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It is shown that exact spherically symmetric solutions to Einstein’s field equations exist such that, over
an open region of the spacetime, they are singularity free, satisfy the dominant energy condition, represent
elastic matter with a well-defined constitutive function, and are such that elastic perturbations propagate
causally. Two toy models are then built up in which a thick elastic, spherically symmetric shell with the
above properties, separates two Robertson-Walker regions corresponding to different values of the
curvature k in the first model and to the same value of k in the second model. The junction conditions
(continuity of the first and second fundamental forms) are shown to be exactly satisfied across the

corresponding matching spherical surfaces.
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I. INTRODUCTION

Spherically symmetric models with elastic matter in
general relativity have been studied by a number of authors:
Magli and Kijowski [1] investigated the problem of
elastomechanical equilibrium for a nonrotating star, Park
[2] proved existence theorems for spherically symmetric
elastic bodies, Magli [3] analyzed the relativistic interior
dynamics of a spherically symmetric nonrotating star
composed of an elastic material, Frauendiener and
Kabobel [4] discussed spherically symmetric solutions of
the general relativistic elasticity equations with different
stored energy functions; and Karlovini and Samuelsson [5]
showed how physically prestressed stellar models, which
serve as backgrounds in investigations of stellar perturba-
tions, can be produced numerically and investigated radial
and axial perturbations of static spherically symmetric
elastic configurations [6,7], just to name a few.

On the other hand, the study of wave propagation in
elastic solids has also been addressed by other authors:
Carter [8] derived a characteristic equation for sound wave
fronts in elastic solids using the formalism for the theory of
general relativistic elasticity developed in [9], and showed
that the characteristic equation can be expressed in terms of
the relativistic Hadamard elasticity tensor and can be used
to determine the propagation speeds of sound waves in the
direction specified by the propagation direction vector and
the corresponding polarization directions; Karlovini and
Samuelsson [5], who set up a theory of elastic matter
sources within the framework of general relativity, also
based on the formalism of [9], obtained formulas for the
speeds of elastic wave propagation along eigendirections of
the pressure tensor and studied these for stiff ultrarigid
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equations of state [10]; Maugin [11] studied wave propa-
gation in prestressed nonlinear elastic solids in general
relativity; and Kranys [12] determined special relativistic
propagation modes for longitudinal and transverse waves of
an elastic solid; again, just to name some relevant
contributions.

In this paper, after providing a short summary of some
relevant issues concerning relativistic elasticity (the reader
is referred to [1,5,13,14] for further details), the definitions
of sound wave front, propagation speed, and characteristic
equation are presented in Sec. III. Based on these defi-
nitions, an expression for the propagation speed of the wave
front in spherically symmetric spacetimes with elastic
matter is derived in Sec. IV, which depends on the energy
density, the radial pressure, and the elasticity tensor. In
Sec. V, we consider shear-free static and nonstatic solutions
obtained in [14], determine their radial propagation speeds,
and analyze if they satisfy the causality condition (i.e.,
propagation speed less than or equal to the speed of light),
showing that there are open regions where causality is
preserved besides satisfying the dominant energy condition
and being singularity free. Further in Sec. VI, we show that
the nonstatic solutions referred to above can be matched to
Robertson-Walker spacetimes. We next use two specific
nonstatic solutions to build up two toy models: one in
which a k = 1 Robertson Walker interior is matched to an
elastic shell which in turn is matched to a flat (k = 0)
Robertson-Walker exterior; and the other one in which a
nonflat (k = —1) Robertson-Walker metric is set as an
interior solution and matched to a spherically symmetric
thick shell of elastic material, which in turn is matched to
another nonflat (k = —1) Robertson-Walker (exterior)
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metric. Continuity of the first and second fundamental
forms on the inner and outer surfaces of the elastic shell are
shown to be satisfied, as well as all the other physically
reasonable conditions: absence of singularities, dominant
energy condition, and causal propagation of elastic waves
across the elastic material.

II. ELASTICITY IN GENERAL RELATIVITY: A
BRIEF SUMMARY

In order to describe elastic matter in general relativity,
one considers a submersion y : M — X, from the spacetime
manifold M to the three-dimensional material space X,
which specifies the configuration of the material. The
spacetime metric will be denoted by g while y will
designate the material metric defined on X, which can
be thought of as measuring distances between neighboring
particles in the relaxed state of the material. Coordinates in
X and M will be denoted by yA, A =1, 2,3, and by x4,
a=0, 1, 2, 3, respectively, that is, y* =y (x?).

The differential map v, :T,M — T )X is then surjec-
tive and, in the above coordinates, may be represented, at
every p € M by the rank three matrix

oyA
Ay = (22 ) A=1,2,3; b=0,1,2,3,
yb(p) <axb>p
(1)

which is sometimes called the relativistic deformation
gradient. The vector field spanning the kernel of v, u®
is timelike and can be chosen scaled to unit and future
oriented, that is

and represents the velocity field of the matter in the
spacetime M.

