [19,20], of the eighteen cases considered there (six
types of the wormhole geometries and three types of
the massive fields) only in three cases (for certain values
of the parameters) the stress-energy tensor does satisfy the
Morris-Thorne conditions. In this paper (which can be
treated as an extension of Refs. [19,20]) we shall construct
the stress-energy tensor of the quantized massive scalar,
spinor and vector fields in the spacetime of the Damour-
Solodukhin wormhole [21] and check if the matter fields
are of sufficient “exoticity.” We shall demonstrate that for
the stress-energy tensor of the massive scalar field with the
curvature coupling ξ there is a region in the space of
parameters in which the conditions (6) and (5) are simulta-
neously satisfied. Unfortunately, neither the spinor nor the
vector fields are of sufficient exoticity.
The line element describing the Damour-Solodukhin

wormhole is given by

ds2¼−ðfðrÞþω2Þdt2þ dr2

fðrÞþr2dθ2þr2sin2θdϕ2; ð7Þ

where fðrÞ ¼ 1 − 2M
r and ω is a dimensionless para-

meter. Although it looks as a small modification of the
Schwarzschild line element, it leads to a completely
different type of the spacetime. Indeed, when ω ¼ 0 the
line element reduces to the Schwarzschild solution, how-
ever, for a nonvanishing ω, no matter how small, it
describes the Lorentzian wormhole with a throat located

at r ¼ r0 ¼ 2M. The throat joins two asymptotically flat
regions 2M ≤ r < ∞. If the parameter ω is small, one
expects that the wormhole can mimic some of the obser-
vational features of black holes. It has been shown that for
exponentially small values of the parameter, say, ω ∼
e−4πM

2

the solution (7) is able to mimic both classical
and quantum properties of the Schwarzschild black holes.
Many interesting properties of such configurations are
studied in Ref. [22]. However, since in this paper we are
less interested in the black hole mimickers we treat ω as a
free parameter.
Throughout the paper we use natural units ℏ ¼ c ¼

G ¼ 1. The signature of the metric is taken to be “mainly
positive”, i.e., þ2, and the conventions for the curvature
tensor are Ra

bcd ¼ ∂cΓa
bd � � �, and Ra

bac ¼ Rbd.

II. THE STRESS-ENERGY TENSOR OF THE
QUANTIZED MASSIVE FIELDS

The mathematical difficulties arising in the attempts to
construct the renormalized stress-energy tensor of the
quantized fields in a curved background are well known.
They are related to the fact that the building blocks of the
stress-energy tensor are the operator-valued distributions
and the whole procedure is infected with unavoidable
divergences. Moreover, the solutions of the equations
describing quantum fields in curved spacetime cannot be
expressed, except very rare cases, in terms of the known
special functions. One is forced, therefore, to refer either to
approximate methods or to numerics. The renormalized
effective action of the quantized field in a curved back-
ground is a nonlocal quantity. However, if the Compton
length associated with a quantized massive field is much
smaller than a characteristic radius of curvature, then the
nonlocal contribution to the total action can be neglected
and the remaining (local) part can be expressed as the sum
of terms constructed from the integrated Hadamard-
Minakshisundaram-DeWitt-Seely coefficients. This is the
Schwinger-DeWitt expansion in the powers of m−2, where
m is the mass of the field. Once the renormalized effective
action is known the stress-energy tensor can be calculated
in a standard way [23–26].
In a static and spherically-symmetric background there is

