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It is shown that exact spherically symmetric solutions to Einstein’s field equations exist such that, over
an open region of the spacetime, they are singularity free, satisfy the dominant energy condition, represent
elastic matter with a well-defined constitutive function, and are such that elastic perturbations propagate
causally. Two toy models are then built up in which a thick elastic, spherically symmetric shell with the
above properties, separates two Robertson-Walker regions corresponding to different values of the
curvature k in the first model and to the same value of k in the second model. The junction conditions
(continuity of the first and second fundamental forms) are shown to be exactly satisfied across the
corresponding matching spherical surfaces.
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I. INTRODUCTION

Spherically symmetric models with elastic matter in
general relativity have been studied by a number of authors:
Magli and Kijowski [1] investigated the problem of
elastomechanical equilibrium for a nonrotating star, Park
[2] proved existence theorems for spherically symmetric
elastic bodies, Magli [3] analyzed the relativistic interior
dynamics of a spherically symmetric nonrotating star
composed of an elastic material, Frauendiener and
Kabobel [4] discussed spherically symmetric solutions of
the general relativistic elasticity equations with different
stored energy functions; and Karlovini and Samuelsson [5]
showed how physically prestressed stellar models, which
serve as backgrounds in investigations of stellar perturba-
tions, can be produced numerically and investigated radial
and axial perturbations of static spherically symmetric
elastic configurations [6,7], just to name a few.
On the other hand, the study of wave propagation in

elastic solids has also been addressed by other authors:
Carter [8] derived a characteristic equation for sound wave
fronts in elastic solids using the formalism for the theory of
general relativistic elasticity developed in [9], and showed
that the characteristic equation can be expressed in terms of
the relativistic Hadamard elasticity tensor and can be used
to determine the propagation speeds of sound waves in the
direction specified by the propagation direction vector and
the corresponding polarization directions; Karlovini and
Samuelsson [5], who set up a theory of elastic matter
sources within the framework of general relativity, also
based on the formalism of [9], obtained formulas for the
speeds of elastic wave propagation along eigendirections of
the pressure tensor and studied these for stiff ultrarigid

equations of state [10]; Maugin [11] studied wave propa-
gation in prestressed nonlinear elastic solids in general
relativity; and Kranys [12] determined special relativistic
propagation modes for longitudinal and transverse waves of
an elastic solid; again, just to name some relevant
contributions.
In this paper, after providing a short summary of some

relevant issues concerning relativistic elasticity (the reader
is referred to [1,5,13,14] for further details), the definitions
of sound wave front, propagation speed, and characteristic
equation are presented in Sec. III. Based on these defi-
nitions, an expression for the propagation speed of the wave
front in spherically symmetric spacetimes with elastic
matter is derived in Sec. IV, which depends on the energy
density, the radial pressure, and the elasticity tensor. In
Sec. V, we consider shear-free static and nonstatic solutions
obtained in [14], determine their radial propagation speeds,
and analyze if they satisfy the causality condition (i.e.,
propagation speed less than or equal to the speed of light),
showing that there are open regions where causality is
preserved besides satisfying the dominant energy condition
and being singularity free. Further in Sec. VI, we show that
the nonstatic solutions referred to above can be matched to
Robertson-Walker spacetimes. We next use two specific
nonstatic solutions to build up two toy models: one in
which a k ¼ 1 Robertson Walker interior is matched to an
elastic shell which in turn is matched to a flat (k ¼ 0)
Robertson-Walker exterior; and the other one in which a
nonflat (k ¼ −1) Robertson-Walker metric is set as an
interior solution and matched to a spherically symmetric
thick shell of elastic material, which in turn is matched to
another nonflat (k ¼ −1) Robertson-Walker (exterior)
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metric. Continuity of the first and second fundamental
forms on the inner and outer surfaces of the elastic shell are
shown to be satisfied, as well as all the other physically
reasonable conditions: absence of singularities, dominant
energy condition, and causal propagation of elastic waves
across the elastic material.

II. ELASTICITY IN GENERAL RELATIVITY: A
BRIEF SUMMARY

In order to describe elastic matter in general relativity,
one considers a submersion ψ∶M → X, from the spacetime
manifold M to the three-dimensional material space X,
which specifies the configuration of the material. The
spacetime metric will be denoted by g, while γ will
designate the material metric defined on X, which can
be thought of as measuring distances between neighboring
particles in the relaxed state of the material. Coordinates in
X and M will be denoted by yA, A ¼ 1, 2, 3, and by xa,
a ¼ 0, 1, 2, 3, respectively, that is, yA ¼ ψAðxbÞ.
The differential map ψ�∶TpM → TψðpÞX is then surjec-

tive and, in the above coordinates, may be represented, at
every p ∈ M by the rank three matrix

yAbðpÞ ¼
�∂yA
∂xb

�
p
; A ¼ 1; 2; 3; b ¼ 0; 1; 2; 3;

ð1Þ

which is sometimes called the relativistic deformation
gradient. The vector field spanning the kernel of ψ�, ua
is timelike and can be chosen scaled to unit and future
oriented, that is

yAbu
b ¼ 0; uaua ¼ −1; u0 > 0; ð2Þ

and represents the velocity field of the matter in the
spacetime M.
Note that ψ maps every whole spacetime trajectory

passing through a point p ∈ M to a single point ψðpÞ in
the material space X (that is, the world line of a material
particle is mapped onto that particle). This fact implies, for
instance, that any smooth scalar field ϕ defined on X
assigns (via the pull-back ψ�) a real number to each integral
line of ua inM, that is,Φ ¼ ψ�ϕ is a scalar field onM such
that Lu⃗Φ ¼ 0. Further, it defines a one-to-one correspon-
dence between tensor fields TA… defined on the material
space X and tensor fields Ta… onM satisfying Lu⃗Ta… ¼ 0
and uaTa… ¼ 0 for any index contraction; that is, all
physical magnitudes defined on the material space X,
can be readily “translated” into spacetime (see, for instance,
[15] for a detailed proof of this one-to-one correspondence,
although in a different context totally unrelated to the
present one).
If at a given point p ∈ M, kab ≡ ðψ�γÞab ¼ hab, where

hab ¼ gab þ uaub, the material is in a locally relaxed state

at that point. Otherwise, the material is said to be strained.
The strain operator [3,16]

