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24 quai Ansermet, CH1211 Genève 4, Switzerland
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We investigate the propagation of gravitational waves on a black hole background within the low-energy
effective field theory of gravity, where effects from heavy fields are captured by higher-dimensional
curvature operators. Depending on the spin of the particles integrated out, the speed of gravitational waves
at low energy can be either superluminal or subluminal as compared to the causal structure observed
by other species. Interestingly, however, gravitational waves are always exactly luminal at the black hole
horizon, implying that the horizon is identically defined for all species. We further compute the corrections
on quasinormal frequencies caused by the higher-dimensional curvature operators and highlight the
corrections arising from the low-energy effective field.
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I. INTRODUCTION

The detection of gravitational waves (GWs) opens up a
brand new window of opportunity to test gravity. The
observation of GW170817 [1] together with its gamma-ray
counterpart GRB170817A [2] constrains the speed differ-
ence between GWs and photons propagating on a cosmo-
logical background down to 10−15 [3]. In this new era of
GW astronomy, it has become more important than ever to
understand how GWs propagate especially in the strong
gravity regime and get a handle on the types of corrections
that are expected to arise in the effective field theory of
gravity.
Lorentz invariance dictates that in the vacuum any

massless particle propagates at the speed of light, but in
media that (spontaneously) break Lorentz invariance, we
are used to expect a frequency-dependent deviation from
luminal propagation, as is well known for light propagating
through glass or water. This effect emerges naturally from
the interactions between light and the medium it propagates
through. The speed of photons can also be modified in a
curved background due to loop corrections from charged
particles (e.g., electrons). At energy scales well below the

charged particle mass, the low-energy effective field theory
contains operators that can lead to a superluminal group
and phase velocity on certain backgrounds [4,5]. Yet this
low-energy superluminal group and phase velocity is not in
conflict with causality as discussed in [6–16].
By analogy, the same is expected for GWs. When

accounting for the interactions between gravity and the
other heavy fields, one would expect the speed of GWs to
naturally depart from unity at low energy in backgrounds
that spontaneously break Lorentz invariance, while recov-
ering a luminal speed at high energy [17].
In order to remain general and agnostic on the precise

high-energy completion of gravity (i.e., on the precise
spectrum of the heavy fields considered), we work here
within the low-energy effective field theory (EFT) of
gravity framework, where the classical and quantum effects
of heavy fields is captured by the inclusion of higher-
dimensional curvature operators [18–21]. Indeed, we
expect these operators to naturally arise from an arbitrary
underlying UV complete gravity theory, such as string
theory [22–24], although we do not need to commit to any
particular realization in what follows. Within this low-
energy EFT of gravity, it was shown in [25] that GWs
propagating in a Friedmann-Lemaître-Robertson-Walker
background do not generically propagate exactly luminally
at low energy. In this work, we push this investigation
further by analyzing the speed of GWs propagating on a
Schwarzschild-like background. This will represent an
interesting situation where the GWs are propagating in
the vacuum but the presence of a black hole spontaneously
breaks Poincaré invariance. This implies that the
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low-energy speed of GWs can (and indeed does) differ
from the speed of other massless minimally coupled
particles. Since the speed of various species is not invariant
under a change of frames, we qualify our statement and
make the impact on the causal structure manifest by
working in the Jordan frame, where all the matter fields
(including light) are minimally coupled to gravity, ensuring
that electromagnetic waves travel at a luminal speed with
respect to the background metric. In this frame, we consider
the low-energy EFT of gravity by including the local and
covariant higher-order curvature operators present in the
low-energy EFT. These can emerge from weakly coupled
UV completions after integrating out fields of higher spin at
tree level, or they can emerge from integrating out loops of
particles of all spins, including standard model particles
(see Ref. [25] for a detailed discussion). Once again, for the
most part of this work, we shall remain agnostic on the
precise realization.
If treated nonperturbatively, the higher-dimensional cur-

vature operators may lead to interesting features as pointed
out for instance in [26]. In what follows we shall, however,
take an EFT approach considering the higher-dimensional
operators to represent only the leading contributions in an
infinite low-energy expansion. Since the low-energy EFT is
only meaningful at energy scales well below the cutoff, all
higher-dimensional curvature operators should be under-
stood as being treated perturbatively, and this is indeed the
approach we shall take in what follows. Working pertur-
batively implies that the dimension-four (curvature-
squared) operators do not affect the evolution of GWs
when we restrict ourselves to a background perturbatively
connected to the GR Schwarzschild background.1 To
determine the leading order corrections on the propaga-
tion of GWs, we therefore have to consider curvature
dimension-six (curvature-cubed) operators. Including the
perturbative contribution from these operators, we extract
the effective metric seen by the metric perturbations and
identify the speed of GWs. We find that the speed indeed
deviates from the speed of photons in general. As expected,
the deviation caused by the higher-dimensional operators is
highly suppressed. However, any departure from unity
is significant in itself, as it reflects the causal structure
of the theory. In particular, the deviation vanishes as one
approaches the horizon. This remarkable feature implies
that while GWs and photons see a different causal structure
almost everywhere, they still experience the horizon at the
precise same location. We argue that this has to always be
the case. For completeness we also compute the corrections
on the quasinormal frequencies of the black holes in the
EFT of gravity. As expected, the corrections from the EFT

operators are extremely suppressed and determined in
terms of only two of the dimension-six EFT operators.
The rest of this paper is organized as follows. In Sec. II,

we introduce the low-energy EFT of gravity, including the
dimension-six operators. We study their perturbative effects
on the black hole solution and derive the modified Regge-
Wheeler-Zerilli equations for the metric perturbations. This
allows us to investigate the speed of GWs and the causal
structure in Sec. III, and compute the corrections on the
black hole quasinormal frequencies in Sec. IV. Section V is
devoted to discussions and outlook. Technical details and
some expressions are given in the Appendixes. We work
with the ð−;þ;þ;þÞ signature, and in units where
ℏ ¼ c ¼ 1.

II. BLACK HOLES IN THE LOW-ENERGY
EFFECTIVE FIELD THEORY OF GRAVITY

A. EFT of gravity

We consider the low-energy EFT of gravity including
curvature operators up to dimension-six. The Lagrangian of
the theory is given by [22]

L ¼ ffiffiffiffiffiffi
−g

p M2
Pl

2
Rþ LD4 þ LD6 þ Llight matter fieldsðg;ψÞ

þO
�
Riemann4

M4

�
; ð2:1Þ

where ψ designates symbolically all the light fields
(including the photon) that are explicitly included within
the low-energy EFT. The dynamics of these fields will not
be relevant for this study as we shall be interested in
vacuum solutions. The higher-dimensional operators are
given by

LD4 ¼
ffiffiffiffiffiffi
−g

p ½cR2R2 þ cW2W2
μναβ þ cGBR2

GB� ð2:2Þ

and

LD6 ¼
1

M2

ffiffiffiffiffiffi
−g

p ½d1R□Rþ d2Rμν□Rμν þ d3R3 þ d4RR2
μν

þ d5RR2
μναβ þ d6R3

μν þ d7RμνRαβRμναβ

þ d8RμνRμαβγRν
αβγ þ d9Rμν

αβRαβ
γσRγσ

μν

þ d10Rμ
α
ν
βRα

γ
β
σRγ

μ
σ
ν�; ð2:3Þ

where R2
GB ¼ R2

μναβ − 4R2
μν þ R2 is the Gauss-Bonnet

term, and Wμναβ is the Weyl tensor. In four dimensions,
the Gauss-Bonnet term is topological, which allows
us to rewrite the dimension-four curvature operator
Lagrangian as

