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We propose accurate calculations of quasinormal modes of black holes in the Einstein-aether theory,
which were previously considered in the literature, partially, with insufficient accuracy. We also show that
the arbitrarily long-lived modes, quasiresonances, are allowed in the Einstein-aether theory as well and
demonstrate that the asymptotic tails, unlike quasinormal frequencies, are indistinguishable from those in
the Einstein theory.
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I. INTRODUCTION

Quasinormal modes are proper oscillation frequencies
of black holes, corresponding to the specific boundary
conditions: purely outgoing wave at infinity and purely
incoming wave at the event horizon. They do not depend on
the way the perturbation was excited, but only on the black-
hole parameters, which makes them a characteristic feature
of the black-hole geometry, a kind of “fingerprints” of
black holes. Quasinormal modes play a crucial role in the
current observations of gravitational waves and, being
studied during the past decades in a great number of papers,
have become an essential characteristic of a black-hole
geometry [1,2]. Even though there were detected signals
for which the quasinormal frequencies are known with rather
a small error of about a few percents [1,2], the large
uncertainty in the determination of the mass and angular
momentum of the black hole allows one to ascribe the same
observed frequencies to a non-Kerr solution [3] with differ-
ent parameters, so that the alternative theories of gravity are
not only not excluded by the current experiments, but even
are not strongly constrained by observations in the gravita-
tional [1,2] and electromagnetic [4,5] spectra.
Among alternative theories of gravity an interesting

approach is connected with the Einstein-aether theory,
which is a Lorentz-violating theory [6–14] endowing a
spacetime with both a metric and a unit timelike vector field
(aether) having a preferred time direction. It includes the
Einstein relativity as a special case. Quasinormal modes of
various black-hole solutions [15,16] in this theory were
considered in [17–20], depending on the way the aether
vector is chosen. For the first time quasinormal modes in
the Einstein-aether theory were studied in [17,18], but it
proved out that the black-hole solution [15] considered in

[17,18] did not satisfy the observed post-Newtonian
behavior and, thereby, cannot describe a viable astrophysi-
cal black hole. The same is true for the so called Aether II
type black-hole solution considered in [19,20]. This means
that those black-hole models and their spectra still may be
relevant for the miniature or primordial black holes, but
not for large astrophysical black holes. The Aether I type
considered in [19,20] is not discarded by the current
experiments in the weak field regime, but, as we will show
in the present paper, the data for quasinormal modes
represented in [19,20] suffer from the following two
drawbacks:

(i) The lower multipoles are calculated with insufficient
accuracy, so that the effect is, sometimes, smaller
than the relative error.

(ii) Gravitational perturbations are reduced to the master
wavelike equation in a non-self-consistent way, so
that it cannot describe the gravitational spectrum
even approximately.

Here we will compute quasinormal modes for both types
of aether with the help of two alternative methods: the
higher-order WKB method [21–26] with the usage of Padé
approximants [25,26] and the time-domain integration [27].
Both methods are sufficiently accurate and are in a good
agreement with each other.
In addition, we will consider perturbations of a massive

scalar field and show that, in a similar fashion with the
Einstein theory, spectrum of massive fields in the Einstein-
aether theory allows for arbitrarily long-lived quasinormal
modes, called quasiresonances [28–40]. We will show that
at asymptotically late times, the quasinormal modes are
suppressed by the power-law tail, which is indistinguish-
able from the Schwarzschild one.
The paper is organized as follows. In Sec. II, we review

the essentials of the Einstein-aether theory and wavelike
equations for test scalar and electromagnetic fields.*wwrttye@gmail.com
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Section III is devoted to the WKB and time-domain
integration methods we used for finding quasinormal
modes. In Sec. IV, we discuss the quasinormal modes of
massless fields in the black-hole background for the
Einstein-aether theory, while in Sec. V the case of a
massive scalar field and existence of quasiresonances is
discussed. The late-time tails are presented in Sec. VI. In
Sec. VII, we give a brief remark on a wrong treatment of
gravitational perturbations in a number of earlier publica-
tions. Finally, we summarize the obtained results and
mention some open problems.