Ka
b ¼ kab − uaub ð3Þ

can be used to measure the state of strain of the material,
(note that if the material is locally relaxed, Ka

b ¼ δab, or
elseKab ¼ gab). Equivalently, the strain tensor is defined as
(see, e.g., [3,16]) sab ¼ 1

2
ðgab − KabÞ ¼ 1

2
ðhab − kabÞ. The

strain tensor determines the elastic energy stored in an
infinitesimal volume element of the material space (energy
per particle). That energy will then be a scalar function of
Kab and is called constitutive equation of the material.
The constitutive equation will be represented by
v ¼ vðI1; I2; I3Þ, where I1, I2, I3 are the following invar-
iants of Ka

b:

I1 ¼
1

2
ðTrK − 4Þ; I2 ¼

1

4
½TrK2 − ðTrKÞ2� þ 3;

I3 ¼
1

2
ðdetK − 1Þ: ð4Þ

The energy density ρ is then

ρ ¼ ϵvðI1; I2; I3Þ ¼ ϵ0
ffiffiffiffiffiffiffiffiffiffiffi
detK

p
vðI1; I2; I3Þ; ð5Þ

where ϵ0 is the particle number density as measured in the
material space, or rather, with respect to the volume form
associated with kab ¼ ðψ�γÞab, and ϵ is that with respect to
hab; see [17] for a proof of the above equation.
The energy-momentum tensor for elastic matter can be

expressed as

Tab ¼ ρuaub þ pab ¼ ρuaub þ phab þ πab; ð6Þ

where pab represents the pressure tensor, p the isotropic
pressure, and πab the trace-free anisotropy pressure tensor.
The tensors pab and πab are symmetric and orthogonal to
the flow, pabua ¼ πabua ¼ 0, and πab satisfies also
gabπab ¼ 0 (trace-free condition).
The energy-momentum tensor can also be written in

terms of the invariants of Ka
b as [3]

Ta
b ¼ −ρδab þ

∂ρ
∂I3 detKhab −

�
TrK

∂ρ
∂I2 −

∂ρ
∂I1

�
kab

þ ∂ρ
∂I2 k

a
ckcb: ð7Þ

III. SPEED OF SOUND

A. Sound wave front and speed of propagation

Consider an elastic solid with energy-momentum tensor
given by
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Tab ¼ ρuaub þ pab: ð8Þ

The conservation law Tab
;b ¼ 0 implies the following

equations of motion:

ρ;cuc ¼ −ρuc;c − pcduc;d; ð9Þ

pab
;cuc ¼ 2uðapbÞc _uc þ 2pcðaubÞ;c − pabuc;c − Eabcduc;d;

ð10Þ

where _ua is the acceleration vector, namely,

_ua ¼ ua;cuc; ð11Þ

and Eabcd is the relativistic elasticity tensor, which will be
defined below.
Following [8], the sound wave fronts are defined as the

characteristic hypersurfaces across which the acceleration
vector _ua can have a jump discontinuity. The map ψ and the
metric tensor are assumed to be C1 across these hyper-
surfaces. Continuity of the first-order derivatives of the map
ψ implies that tensors on M arising from the pull-back of
tensors on X will be continuous. The velocity ua is also
continuous across the wave fronts.
The normal to the wave front lies in the direction of a

vector λ. The vector λ can be decomposed as

λa ¼ νa − wua; ð12Þ

where νa, the propagation direction vector, is a unit,
spacelike, transverse vector; that is, νaνa ¼ 1, νaua ¼ 0.
In fact, λ ¼ ψ�ðnÞ where n represents the propagation
direction one-form of the wave in the material space. The
scalar w represents the speed of propagation of the wave
front with respect to the flow,

w ¼ λaua; ð13Þ

and it must satisfy the local causality condition

w2 ≤ 1; ð14Þ

implying that the characteristic hypersurface must be
timelike or null (units are taken so that the speed of light
is c ¼ 1), or else λaλ

a ≥ 0 (spacelike or null).
The acceleration discontinuity can be expressed as

½ _ua� ¼ αιa; ð15Þ

where α is the amplitude of the wave front and ιa is the
polarization vector of the wave front, satisfying ιaιa ¼ 1
and ιaua ¼ 0, since _uaua ¼ 0.

B. Characteristic equation

The relativistic elasticity tensor Eabcd is a bisymmetric
tensor function of state [5] defined as

Eabcd ¼ −2
∂pab

∂gcd − pabhcd: ð16Þ

It satisfies the symmetry conditions

Eabcd ¼ EðabÞðcdÞ ¼ Ecdab ð17Þ
and is orthogonal to the velocity of the flow,

Eabcdud ¼ 0: ð18Þ

The elasticity tensor can be rewritten as

Eabcd ¼ −2ϵ
∂

∂hcd
�
pab

ϵ

�
; ð19Þ

or, equivalently,

Eabcd ¼ 4ϵ
∂2v

∂habhcd ¼ 4ϵ
∂2v

∂gabgcd ; ð20Þ

where, as defined previously, ϵ stands for the particle
number density and v represents the constitutive function.
The relativistic Hadamard elasticity tensor is defined in

terms of the elasticity tensor by

Aabcd ¼ Eabcd − hacpbd: ð21Þ

This tensor has the symmetry

Aabcd ¼ Acdab ð22Þ

and is also orthogonal to the velocity of the flow

Aabcdud ¼ Aabdcud ¼ 0: ð23Þ

From (9) and (10), Carter [8] derived the following
characteristic equation:

fw2ðρhac þ pacÞ −Qacgιc ¼ 0; ð24Þ
which depends on the so-called relativistic Fresnel tensor
Qac, defined as

Qac ¼ Aabcdvbvd; ð25Þ

which is symmetric,

Qac ¼ QðacÞ; ð26Þ

and flowline orthogonal

Qacuc ¼ 0: ð27Þ
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IV. APPLICATIONS TO SPHERICALLY
SYMMETRIC ELASTIC SPACETIMES