a complementary method of constructing the stress-energy
tensor of the massive scalar field with an arbitrary curvature
coupling devised by Anderson et al. [27], in which the
approximate WKB solutions of the scalar field equations
are summed by means of the Abel-Plana formula. Both
methods give precisely the same results as there is a one-to-
one correspondence between them at each order of the
calculations. Indeed, to obtain the main approximation (i.e.,
m−2 terms) the sixth-order WKB approximation of the
mode functions is needed. Similarly, the next-to-leading
approximation (i.e., m−4 terms) is equivalent to the eight-
order WKB approximation, and so forth.
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The Schwinger-DeWitt approach has been employed in
various contexts in Refs. [28–37] and the applications span
from black hole physics to cosmology and form topological
structures to wormholes. Detailed analysis carried out in
Refs. [19,27] shows that the Schwinger-DeWitt approxi-
mation of the renormalized stress-energy tensor is very
good. For example, for the quantized scalar field in the
Reissner-Nordström spacetime characterized by the mass
M and the charge Q, the deviation of the approximate
stress-energy tensor form the exact (numerical) one is
always below 1%, provided the condition mM ≥ 2 is
satisfied.
In what follows we shall confine ourselves to the scalar,

spinor and vector fields satisfying, respectively

ð−□þ ξRþm2Þϕð0Þ ¼ 0; ð8Þ

ðγa∇a þmÞϕð1=2Þ ¼ 0 ð9Þ

and

ðδba□ −∇a∇b −Rb
a − δbam2Þϕð1Þ ¼ 0; ð10Þ

where ξ is a curvature coupling constant and γa are the
Dirac matrices satisfying standard relations γaγbþ
γbγa ¼ 2Igab. The approximate one-loop effective action
of the quantized massive scalar, spinor and vector fields is
given by [38,39]

Wð1Þ
ðsÞ ¼

1

192π2m2

Z
d4xg1=2½αðsÞ1 R□Rþ αðsÞ2 Rpq□Rpq þ αðsÞ3 R3 þ αðsÞ4 RRpqRpq þ αðsÞ5 RRpqabRpqab

þ αðsÞ6 Rp
qR

q
aRa

p þ αðsÞ7 RpqRabRa
p
b
q þ αðsÞ8 RpqRp

cabRqcab þ αðsÞ9 Rab
pqRpq

cdRcd
ab þ αðsÞ10R

a
p
b
qR

p
c
q
dRc

a
d
b�

¼ 1

192π2m2

X10
i¼1

αðsÞi Wi; ð11Þ

where Wi are purely geometric terms, constructed entirely
form the Riemann tensor, its contractions and covariant
derivatives. The type of the field is encoded in the

coefficients αðsÞi tabulated in Table I.
The renormalized stress-energy tensor is given by

hTabi ¼ 2

g1=2
δ

δgab
Wð1Þ

ðsÞ ¼
1

96π2m2g1=2
X10
i¼1

αðsÞi
δ

δgab
Wi

ð12Þ

and the full form of the functional derivatives of Wi with
respect to the metric tensor was given in Refs. [25,26]. The

final result is quite complicated and will not be pre-
sented here.
Because of the simplicity of the line element describing

static and spherically symmetric line element one can use
the Euler-Lagrange equations to construct the (00) and (11)
component of the stress-energy tensor. The angular com-
ponents can be calculated from the covariant conservation
equation ∇aTab ¼ 0. Although in this method one avoids
calculations of the functional derivatives of the general
action with respect to the metric tensor gab, the result
expressed in terms of the two metric potential functions are
still too complicated to be presented here.
Now, let us return to the Damour-Solodukhin wormhole.

Although the line element describing the Damour-
Solodukhin wormhole is a small modification of the
Schwarzschild metric tensor, the stress-energy tensor of the
quantized massive fields calculated with the aid of Eqs. (11)
and (12) is quite complicated and for obvious reasonswill not
be given here [40]. Instead,wewill focus on its behavior at the
throat and analyze if the stress-energy tensor can support the
existence of the Damour-Solodukhin wormhole.
After some algebra, the stress energy of the massive

scalar field with a general curvature coupling ξ can be
written in the form

Tb
a ¼

1

96π2m2M6

�
1 −

2

x
− ω2

�
−6X7

k¼0

βðkÞba
1

xkþ8
; ð13Þ

where x ¼ r=M and the numerical coefficients βðkÞba depend
parametrically on ω and ξ. By construction it is covariantly