II. THE WAVE EQUATION

The Einstein-aether theory under consideration is
described by the action [41]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGae
ðRþ LaeÞ

�
; ð1Þ

where Gae is the aether gravitational constant, Lae is the
aether Lagrangian density,

−Lae ¼ Zab
cdð∇aucÞð∇budÞ − λðu2 þ 1Þ; ð2Þ

with

Zab
cd ¼ c1gabgcd þ c2δacδbd þ c3δadδ

b
c − c4uaubgcd; ð3Þ

where ci; i ¼ 1, 2, 3, 4, are coupling constants of the
theory. Although there are a number of severe constraints
[42–45] on the coupling constants ci (not only theoretical,
but also observational), the papers [19,20], which we
consider here, deal with the following theoretical ones [16]:

0 ≤ c13 < 1; 0 ≤ c14 < 2; c13 ≥ c14=2;

where c13 ¼ c1 þ c3, c14 ¼ c1 þ c4.
The metric of the spherically symmetric static Einstein-

aether black-hole spacetime is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðsin2 θdϕ2 þ dθ2Þ: ð4Þ

The metric function has the following form:
(i) For the first kind aether

fðrÞ ¼ 1 −
2M
r

− I

�
2M
r

�
4

; I ¼ 27c13
256ð1 − c13Þ

;

ð5Þ

(ii) For the second kind aether

fðrÞ¼1−
2M
r

−J

�
M
r

�
2

; J¼c13−c14=2
1−c13

: ð6Þ

Note that for the values c13 ¼ 0 (for the first kind aether)
and c13 ¼ c14=2 (for the second kind aether), the metric (4)
reduces to the Schwarzschild black-hole case.
The general covariant equations for the test scalar Φ

and electromagnetic Aμ fields have the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ ¼ 0; ð7Þ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ð8Þ

where Fμν ¼ ∂μAν − ∂νAμ. After separation of the varia-
bles, Eqs. (7) and (8) take the following Schrödinger-like
form (see, for instance, [46,47]):

d2Ψs

dr2�
þ ðω2 − VðrÞÞΨs ¼ 0; ð9Þ

where s ¼ 0 corresponds to scalar field and s ¼ 1 to
electromagnetic field and the “tortoise coordinate” r� is
defined by the relation

dr� ¼
dr
fðrÞ : ð10Þ

The effective potential is

VðrÞ ¼ fðrÞ
�
lðlþ 1Þ

r2
þ 1 − s

r
·
dfðrÞ
dr

�
ð11Þ

and has the form of a potential barrier (see Fig. 1).

III. THE METHODS

A. The WKB method

The WKB method for finding quasinormal frequencies,
which was first used by Schutz and Will [21] (reproducing
at the first order the earlier result of Mashhoon [22]), grew
very popular because of its effectiveness and was treated in
numerous papers.
For finding quasinormal modes, we use higher-order

WKB formula [21–26]

ω2 ¼ V0 þ A2ðK2Þ þ A4ðK2Þ þ A6ðK2Þ þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ð1þ A3ðK2Þ þ A5ðK2Þ þ A7ðK2Þ…Þ;

ð12Þ
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where K ¼ signReðωÞðnþ 1
2
Þ, n ¼ 0; 1; 2; 3… . The cor-

rections AkðK2Þ of order k to the first-order formula are
polynomials of K2 with rational coefficients, which depend
on the values V2; V3… of higher derivatives of the potential
VðrÞ in its maximum (but not on the maximum V0 itself),
whence it follows that the right-hand side of (12) does not
depend on ω.
As the WKB method converges only asymptotically,

simple increasing of the WKB formula order does not
necessarily imply improving the results (see more about
the asymptotic WKB regime in [48]). So as to increase
the accuracy of the higher-order WKB formula (12), we
use Padé approximants [49], following Matyjasek and
Opala [25]. For the order k of the WKB formula (12),
we define a polynomial PkðϵÞ as

PkðϵÞ ¼ V0 þ A2ðK2Þϵ2 þ A4ðK2Þϵ4 þ A6ðK2Þϵ6 þ…

− iK
ffiffiffiffiffiffiffiffiffiffiffi
−2V2

p
ðϵþ A3ðK2Þϵ3 þ A5ðK2Þϵ5…Þ;

ð13Þ

whence we can obtain the squared frequency taking ϵ ¼ 1,

ω2 ¼ Pkð1Þ:

For the polynomial PkðϵÞ, we consider a family of the
rational functions

Pñ=m̃ðϵÞ ¼
Q0 þQ1ϵþ � � � þQñϵ

ñ

R0 þ R1ϵþ � � � þ Rm̃ϵ
m̃ ; ð14Þ

called Padé approximants, with ñþ m̃ ¼ k, such that near
ϵ ¼ 0,

Pñ=m̃ðϵÞ − PkðϵÞ ¼ Oðϵkþ1Þ:

It turns out that for finding fundamental mode (n ¼ 0)
Padé approximants with ñ ≈ m̃ usually provide the best
approximation. In [25], P6=6ð1Þ and P6=7ð1Þ were com-
pared to the sixth-order WKB formula P6=0ð1Þ. In [26], it
has been observed that as a rule even P3=3ð1Þ gives a more
accurate value for the squared frequency than P6=0ð1Þ. In
our case, we use sixth-order WKB expansion with appro-
priate Padé partition. The corresponding automatic code in
Mathematica is in open access [50].

B. The time-domain integration

If we keep in Eq. (9) the second derivative in time instead
of ω2 term, then the perturbation equations can be inte-
grated at a fixed r in the time domain. We use the technique
of integration in the time domain developed by Gundlach
et al. in [27]. We shall integrate the wavelike equation
rewritten in terms of the light-cone variables u ¼ t − r� and
v ¼ tþ r�. The appropriate discretization scheme is

ΨðNÞ ¼ ΨðWÞ þΨðEÞ −ΨðSÞ

− Δ2
VðWÞΨðWÞ þ VðEÞΨðEÞ

8
þOðΔ4Þ; ð15Þ

where the following designations for the points were used:
N ¼ ðuþ Δ; vþ ΔÞ, W ¼ ðuþ Δ; vÞ, E ¼ ðu; vþ ΔÞ,
and S ¼ ðu; vÞ. The initial data are given on the null
surfaces u ¼ u0 and v ¼ v0. To extract the values of the
quasinormal modes, we shall use the Prony method (see,
e.g., [51]) of fitting the signal by a sum of damped
exponents.

IV. QUASINORMAL MODES

We considered a fundamental (n ¼ 0) quasinormal mode
for the scalar and electromagnetic perturbations of the
Einstein-aether black-hole spacetime (M ¼ 1). We were
interested in the lower multipole numbers (l ¼ 0 for the
scalar and l ¼ 1 for the electromagnetic field) because of
their dominating role in the signal.
First of all, we looked at the quasinormal frequencies

from [19] which correspond to the Schwarzschild limit
(c13 ¼ 0 for the first kind aether in Table I and c13 ¼
c14=2 ¼ 0.1 for the second kind aether in Table II). As
these frequencies differed from the accurate values in the
second digit after the point already (for the scalar field
case), we recalculated them. For this, we used two methods:
the sixth-order WKB formula with Padé approximants
P5=1ð1Þ and the time-domain integration. The results
obtained by the both methods turned out to be in a good
agreement with the accurate values for the Schwarzschild
case. Therefore, we went on with our calculations, keeping
the methods’ parameters (such as the order of WKB series
and the orders of Padé approximants) unchanged, for the
rest of the values of the parameter c13, considered in
Tables I and II.

FIG. 1. An example of an effective potential: electromagnetic
perturbations of the second kind aether black hole (l ¼ 1, s ¼ 1,
c ¼ 0.4, d ¼ 0.2).
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At each step, we also found a relative effect and a relative
error of the results presented in [19]. A relative effect is
defined as

δRe ¼
jReωi − Reωlj

Reωl
× 100%; ð16Þ

δIm ¼ jImωi − Imωlj
Imωl

× 100%; ð17Þ

where ωi is the current value of the quasinormal mode and
ωl is the value of the quasinormal mode, which corresponds
to the Schwarzschild limit. A relative error is defined by

εRe ¼
jReω1 − Reω0j

Reω0

× 100%; ð18Þ

εIm ¼ jImω1 − Imω0j
Imω0

× 100%; ð19Þ

where ω1 denotes the result from [19] and ω0 denotes our
new result at each step.
All the obtained results are presented in Tables I and II.