A. Spacetime configuration and elasticity tensor

Consider a spherically symmetric spacetime ðM; gÞ, M
being a four-dimensional Hausdorff, simply connected
manifold of class C2, with metric g given by the following
line element:

ds2 ¼ −a2dt2 þ b2dr2 þ Y2ðdθ2 þ sin2 θdϕ2Þ; ð28Þ

where a, b, and Y are functions of the coordinates t and r.
It can be shown (see [14]) that the above coordinates and

form of the metric can be chosen so that the velocity flow is
comoving with the time coordinate, thus defining the tetrad
fu; e1; e2; e3g, where

ua ¼ ða−1; 0; 0; 0Þ

is the velocity vector of the flow and

ea1 ¼ ð0; b−1; 0; 0Þ; ea2 ¼ ð0; 0; Y−1; 0Þ;
ea3 ¼ ð0; 0; 0; ðY sin θÞ−1Þ;

and the metric can be written as gab ¼ −uaub þ e1ae1bþ
e2ae2b þ e3ae3b.
In [14] the authors considered solutions for the case

where the line element of the material metric γ correspond-
ing to (28) is

dσ2 ¼ f2ðrÞ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð29Þ

that is, the most general form for a three-dimensional,
spherically symmetric metric.
The pulled-back material metric, kab, is such that kab has

two different eigenvalues:

s ¼ f2ðrÞ r
2

Y2
; η ¼ f2ðrÞ

b2
; ð30Þ

s having algebraic multiplicity two. The invariants (4) can
then be written in terms of those eigenvalues as

I1 ¼
1

2
ðηþ 2s − 3Þ; I2 ¼ −

1

2
ðs2 þ 2ηsþ ηþ 2sÞ − 3;

I3 ¼
1

2
ðηs2 − 1Þ; ð31Þ

and the rest frame energy per unit volume takes the form

ρ ¼ ϵv ¼ ϵ0s
ffiffiffi
η

p
vðs; ηÞ; ð32Þ

v ¼ vðs; ηÞ being the constitutive equation. The energy-
momentum tensor (7) has the following nonzero compo-
nents:

T0
0 ¼ −ϵv; T1

1 ¼ 2ϵη
∂v
∂η ; T2

2 ¼ ϵs
∂v
∂s : ð33Þ

In this context, static and nonstatic shear-free spherically
symmetric solutions were presented, along with the
corresponding field equationsGa

b ¼ 8πTa
b, and were shown

to satisfy the dominant energy condition (DEC) in open
regions of the spacetime. Recall that, for diagonal energy-
momentum tensors such as the one corresponding to elastic
matter, DEC is satisfied if and only if ρ ≥ jpkj, ρ and pk
being, respectively, the energy density (or eigen-
value associated with the timelike eigenvector), and pres-
sures (eigenvalues associated with the three spacelike
eigenvectors).
We will consider these solutions in Sec. Vof the present

paper, analyzing whether or not the propagation of elastic
waves has a causal behavior within those spacetime regions
where the DEC holds.
Before doing so, we shall introduce some auxiliary

results which will be of use to that end.
First, we shall obtain a useful expression for the

relativistic elasticity tensor Eabcd ¼ 4ϵ ∂2v
∂gabgcd.

Using

∂
∂gab ¼ −gacgbd

∂
∂gcd ; ð34Þ

and also (see, e.g., [5])

∂
∂gcd ¼

1

2

�
kmc

∂
∂kdm þ kmd

∂
∂kcm

�
; ð35Þ

one obtains

∂v
∂gab ¼ −

1

2

�
gbdkam

∂v
∂kdm þ gackbm

∂v
∂kcm

�
: ð36Þ

Now, for the spherically symmetric case, we can write kab in
terms of the tetrad vectors as

kab ¼ ηea1e1b þ sea2e2b þ sea3e3b; ð37Þ

from where the eigenvalues can be extracted as η ¼
kabe1ae

1b and s ¼ 1
2
kabðe2aeb2 þ e3aeb3Þ. Then one calculates

∂v
∂kdm ¼ ∂v

∂η
∂η
∂kdm þ ∂v

∂s
∂s
∂kdm

¼ ∂v
∂η e1de

m
1 þ 1

2

∂v
∂s ðe2de

m
2 þ e3dem3 Þ: ð38Þ

Substituting this expression into (36) gives

∂v
∂gab ¼ −η

∂v
∂η e

a
1e

b
1 −

1

2
s
∂v
∂s ðe

a
2e

b
2 þ ea3e

b
3Þ: ð39Þ
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Now, one only needs to calculate ∂
∂gcd ð ∂v

∂gabÞ, cf. (20).
For that purpose, we derive the following expressions
using (35):

∂
∂gcd

�∂v
∂η

�
¼−η

∂2v
∂η2 e

c
1e

d
1−

1

2
s
∂2v
∂η∂sðe

c
2e

d
2þec3e

d
3Þ; ð40Þ

∂
∂gcd

�∂v
∂s

�
¼−η

∂2v
∂s∂ηe

c
1e

d
1−

1

2
s
∂2v
∂s2 ðe

c
2e

d
2þec3e

d
3Þ; ð41Þ

∂η
∂gcd ¼ −ηec1ed1; ð42Þ

∂s
∂gcd ¼ −

1

2
sðec2ed2 þ ec3e

d
3Þ: ð43Þ

Taking into account the following result, presented in [5],

∂ecρ
∂gab ¼

1

2
ecρeρaeρb þ

X
σ≠ρ

n2ρ
n2ρ − n2σ

ecσeρðaeσbÞ; ð44Þ

where n2σ and n2ρ, σ, ρ ¼ 1, 2, 3, are the eigenvalues of kab (in
our case n21 ¼ η, n22 ¼ n23 ¼ s), together with (34), yields