LD4 ¼
ffiffiffiffiffiffi
−g

p ½c1R2 þ c2RμνRμν�; ð2:4Þ

with

1In principle, there could be other branches of solutions in a
theory with higher-dimensionaal operators, but those solutions
rely on exciting the higher-dimensional operators beyond the
regime of validity of the low-energy EFT.
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c1 ¼ cR2 −
2

3
cW2 ; c2 ¼ 2cW2 :

Since we shall be interested in vacuum solutions with
Rμν ¼ 0, it is therefore clear that the dimension-four
operators cannot lead to any leading order2 correction,
neither in the background solution nor in the propagation of
GWs. In the rest of this manuscript we shall therefore focus
our interest on the dimension-six operators. Moreover, in
four dimensions, the operator governed by d10 can be
written as a combination of other dimension-six operators
[27] and can therefore be removed.3 To compare the
Lagrangian (2.3) with the EFT arising from integrating
out a heavy field [28,29], we shall, however, keep d10
manifest.
If we consider the Lagrangian (2.1) as the low-energy

EFT generated arising from integrating out some heavy
fields, we expect the dimension-six curvature operators to
be suppressed by the mass M of the lightest of the massive
fields being integrated out [i.e., the lightest of all the fields
that are not explicitly included in Llight matter fieldsðg;ψÞ].
It is known that some of the higher-dimensional curva-

ture operators can be removed by field redefinition;
however, performing such field redefinition will introduce
interactions in the matter sector [25], and hence alter the
photon speed (see also Ref. [30] where a similar point in a
slightly different context has been made). To make the
impacts on the causal structure manifest, we shall therefore
stick to the frame in which the speed of photons is unity. Of
course, one could start with the field-redefined Lagrangian
that includes fewer operators and revert back to the original
frame at the end. However, this method does not prove
optimal at the computational level as it will introduce
subtleties in gauge fixing when reverting back to the
original frame; see Appendix A for more details. Note,
however, that for the particular vacuum solution we are
interested in, not all operators present in (2.3) contribute
physically. Actually, as motivated in Appendix A, only the
coefficients 8d5 þ 2d8 − 3d10 and 2d9 þ d10 contribute to
the background solution and the dynamics of GWs.

B. Dimension-six vs dimension-eight operators

At this stage we should note that black hole perturbations
in the EFT of gravity were already previously considered
in [31,32]. The emphasis of [32] was primarily the study
of quasinormal modes while we shall here be primarily
interested in the speed of GWs and as explained previously,
such effects are not invariant under field redefinitions.
It is therefore relevant for our analysis to maintain operators

in the EFT even if those could a priori be removed via
field redefinitions.
Moreover, in the EFT considered in [31], the focus

was drawn on dimension-eight operators (for instance
Riemann4 types of operators). Assuming a weakly coupled
UV completion, the dimension-six types of operators can
only be present upon integrating higher-spin particles,
whose mass is directly related to the scale M of the
EFT. Within such a completion, the absence of observable
effects from higher-spin particles therefore puts a constraint
on the scale M. The same argument goes through for
dimension-eight operators, and assuming a weakly coupled
UV completion, the dimension-eight operators should
themselves also be further suppressed. In fact, unless
one assumes the existence of very specific tuning, one
would always expect dimension-six operators to dominate
over the dimension-eight and higher operators (the only
reason the dimension-four operators do not dominate in this
setup is an accident of being in four dimensions and in the
vacuum). Moreover, in this study we shall not commit to a
weakly coupled UV completion, and the operators con-
sidered in (2.1) may come either from integrating out
higher-spin particles at tree level or from integrating out
loops of particles of any spin [25]. For these reasons we
shall focus on dimension-six operators in what follows.
Naturally, the size of the corrections we are studying

is expected to be tiny at best but the question we are
establishing is first whether in principle the low-energy
speed of GWs could ever deviate ever so slightly from the
“speed of light” as dictated from the background metric and
second to determine the location of the horizon as seen by
low-frequency GWs. As we shall argue in Sec. III, validity
of the EFT at the horizon dictates that the location of the
horizon should always remain precisely the same for any
species present in the low-energy EFT, and this is indeed
what we observe in our framework.

C. Spherically symmetric black hole solutions

Since we shall be interested in static and spherically
symmetric solutions, we make the Ansatz,

ds2 ¼ ḡμνdxμdxν

¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ CðrÞr2ðdθ2 þ sin2 θdϕ2Þ:

ð2:5Þ

Substituting the Ansatz into Lagrangian (2.1) and varying
the Lagrangian with respect to A, B, and C yield equations
EA, EB, and EC. We shall look for the slight deviations
from the Schwarzschild geometry caused by the higher-
dimensional curvature operators. As the dimension-four
operators do not contribute to the Ricci flat solutions,
the leading corrections are caused by the dimension-six
operators. Therefore, deviations from the Schwarzschild

2At second order in perturbations, the dimension-four oper-
ators can lead to nontrivial effects; however, those will be
suppressed by a factor of M2=M2

Pl as compared to the leading
order effects from dimension-six operators.

3We thank Pablo A. Cano for pointing this out.
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geometry should be suppressed by a dimensionless
small parameter

ϵ ¼ 1

M2M2
Plr

4
g
; ð2:6Þ

with rg being the Schwarzschild radius of the GR black
holes. Choosing the gauge so that CðrÞ ¼ 1 and solving A
and B to the first order in ϵ, we find

AðrÞ ¼ 1 −
rg
r
þ ϵ

�
a6

�
rg
r

�
6

þ a7

�
rg
r

�
7
�
; ð2:7Þ

BðrÞ ¼ 1 −
rg
r
þ ϵ

�
b6

�
rg
r

�
6

þ b7

�
rg
r

�
7
�
; ð2:8Þ

where

a6 ¼ −6d58 þ 9d10; a7 ¼
1

2
ð18d58 þ 20d9 − 17d10Þ;

ð2:9Þ

b6 ¼ 36d58 þ 108d9; b7 ¼
1

2
ð−66d58 − 196d9 þ d10Þ;

ð2:10Þ

with d58 ≡ 4d5 þ d8. Since the higher-dimensional oper-
ators cannot lead to any physical singularity within
the region of validity of the EFT, to this order A and B
must vanish simultaneously Aðr ¼ rHÞ ¼ Bðr ¼ rHÞ ¼
0þOðϵ2Þ at the same point, defining the location rH of
the perturbed horizon in the EFT. This is indeed the case
and the horizon of the background metric ḡμν is defined as

rH ≡ rg − ϵ

�
3d58 þ 10d9 þ

1

2
d10

�
rg: ð2:11Þ

As emphasized in Appendix A one can check that only the
operators d9, d10, and d58 ≡ 4d5 þ d8 enter the background
vacuum solution. A similar study on black holes in an
EFT of gravity in the presence of higher-dimensional
operators was performed in [27,33], where the coefficients
of the higher-dimensional operators were considered to be
dynamical and controlled by scalars. The emphasis of our
analysis is, however, different as we shall mainly be
interested in the dynamics of GWs on this geometry.