Note that w maps every whole spacetime trajectory
passing through a point p € M to a single point w(p) in
the material space X (that is, the world line of a material
particle is mapped onto that particle). This fact implies, for
instance, that any smooth scalar field ¢ defined on X
assigns (via the pull-back y*) a real number to each integral
line of u” in M, that is, ® = y*¢ is a scalar field on M such
that £;® = 0. Further, it defines a one-to-one correspon-
dence between tensor fields 7, defined on the material
space X and tensor fields 7, on M satisfying £;T, =0
and uT, =0 for any index contraction; that is, all
physical magnitudes defined on the material space X,
can be readily “translated” into spacetime (see, for instance,
[15] for a detailed proof of this one-to-one correspondence,
although in a different context totally unrelated to the
present one).

If at a given point p € M, k,, = (W*y)» = hap, Where
hap = Gap + u,uy,, the material is in a locally relaxed state

at that point. Otherwise, the material is said to be strained.
The strain operator [3,16]

Ky =k, —uuy, (3)

can be used to measure the state of strain of the material,
(note that if the material is locally relaxed, K*, = 6, or
else K, = g.,)- Equivalently, the strain tensor is defined as
(see, e.g.. [3.16]) sy =3 (9ap = Kap) = 5 (hap = kp)- The
strain tensor determines the elastic energy stored in an
infinitesimal volume element of the material space (energy
per particle). That energy will then be a scalar function of
K,, and is called constitutive equation of the material.
The constitutive equation will be represented by
v=w(ly,1,15), where I, I,, I5 are the following invar-
iants of K§:

1 1
L=3 (TrK —4), I, = 1 [TrK? — (TrK)?] + 3,

1
The energy density p is then

pZEU(11,12,13):€0VdetKU(11,12,13), (5)

where € is the particle number density as measured in the
material space, or rather, with respect to the volume form
associated with k,;, = (w*y),,, and € is that with respect to
h,py; see [17] for a proof of the above equation.

The energy-momentum tensor for elastic matter can be
expressed as

T,y = pugty, + pap = pugity + phab + Taps (6)

where p,, represents the pressure tensor, p the isotropic
pressure, and 7, the trace-free anisotropy pressure tensor.
The tensors p,;, and 7., are symmetric and orthogonal to
the flow, p,u®=rn,u* =0, and =, satisfies also
g7, = 0 (trace-free condition).

The energy-momentum tensor can also be written in
terms of the invariants of K¢ as [3]

Op Jp Op
T = —p6t + —detKh?, — | TrK — — — | k*
A N TR (r o, arn, )" "

+ A ke, (7)

II1. SPEED OF SOUND

A. Sound wave front and speed of propagation

Consider an elastic solid with energy-momentum tensor
given by
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Tab :puaub + pab. (8)
The conservation law 7%, = 0 implies the following
equations of motion:

©)

_ d
p.cuC - _puc;c - pc Ue.ds

pab;cuc — zu(apb)cl:tc + zpc(aub);c _ pabuc;c _ Eabcduc;d’

(10)
where i“ is the acceleration vector, namely,

(11)

and E?b“? is the relativistic elasticity tensor, which will be
defined below.

Following [8], the sound wave fronts are defined as the
characteristic hypersurfaces across which the acceleration
vector i1 can have a jump discontinuity. The map y and the
metric tensor are assumed to be C' across these hyper-
surfaces. Continuity of the first-order derivatives of the map
y implies that tensors on M arising from the pull-back of
tensors on X will be continuous. The velocity u“ is also
continuous across the wave fronts.

The normal to the wave front lies in the direction of a
vector 4. The vector A can be decomposed as

Ao = Ug — Wiy, (12)
where v,, the propagation direction vector, is a unit,
spacelike, transverse vector; that is, v“v, =1, v%u, = 0.
In fact, 1 =w*(n) where n represents the propagation
direction one-form of the wave in the material space. The
scalar w represents the speed of propagation of the wave
front with respect to the flow,

w = Au,, (13)
and it must satisfy the local causality condition
w?r <1, (14)

implying that the characteristic hypersurface must be

timelike or null (units are taken so that the speed of light
is ¢ = 1), or else 1,4* > 0 (spacelike or null).

The acceleration discontinuity can be expressed as

[(19] = au?, (15)

where a is the amplitude of the wave front and * is the

polarization vector of the wave front, satisfying 1“7, = 1
and “u, = 0, since “u, = 0.

B. Characteristic equation

The relativistic elasticity tensor E%*“? is a bisymmetric
tensor function of state [5] defined as

o ab
Eabcd =2 p _ pabhcd' (16)
8gcd
It satisfies the symmetry conditions
Eabed — E(ab)(cd) — [edab (17)
and is orthogonal to the velocity of the flow,
Ebedy, = 0. (18)
The elasticity tensor can be rewritten as
o pah
Edbed = 2 , 19
€ahcd( € ) ( )
or, equivalently,
? ?
Eobed — 420 —4e 0 (20)
8habhcd agabgcd

where, as defined previously, ¢ stands for the particle
number density and v represents the constitutive function.