∂
∂gcd ðe

a
1e

b
1Þ ¼ −ea1eb1ec1ed1

−
2η

η − s
ðeða1 ebÞ2 eðc1 edÞ2 þ eða1 e

bÞ
3 e

ðc
1 e

dÞ
3 Þ; ð45Þ

∂
∂gcd ðe

a
2e

b
2Þ ¼ −ea2eb2ec2ed2 −

2s
s − η

eða1 e
bÞ
2 e

ðc
2 e

dÞ
1 ; ð46Þ

∂
∂gcd ðe

a
3e

b
3Þ ¼ −ea3eb3ec3ed3 −

2s
s − η

eða1 e
bÞ
3 e

ðc
3 e

dÞ
1 : ð47Þ

Finally, from (39), and using (40)–(43) and (45)–(47), one
finally obtains the following expression for the elasticity
tensor:

Eabcd ¼ 4ϵ
∂2v

∂gab∂gcd ¼ 4ϵ

��
2η

∂v
∂η þ η2

∂2v
∂η2

�
1

b4
δarδ

b
rδ

c
rδ

d
r

þ
�

2η2

η − s
∂v
∂η þ

s2

s − η

∂v
∂s

��
1

b2Y2
δðar δ

bÞ
θ δ

ðc
r δ

dÞ
θ þ 1

b2Y2sin2θ
δðar δ

bÞ
ϕ δ

ðc
r δ

dÞ
ϕ

�

þ 1

2
ηs

∂2v
∂η∂s

�
1

b2Y2
ðδarδbrδcθδdθ þ δcrδ

d
rδ

a
θδ

b
θÞ þ

1

b2Y2sin2θ
ðδarδbrδcϕδdϕ þ δcrδ

d
rδ

a
ϕδ

b
ϕÞ
�

þ
�
3

4
s
∂v
∂s þ

1

4
s2
∂2v
∂s2

��
1

Y4
δaθδ

b
θδ

c
θδ

d
θ þ

1

Y4sin4θ
δaϕδ

b
ϕδ

c
ϕδ

d
ϕ

�

þ
�
1

4
s
∂v
∂s þ

1

4
s2
∂2v
∂s2

�
1

Y4sin2θ
ðδaθδbθδcϕδdϕ þ δaϕδ

b
ϕδ

c
θδ

d
θÞ
�
: ð48Þ

B. Second-order and fourth-order tensors

Consider the set of all symmetric, second-order tensors,
that are spherically symmetric and orthogonal to the flow
vector ua. Let Sab be one such tensor field, then it satisfies:

(i) Sab ¼ Sba;
(ii) Sabub ¼ 0;
(iii) Lξ⃗A

Sab ¼ 0, where ξ⃗A, A ¼ 1, 2, 3, are the
usual Killing vectors implementing the spherical
symmetry; namely

ξ⃗1 ¼ cosϕ∂θ − sinϕ cot θ∂ϕ;

ξ⃗2 ¼ − sinϕ∂θ − cosϕ cot θ∂ϕ; ξ⃗3 ¼ ∂ϕ:

One can then write

Sabdxadxb ¼ αðt; rÞdr2 þ βðt; rÞðdθ2 þ sin2 θdϕ2Þ: ð49Þ

It is immediate to see that the set of all tensor fields with the
above properties, defines at each spacetime point a two-
dimensional vector space, a basis for which is fhab; pabg at
that point, with

habdxadxb ¼ b2dr2 þ Y2ðdθ2 þ sin2θdϕ2Þ;
pabdxadxb ¼ P1dr2 þ P2ðdθ2 þ sin2θdϕ2Þ; ð50Þ

where the case in which the pressure tensor pab is propor-
tional to hab is explicitly ruled out, as it would correspond
to a perfect fluid.
Thus, a tensor field Sab with the above properties may be

written as

Sab ¼ Ahab þ Bpab; ð51Þ

where A ¼ Aðt; rÞ and B ¼ Bðt; rÞ.
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Consider now a fourth-order tensor Eabcd having the
following properties:
(1) Eabcd ¼ Ecdab;
(2) Eabcd ¼ Ebacd ¼ Eabdc;
(3) Eabcdud ¼ 0;
(4) Lξ⃗A

Eabcd ¼ 0, where, as before, ξ⃗A, A ¼ 1, 2, 3,
designate the Killing vectors implementing spherical
symmetry.

It is then easy to see that, with the conventions set up above,
Eabcd can be written as

Eabcd ¼ E1habhcd þ E2ðhabpcd þ pabhcdÞ þ E3pabpcd;

ð52Þ

where E1, E2, E3 are functions of t and r.

C. The speed of propagation

In spherical symmetry, since _ua ∝ ∂r, it follows from
(15) that νa ¼ ιa.
Further, the propagation direction vector νa satisfies

νa ∝ ∂r and therefore νa ¼ ð0; b−1; 0; 0Þ: ð53Þ

This follows from the requirement of spherical symmetry,
which imposes Lξ⃗A

ua ¼ 0 and Lξ⃗A
λa ¼ 0. Since

νaua ¼ 0, one has that uaLξ⃗A
νa ¼ 0, and then also

Lξ⃗A
νa − uaLξ⃗A

w ¼ 0; contracting this last equality with
ua, one gets Lξ⃗A

w ¼ 0, and then Lξ⃗A
νa ¼ 0, which

implies (53).
Since the relativistic Fresnel tensor has the following

properties:

Qab ¼ QðabÞ; Qabub ¼ 0; Lξ⃗A
Qab ¼ 0; ð54Þ

one can write it in the form [see (51)]

Qab ¼ αhab þ βpab: ð55Þ

Consequently, the characteristic Eq. (24) can be
expressed as

fw2ðρhac þ pacÞ − ðαhac þ βpacÞgιc ¼ 0 ð56Þ

and, using νc ¼ ιc ¼ bδrc, one obtains

w2ðρharbþ parbÞ − ðαharbþ βparbÞ ¼ 0; for a ≠ r;

ð57Þ

w2

�
ρ

b
þ bprr

�
−
�
α

b
þ βbprr

�
¼ 0; for a ¼ r: ð58Þ

Equation (57) is trivially satisfied since both hab and pab

are diagonal. From (58) one concludes

w2 ¼ bQrr

ρ
b þ bprr ; ð59Þ

which, using (21) and (25) can be written as

w2 ¼ b3Errrr − bprr

ρ
b þ bprr : ð60Þ

From (48) one gets

Errrr ¼ 4ϵ

b4

�
2η

∂v
∂η þ η2

∂2v
∂η2

�
ð61Þ

and

prr ¼ Trr ¼ 2ϵη
∂v
∂η

1

b2
; ð62Þ

so that in the present case the speed of propagation of the
wave front is

w2 ¼
6ϵη ∂v

∂η þ 4ϵη2 ∂2v
∂η2

ϵvþ 2ϵη ∂v
∂η

¼
3T1

1 þ 4ϵη2 ∂2v
∂η2

−T0
0 þ T1

1

: ð63Þ

It is worth noting that (63) obtained above is in agree-
ment with the expression given in [5] for the propagation
velocity of the elastic waves.