D. Black hole perturbations

We now consider metric perturbations about the previous
background solution. We first start with the covariant
equations of motion, which can be written as

M2
Pl

2
Gμν þ

1

M2
Eμν ¼ 0: ð2:12Þ

At zeroth order in ϵ (i.e., for pure GR in the vacuum), the
vacuum Ricci flat solutions have

Rμν ¼ δRμν ¼ 0; ð2:13Þ

where δRμν is the perturbations of the Ricci tensor caused
by the metric perturbations. It follows that at leading order
in the EFT corrections, any term in the Lagrangian that is
quadratic in Rμν will not affect the evolution of the metric
perturbations. The only relevant contributions in Eμν are
therefore

Eμν ¼ d5ð−∇μ∇νCα
α þ gμν□Cα

αÞ þ
d8
2
ð□Cμν −∇α∇μCνα −∇α∇νCμα þ gμν∇α∇βCαβÞ

þ d9

�
6∇α∇βCμανβ −

1

2
gμνRαβγσCαβγσ þ 3Rμ

αβγCναβγ

�

þ d10

�
3

2
∇α∇βC̃μανβ þ

3

2
∇α∇βC̃ναμβ −

3

2
∇α∇βC̃μβαν −

3

2
∇α∇βC̃νβαμ −

1

2
gμνRαβγσC̃αβγσ þ 3Rμ

αβγC̃ναβγ

�
; ð2:14Þ

where we have defined the two contractions of the Riemann
tensor,

Cμν
γσ ≡ Rμν

αβRαβ
γσ;

Cμν ¼ Cμαν
α; and

C̃μ
γ
ν
σ ≡ Rμ

α
ν
βRα

γ
β
σ: ð2:15Þ

One can show that the indices of Cμν
γσ are Riemann

symmetric, and C̃μνγσ ¼ C̃γσμν ¼ C̃νμσγ .

1. Metric perturbations

We decompose the metric perturbations into their
odd (o) and even (e) contributions, hμν ¼ hoμν þ heμν based
on their behaviors under parity transformations ðθ;ϕÞ →
ðπ − θ; π þ ϕÞ. Indeed, the spherical symmetry of the
background allows us to restrict ourselves to axisymmetric
modes of perturbations without any loss of generality.
Nonaxisymmetric modes, i.e., perturbations with an eimϕ

dependence, can be deduced from modes of axisymmetric
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perturbations with m ¼ 0 by suitable rotations. We shall
work in the Regge-Wheeler gauge [34], in which

hoμν ¼ e−iωt

0
BBB@

0 0 0 h0
0 0 0 h1
0 0 0 0

h0 h1 0 0

1
CCCA sin θY 0

lðθÞ ð2:16Þ

and

heμν ¼ e−iωt

0
BBB@

AH0 H1 0 0

H1 H2=B 0 0

0 0 r2K 0

0 0 0 r2 sin2 θK

1
CCCAYlðθÞ;

ð2:17Þ

where YlðθÞ ¼ Yl0ðθ;ϕÞ are the spherical harmonics with
m ¼ 0, and a prime on Yl denotes the derivative with
respect to the angle θ. All the functions h0, h1, H0, H1,H2,
and K are functions of r.

2. Master equations

(i) Regge-Wheeler and Zerilli equations in GR: The
symmetry of the background already allows us to
restrict ourselves to the six metric perturbations h0;1,
H0;1;2, andK introduced in (2.16) and (2.17), but we
know that only 2 degrees of freedom are present in
GR which in this case should manifest themselves as
one odd and one even mode. The dynamics of each
one of these physical modes Ψo=e is determined by
the Regge-Wheeler and Zerilli equations,

d2Ψo=e
GR

dr2�
þ
�
ω2
0 −

�
1 −

rg
r

�
Vo=e
GR

�
Ψo=e

GR ¼ 0 ð2:18Þ

with

Vo
GR ¼ J

r2
−
3rg
r3

; ð2:19Þ

Ve
GR

¼JðJ−2Þ2r3þ3ðJ−2Þ2r2rgþ9ðJ−2Þrr2gþ9r3g
r3½ðJ−2Þrþ3rg�2

;

ð2:20Þ
where we have defined J ≡ lðlþ 1Þ, the tortoise
coordinate dr� ¼ dr=ð1 − rg=rÞ, and the two master
variables

Ψo
GR ≡ iðr − rgÞh1

r2ω0

; ð2:21Þ

Ψe
GR ≡ 1

ðJ − 2Þrþ 3rg

�
−r2Kþ iðr − rgÞH1

ω0

�
:

ð2:22Þ

The other components of hμν are uniquely deter-
mined (constrained) in terms of Ψo=e.

(ii) Leading order corrections from the dimension-six
EFT operators: Including the leading order correc-
tions from the dimension-six operators leads to
higher-derivative equations of motion. We empha-
size, however, that there is no sense in which these
higher derivatives should ever be associated with
additional Ostrogradsky ghost degrees of freedom
within the regime of validity of the EFT. Indeed, the
mass of those would-be ghosts would always be at or
above the cutoff of the low-energy EFT.4 Within the
regime of validity of the EFT, the effects from the
dimension-six operators ought to be treated pertur-
batively and any higher-order derivative should be
removed using the lower order equations of motion
(see Ref. [25] for a generic prescription). Doing so to
leading order results in the following two second
order differential equations:

d2Ψo=e

dr2�
þ ω2

c2s
Ψo=e −

ffiffiffiffiffiffiffi
AB

p
½Vo=e

GR þ ϵVo=e�Ψo=e ¼ 0

ð2:23Þ
with

c2s ¼ 1 − ϵΔcþOðϵ2Þ and

Δc ¼ 144ð2d9 þ d10Þ
ðr − rgÞr5g

r6
: ð2:24Þ

The profile of the low-energy radial speed cs is
depicted in Fig. 1 and discussed in detail in Sec. III.

Note that the tortoise coordinates are now defined by
dr=dr� ¼

ffiffiffiffiffiffiffi
AB

p
and the master variables are expressed as

Ψo ¼ i
ffiffiffiffiffiffiffi
AB

p
h1

rω
½1þ ϵfh1 �; ð2:25Þ

Ψe ¼ 1

ðJ − 2Þrþ 3rg

�
−r2Kð1þ ϵfKÞ

þ i
ffiffiffiffiffiffiffi
AB

p
rH1

ω
ð1þ ϵfH1

Þ
�
: ð2:26Þ

4The emergence of the ghostlike instability only arises from
exciting modes which lie beyond the regime of validity of the
EFT [35]. Moreover, these would-be ghosts should not be
identified with the heavy degrees of freedom that have been
integrated out [36]; rather their existence is a simple manifesta-
tion of applying an EFT beyond its regime of validity.
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The explicit expression of Vo=e, fh1 , fK, and fH1
can be

found in Appendix B. A similar analysis on black holes in
EFTs with dimension-eight curvature operators can be
found in [32]. See Sec. II B for a discussion of why
dimension-six are considered in this work as opposed to
dimension-eight operators.