The relativistic Hadamard elasticity tensor is defined in
terms of the elasticity tensor by

Adbed — pabed _ pac pbd, (1)
This tensor has the symmetry
Aabed _ pcdab (22)
and is also orthogonal to the velocity of the flow
Adbedy | — pabdey  — (), (23)

From (9) and (10), Carter [8] derived the following
characteristic equation:

{W2<phac + pac) _ Qac}lc — 0,

which depends on the so-called relativistic Fresnel tensor
04, defined as

(24)

Q4 = Aabedy y (25)
which is symmetric,
0 = Q) (26)
and flowline orthogonal
0“u,. = 0. (27)
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IV. APPLICATIONS TO SPHERICALLY
SYMMETRIC ELASTIC SPACETIMES

A. Spacetime configuration and elasticity tensor

Consider a spherically symmetric spacetime (M, g), M
being a four-dimensional Hausdorff, simply connected
manifold of class C?, with metric g given by the following
line element:

ds® = —a?dr® + b*dr* + Y*(d6* + sin® 0d¢?),  (28)

where a, b, and Y are functions of the coordinates ¢ and r.

It can be shown (see [14]) that the above coordinates and
form of the metric can be chosen so that the velocity flow is
comoving with the time coordinate, thus defining the tetrad
{u, ey, ey, e3}, where

u® = (a=',0,0,0)
is the velocity vector of the flow and

¢f =(0,67,0,0),  e§=(0,0,y",0),
e = (0,0,0,(Ysing)~"),

and the metric can be written as g,, = —u,u, + e €15+
€24€2p T €3,€3p-

In [14] the authors considered solutions for the case
where the line element of the material metric y correspond-
ing to (28) is

do* = f2(r)[dr* + r*(d6* + sin? d¢?)), (29)

that is, the most general form for a three-dimensional,
spherically symmetric metric.

The pulled-back material metric, k,,, is such that &}, has
two different eigenvalues:

g PO

Ws n= b2 ’ (30)

s = f3(r)

s having algebraic multiplicity two. The invariants (4) can
then be written in terms of those eigenvalues as

1
(n+2s-3), 12:—§(s2+2;7s+77+2s)—3,

N[ =

I] -
1
Iy=5 (5" = 1), G1)

and the rest frame energy per unit volume takes the form

p = €v = €yS\/nv(s.n). (32)

v = wv(s,n) being the constitutive equation. The energy-
momentum tensor (7) has the following nonzero compo-
nents:

o 0
T) = —ev, T} = 26’78_:;’ T3 = es o (33)

Os

In this context, static and nonstatic shear-free spherically
symmetric solutions were presented, along with the
corresponding field equations G, = 8777, and were shown
to satisfy the dominant energy condition (DEC) in open
regions of the spacetime. Recall that, for diagonal energy-
momentum tensors such as the one corresponding to elastic
matter, DEC is satisfied if and only if p > |p,|, p and p,
being, respectively, the energy density (or -eigen-
value associated with the timelike eigenvector), and pres-
sures (eigenvalues associated with the three spacelike
eigenvectors).

We will consider these solutions in Sec. V of the present
paper, analyzing whether or not the propagation of elastic
waves has a causal behavior within those spacetime regions
where the DEC holds.

Before doing so, we shall introduce some auxiliary
results which will be of use to that end.

First, we shall obtain a useful expression for the
relativistic elasticity tensor E¢d = 4¢ v

0GanTod”
Using b e
9 bd
= —g"cg = 34
agab ag d ( )
and also (see, e.g., [5])
0 1 0 0
W*ﬁ (kmca—kg?"—kmd%)a (35)
one obtains
ov L pura O ov
=— k4 —— + gockb — |, 36
09 2 {g " i, 7 maksj (36)

Now, for the spherically symmetric case, we can write kj, in
terms of the tetrad vectors as

ki = nefey, + seSeyy, + sefesy, (37)

from where the eigenvalues can be extracted as # =
kiey,e'? and s = L k¢ (ex €5 + e3,€%). Then one calculates

ov_owon v os
okd — Onokd,  Os Ok
ov 10w
= %eldeT +§a(€2d€§" +e3qe).  (38)

Substituting this expression into (36) gives

v o, L ov, ;
D90 = _;787;7616? _Esa(ezeg + 636}3])- (39)
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Now, one only needs to calculate ﬁ(—”) cf. (20).
For that purpose, we derive the following expressions

using (35):

0 ov 621) 1 aZU
agcd <a_’7> :_na—ffeie?_isanas (6262+e363) (40)
0 [0v O*v S 1 v
ds) "~ i€i=5 41
0Gecq <8s> ”asaflel 2% 952 s(esed+eSed),  (41)
on J
= —nefef, 42
agcd neien ( )
ds 1
Dy~ 285t eses). (43)