V. SPECIFIC SOLUTIONS

We will now explore whether the condition 0 ≤ w2 ≤ 1
is satisfied for the static and nonstatic shearfree solutions
presented in [14]. While we do not claim that the solutions
presented here have any particular relevance, we would like
to point out the fact that it is possible to find exact solutions,
with elastic material content, which are singularity free,
satisfy the DEC, and behave causally when perturbed (i.e.,
the speed of sound of the elastic waves is less than the
speed of light), as the following examples show.

A. Shear-free static solution

Consider the static shear-free solution obtained in [14],
which is a subcase of (28) with a2 ¼ 1

Y2, b2 ¼ Y2, where
Y ¼ e−

5
2
r2 . In this case, the energy density ρ, the radial

pressure p1 and the tangential pressure p2 are, respectively,

ρ ¼ −T0
0 ¼ ϵv ¼ 1

8π
e5r

2ð11 − 25r2Þ; ð64Þ

p1 ¼ T1
1 ¼ 2ϵη

∂v
∂η ¼ −

1

8π
e5r

2ð25r2 þ 1Þ; ð65Þ

p2 ¼ T2
2 ¼ ϵs

∂v
∂s ¼ 1

8π
25r2e5r

2

: ð66Þ
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This solution satisfies the dominant energy condition for
r ∈ ½0; 1ffiffi

5
p Þ and is nonsingular at the origin, see [14].

Calculating w2 from (63), using (30) with fðrÞ ¼
e−

5
2
r2

ð75r2þ1Þ13
and (32), and the expression for ∂2v

∂2η obtained from

(65)we get

∂2v
∂2η

¼e5r
2ð75r2þ1Þ73
800πϵ0r4

ð9375r6þ3625r4þ55r2−1Þ; ð67Þ

that gives

w2 ¼ 9375r6 þ 1750r4 − 20r2 − 1

−1250r4 þ 250r2
: ð68Þ

The condition 0 ≤ w2 ≤ 1 is satisfied for r ∈
ða; bÞ ⊂ ð0; 1ffiffi

5
p Þ, where a ≈ 0.167 and b ≈ 0.276 (see

Fig. 1).
We note that in [14] it was shown that this solution can

be used to build up a static two-layer star model consisting
of an elastic core, surrounded by a perfect fluid corre-
sponding to the interior Schwarzschild solution matched to
the vacuum Schwarzschild solution.

B. Nonstatic, shear-free solutions

In order to analyze the condition 0 ≤ w2 ≤ 1 for the
nonstatic shear-free solutions presented in [14], whose
spacetime metrics are of the form

ds2 ¼ −dt2 þ t2B2ðrÞðdr2 þ dθ2 þ sin2 θdϕ2Þ; ð69Þ

we will first derive an expression for w2 in terms of the
coordinates t, r and the function B and its first and
second derivatives with respect to r (noted as B0 and B00
respectively). Notice that this metric can be obtained
from (28) replacing the metric functions by a2 ¼ 1 and
b2 ¼ Y2 ¼ t2B2.
In this case, the energy density and the radial and

tangential pressures take the form

ρ ¼ −T0
0 ¼

1

8πt2

�
−
2B00

B3
þ B02

B4
þ 1

B2
þ 3

�
; ð70Þ

p1 ¼ T1
1 ¼

1

8πt2

�
B02

B4
−

1

B2
− 1

�
; ð71Þ

p2 ¼ T2
2 ¼

1

8πt2

�
B00

B3
−
B02

B4
− 1

�
: ð72Þ

The term 4ϵη2ð∂2v=∂η2Þ in (63) can be calculated using
(32) and (30), with fðrÞ satisfying (see [14])

f0

f
¼ B0

B2
−

2

3rB
;

and applying the inverse function theorem, which yields

∂t
∂η ¼ −

t3

2f2

�
B2 −

2

3
Bþ rB0 − rB0B

�
; ð73Þ

∂r
∂η ¼ −

rt2B2

2f2
; ð74Þ

the result being then

4ϵη2
∂2v
∂η2 ¼

1

4πt2B2

��
1

2
þ 2

3B

��
−
B02

B2
þB2þ1

�

þ rB0

B2

�
−B00 þB02

B2
þB02

B
þB3−B2−1

��
: ð75Þ

Substituting (70), (71), and (75) in (63) yields

w2 ¼ ð2
3
− BÞð− B02

B þ B3 þ BÞ þ rB0ð−B00 þ B02
B2 þ B02

B þ B3 − B2 − 1Þ
−BB00 þ B02 þ B4

: ð76Þ

We next present two specific examples.

FIG. 1. Graph of w2 for r ∈ ð0.167; 0.276Þ.
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1. Example 1

Consider the solution obtained by substituting

BðrÞ ¼
ffiffiffi
3

p

9c

�
−1þ 3cosh2

�
r − r0
c

��3
2 ð77Þ

into (69), c ≠ 0 and r0 being real constants. The DEC is
satisfied for certain ranges of the radial coordinate
r ∈ ½0; RÞ, see [14]. Specifying c and r0, one can find
an interval for r, where 0 ≤ w2 ≤ 1 is valid. The example
presented in Fig. 2 illustrates this fact.
The DEC was analyzed in [14] and it was shown that it is

satisfied if and only if the following inequalities hold:

d1 ¼ −3BB00 þ 2B02 þ B2 þ 4B4 ≥ 0;

d2 ¼ −4BB00 þ B02 þ B4 ≥ 0;

d3 ¼ −BB00 þ B2 þ 2B4 ≥ 0: ð78Þ

One can see in Fig. 3 that these conditions are satisfied for
r ∈ ð4.805; 5.012Þ, the range in which 0 ≤ w2 ≤ 1.