III. LOW-ENERGY SPEED OF
GRAVITATIONAL WAVES

While the speed of GWs is exactly cs ≡ 1 in GR (i.e., in
the absence of higher-order curvature operators), we see
from (2.24) that on the background of the black hole (that
spontaneously breaks Poincaré invariance), the speed of
GWs departs ever so slightly from unity once the irrelevant
operators from the EFT of gravity are taken perturbatively
into account. Note that this low-energy EFT breaks down at
the scaleM (or even lower), and at sufficiently high energy,
GWs would recover exact luminality.
Within the frame we are working in, the speed of photons

and other massless particles remains unity (assuming there
is no direct coupling between these massless particles
and the heavy particles that have been integrated out).
Deviation of c2s from unity is shown in Fig. 1, which is
nonzero everywhere outside the black hole but remarkably
vanishes at the horizon r ¼ rH.
The sign of c2s − 1 and therefore whether GWs are

expected to be ever so slightly sub- or superluminal
depends on the precise UV completion. For instance, if
the EFT we are considering was arising from integrating
out particles of spin-0, 1=2, and 1, the precise value of the
coefficients di would be dictated by the spins of these
particles. as derived in [28,29]. In this case, the coefficient

ð2d9 þ d10Þ is positive for scalars and vectors and negative
for fermions. In other words, depending on the precise field
content (or on the spin of the lightest massive particle that
has been integrated out), GWs may turn out to be ever so
slightly subluminal or superluminal.
As mentioned in the Introduction, superluminal low-

energy group and phase velocities do not necessarily lead to
violation of causality; see Ref. [37]. Nevertheless these
types of arguments have been used in the past to segregate
between various types of EFTs. Applying these types of
arguments to the situation at hand, one would conclude
that neutrinos cannot be the lightest massive particles, and
one would conjecture the existence of lighter particles of
different spin. However, we would caution against applying
these types of arguments when it comes to the EFT of
gravity where the size of the corrections is so small that no
violation of macrocausality can even occur [37].
To extract the effective metric seen by GWs (in the frame

where other matter fields see the background metric) let us
consider a scalar Φ propagating on an effective metric Zμν,

ZμνDμDνΦþ UΦ ¼ 0; ð3:1Þ

where U is an effective potential, Dμ represents the
covariant derivative with respect to Zμν, and ZμαZαν ¼ δμν
with

Zμν ¼

0
BBB@

−ZtðrÞ 0 0 0

0 Z−1
r ðrÞ 0 0

0 0 ZΩðrÞr2 0

0 0 0 ZΩðrÞr2 sin2 θ

1
CCCA:

ð3:2Þ

Substituting Φ ¼ e−iωtΨðrÞYlðθÞ=r2 into Eq. (3.1) yields

Ψ00 þ
�ðZrZtÞ0
2ZrZt

þZ0
Ω

ZΩ

�
Ψ0 þ ω2

ZtZr
Ψ−

J
r2ZΩZr

Ψþ U
r2Zr

Ψ¼0;

ð3:3Þ

where a prime denotes the derivative with respect to r. On
the other hand, Eq. (2.23) can be written in the form

Ψ00 þ ðABÞ0
2AB

Ψ0 þ ω2

c2sAB
Ψ −

J

r2
ffiffiffiffiffiffiffi
AB

p Ψþ VΨ ¼ 0; ð3:4Þ

where we have neglected the superscription “o/e" for
simplicity. Comparing Eq. (3.4) with Eq. (3.3), we can
read off

ðZrZtÞ0
2ZrZt

þ Z0
Ω

ZΩ
¼ ðABÞ0

2AB
; ZtZr ¼ c2sAB; and

ZΩZr ¼
ffiffiffiffiffiffiffi
AB

p
: ð3:5Þ

FIG. 1. Deviation of the low-energy radial speed cs from unity.
The deviation is maximized at r ¼ 6rH=5 and vanishes at the
horizon r ¼ rH as well as asymptotic infinity r → ∞. The
coefficient ð2d9 þ d10Þ can be a priori of either sign in the
low-energy EFT. For instance, if we see this EFT as arising from
integrating out a heavy field, the coefficient ð2d9 þ d10Þ is
positive (respectively, negative) for a particle of spin-0 or 1
(respectively, spin 1=2) [28,29]. GWs would then be subluminal
if the lightest particle being integrated out is a scalar or a vector,
and superluminal if it is a fermion.
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Including the leading order corrections from the EFT of
gravity, we may now express c2s ¼ 1 − ϵΔc, with Δc given
in (2.24), and Eq. (3.5) then implies

Zt ¼ Zr ¼
ffiffiffiffiffiffiffi
AB

p �
1 −

1

2
ϵΔc

�
and ZΩ ¼ 1þ 1

2
ϵΔc:

ð3:6Þ

To leading order in the EFT, this corresponds to5

Zt ¼ Zr ¼ 1 −
rg
r
þ ϵ

r5g
2r5

�
6d58

�
5
rg
r
− 4

r2g
r2

�

− 4d9

�
72 − 171

rg
r
þ 94

r2g
r2

�

− d10

�
144 − 297

rg
r
þ 152

r2g
r2

��
: ð3:7Þ

At r ¼ rH, we find that ZtðrHÞ ¼ ZrðrHÞ ¼ 0þOðϵ2Þ and
ZΩðrHÞ ¼ 1, which is exactly the horizon seen by photons
in this EFT.
Connection with the horizon theorem: Interestingly, the

previous result shows that both GWs and photons see the
same horizon at least to leading order in the EFTexpansion,
although their speeds and hence the causal structures are
different near the black hole. A priori this result has only
been shown here perturbatively to first order but it is
already nontrivial and should indeed have been expected to
all order.
This result is closely connected to the more general proof

derived within the context of the EFT of QED below
the electron mass, known as the “horizon theorem” [6]. In
the context of the EFTof QED it was indeed shown that the
irrelevant operators appearing in the EFT of QED neces-
sarily have a vanishing effect at the horizon of any black
hole irrespective of the precise structure and field/matter
content, and therefore cannot affect the speed of light at the
horizon of a black hole. It also follows that the black hole
horizon remains a true horizon for light in this EFT.
Remarkably these results relied on very few assumptions
and are generic to any stationary spacetimes [38].
In the context of QED, the horizon theorem was proven

in [6] using properties of the Weyl tensor and its contrac-
tions with the four null momentum of the photon derived in
the Newman-Penrose tetrad basis [7,8]. While in principle
the same type of formalism could be applied to the EFT of
gravity, its implementation turns out to be quite subtle in
practice. There are three complications that arise in the EFT
of gravity as compared to that of QED.