TABLE I. The coefficients αðsÞi for the massive scalar, spinor,
and vector fields.

s ¼ 0 s ¼ 1=2 s ¼ 1

αðsÞ1

1
2
ξ2 − 1

5
ξþ 1

56
− 3

140
− 27

280

αðsÞ2

1
140

1
14

9
28

αðsÞ3
ð1
6
− ξÞ3 1

432
− 5

72

αðsÞ4
− 1

30
ð1
6
− ξÞ − 1

90
31
60

αðsÞ5

1
30
ð1
6
− ξÞ − 7

720
− 1

10

αðsÞ6
− 8

945
− 25

378
− 52

63

αðsÞ7

2
315

47
630

− 19
105

αðsÞ8

1
1260

19
630

61
140

αðsÞ9

17
7560

29
3780

− 67
2520

αðsÞ10
− 1

270
− 1

54
1
18
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conserved and regular. It can be easily shown that when
ω ¼ 0 the tensor reduces to the known result in the
Schwarzschild spacetime. On the other hand, at the throat
of the Damour-Solodukhin wormhole one has

Tb
a ¼

1

96π2m2M6ω6
Tb

a; ð14Þ

where the tensors Tb
a are given by

Tt
t ¼

43ω6

35840
þ 907ω4

215040
þ 23ω2

4480
þ 179

107520

−
�
3ω2

64
þ 13

512

�
ξ3 þ

�
13ω4

128
þ 33ω2

256
þ 47

1024

�
ξ2

−
�
9ω6

1280
þ 59ω4

1536
þ 3ω2

64
þ 81

5120

�
ξ; ð15Þ

Tr
r ¼

23ω6

35840
þ 131ω4

215040
þ ω2

1920
þ 11

107520

−
�
3ω2

256
þ 1

512

�
ξ3 þ

�
ω4

64
þ 9ω2

512
þ 3

1024

�
ξ2

−
�
3ω6

1280
þ 49ω4

7680
þ 43ω2

7680
þ 1

1024

�
ξ ð16Þ

and

Tθ
θ ¼ Tϕ

ϕ ¼ 5ω6

3584
þ 7ω4

2048
þ 173ω2

43008
þ 283

215040

−
�
21ω2

512
þ 23

1024

�
ξ3 þ

�
3ω4

32
þ 121ω2

1024
þ 87

2048

�
ξ2

−
�
3ω6

512
þ 19ω4

512
þ 659ω2

15360
þ 147

10240

�
ξ: ð17Þ

The stress-energy tensor of the massive spinor field is still

of the form (13) with the coefficients βðkÞba depending solely
on ω. The components of Tb

a tensor can be written in the
form

Tt
t ¼ −

3ω6

3584
þ 233ω4

71680
þ 47ω2

17920
þ 269

430080
; ð18Þ

Tr
r ¼

3ω6

4480
−

19ω4

107520
þ ω2

15360
þ 17

430080
ð19Þ

and

Tθ
θ ¼ Tϕ

ϕ ¼ 33ω6

35840
−

11ω4

10240
−

317ω2

430080
−

143

860160
: ð20Þ

Similarly, for the components of the stress-energy tensor of
the massive vector field, one has

Tt
t ¼ −

53ω6

35840
þ 7019ω4

215040
þ 201ω2

8960
þ 179

35840
; ð21Þ

Tr
r ¼

83ω6

35840
−

181ω4

215040
þ ω2

1280
þ 11

35840
ð22Þ

and

Tθ
θ ¼ Tϕ

ϕ ¼ 19ω6

17920
−

51ω4

10240
−

79ω2

14336
−

19

14336
: ð23Þ

Before starting our discussion of the Morris-Thorne
conditions let us count the general properties of the
obtained stress-energy tensors. By construction, they are
regular and covariantly conserved. Inspection of (13) shows
that the components of Tb

a change sign a few times in the
region close to r0 and rapidly go to 0 as r → ∞. The energy
density at the throat (and by continuity in its vicinity) is
negative for ω2 < 4.6 and ω2 < 22.7458 for the spinor and
the vector field, respectively. A different picture emerges
form the analysis of the minimally coupled and the
conformally coupled scalar fields. Indeed, in both cases
the energy density is always negative for ω2 > 0. In
summary, in all considered cases there is a pocket of
negative energy in the vicinity of the throat for small values
of ω (say ω2 < 1).