2. Example 2

In this example, the solution is given by the metric (28)
with

BðrÞ ¼
ffiffiffi
3

p

9
ð2þ 3ðr − r0Þ2Þ32; ð79Þ

where r0 ≠ 0 is a real constant. The DEC is satisfied for
certain ranges of the radial coordinate r ∈ ½0; RÞ, see [14].

Choosing a value for r0, one can find intervals for r, where
0 ≤ w2 ≤ 1 is satisfied (see Fig. 4).
Again, the DEC was analyzed in [14] and, as in the

previous case, it turns out that it is satisfied whenever the
inequalities given by (78) hold.
Figure 5 shows that these conditions are satisfied

for r ∈ ð1.099; 1.334Þ.

FIG. 3. Graphs of d1, d2, d3 for c ¼ 2.7, r0 ¼ 2 and
r ∈ ð4.5; 5.3Þ.FIG. 2. Graph of w2 for c ¼ 2.7, r0 ¼ 2, where 0 ≤ w2 ≤ 1 for

r ∈ ð4.805; 5.012Þ.

FIG. 4. Graph of w2 for r0 ¼ 0.01, where 0 ≤ w2 ≤ 1 for
r ∈ ð1.099; 1.334Þ.
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VI. MATCHING OF NONSTATIC ELASTIC AND
ROBERTSON-WALKER SPACETIMES

We next show that the nonstatic shear-free elastic
solutions (69) can be matched to certain Robertson-
Walker (RW) spacetimes.
The Robertson-Walker line element in its isotropic form

is given by (see for instance [18,19])

ds2 ¼ −dT2 þ a2ðTÞ
b2ðRÞ ðdR

2 þ R2dΩ2Þ; ð80Þ

where bðRÞ ¼ 1þ k
4
R2 with k ¼ 0;�1, and the mass

function and Friedmann equations are

mðT; RÞ ¼ ρ

6

�
Ra
b

�
3

; ð81Þ

ρ ¼ 3ð _a2 þ kÞ
a2

; _ρþ 3ðρþ pÞ _a
a
¼ 0; ð82Þ

where a dot indicates derivative with respect to the time T.

A. Case: RW with k= 0 and aðTÞ=αT, α > 0

Let us now consider the junction across a spherically
symmetric surface Σ of the elastic, nonstatic solution

ds2− ¼ −dt2 þ t2B2ðrÞðdr2 þ dΩ2Þ; ð83Þ

with the Robertson-Walker metric

ds2þ ¼ −dT2 þ α2T2ðdR2 þ R2dΩ2Þ; ð84Þ

which is considered in [18].

The signs − and þ are used to denote, respectively,
interior and exterior quantities. At this point, it should be
emphasized though, that the labels “interior” and “exterior”
are quite arbitrary; nevertheless, we shall use them just as a
convenient way of referring to the spacetimes considered.
For the metric (84) one has

ρ ¼ 3

T2
; p ¼ −

1

T2
ð85Þ

and

mðT; RÞ ¼ α3TR3

2
: ð86Þ

Notice that this is a particular case of a flat Robertson-
Walker metric with linear equation of state p ¼ γρ, where
γ ¼ − 1

3
, which satisfies the dominant energy condition

(see [18]).
The boundary Σ− can be parametrized by ft ¼ λ;

r ¼ rΣg, where rΣ is a constant. The tangent space to
Σ− at any of its points is spanned by the following
orthogonal tangent vector fields at that point:

TΣ− ¼ he−1 ¼ ∂t; e−2 ¼ ∂θ; e−3 ¼ ∂ϕi: ð87Þ

The outgoing, unit, normal vector field to Σ− is given by

na− ¼ t−1B−1∂r: ð88Þ

Consider next the boundary Σþ; it can be parametrized
by fT ¼ λ; R ¼ RΣg, where RΣ is a constant. The tangent
space to Σþ is

TΣþ ¼ heþ1 ¼ ∂T; e
þ
2 ¼ ∂θ; e

þ
3 ¼ ∂ϕi; ð89Þ

and the unit normal vector field to Σþ is

naþ ¼ 1

αT
∂R: ð90Þ

Now, the two spacetimes can be matched across Σ if
and only the first and second fundamental forms of
their respective metrics are continuous across it (see for
instance [18]).
The first fundamental forms on Σ are given by

q�αβ ¼ e�a
α e�b

β g�ab; α; β ¼ 1; 2; 3;

and a trivial calculation yields for their corresponding line
elements

dσ2− ¼ −dλ2 þ t2B2ðrΣÞdΩ2; ð91Þ

dσ2þ ¼ −dλ2 þ α2λ2R2
ΣdΩ2; ð92Þ

where all quantities must be evaluated on Σ.

FIG. 5. Graphs of d1, d2, d3 for r0 ¼ 0.01 and r ∈ ð1; 1.5Þ.

ELASTIC THICK SHELLS IN GENERAL RELATIVITY PHYS. REV. D 102, 024081 (2020)

024081-9



The continuity of the first fundamental form (first
matching condition) q−αβ ¼ qþαβ, implies then

λ2B2¼Σ α2λ2R2
Σ; ð93Þ

where¼Σ means that the equality holds only at points on the
surface Σ, (recall that, on Σ, one has t ¼ T ¼ λ).
The independent components of the second fundamental

forms,

H�
αβ ¼ −n�a e�b

α ∇�
b e

�a
β ;

at points on Σ are (cf. [20])

H−
11 ¼ 0; H−

22 ¼ λB0; ð94Þ

Hþ
11 ¼ 0; Hþ

22 ¼ αλRΣ; ð95Þ

where again, all quantities are evaluated on Σ. Continuity of
the second fundamental forms (second matching condi-
tion), Hþ

αβ ¼ H−
αβ, implies

B0¼Σ αRΣ: ð96Þ

Thus, from (93) and (96), it follows that the elastic
spacetime (83) can be matched to a flat Robertson-Walker
spacetime of the form (84) if and only if