Taking into account the following result, presented in [5],

de; 1

where nZ and n3, o, p = 1,2, 3, are the eigenvalues of k! (in
our case n} =n, n3 = n3 = s), together with (34), yields

99us (efer) = —eferefe]
2n a b a b d
—}7_ (8(1 e2>e§ ez) + eg 33)6(1 63)) (45)
9 a a c 2s a b) (¢ d
9o (e5e5) = _323}27626‘21 o ’Ieg ez)eg el>’ (46)
0 25 (a c
o (e4eh) = —eselesed = effeleliel. (47)

Finally, from (39), and using (40)—(43) and (45)-(47), one

900 2 €p€pa€,p + Z 2 5 €5€)(aCob) (44) finally obtains the following expression for the elasticity
g otp W 0 tensor:
|
v ov 0%v
Fabed _ 4 =de| (22— +n* = | — 598bsc54
 09u000ca K "on " o )b‘*
272 v s Qv 1 (4 (e od) 1 (a ob) olc d)
i — [ —==6,"6,5,5 S5 5-0r 0,01 O
<;7 —s0n A n 8s> (sz2 0 000 ¥ g O 00 O O
L O ! 52805508 4 66628908) + ——5—5— (69025¢,6¢ + 5562646
5'15% W(rr€9+rr99)+b2)72 9( $0p T Or ¢¢)
3av1282v 1“”, e 50,5550
1 v 82 1 a sbsc sd a sb sc sd
i (zsaﬂi o5 >m<%695¢5¢ + 53535%) | (48)

B. Second-order and fourth-order tensors

Consider the set of all symmetric, second-order tensors,
that are spherically symmetric and orthogonal to the flow
vector u“. Let S, be one such tensor field, then it satisfies:

@ Sap = Spa
(i) Sppu’ = 0;
(i) E Sab—O where fA, A=1, 2, 3, are the

usual Killing vectors implementing the spherical
symmetry; namely

El = €08 0y — sin ¢ cot 00,
£, = —sin 0, — cos ¢ cot 00, & =0

One can then write

Sapdxtdx? = a(t, r)dr* + p(t, r)(d6* + sin® d¢p?). (49)

[
It is immediate to see that the set of all tensor fields with the
above properties, defines at each spacetime point a two-
dimensional vector space, a basis for which is { %, p.,} at
that point, with

hypdxdxt = b2dr? + Y2(d6? + sin0dg?),

Papdx?dx = Pdr? + P,(d6? + sin’0d¢?), (50)
where the case in which the pressure tensor p,, is propor-
tional to A, is explicitly ruled out, as it would correspond
to a perfect fluid.

Thus, a tensor field S, with the above properties may be
written as

Sab :Ahab +Bpab7 (51)

where A = A(t,r) and B = B(t,r).
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Consider now a fourth-order tensor E“*“¢ having the

following properties:

(1) Eabed — Ecdab

(2) Eabed —

(3) Eahcdu =0;

@ Lz E“'”d =0, where, as before, &4, A=1, 2, 3,
des1gnate the Killing vectors implementing spherical
symmetry.

Itis then easy to see that, with the conventions set up above,
E“b¢d can be written as

Ebacd Euhdc

Eupea = Erhapheg + Ey(hapPea + Paphca) + E3PapDeas
(52)

where E;, E,, E5 are functions of ¢ and r.

C. The speed of propagation

In spherical symmetry, since #* « 0,, it follows from
(15) that v* = 1“.
Further, the propagation direction vector v satisfies

1% « O, and thereforev* = (0,b71,0,0).  (53)

This follows from the requirement of spherical symmetry,
which imposes £EA u*=0 and [,EAAQ =0. Since
v,u® =0, one has that “aLEAU“ =0, and then also
LEA Vg,
u“, one gets ,CEAW =0, and then ‘CEA v, =0, which

- ”a'chW = 0; contracting this last equality with

implies (53).
Since the relativistic Fresnel tensor has the following
properties:

Qab _ Q(ab)’ Qabub =0, EEA Qab =0, (54)

one can write it in the form [see (51)]

Qab :ahuh +ﬁpab' (55)

Consequently, the characteristic Eq. (24) can be
expressed as

{w?(ph® + p*) = (ah® + pp“)}1. =0 (56)

and, using v, = 1. = bd.., one obtains
wz(ph‘"b —i—pmb) _

(ah®b + pp*b) =0, for a#r,

(57)

w? <% + bp”) - (% +[}bp”> =0, fora=r. (58)

Equation (57) is trivially satisfied since both h%* and p“
are diagonal. From (58) one concludes

err
wr=o— (59
%+ bprr )
which, using (21) and (25) can be written as
b3Errrr —bp'"
P = /)—rrp (60)
b + bp
From (48) one gets
v v
ET = — 2 27 7 61
b“( Ton " 8172) ()
and
rr rr av 1
pr=T —267]a e (62)

so that in the present case the speed of propagation of the
wave front is

?)T1 + 4617 d—

6€l’] + 46112 32 L
O -TY+ T1

(63)
€V + 2en S 3_11

It is worth noting that (63) obtained above is in agree-
ment with the expression given in [5] for the propagation
velocity of the elastic waves.