The values of the fundamental quasinormal mode are

placed one under the other: the result from [19] (first line)
and the results obtained here by WKB (second line) and
time-domain (third line) methods. The additional fourth
line (for c13 ¼ 0 in Table I and for c13 ¼ 0.1 in Table II)
contains accurate values of the fundamental quasinormal
mode for the Schwarzschild case. The effect and the error
are calculated for the real and imaginary parts of the
quasinormal frequencies obtained in [19].
As the values of the modes are placed one under the

other, it is easy to compare them and see that the
discrepancy of our results and the accurate values starts
at the fourth (scalar field) or even the fifth (electromagnetic
field) digit after the point, while for the results from [19]
these digits are respectively the second and the third. For
the rest of the considered values of the parameter c13, this
tendency is kept: the deviation of the results of [19] from
both of our results is considerably larger than the difference
between our results as such.
The error of the quasinormal frequencies obtained in [19]

is rather large even for the values of the parameter c13 ¼ 0,
which correspond to the Schwarzschild limit (εRe ¼ 5.4%
and εIm ¼ 10% for the scalar field). It can be seen that in the
case of the scalar field for the values of the parameter c13
near the Schwarzschild limit the error is greater than the

TABLE I. Fundamental quasinormal modes for the first kind aether black-hole spacetime (presented in [19] (first line), obtained here
by WKB (second line) and time-domain (third line) methods).

Scalar field (l ¼ 0Þ Electromagnetic field (l ¼ 1Þ
Parameter QNM Effect % Error % QNM Effect % Error %

c13 ω δRe δIm εRe εIm ω δRe δIm εRe εIm

0 0.104647 − 0.115197i 0 0 5.4 10 0.245870 − 0.093106i 0 0 0.96 0.68
0.110678 − 0.104424i 0.248255 − 0.092480i
0.109667 − 0.104804i 0.248264 − 0.092491i
0.110455 − 0.104896i 0.248264 − 0.092488i

0.15 0.103976 − 0.117446i 0.64 2.0 5.2 11 0.243928 − 0.094312i 0.79 1.3 0.88 0.96
0.109637 − 0.105590i 0.246086 − 0.093413i
0.108454 − 0.106053i 0.246093 − 0.093440i

0.3 0.101739 − 0.120032i 2.8 4.2 5.5 14 0.241266 − 0.095728i 1.9 2.8 0.8 1.4
0.107641 − 0.105651i 0.243201 − 0.094451i
0.106391 − 0.107705i 0.243208 − 0.094523i

0.45 0.096768 − 0.123153i 7.5 6.9 7.4 14 0.237420 − 0.097401i 3.4 4.6 0.75 1.8
0.104550 − 0.107923i 0.239207 − 0.095662i
0.104945 − 0.108231i 0.239186 − 0.095757i

0.6 0.087386 − 0.127661i 16 11 14 16 0.231411 − 0.099372i 5.9 6.7 0.77 2.4
0.101186 − 0.110012i 0.233210 − 0.097008i
0.102302 − 0.109778i 0.233154 − 0.097124i

0.75 0.072016 − 0.136350i 31 18 24 21 0.220681 − 0.101581i 10 9.1 1.0 3.3
0.095375 − 0.112333i 0.222992 − 0.098290i
0.097224 − 0.111863i 0.222873 − 0.098429i

0.9 0.051721 − 0.155269i 51 35 37 36 0.194630 − 0.102849i 21 10 2.4 5.2
0.082006 − 0.114565i 0.199463 − 0.097802i
0.084036 − 0.112586i 0.199194 − 0.097953i
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effect, for the imaginary part even by an order. For larger
values of c13, which cannot promise too much accuracy,
even if the error becomes less than the effect, it still remains
comparable to it. Although in the case of the electromag-
netic field, the situation is not so extreme, the error as yet
can come to 50% or even 110%.
The eikonal formulas (l → ∞) for the quasinormal

modes in the Einstein-aether theory were obtained in
[52] for both types of aether.

V. QUASIRESONANCE

For a massive scalar field Φ of the mass μ, general
covariant equation having the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΦÞ − μ2Φ ¼ 0; ð20Þ

there exists a phenomenon of the so-called quasiresonance
[29]; increasing of the field mass μ causes decreasing of the

TABLE III. Fundamental quasinormal modes for the gravitational perturbations of the Reissner-Nordström black-hole spacetime
(l ¼ 2, M ¼ 1).