B¼Σ αRΣ; B0¼Σ αRΣ: ð97Þ

Notice that, if these conditions are satisfied, it readily
follows from (71) (using units such that 8πG ¼ c ¼ 1) that

p−
1 ¼ −

1

t2
and thenp−

1¼Σ −
1

λ2
; ð98Þ

and one then has [cf. (85)]

p−
1¼Σpþ

1 ; ð99Þ

which is a well-known necessary (but not sufficient)
condition for the matching of two spacetimes, namely,
pressure orthogonal to the matching surface must be
continuous across it (which follows from the so-called
Israel matching conditions). Furthermore, considering the
mass function of the elastic spacetime

mðt; rÞ ¼ t
2

�
B3 þ B −

B02

B

�
; ð100Þ

Eq. (97) implies

m−¼Σ α3R3
Σλ

2
; ð101Þ

thus [cf. (86)]

m−¼Σmþ; ð102Þ

which is also a necessary (but not sufficient) condition in
the case of spherical symmetry, as it was first shown in [18].

B. Case: RW with k = 1 and aðTÞ=αT, α > 0

Consider as before the junction across a spherically
symmetric surface Σ of an elastic nonstatic spacetime with
metric (83), that is,

ds2− ¼ −dt2 þ t2B2ðrÞðdr2 þ dΩ2Þ;

with the Robertson-Walker spacetime

ds2þ ¼ −dT2 þ α2T2

ð1þ 1
4
R2Þ2 ðdR

2 þ R2dΩ2Þ; ð103Þ

corresponding to (80) with aðTÞ ¼ αT and k ¼ 1. The
above remarks regarding the meaning and arbitrariness of
the signs − and þ also apply here.
For the line element (103) one has

ρ ¼ 3
1þ α2

α2T2
; p ¼ −

1þ α2

α2T2
ð104Þ

and

mðT; RÞ ¼ 32αTR3ð1þ α2Þ
ð4þ R2Þ3 : ð105Þ

Notice that the dominant energy condition is satisfied, and
the mass is positive for α > 0.
We proceed next as in the previous case; that is, we

choose suitable parametrizations for Σ in both spacetimes,
calculate the corresponding first and second fundamental
forms, and demand them to be continuous across the
surface Σ.
The parameters on Σ−, and the vector fields spanning its

tangent space, as well as the outgoing unit normal vector
field, are the same as above, and the first and second
fundamental forms are those given by (91) and (94)
respectively.
As for the boundary Σþ, the parameters and vector fields

spanning its tangent space at each point can be chosen as in
the case above [see (89)], whereas the normal vector field is
now given by

naþ ¼ 1þ 1
4
R2

αT
∂R: ð106Þ

The first and second fundamental forms for the
Robertson-Walker spacetime (103) are now
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dσ2þ ¼ −dλ2 þ α2λ2

ð1þ 1
4
R2
ΣÞ2

R2
ΣdΩ2; ð107Þ

and

Hþ
11 ¼ 0; Hþ

22 ¼ −
4αλRΣðR2

Σ − 4Þ
ð4þ R2

ΣÞ2
: ð108Þ

Continuity of the first and second fundamental forms
implies now

B¼Σ 4αRΣ

4þ R2
Σ
; B0¼Σ 4αRΣð4 − R2

ΣÞ
ð4þ R2

ΣÞ2
: ð109Þ

where, as before, ¼Σ means that the equalities hold only on
the surface Σ.
Again, as a consequence of the matching, using (109), it

follows from (71), (104), and (105) that

p−
1¼Σpþ

1 ; ð110Þ

and

m−¼Σmþ; ð111Þ

as it should be expected. In this case, the above magnitudes
are

p−
1¼Σ −

1þ α2

α2λ2
; ð112Þ

and

m−¼Σ 32αλR3ð1þ α2Þ
ð4þ R2

ΣÞ3
: ð113Þ

C. Case: RW with k = − 1 and aðTÞ=αT, where
(α < − 1 and R > 2) or (α > 1 and 0 < R < 2)

Finally, consider the junction of the nonstatic elastic
solution (83) with the Robertson-Walker metric

ds2þ ¼ −dT2 þ α2T2

ð1 − 1
4
R2Þ2 ðdR

2 þ R2dΩ2Þ; ð114Þ

where aðTÞ ¼ αT and k ¼ −1 in (80), across a spherically
symmetric surface Σ.
For the above metric (114) one has

ρ ¼ 3
α2 − 1

α2T2
; p ¼ 1 − α2

α2T2
ð115Þ

and

mðT; RÞ ¼ 32αTR3ðα2 − 1Þ
ð4 − R2Þ3 : ð116Þ

In this case the dominant energy condition is satisfied and
the mass is positive whenever

ðα < −1 and R > 2Þ or ðα > 1 and 0 < R < 2Þ:
ð117Þ

The parametrizations on Σ− and Σþ and the orthogonal
vector fields spanning their respective tangent spaces at
each point are chosen to be the same as in the previous two
cases, and so is na−, the normal to Σ−, whereas the normal
vector field to Σþ is given by

naþ ¼ 1 − 1
4
R2

αT
∂R: ð118Þ

The first and second fundamental forms for (114) are

dσ2þ ¼ −dλ2 þ α2λ2

ð1 − 1
4
R2
ΣÞ2

R2
ΣdΩ2; ð119Þ

and

Hþ
11 ¼ 0; Hþ

22 ¼
4αλRΣðR2

Σ þ 4Þ
ð4 − R2

ΣÞ2
: ð120Þ

Continuity across Σ of the first and second fundamental
forms implies then

B¼Σ 4αRΣ

4 − R2
Σ
; B0¼Σ 4αRΣð4þ R2

ΣÞ
ð4 − R2

ΣÞ2
: ð121Þ

As in the previous two cases, the above equation (121),
implies that both the radial pressures and mass functions
are continuous across Σ, as expected.