III. DISCUSSION

Although the stress-energy tensor of the quantized fields
is interesting in its own right, now we shall examine
whether the quantum fields it describes are of sufficient
exoticity to support the Damour-Solodukhin wormhole. In
our context, the energy density and the radial tension are
defined as

ρ ¼ −Tt
t ð24Þ

and

τ ¼ −Tr
r: ð25Þ

In what follows we shall not impose any additional
restrictions on the parameter ω.
Let us start with the massive spinor fields. Inspection of

the components of the stress-energy tensor at the throat of
the wormhole shows that the first Morris-Thorne condition
(6) is satisfied for ω < 1.7044. On the other hand, the radial
tension is always negative and consequently the compo-
nents of the stress-energy of the massive spinor field will
not help to support the Damour-Solodukhin wormhole.
Similarly, the first condition for the massive vector field is
satisfied for ω < 3.0727 whereas the radial tension is
always negative. Since the second condition cannot be
satisfied, the stress-energy tensor does not have the form
required to support the wormhole.
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Now, let us consider the massive scalar field with the
general curvature coupling and examine if the Morris-
Thorne conditions can be satisfied simultaneously in the
two-dimensional parameter space ðω; ξÞ. The results of
the numerical calculations are illustrated graphically.
Inspection of Fig. 1 shows that there is a region in the
ðω; ξÞ-plane in which the stress-energy tensor has the form
required to support the wormhole. It is quite important
result as it shows that within the framework of the
Schwinger-DeWitt approximation it is possible to construct
the stress-energy tensor with the desired properties. Of the
twenty-one cases analyzed so far (with the result of this
paper included), only in the four cases the stress-energy

tensor has the required form to sustain the wormhole throat.
It should be noted however, that if the physical values of the
coupling parameter are chosen, i.e., either the minimal,
ξ ¼ 0, or the conformal, ξ ¼ 1=6, coupling, then the energy
density and the radial tension tend to destroy all the
wormholes. The general picture that emerges from the
analysis is that the scalar case is preferable as it (in our
formulation of the theory) allows for an arbitrary value of
the coupling parameter. Moreover, if the wormhole geom-
etry depends (except its mass) on at least one additional
parameter then the space of parameters can be sufficiently
rich and can contain the region(s) in which the Morris-
Thorne conditions are satisfied.
This somewhat pessimistic conclusion does not mean

that the stress-energy tensor of other fields is useless in the
context of wormholes. Indeed, since the stress-energy
tensor constructed within the Schwinger-DeWitt frame-
work depends functionally on a general metric, one could
try to solve the semiclassical Einstein field equations self-
consistently. Consider, for simplicity, the general static and
spherically-symmetric spacetime described by the line
element

ds2 ¼ −FðlÞdt2 þ dl2 þ r2ðlÞðdθ2 þ sin2 θdϕ2Þ; ð26Þ

where FðlÞ and rðlÞ are two functions of the proper
distance l. For this line element the semiclassical
Einstein field equations

Rb
a½g� −

1

2
R½g�δba ¼ 8πTb

a½g� ð27Þ

reduce to the system of the two independent ordinary
differential equations. Imposing the appropriate boundary
conditions one can attempt to solve the equations numeri-
cally and decide if the thus obtained solution describes
traversable wormhole. This work is in progress and the
results will be published elsewhere.
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