The first one is that the EFT of gravity involves higher-
order equations of motion, which means that the dynamical
equations only make sense perturbatively and one needs to
make use of the lower-order equations of motion to make
any progress. This first point makes the formalism slightly
more subtle although in principle achievable.
A second, more problematic issue is that at the level of

the perturbed equations of motion the Weyl tensor appears
quadratically as opposed to linearly as in the case in [6] [see
for instance Eq. (2.14) where the tensor C̃ plays a similar
role to the Weyl-squared tensor]. This implies that in order
to make progress with this formalism one should generalize
the relations derived for the complex scalars presented in
Eq. (2.14) of [7] or in Eq. (7.1) of [8] to a new set of
complex scalars involving contractions of twoWeyl tensors
and their derivatives. It would be interesting to establish
and prove which subset of these complex scalars vanish at
the horizon for stationary spacetimes; however, such a
proof would not be straightforward and is beyond the scope
of this current work. Such considerations are therefore
saved for later studies.
Finally a third potential difference in the EFT of gravity

could arise when considering nonvacuum backgrounds. In
QED, the curved background can be caused by electro-
magnetically neutral matter, and photons decouple from
gravitons at linear order (and hence decouple from matter
perturbations). However, this is typically not the case in the
EFT of gravity, in which gravitons would always couple
with the matter perturbations in nonvacuum backgrounds.
It is likely that preserving the null energy condition and
other consistency relations would be sufficient to make
progress, but additional assumptions on the matter pertur-
bations may be needed to draw conclusions in the EFT of
gravity, even though one would ultimately expect the
horizon theorem derived in [6] to apply to generic EFTs.
For lack of a more rigorous proof, we shall instead

provide an intuitive EFT argument as to why one expects
the black hole horizon to remain the true horizon for all the
species in the EFT of gravity, including that of low-
frequency GWs. First of all we recall that we expect the
EFT of gravity to remain valid at the horizon. Indeed, for
macroscopic black holes we only expect the EFT to break
down well inside the black hole horizon.
With this expectation in mind, we start with the metric

seen by photons and other minimally coupled species as
given in (2.5) with C ¼ 1 and with a horizon located at
r ¼ rH. Now imagine GWs saw another effective metric
with an effective horizon located at a slightly different
location r̃H ¼ rH þ ϵδrH. If this was the case, with
δrH ≠ 0, then perturbatively close to rH, the components
Zμν of the effective metric of GWs would be finite at rH,

Ztjr¼rH ¼ Zrjr¼rH ¼ −ϵ
δrH
rH

þOðϵ2Þ: ð3:8Þ
5The angular part of the effective metric can be expressed in

the usual way by redefining the radial coordinate in a way that
does not affect the causal structure.
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One would then be able to compute a scalar invariant out
of both metric ḡμν and Zμν that diverges at the horizon.
Indeed, denoting for instance byW ¼ W½ḡ� the Weyl tensor
as computed with the metric ḡμν and W ¼ W½Z� the Weyl
tensor as seen by the low-energy gravitons, then out of
these two slightly different versions of the Weyl tensor
as seen by different species living in the same EFT, one
would be able to construct a scalar invariant ϒ defined as
for instance

ϒ¼WμναβWμναβ ¼ −2
δrH
r4H

1

r− rH
ϵþO

�
ϵ2;

�
1−

rH
r

�
0
�
;

ð3:9Þ

which would lead to a physical singularity at rH, where the
EFT is still valid and should have been under control. Since
we are only computing physical quantities perturbatively in
the EFT, all the corrections we are after are small and under
control. Such a physical singularity can therefore never
occur within the regime of validity of the EFT, and we
therefore conclude that we ought to have δrH ¼ 0. In other
words the horizon seen by gravitons ought to be the same as
that of any other species present in this EFT.

IV. QUASINORMAL MODES

For completeness, we end with a computation of the
quasinormal modes. As already mentioned, we expect the
size of the corrections from the EFT of gravity to be utterly
negligible at best but stress that, within the regime of
validity of the EFT of gravity, we always expect the effect
to be dominated by the operators of lowest dimensionality.
Since dimension-four operators do not contribute at leading
order in the vacuum, the dimension-six operators are thus
expected to lead to the “dominant” corrections.
In what follows we shall be interested in the quasinormal

frequency ω of black holes in the EFT of gravity (2.1). We
start by denoting by ω0 the quasinormal frequency of a GR
black hole with Schwarzschild radius rg, i.e., the quasi-
normal frequency of a Schwarzschild black hole in GR
with no corrections from the higher-dimensional operators.
There are then two sources of corrections to account for.
First as derived in Sec. II C the background black
hole solution differs from that of GR. In particular, in
the EFT of gravity, the background black hole solution
carries a horizon at rH rather than rg. We shall thus denote
by ωGR the quasinormal frequency of a black hole with
Schwarzschild radius rH, where rH relates to rg through
Eq. (2.11). The second effect is in the corrections to the
master equation as derived in Sec. II D 2.
Given the master equation for the odd and even tensor

modes on the black hole background, Eq. (2.23), comput-
ing the quasinormal frequency is then a straightforward
procedure and one may follow any of the many methods
developed in the literature (see for example Ref. [39] for a

review). In this section, we shall follow the method
developed in [40–43] and compute the leading corrections
on the quasinormal frequency caused by the higher-
dimensional operators. The idea of this method is to make
use of the asymptotical flatness of the background solution
to parametrize the EFT corrections that they enter master
equations (2.18) as a power-law expansion of the form

Vo=e
para ¼ Vo=e

GR þ δVo=e; with δVo=e ¼ 1

r2H

X∞
j¼0

αo=ej

�
rH
r

�
j
:

ð4:1Þ

We will neglect the superscription “o/e” in the following.
At linear order, each term in δV contributes to the
quasinormal frequency independently, and the corrected
quasinormal frequency can be written as

ω ¼ ωGR þ
X∞
j¼0

αjej; ð4:2Þ

where ej are complex numbers and have been calculated for
l ≤ 10 and up to j ¼ 50 in [42]. As discussed in [42], the
correction on the quasinormal frequency converges when

lim
j→∞

���� αjþ1ejþ1

αjej

���� < 1: ð4:3Þ

In order to apply this method to our case, we first introduce
the normalized variable Ψ̃ ¼ ffiffiffiffiffiffiffiffiffiffi

NðrÞp
Ψ defined so that

Eq. (2.23) can be written as

f
d
dr

�
f
dΨ̃
dr

�
þ ½ω̃2 − fVpara�Ψ̃ ¼ 0; ð4:4Þ

with f ¼ 1 − rH=r and ω̃ ¼ ω=γ being a rescaled fre-
quency. Here we have defined

γ ≡ csNjr¼rH ¼ 1 − ϵ

�
3d58 þ 6d9 −

3

2
d10

�
þOðϵ2Þ:

ð4:5Þ

The expression for NðrÞ is given explicitly in Appendix B.
From Eq. (4.4), we identify the corrections to the GR
potential δV ¼ Vpara − VGR, where VGR is the GR potential
of a Schwarzschild black hole with the horizon located not
at rg but rather at rH. Recall that rH relates to rg through
Eq. (2.11). δV is a function of r, rH, J, and ω̃ in general.
Since δV is already a first order correction, we can replace
ω̃ with ωGR (or equivalently with ω0) within δV, where we
recall that ωGR denotes the quasinormal frequency of a
black hole with Schwarzschild radius rH. We can then read
off αj by expanding δV as a Taylor series in rH=r. For odd
perturbations, we find δV is a polynomial in rH=r with
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finite terms. For even perturbations, the convergence
condition (4.3) is expected to be satisfied as shown in
Fig. 2. Therefore, the leading correction on the quasinormal
frequency is given by

δω≡ ω − ω0 ¼
�
γ
rg
rH

− 1

�
ω0 þ

X∞
j¼0

αjej; ð4:6Þ

where ω0 is the quasinormal frequency of a black hole
with Schwarzschild radius rg, i.e., the black hole with
no correction from higher-dimensional operators. In the
last line of Eq. (4.6), we have made use of relation
ω0rg ¼ ωGRrH. We calculate δω by summing αjej up to

j ¼ 50, and we present the result in Table I in the form of
fractional corrections,