V. SPECIFIC SOLUTIONS

We will now explore whether the condition 0 < w? < 1
is satisfied for the static and nonstatic shearfree solutions
presented in [14]. While we do not claim that the solutions
presented here have any particular relevance, we would like
to point out the fact that it is possible to find exact solutions,
with elastic material content, which are singularity free,
satisfy the DEC, and behave causally when perturbed (i.e.,
the speed of sound of the elastic waves is less than the
speed of light), as the following examples show.

A. Shear-free static solution
Consider the static shear-free solution obtained in [14],
which is a subcase of (28) with a? = 55, b* = Y, where

Y = ¢, In this case, the energy density p, the radial
pressure p; and the tangential pressure p, are, respectively,

1
p=-TY=ev=—e"(11-2572), (64)
8
ov 1 2
=T =2emp =g (B5r 4 1) (65)
v 1
Py =T3 = es = o251 rer, (66)
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FIG. 1. Graph of w? for r € (0.167,0.276).

This solution satisfies the dominant energy condition for

r €0, \/Lg) and is nonsingular at the origin, see [14].

Calculating w? from (63), using (30) with f(r) =

52
e 2"

a5 and (32), and the expression for g%? obtained from
+1)3

(65)we get

Pv e (152 +1)3

——= 9375r°+3625r*+55r2=1), (67
0*n 8007ze,r* ( o rar ). (67)
that gives
9375r° + 1750¢* — 2012 — 1
W — r’ 4+ ) r zr (68)
—1250r" + 250r
The condition 0<w? <1 is satisfied for re

(a.b) € (0. ).
Fig. 1).

We note that in [14] it was shown that this solution can
be used to build up a static two-layer star model consisting
of an elastic core, surrounded by a perfect fluid corre-
sponding to the interior Schwarzschild solution matched to
the vacuum Schwarzschild solution.

where a~0.167 and b~ 0.276 (see

w2 =3

2_B)(-E+B+B)+rB(-B"+ 5 + B+ B -2 1)

B. Nonstatic, shear-free solutions

In order to analyze the condition 0 < w? <1 for the
nonstatic shear-free solutions presented in [14], whose
spacetime metrics are of the form

ds* = —dt* + £?B*(r)(dr* + d6&* + sin? 0d¢?),  (69)
we will first derive an expression for w? in terms of the
coordinates ¢, r and the function B and its first and
second derivatives with respect to r (noted as B’ and B”
respectively). Notice that this metric can be obtained
from (28) replacing the metric functions by a®> = 1 and
b* = Y* = *B%.

In this case, the energy density and the radial and
tangential pressures take the form

1 2B" B? 1
T82W<_F+F+F+3>’ (70)

.1 /B? 1
"\ w )

B T2 B 1 B// Bl2 1
2= =2 \ B B '

The term 4en?(9?v/0n?) in (63) can be calculated using
(32) and (30), with f(r) satisfying (see [14])

p==

P = (71)

(72)

/B 2

f B* 3rB’

and applying the inverse function theorem, which yields

3
g’; _ _zt—fz <B2 —§B 4B - rB’B), (73)
or rt> B2

the result being then

O*v 1 1 2 B”?
de—=——=|z4+=—= || ——5+B>+1
M o 4ﬂt232|:<2+33>( B +>

}’B' 12 2
+—<—B”+—+?+B3—BZ—1>] (75)

B? B?

Substituting (70), (71), and (75) in (63) yields

. (76)

_BB// +B/2 +B4

We next present two specific examples.
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FIG. 2. Graph of w? for ¢ = 2.7, ry = 2, where 0 < w? < 1 for
r € (4.805,5.012).

1. Example 1

Consider the solution obtained by substituting

B(r) = \9/—5 [—1 + 3cosh? (%)] (77)

into (69), ¢ # 0 and r( being real constants. The DEC is
satisfied for certain ranges of the radial coordinate
r € [0,R), see [14]. Specifying ¢ and ry, one can find
an interval for r, where 0 < w? < 1 is valid. The example
presented in Fig. 2 illustrates this fact.

The DEC was analyzed in [14] and it was shown that it is
satisfied if and only if the following inequalities hold:

d, = —=3BB" 4+ 2B” + B*> + 4B* > 0,
d, = —4BB" + B? + B* > 0,
dy = —BB" + B> +2B* > 0. (78)

One can see in Fig. 3 that these conditions are satisfied for
r € (4.805,5.012), the range in which 0 < w? < 1.

2. Example 2

In this example, the solution is given by the metric (28)
with

B =L ees-npt ()

where r # 0 is a real constant. The DEC is satisfied for
certain ranges of the radial coordinate » € [0, R), see [14].