VII. ELASTIC THICK SHELLS IN
ROBERTSON-WALKER UNIVERSES

Next, we will show that the elastic spacetime metrics
(77) and (79) from example 1 and example 2, respectively,
can be matched to Robertson-Walker spacetimes at the
interior and the exterior, leading to models with a well-
behaved elastic intermediate spacetime, where perturba-
tions propagate in a causal way.
The resulting spacetimes can then be seen as elastic,

spherically symmetric thick shells, separating an interior
Robertson-Walker “bubble” from an exterior Robertson-
Walker universe.
In the examples presented, the spatial curvature k of the

exterior Robertson-Walker region is in one case different
from that in the inner bubble, and in the other case, equal
to it.
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A. Positive k RW-elastic-flat RW spacetime

Consider the metric (77) with c ¼ 2.7 and r0 ¼ 2. It
follows quite straightforwardly that it can be matched, as an
interior solution, to the flat (k ¼ 0) Robertson-Walker
metric (84) considered as exterior. To see this, take into

account the matching conditions (97), which imply B0¼ΣB;
it therefore follows that the matching radius must
be rþ ≈ 4.856.
Consider next the elastic metric as an exterior solution; it

is also easy to show that it can be matched to the k ¼ 1
Robertson-Walker metric (103) considered as an interior.
To see this, notice that a coordinate change R ¼ RðrÞ

must exist in a neighborhood of Σ such that the matching
conditions (109) hold at points on Σ, thus

B0 ¼ dB
dr

¼ dB
dR

dR
dr

¼ dB
dR

R0

and from the expression for B and B0 on Σ given by (109),
one readily gets from the above equation that R0 ¼ R,
that is,

RΣ ¼ βerΣ ; ð122Þ

for some constant β > 0. Substituting this into (109) we get

ffiffiffi
3

p

24.3

�
−1þ 3cosh2

�
rΣ − 2

2.7

��
3=2

¼ 4αβerΣ

4þ β2e2rΣ
; ð123Þ

ffiffiffi
3

p

7.29
sinh

�
rΣ − 2

2.7

�
cosh

�
rΣ − 2

2.7

��
−1þ 3cosh2

�
rΣ − 2

2.7

��
1=2

¼ 4αβerΣð4 − β2e2rΣÞ
ð4þ β2e2rΣÞ2 ; ð124Þ

which must hold simultaneously, thus producing a system
of equations for the parameters rΣ, β, and α. Numerical
calculations show that values of α and β exist such that, for
instance rΣ ¼ 4.81 is a solution to the above system,
corresponding to β ≈ 0.001 and α ≈ 9.897.
Thus, the elastic shell spacetime is defined for r ∈

ðr−; rþÞ ¼ ð4.81; 4.856Þ and, as follows from our previous
discussions, in this region elastic waves propagate causally
(i.e., w2 ≤ 1, see Fig. 2), the metric is regular, and the
dominant energy condition is satisfied (see Fig. 3).

B. Negative k RW-elastic-negative k RW spacetime

We next show that the metric (79) with r0 ¼ 0.01 can be
matched at the exterior to the Robertson-Walker metric
(114) with k ¼ −1 (see Sec. VI C for details).
We proceed in a similar way as in the example above,

thus, considerations on the existence of a coordinate change
R ¼ RðrÞ in a neighborhood of Σ, together with (121),
imply

R ¼ βer; β > 0; ð125Þ
on that neighborhood, which upon substitution into the
matching conditions (121) yields

ffiffiffi
3

p

9
½2þ 3ðrΣ − 0.01Þ2�3=2 ¼ 4αβerΣ

4 − β2e2rΣ
; ð126Þ

ffiffiffi
3

p
ðrΣ−0.01Þ½2þ3ðrΣ−0.01Þ2�1=2¼4αβerΣð4þβ2e2rΣÞ

ð4−β2e2rΣÞ2 :

ð127Þ

Again, the above algebraic equations must hold simulta-
neously for certain values of the parameters involved: rΣ, β

and α; thus, for example, rΣ ¼ 1.33 is obtained for β ≈
0.261 and α ≈ 2.866 hence, the elastic spacetime can be
matched to the exterior Robertson-Walker spacetime at
rþ ¼ 1.33. Note that α > 1 and RΣ ¼ 0.987 < 2, as
required [see (117)].
At the interior, the elastic spacetime can be matched to

another Robertson-Walker metric (114) with k ¼ −1. Now,
for example, rΣ ¼ 1.1 is obtained for β ≈ 0.35 and α ≈
1.738 hence, the elastic spacetime can be matched to the
interior Robertson-Walker spacetime at r− ¼ 1.1. Note that
α > 1 and RΣ ¼ 1.051 < 2, again, as required [see (117)].
In this case, the intermediate elastic spacetime is defined

for r ∈ ðr−; rþÞ ¼ ð1.1; 1.33Þ, and in this domain elastic
waves propagate causally (that is, w2 ≤ 1, see Fig. 4), the
metric is regular, and the Dominant Energy Condition is
satisfied (see Fig. 5).

VIII. CONCLUSIONS

In this paper, we have reviewed some fundamental
results on relativistic elastic waves, and have considered
in detail the spherically symmetric case, providing an
explicit expression for the elasticity tensor Eabcd [see
(48)], from where all other relevant tensors (Hadamard
elasticity tensor, relativistic Fresnel tensor) can be derived.
Further, we have provided an expression for the speed of
propagation of the elastic waves w, (63), in terms of the
constitutive function v and its derivatives (alternatively,
in terms of the components of the energy-momentum
tensor).
The results thus obtained have been specialized to

various cases of spherically symmetric exact solutions
previously found by the authors in [14]. It is shown that,
in all cases but one, there exists an open spacetime region
where the solutions
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(i) are singularity free,
(ii) represent elastic matter with a well-defined constit-

utive function v,
(iii) satisfy the dominant energy condition,
(iv) and are such that the elastic perturbations propagate

causally: that is w2 ≤ 1.
We also showed that the two nonstatic elastic solutions

discussed can be matched to Robertson-Walker spacetimes,
providing two examples of such a matching. These results
are then used to build up two spherically symmetric toy
models in which two different Robertson-Walker domains
(one flat and one nonflat, and two nonflat) are separated by
a thick elastic shell (or layer) well behaved in the above
sense, which is well joined to both Robertson Walker
metrics in the sense that the first and second fundamental
forms are continuous across the inner and outer surfaces of
that shell.
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