δ≡
�
Reðω − ω0Þ
ϵReðω0Þ

;
Imðω − ω0Þ
ϵImðω0Þ

�

¼ d58δ58 þ d9δ9 þ d10δ10: ð4:7Þ

In particular, we find the contribution from the term d58 to
be negligible compared to that of the genuine Weyl-cubed
terms d9 and d10. Indeed, as shown in Table I, the value of
jδ58j computed numerically is at least 4 orders of magnitude
smaller than those for jδ9j and jδ10j. Actually, we expect the
contribution from d58 to vanish entirely; i.e., we would
expect δ58 ≡ 0 exactly. As explained in Appendix A when
d9 ¼ d10 ¼ 0, the theory (2.1) is equivalent to GR in the
vacuum up to Oð1=M4Þ corrections and the operator d58
should therefore not contribute to any physical observable
in the vacuum. The quasinormal frequency should therefore
be insensitive to the coefficient d58. For the odd modes,
the power-law expansion of δVo only includes a finite
number of terms, and the nonvanishing value computed for
jδo58rgω0j ∼Oð10−6Þ comes only from the numerical errors
in ω0 and ej, which is precisely of order 10−6. For the
even modes, the numerical error of jδe58rgω0j is dominated
by the truncation of the sum over j. For example, for
l ¼ 2, we see from Fig. 2 that at j ∼ 50, we have
ρ ¼ jαjþ1ejþ1=αjejj ≈ 0.77. This suggests that truncating
the sum over j at j ¼ 50 leads to an error on the computed
values of δi of order jα50e50jρ=ð1 − ρÞ ≃ 8.8 × 10−4∼
Oð10−3Þ. In other words, the small numerical value we
obtain for jδe58ω0rgj < Oð10−3Þ is consistent with it vani-
shing within our error bars and actually justifies the

TABLE I. Fractional corrections on the quasinormal frequency for the modes l ¼ 2, 3, and 4. Corrections are
computed using the method developed in [42], with a summation of ej up to j ¼ 50. δ is defined in Eq. (4.7) with a
superscription “o” or “e” that denotes corrections to the odd or even quasinormal frequency. The uncorrected
frequencies are rgω0 ¼ 0.747343 − 0.17925i, 1.199887 − 0.185406i, and 1.618357 − 0.188328i for l ¼ 2, 3, and

4, respectively. Theoretically, we expect δo=e58 ¼ 0. Upon explicit numerical computation we find a nonzero but

negligible jδo=e58 jwhich arises from numerical errors and from truncating the series expansion at j ¼ 50. For example,
for l ¼ 2, we have jδo58ω0rgj ∼Oð10−6Þ, reflecting the numerical errors of ω0. As for the even mode, we have
jδe58ω0rgj ∼Oð10−4Þ, which is the order of magnitude we expect from truncating the sum over j at 50. The smallness

of jδo=e58 j justifies the convergence of our results.

l ¼ 2 l ¼ 3 l ¼ 4

δo=e58 (theoretical) (0,0) (0,0) (0,0)
δo58 × 106 ð1.22;−0.24Þ ð−0.76;−0.87Þ ð−0.26;−2.27Þ
δe58 × 104 ð1.55;−0.84Þ ð−0.04; 0.06Þ ð−0.02;−0.03Þ
δo9 (21.07,47.53) (18.29,46.27) (17.54,45.71)
δe9 ð−12.33;−58.12Þ ð−14.15;−51.82Þ ð−14.46;−50.17Þ
δo10 (10.54,23.76) (9.14,23.13) (8.77,22.85)
δe10 ð−6.17;−29.06Þ ð−7.07;−25.91Þ ð−7.23;−25.08Þ

FIG. 2. The convergence of the corrections on the even
quasinormal frequency for l ¼ 2. The three different marks
show the convergence of contributions from the d58, d9, and
d10 terms. As one can see in the plot, the ratio approaches 0.77 as
j increases, which indicates the convergence condition (4.3) is
satisfied. Also, the asymptotical ratio indicates that the fractional
systematic error caused by the truncating on j is Oð10−3Þ.
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convergence of our results. This represents a nontri-
vial check.

V. DISCUSSION AND OUTLOOK

It is known that the speed of GWs could be different
from the speed of photons due to interactions with other
fields which may manifest themselves as irrelevant oper-
ators in the low-energy EFT of gravity (or of electromag-
netism). In this paper, we investigate the propagation of
GWs on a black hole background. We work with an EFT
of gravity at low energy, in which effects from other fields
are captured by higher-dimensional curvature operators.
We study perturbations around black holes in this theory,
and derive the modified Regge-Wheeler-Zerilli equa-
tions (2.23). We find the leading modification on the speed
of GWs, which is entirely determined by only two of the
dimension-six operators, namely the pure Riemann or
Weyl-cubed operators d9 and d10 in Lagrangian (2.3).
We also compute the leading corrections of higher-
dimensional operators on the quasinormal frequency,
which are shown in Table I. Again, as expected, only
the pure Weyl-cubed operators (d9 and d10) affect the
quasinormal frequency as the other terms can be gauged
away by a field redefinition. In particular, corrections
from the d5 and d8 terms vanish in spite of their appearance
in the perturbation equations (2.23), and the effects from
the parameters d9 and d10 are governed by the quantity
2d9 þ d10.
We find that the low-energy speed of GWs can be either

superluminal or subluminal on a Schwarzschild-like black
hole, depending on the precise coefficients of the Weyl-
cubed operators that enter the low-energy EFT. These
coefficients depend on the details of the heavy fields
and more specifically on their precise spin. We show that
at low energy, GWs would see a different local causal
structure as compared to photons or other minimally
coupled species. Nevertheless, the departure vanishes at
the black hole horizon, implying that the location of the
horizon is identically defined for both GWs and photons.
Due to the hierarchy in scales, effects caused by the

higher-dimensional operators are suppressed by ϵ defined
in Eq. (2.6). This leads to a typical suppression of order

ϵ ∼ 10−162
�

M
MPl

�
−2
�
MBH

M⊙

�
−4
; ð5:1Þ

whereM is the cutoff scale of the EFTandMBH is the black
hole mass. Even in the highly extravagant scenario where
we consider the higher-dimensional operators to represent
the loop corrections from say a dark energy field, withM as
low as the Hubble scale, i.e.,M ∼ 10−60MPl, the corrections
on astrophysical black holes would still be incredibly
suppressed. For instance even in that scenario we would
get ϵ ∼ 10−48 forMBH ¼ 30 M⊙. In this sense, the purpose
of this work is not to predict observable effects that can be

tested with astrophysical black holes, but to understand the
effects from operators that naturally enter the EFT of
gravity on the causal structure of GWs from a theoretical
point of view. Nevertheless, the effects from the higher-
dimensional operators could be more significant for very
small black holes. For example, we would have ϵ ≃ 0.1 for
MBH ≃ 8 × 10−11 M⊙ ∼ 1023 g. Such light black holes
could form in the early universe, known as primordial
black holes. Even though such a light black hole has not
been observed, primordial black holes are constrained by
their possible observational effects [44].
In this study, we only investigate the leading corrections