45 46 47 48 49 50 51 52 53

FIG. 3. Graphs of d;, d,, dy for ¢ =27, rp=2 and
re (4.5,5.3).

Choosing a value for r,, one can find intervals for r, where
0 <w? <1 is satisfied (see Fig. 4).

Again, the DEC was analyzed in [14] and, as in the
previous case, it turns out that it is satisfied whenever the
inequalities given by (78) hold.

Figure 5 shows that these conditions are satisfied
for r € (1.099, 1.334).

1.005 \
1

0995

0.990

0985

0.980

0975

r
1.10 1.15 1.20 1.25 1.30 1.35

FIG. 4. Graph of w? for ry = 0.01, where 0 <w?> <1 for
r e (1.099, 1.334).
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2000

1500

1000

500

1.0 1.1 12 13 14 15

FIG. 5. Graphs of d,, d,, d; for r, = 0.01 and r € (1, 1.5).

VI. MATCHING OF NONSTATIC ELASTIC AND
ROBERTSON-WALKER SPACETIMES

We next show that the nonstatic shear-free elastic
solutions (69) can be matched to certain Robertson-
Walker (RW) spacetimes.

The Robertson-Walker line element in its isotropic form
is given by (see for instance [18,19])

a*(T)

ds? = —dT?
K +b2(R)

(dR* + R2dQ?),

(80)

where b(R) = 1+X%R? with k=0,+1, and the mass
function and Friedmann equations are

m(T,R) :’-6’ <%)3, (81)
e a
p=w, pH+3p+p)==0 (82)

where a dot indicates derivative with respect to the time 7.

A. Case: RW with k=0 and a(T)=aT, @ > 0

Let us now consider the junction across a spherically
symmetric surface X of the elastic, nonstatic solution

ds* = —di* + *B*(r)(dr* + dQ?), (83)
with the Robertson-Walker metric
dsi = —dT? + 0(2T2(dR2 + deQz), (84)

which is considered in [18].

The signs — and + are used to denote, respectively,
interior and exterior quantities. At this point, it should be
emphasized though, that the labels “interior” and “exterior”
are quite arbitrary; nevertheless, we shall use them just as a
convenient way of referring to the spacetimes considered.

For the metric (84) one has

3 1
pP= 72" P = T2 (85)
and
3TR3
m(T,R) =2 — (86)

Notice that this is a particular case of a flat Robertson-
Walker metric with linear equation of state p = yp, where
y = —%, which satisfies the dominant energy condition
(see [18]).

The boundary X~ can be parametrized by {7 =1,
r=rs}, where ry is a constant. The tangent space to
2~ at any of its points is spanned by the following
orthogonal tangent vector fields at that point:

TX™ = (e] = 0;,¢5 = Og, €35 = 0y). (87)

The outgoing, unit, normal vector field to X~ is given by
n“= =r'B719,. (88)
Consider next the boundary £*; it can be parametrized

by {T = 1,R = Rs}, where Ry is a constant. The tangent
space to Xt is

TE = (ef = Or.e5 = 0p, e = y). (89)
and the unit normal vector field to =T is
1
n‘t = — 0Og. (90)

al

Now, the two spacetimes can be matched across X if
and only the first and second fundamental forms of
their respective metrics are continuous across it (see for
instance [18]).

The first fundamental forms on X are given by

+a,+b +

qiﬁ:ea 5" Gaps a,p=1,273,

and a trivial calculation yields for their corresponding line
elements

do* = —di* + 1*B*(ryg)dQ?, (91)
do’ = —d2* + a?2*R:dQ?, (92)

where all quantities must be evaluated on X.
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The continuity of the first fundamental form (first
matching condition) g, = q(jﬁ, implies then

P2B*ER?)2R2, (93)

where = means that the equality holds only at points on the
surface X, (recall that, on X, one has t =T = A).

The independent components of the second fundamental
forms,

+ ot dbyE it
Hyy = —ngez’Vies“,

at points on X are (cf. [20])

Hy, =0, H3, = AB', (94)

Hi; =0, Hj, = aiRy, (95)
where again, all quantities are evaluated on X. Continuity of
the second fundamental forms (second matching condi-
tion), H;fﬁ = H;, implies

B'ZaRy. (96)

Thus, from (93) and (96), it follows that the elastic
spacetime (83) can be matched to a flat Robertson-Walker
spacetime of the form (84) if and only if

BZaRs.  B'ZaRs. (97)

Notice that, if these conditions are satisfied, it readily

follows from (71) (using units such that 8zG = ¢ = 1) that

1 1
Pi=-1% and then p7= — 7 (98)

and one then has [cf. (85)]

_3
P :pf, (99)

which is a well-known necessary (but not sufficient)
condition for the matching of two spacetimes, namely,
pressure orthogonal to the matching surface must be
continuous across it (which follows from the so-called
Israel matching conditions). Furthermore, considering the
mass function of the elastic spacetime

¢ 3 B/2
t,r)y==|\B>+B——, 100
mn) =3 (wea-5) o
Eq. (97) implies
3R3/1
m-=2 > (101)

thus [cf. (86)]

“Zp, (102)

m
which is also a necessary (but not sufficient) condition in
the case of spherical symmetry, as it was first shown in [18].