Q Reduced Accurate

Effect % Error %

δRe δIm εRe εIm

0 0.373620 − 0.088933i 0.373620 − 0.088933i 0 0 0 0
0.1 0.374273 − 0.088986i 0.373880 − 0.088962i 0.07 0.03 0.11 0.03
0.2 0.376260 − 0.089142i 0.374691 − 0.089046i 0.29 0.13 0.42 0.11
0.3 0.379675 − 0.089399i 0.376142 − 0.089185i 0.68 0.28 0.94 0.24
0.4 0.384687 − 0.089748i 0.378381 − 0.089371i 1.27 0.49 1.67 0.42
0.5 0.391573 − 0.090164i 0.381624 − 0.089584i 2.14 0.73 2.61 0.65
0.6 0.400778 − 0.090592i 0.386173 − 0.089781i 3.36 0.95 3.78 0.90
0.7 0.413048 − 0.090900i 0.392475 − 0.089872i 5.05 1.06 5.24 1.14
0.8 0.429717 − 0.090796i 0.401211 − 0.089621i 7.38 0,77 7.10 1.31
0.9 0.453363 − 0.089298i 0.413568 − 0.088311i 10.69 −0.70 9.62 1.12
1 0.490129 − 0.081661i 0.431344 − 0.083440i 15.45 −6.18 13.63 −2.13

TABLE II. Fundamental quasinormal modes for the second kind aether black-hole spacetime with fixed c14 ¼ 0.2 (presented in [19]
(first line), obtained here by WKB (second line) and time-domain (third line) methods).

Scalar field (l ¼ 0Þ Electromagnetic field (l ¼ 1Þ
Parameter QNM Effect % Error % QNM Effect % Error %

c13 ω δRe δIm εRe εIm ω δRe δIm εRe εIm

0.10 0.104647 − 0.115197i 0 0 5.4 10 0.245870 − 0.093106i 0 0 0.96 0.68
0.110678 − 0.104424i 0.248255 − 0.092480i
0.110366 − 0.104013i 0.248259 − 0.092479i
0.110455 − 0.104896i 0.248264 − 0.092488i

0.25 0.100755 − 0.114893i 3.7 0.26 5.9 11 0.236985 − 0.091929i 3.6 1.3 1.0 0.78
0.107071 − 0.103500i 0.239475 − 0.091215i
0.107006 − 0.103007i 0.239485 − 0.091214i

0.40 0.095828 − 0.114071i 8.4 0.98 6.5 12 0.225711 − 0.090122i 8.2 3.2 1.2 0.92
0.102441 − 0.101957i 0.228342 − 0.089303i
0.102778 − 0.101465i 0.228354 − 0.089302i

0.55 0.089374 − 0.112234i 15 2.6 7.1 13 0.210705 − 0.087219i 14 6.3 1.3 1.1
0.096215 − 0.099294i 0.213524 − 0.086273i
0.097314 − 0.099295i 0.213538 − 0.086277i

0.70 0.080354 − 0.108123i 23 6.1 7.8 15 0.189117 − 0.082138i 23 12 1.6 1.4
0.087179 − 0.094317i 0.192182 − 0.081036i
0.088294 − 0.095006i 0.192191 − 0.081046i

0.85 0.065688 − 0.097327i 37 16 8.5 17 0.152828 − 0.071437i 38 23 2.1 1.8
0.071753 − 0.083125i 0.156164 − 0.070156i
0.071982 − 0.084297i 0.156158 − 0.070168i
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FIG. 3. Real (left panel) and imaginary (right panel) parts of the fundamental quasinormal mode, calculated by the WKB method,
depending on μ, for the second kind aether black hole with l ¼ 10, c13 ¼ 0.45, c14 ¼ 0.2. The red part of the lines marks the values,
checked by the time-domain integration.

FIG. 4. Real (left panel) and imaginary (right panel) parts of the fundamental quasinormal mode depending on μ, for the second kind
aether black hole with l ¼ 1, c13 ¼ 0.45, c14 ¼ 0.2. Blue points stand for the WKB method, red points for the time-domain integration,
and black dotted line for the continued fraction method.