and observe that the horizon as seen by low-energy GWs
remains the same as the higher frequency ones and as that
of other massless particles. This appears to be no accident,
and one would expect the same to remain valid to all order
in the EFT expansion although this has not been checked
explicitly in this study. At higher order in the EFT
expansion, we expect to observe a frequency dependence
in the modified dispersion relation, leading to a speed of
GWs to return to exact luminality at large frequencies.
Although this is beyond the scope of this work, it would be
interesting to check this behavior explicitly.
If the EFT of gravity is obtained from integrating out

heavy fields of spin smaller than 2, it can be shown that
wether or not GWs are effectively superluminal (with
respect to the vacuum speed of light) depends on the spin
of the lightest massive particle that has been integrated out.
In the case of fermions, we see that the effective speed of
GWs outside the horizon is always superluminal. This type
of argument has been used in the past to discriminate
against various types of EFTs. Applied to the present
context this would naively suggest that fermions cannot be
the lightest massive particles and therefore there must exist
another massive field (of spin other than 1=2) with mass
very close to that of neutrinos (it cannot be arbitrarily low;
otherwise the EFT of gravity at energy scales between the
mass of this new particle and that of the neutrinos would
suffer from the same issue). This appears to be a remark-
ably strong conclusion, and we would warn against this
type of arguments. Instead we emphasize that this effective
low-energy superluminality is not always connected to the
microscopic violation of causality [8–16,37].
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APPENDIX A: RELEVANT OPERATORS AND
FIELD REDEFINITION

The EFT of gravity includes various dimension-four and
dimension-six operators (as well as of course an infinite
number of other higher-dimensional operators). In principle
all of those contribute in a nontrivial way to the modified
background solution and to the dynamics of GWs; how-
ever, as already emphasized in Sec. II, for the vacuum
solution we are interested in, most of these operators are
irrelevant (in the sense that they do not contribute either to
the modified background solution or to the evolution
of GWs).
First expressed in terms of the Ricci scalar and tensor as

in (2.4) it is clear that none of the dimension-four operators
can contribute to the Ricci-flat solution. Moreover, not all
of the dimension-six curvature operators contribute at
leading order. Actually, any term in the Lagrangian that
is of second power of the Ricci tensor does not contribute to
the Ricci flat solution at leading order (i.e., at first order
in ϵ). This is because the equations of motion generated by
such terms is proportional to ϵRμν which vanishes at first
order in ϵ if the background solution is Ricci flat at zeroth
order in ϵ.
Moreover, for these particular types of solutions, the

operators d5 and d8 are not independent and always appear
as the combination d58 ≡ 4d5 þ d8. This can be understood
by rewriting the d5 and d8 terms in (2.3) as

L5;8 ¼
1

M2

ffiffiffiffiffiffi
−g

p ½d5ðgμνR2
μναβ − 4RμαβγRν

αβγÞRμν

þ d58RμνRμαβγRν
αβγ�: ðA1Þ

One can check that gμνR2
μναβ − 4RμαβγRν

αβγ vanishes for the
Schwarzschild metric; therefore varying L58 with respect
to gμν, one can find that the first term on the right-hand side
of Eq. (A1) does not contribute to the equation of motion at
the first order in ϵ.
We further note that there exists a change of frame that

allows us to field redefine most of the dimension-six
operators introduced in the EFT (2.1). Note, however, that
after field redefinitions, these operators appear as non-
minimal coupling to all matter fields, including the photon
and other massless particles. The following perturbative
field redefinition of the metric

gμν → gμν −
2

M2
Pl

δgμν; ðA2Þ

modifies the Einstein-Hilbert action by

δLEH ¼ ffiffiffiffiffiffi
−g

p
Rμν

�
δgμν −

1

2
gμνδg

�
: ðA3Þ

We can perform a field redefinition

gμν→gμν−
2

M2
Pl

�
−2cW2Rμνþ

�
cR2 þ1

3
cW2

�
gμνR

�
ðA4Þ

−
2

M2
Pl

1

M2

�
−d2□Rμν − d4RRμν − d6Rμ

αRνα

− d7RαβRμανβ − d8Rμ
αβγRναβγ

þ gμν

��
d1 þ

d2
2

�
□Rþ

�
d3 þ

d4
2

�
R2

þ
�
d6
2
þ d7

2

�
R2
αβ þ

�
d5 þ

d8
2

�
R2
αβγσ

�	
; ðA5Þ

so that only the operators that are genuinely Weyl cubed
(or Riemann cubed) are left in Lagrangian (2.1), i.e.,

L ¼ ffiffiffiffiffiffi
−g

p �
M2

Pl

2
Rþ 1

M2
ðd9Rμν

αβRαβ
γσRγσ

μν

þ d10Rμ
α
ν
βRα

γ
β
σRγ

μ
σ
ν

�
þO

�
1

M4

�
: ðA6Þ

Although such a change of frame simplifies the Lagrangian,
this field redefinition introduces nonminimal couplings
between gravity and matter fields [25] which in turn affect
the effective metric seen by matter fields. Rather than
needing to account for those minimal couplings, in the
main part of this work we find it more convenient to work
directly in the original frame where all the operators (2.3)
appear and the speed of photons is unity.
In what follows, we provide a preview of the analysis in

the new frame with Lagrangian (A6), before returning to
the original frame by a reversal redefinition. This is
particularly convenient when d9 ¼ d10 ¼ 0. In that special
case, the new frame would be equivalent to GR with no
other corrections at this order in the EFT in the absence of
other matter fields. It directly follows that any frame
independent quantities such as the quasinormal frequency
should be the same as GR up to Oð1=M4Þ corrections. In
particular, we can conclude that aside from d9 and d10 no
other dimension-six (and dimension-four) operators should
affect the quasinormal frequency at linear order in 1=M2.
However, in the general case where d9 ≠ 0 or d10 ≠ 0,

the black hole solution in the new frame is obtained in a
different coordinate system with radial coordinate r̃, which
relates to the original one through

r̃ ¼ r

�
1 − ϵ3d58

r6g
r6

�
: ðA7Þ
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This explains why the propagation of GWs (whose speed is
not frame independent6) ends up depending not only on the
coefficients of the pure Weyl-cubed terms d9 and d10 but
also on the contributions from the operators d5 and d8.
Accounting for these contributions can be done either via
an explicit inverse change of coordinate or by working
directly with all the operators present in the EFT from
the outset.
Moreover, in four dimensions, the operator d10 can be

written as a combination of other dimension-six operators
(see the appendix in Ref. [27] for more details). As one can
check in our results, only the coefficients 2d58 − 3d10 and
2d9 þ d10 contribute to the background solution and the
dynamics of GWs.