B. Case: RW with k=1 and a(T)=aT, a > 0

Consider as before the junction across a spherically
symmetric surface X of an elastic nonstatic spacetime with
metric (83), that is,

ds* = —d* + B (r)(dr?* + dQ?),

with the Robertson-Walker spacetime

272

ds? = —dT> + —%
: (1+1R?)

(dR? + R*dQ?),  (103)

corresponding to (80) with a(7) = aT and k = 1. The
above remarks regarding the meaning and arbitrariness of
the signs — and + also apply here.

For the line element (103) one has

1+ a? 1+a?
pP = 3 asz 5 pP=- a2T2 (104)
and
32aTR3(1 2
m(T.R) = 32aTR(1 + o) (105)

(4 + R’

Notice that the dominant energy condition is satisfied, and
the mass is positive for a > 0.

We proceed next as in the previous case; that is, we
choose suitable parametrizations for X in both spacetimes,
calculate the corresponding first and second fundamental
forms, and demand them to be continuous across the
surface X.

The parameters on X7, and the vector fields spanning its
tangent space, as well as the outgoing unit normal vector
field, are the same as above, and the first and second
fundamental forms are those given by (91) and (94)
respectively.

As for the boundary X%, the parameters and vector fields
spanning its tangent space at each point can be chosen as in
the case above [see (89)], whereas the normal vector field is
now given by

1 +71‘R28

I’la+ R-
aTl

(106)

The first and second fundamental forms for the
Robertson-Walker spacetime (103) are now
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2 2 ar 2 102
do’ = —dA* + —————=R5dQ-, 107
+ (1+%R%)2 > ( )
and
4alRs(R%: — 4
Hf, =0, H, = _ 40dRy(Rs —4) (108)

(4 + R%)?

Continuity of the first and second fundamental forms
implies now

4aR
pE T

z /é 4aR2(4 — R%)
4+ RE’

(4 + R%)?

(109)

where, as before, Z means that the equalities hold only on
the surface X.

Again, as a consequence of the matching, using (109), it
follows from (71), (104), and (105) that

>
PT=n1 (110)

and

_x
m-=mT,

(111)

as it should be expected. In this case, the above magnitudes
are

oy 1+
Pi==" a0 (112)
and
32aAR3(1 2
-2 3201 1 o) (113)

(4+R3)’

C. Case: RW with k= -1 and a(T)=aT, where
@< -1landR>2)or(ae¢>1and 0 <R <2)

Finally, consider the junction of the nonstatic elastic
solution (83) with the Robertson-Walker metric

272
ds? = —dT? + 1Ry (dR* + R?dQ?),  (114)
where a(T) = aT and k = —1 in (80), across a spherically
symmetric surface X.

For the above metric (114) one has
a? -1 2

a*T?

l—«o

and

32aTR3(a* = 1)

m(T,R) = G-R)

(116)

In this case the dominant energy condition is satisfied and
the mass is positive whenever
(a<-1 and R>2) or

(a>1 and 0<R<2).

(117)

The parametrizations on X~ and £t and the orthogonal
vector fields spanning their respective tangent spaces at
each point are chosen to be the same as in the previous two
cases, and so is n?~, the normal to X~, whereas the normal
vector field to " is given by

_1p2
nét = 4R
= R
aTl

(118)

The first and second fundamental forms for (114) are

2 2 ax 2 102
do?. = —dA ——— R5dQ~, 119
oy + (1 —%R%)z z ( )
and
4a)Ry(R% + 4
Hf, =0, Hj=-—2=2517) z(Rz +4) (120)

(- Rp2

Continuity across X of the first and second fundamental
forms implies then

E 4aRZ
4-RY’

4aRs(4 + R3
/i o 2( 42_ 22) (121)
(4-Ry)
As in the previous two cases, the above equation (121),
implies that both the radial pressures and mass functions
are continuous across X, as expected.

VII. ELASTIC THICK SHELLS IN
ROBERTSON-WALKER UNIVERSES

Next, we will show that the elastic spacetime metrics
(77) and (79) from example 1 and example 2, respectively,
can be matched to Robertson-Walker spacetimes at the
interior and the exterior, leading to models with a well-
behaved elastic intermediate spacetime, where perturba-
tions propagate in a causal way.

The resulting spacetimes can then be seen as elastic,
spherically symmetric thick shells, separating an interior
Robertson-Walker “bubble” from an exterior Robertson-
Walker universe.

In the examples presented, the spatial curvature k of the
exterior Robertson-Walker region is in one case different
from that in the inner bubble, and in the other case, equal
to 1t.
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A. Positive &k RW-elastic-flat RW spacetime

Consider the metric (77) with ¢ =2.7 and ry =2. It
follows quite straightforwardly that it can be matched, as an
interior solution, to the flat (k = 0) Robertson-Walker
metric (84) considered as exterior. To see this, take into

account the matching conditions (97), which imply B’ Zp ;
it therefore follows that the matching radius must
be r, ~4.856.

Consider next the elastic metric as an exterior solution; it
is also easy to show that it can be matched to the k =1
Robertson-Walker metric (103) considered as an interior.

To see this, notice that a coordinate change R = R(r)
must exist in a neighborhood of X such that the matching
conditions (109) hold at points on X, thus

|

V3 re =2 rs —2 re =2\ V2 dape(4 — fPe?r)
i h —1 + 3cosh? - ,
7.29 < 27 )COS < 27 N ocos < 27 ﬂ @+ )

which must hold simultaneously, thus producing a system
of equations for the parameters ry, f, and @. Numerical
calculations show that values of « and f exist such that, for
instance ry = 4.81 is a solution to the above system,
corresponding to = 0.001 and a = 9.897.

Thus, the elastic shell spacetime is defined for r €
(r_,ry) = (4.81,4.856) and, as follows from our previous
discussions, in this region elastic waves propagate causally
(i.e., w? <1, see Fig. 2), the metric is regular, and the
dominant energy condition is satisfied (see Fig. 3).

B. Negative k RW-elastic-negative k RW spacetime

We next show that the metric (79) with ry = 0.01 can be
matched at the exterior to the Robertson-Walker metric
(114) with £k = —1 (see Sec. VIC for details).

We proceed in a similar way as in the example above,
thus, considerations on the existence of a coordinate change

R = R(r) in a neighborhood of X, together with (121),
imply
R = pe’,

B >0, (125)

on that neighborhood, which upon substitution into the
matching conditions (121) yields

3 dape”
%[2%(@—0.01)2]3/2_%’ (126)
4 s (4 2 ,2rs
\/§(r2—0.01)[2+3(r2—0.01)2}1/2: afz:—(ﬂz—;/i; )
(127)

Again, the above algebraic equations must hold simulta-
neously for certain values of the parameters involved: ry,

_dB _dBdR dB
dr dRdr dR

/ !/

and from the expression for B and B’ on X given by (109),
one readily gets from the above equation that R’ = R,
that is,

Ry = fe', (122)

for some constant # > 0. Substituting this into (109) we get

—_ 3/2 rs
V3 [—1 + 3cosh? (L2>] dafie

“irpae P

243 2.7

(124)

|
and «a; thus, for example, ry = 1.33 is obtained for f ~
0.261 and a ~ 2.866 hence, the elastic spacetime can be
matched to the exterior Robertson-Walker spacetime at
r, =133. Note that a>1 and Ry =0.987 <2, as
required [see (117)].

At the interior, the elastic spacetime can be matched to
another Robertson-Walker metric (114) with kK = —1. Now,
for example, ry = 1.1 is obtained for f~0.35 and a~
1.738 hence, the elastic spacetime can be matched to the
interior Robertson-Walker spacetime at _ = 1.1. Note that
a > 1and Ry = 1.051 < 2, again, as required [see (117)].

In this case, the intermediate elastic spacetime is defined
for re (r_,ry) = (1.1,1.33), and in this domain elastic
waves propagate causally (that is, w? < 1, see Fig. 4), the
metric is regular, and the Dominant Energy Condition is
satisfied (see Fig. 5).

VIII. CONCLUSIONS

In this paper, we have reviewed some fundamental
results on relativistic elastic waves, and have considered
in detail the spherically symmetric case, providing an
explicit expression for the elasticity tensor E®¢? [see
(48)], from where all other relevant tensors (Hadamard
elasticity tensor, relativistic Fresnel tensor) can be derived.
Further, we have provided an expression for the speed of
propagation of the elastic waves w, (63), in terms of the
constitutive function » and its derivatives (alternatively,
in terms of the components of the energy-momentum
tensor).

The results thus obtained have been specialized to
various cases of spherically symmetric exact solutions
previously found by the authors in [14]. It is shown that,
in all cases but one, there exists an open spacetime region
where the solutions
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(i) are singularity free,

(i1) represent elastic matter with a well-defined constit-
utive function v,

satisfy the dominant energy condition,

and are such that the elastic perturbations propagate
causally: that is w? < 1.

We also showed that the two nonstatic elastic solutions
discussed can be matched to Robertson-Walker spacetimes,
providing two examples of such a matching. These results
are then used to build up two spherically symmetric toy
models in which two different Robertson-Walker domains
(one flat and one nonflat, and two nonflat) are separated by
a thick elastic shell (or layer) well behaved in the above
sense, which is well joined to both Robertson Walker
metrics in the sense that the first and second fundamental
forms are continuous across the inner and outer surfaces of
that shell.

(iii)
(iv)
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