APPENDIX B: EXPLICIT EXPRESSIONS

In this appendix, we give some of the key steps that
underwent the derivation of Eq. (2.23) as well as the
explicit expressions for some of the relevant functions used
in the master equation.
Since within the regime of validity of the EFT, the

higher-dimensional curvature operators ought to be treated
perturbatively, one can simply start by using the same
Einstein equations that lead to the Regge-Wheeler-Zerilli
equations, which yield two master equations (one for the
odd perturbations, and one for the even perturbations) in
terms of h0, h1, H0, H1, H2, and K. Including the leading
corrections from the EFT higher-order operators then
leads to extra terms in our master equations that are linear
in ϵ. Any higher derivatives proportional to ϵ can (and
indeed should in this EFT) be removed using the lower
order GR perturbation equations. In order to rewrite our
master equations in the form of Eq. (2.23), we define our
master variables as Eq. (2.25), allowing deviations from
the GR definitions at OðϵÞ. The derivations are described
by fh1, fK, and fH1

with explicit forms to be determined
below. In Secs. B 1 and B 2 we provide further details on
how to determine these functions for the odd and even
perturbations.
Substituting Eq. (2.25) into Eq. (2.23) yields an odd and

even master equation which is similar to that in GR with the
addition ofOðϵÞ corrections. The precise expressions of the
correction to the effective potential Vo=e as well as fh1 , fK,

and fH1
can be determined by matching the coefficients

of K, H1, and their derivatives to the master equations
obtained previously.

1. Odd perturbations

Making use of the Regge-Wheeler gauge [34], the odd
perturbations involve two variables h0;1 introduced in
(2.16). In GR, Einstein’s equations include one constraint
that can be used to identify h0 and its first derivatives in
terms of h1 and its first derivatives. The only remaining
independent Einstein’s equation for the odd perturbations
then provides the master equation as a second order
evolution equation for h1. In the EFT at hand, we proceed
in a similar way. As mentioned previously, we make use of
the GR equations to remove any higher-order derivatives.
The master equation then takes the similar form as in GR,
namely involving only h1 and at most its second deriva-
tives. At this point, one can perform a field redefinition of
the form

Ψo ¼ i
ffiffiffiffiffiffiffi
AB

p
h1

rω
½1þ ϵfh1 �; ðB1Þ

and the expression for fh1 can be found by requesting the
master equation to be written in the following form:

ffiffiffiffiffiffiffi
AB

p d
dr

� ffiffiffiffiffiffiffi
AB

p dΨo

dr

�
þ ω2ΨoðrÞ

−
ffiffiffiffiffiffiffi
AB

p
½Vo

GR þ ϵVoðr;ωÞ�ΨoðrÞ ¼ 0: ðB2Þ

2. Even perturbations

Obtaining the master equation for the even mode needs
more care. Making use of the Regge-Wheeler gauge [34],
the even perturbations now involve four variables, namely
the quantities H0;1;2 and K introduced in (2.17). Using the
same Einstein equations that led to the Regge-Wheeler-
Zerilli equations, one gets an equation of the form

E ¼ EGR þ ϵδE ¼ 0; ðB3Þ

where EGR is the GRmaster equation in terms ofH1,K, and
their derivatives, and δE is a function of H0;1;2, K, and their
derivatives.H0;2 in δE can be replaced withH1 andK using
the GR perturbation equations, after which we have E being
an equation of only H1 and K.
On the other hand, we can define the master variable as

Ψe ¼ 1

ðJ − 2Þrþ 3rg

�
−r2Kð1þ ϵfKÞ

þ i
ffiffiffiffiffiffiffi
AB

p
rH1

ω
ð1þ ϵfH1

Þ
�
; ðB4Þ

6To be more precise, the low-energy speed of GWs is not frame
independent but we expect the ratio of the low-energy speed of
GWs to that of photons to be frame independent. Note, however,
that in the frame where the Lagrangian for gravity takes the form
(A6), photons are no longer minimally coupled. In that frame, the
low-energy speed of GWs will only depend on d9 and d10, but the
low-energy speed of photons is expected to depend on the
coefficients d5 and d8 [the coefficients governing the pure-Weyl
terms in the field redefinition (A5)]. It should therefore come
as no surprise that even in that frame the ratio of the speed of
GWs and photons depends not only on d9 and d10 but also on d5
and d8.
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with unknown functions fH1;K. Substituting it into Eq. (2.23) gives

ffiffiffiffiffiffiffi
AB

p d
dr

� ffiffiffiffiffiffiffi
AB

p dΨe

dr

�
þ ω2

c2s
ΨeðrÞ −

ffiffiffiffiffiffiffi
AB

p
½Ve

GR þ ϵVeðrÞ�ΨeðrÞ ¼ E þ ϵ
X

fiðrÞEGR
i ¼ 0; ðB5Þ

where
P

fiðrÞEGR
i denotes a linear combination of GR perturbation equations. Then the unknown functions fH1;K, V

e, and
the linear combination fi can be determined by identifying the coefficient of K, H1, and their derivatives on both sides of
the equation.

3. Explicit expressions

Following the prescriptions described above, we find after explicit calculations the Vo=e, fh1 , fK, and fH1
defined in

Eq. (2.23) given by

Vo ¼ 3

x9r2g
fd58ð24 − 7JxÞ þ 6d9½80ðJ − 6Þx2 þ 5ð230 − 19JÞx − 662� þ 3d10

2
½160ðJ − 6Þx2 þ ð2300 − 183JÞx − 1348�g;

ðB6Þ

Ve ¼ −3
2x9½ðJ − 2Þxþ 3�3r2g

fd58½14ðJ − 2Þ3Jx4 þ 6ðJ − 2Þ2ð13J − 16Þx3 þ 270ðJ − 2Þ2x2 þ 558ðJ − 2Þxþ 432�

þ d9½−36ðJ − 2Þ2ð15J2 − 336J þ 836Þx4 − 60ðJ − 2Þð147J2 − 1304J þ 2164Þx3
þ 480ðJ − 6ÞðJ − 2Þ3x5 − 36ðJ − 2Þð1073J − 3988Þx2 − 12ð5407J − 13460Þx − 36648�
þ d10½−3ðJ − 2Þ2ð97J2 − 2030J þ 5016Þx4 − 3ðJ − 2Þð1509J2 − 13166J þ 21736Þx3
þ 240ðJ − 6ÞðJ − 2Þ3x5 − 9ðJ − 2Þð2191J − 8066Þx2 − 3ð11093J − 27478Þx − 18972�g; ðB7Þ

fh1 ¼
3

2x6
½2d58 þ d9ð64 − 96xÞ þ d10ð29 − 48xÞ�; ðB8Þ

fK ¼ 1

x6½ðJ − 2Þxþ 3� f3d58½2ðJ − 2ÞJx2 þ ðJ þ 10Þx − 12� þ 6d9½24ðJ − 2Þx2 − 4ð8J − 25Þx − 63�

−
3

2
d10½6ðJ2 − 10J þ 16Þx2 þ ð67J − 170Þxþ 90�g; ðB9Þ

fH1
¼ 1

x6½ðJ − 2Þxþ 3� f3d58½2ðJ − 2ÞJx2 þ ð8J − 4Þxþ 9� þ 6d9½24ðJ − 2Þx2 þ ð82 − 23JÞx − 36�

−
3

2
d10½6ðJ2 − 10J þ 16Þx2 þ 2ð35J − 88Þxþ 99�g; ðB10Þ

where x≡ r=rg. The field redefinition Ψ̃ ¼ ffiffiffiffiffiffiffiffiffiffi
NðrÞp

Ψ defined above Eq. (4.4) is given by

NðrÞ ¼ 1 −
ϵ

x − 1

�
3d58

�
4

x6
−

5

x5
þ 1

�
þ d9

�
44

x6
−
54

x5
þ 10

�
þ d10

�
4

x6
−

9

2x5
þ 1

2

��
: ðB11Þ
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