FIG. 2. Real (left panel) and imaginary (right panel) parts of the fundamental quasinormal mode, calculated by the WKB method,
depending on μ, for the first kind aether black hole with l ¼ 10, c13 ¼ 0.45. The red part of the lines marks the values, checked by the
time-domain integration.
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lower overtones damping rate, which means that infinitely
long-lived modes appear in the spectrum.
Figures 2 and 3 show dependence of the real and

imaginary parts of the fundamental quasinormal mode on
the mass μ of the scalar test field for the first and the second
kind aether black-hole spacetime (l ¼ 10), calculated by
the sixth-orderWKBmethod with Padé approximation. The
red part of the lines marks the values of the quasinormal
modes, checked by the time-domain integration (both
results turned out to coincide at least up to the second digit
after the point). As WKB method works accurately when l
is much larger than μM [38] (although it cannot be applied
in the regime of quasiresonances), the extrapolation of the
WKB data can indicate the existence of quasiresonances.
For low multipoles, the WKB method is not always

accurate, nor is even the time-domain integration (since the
time-domain profile has only a few oscillations and there is
a problem of extracting the value of the quasinormal mode).
Therefore, for l ¼ 0 and l ¼ 1, we calculated quasinormal
frequencies with the help of the continued fraction method
described in [53,54], which is convergent and gives

accurate results. Figure 4 shows the real and imaginary
parts of the fundamental quasinormal mode, calculated for
l ¼ 1 by all the three methods (blue points stand for the
WKB method, red points for the time-domain integration,
and black dotted line for the continued fraction method),
depending on μ. From these plots, it can be seen that the
WKB method (where it is applicable) gives very close
results to those obtained by the accurate continued fraction
method, while the time-domain integration is not so
accurate. This can be explained by appearing of the
oscillating tail in the time-domain profile for the low
multipole numbers. For l ¼ 0, when we cannot fully
trust neither WKB method nor time-domain integration,
we present in Fig. 5 the real and imaginary parts of
the fundamental quasinormal mode, calculated by the
continued fraction method, depending on μ. Figure 6 shows
the dependence of the imaginary part of the fundamental
quasinormal mode on its real part for the second kind aether
black hole with l ¼ 0 and l ¼ 1.
As can be seen from the Figs. 2–6, increasing of the field

mass decreases the imaginary part of the quasinormal

0.105

0.110

0.115
0.10

0.08

FIG. 5. Real (left panel) and imaginary (right panel) parts of the fundamental quasinormal mode, calculated by the continued fraction
method, depending on μ, for the second kind aether black hole with l ¼ 0, c13 ¼ 0.45, c14 ¼ 0.2.

FIG. 6. Dependence of the imaginary part of the fundamental quasinormal mode, calculated by the continued fraction method, on its
real part for the second kind aether black hole with l ¼ 0 (left panel) and l ¼ 1 (right panel), c13 ¼ 0.45, c14 ¼ 0.2.
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frequency, which indicates existence of the phenomenon of
quasiresonance for the considered case of the massive
scalar field in the Einstein-aether black-hole spacetime.

VI. LATE-TIME TAILS

The incompleteness of the quasinormal modes set
implies that at sufficiently late times the quasinormal
modes are suppressed by exponential or power-law tails.
Figure 7 demonstrates an example of the time-domain
profile for the scalar perturbations (s ¼ 0, l ¼ 0) of the
second kind Einstein-aether black-hole spacetime, where it
can be seen that the late-times tails for some fixed values of
the black-hole parameters and l ¼ 0 jΨj ∼ t−3 are the same
that those for the Schwarzschild black-hole case. Indeed,
for a scalar field in the Schwarzschild background, we have
the following general law:

jΨj ∼ t−ð2lþ3Þ: ð21Þ

VII. REMARK ON GRAVITATIONAL
PERTURBATIONS

In a few previously published works not only in the
Einstein-aether gravitational perturbations [18,20], but
also in the Einstein-Maxwell theory [55], the Einstein
equations,

Rμν −
1

2
Rgμν ¼ κTμν; ð22Þ

were perturbed in such a way that perturbations of the right-
hand side of the Einstein equations, containing the energy
momentum tensor of the matter fields, were neglected.
Thus, instead of the full perturbation equations

δ

�
Rμν −

1

2
Rgμν

�
¼ κδTμν; ð23Þ

the reduced set of equations was considered,

δ

�
Rμν −

1

2
Rgμν

�
¼ 0: ð24Þ

This reduction was usually justified by relatively small
energy content of matter fields. However, the linearized
values on the right- and left-hand sides must be of the
same order and cannot be ignored. There is a simple way to
check whether our supposition is correct. For this, we will
consider the full set of perturbation equations given by (23)
for the Reissner-Nordström spacetime as a solution of the
Einstein-Maxwell equations and the corresponding reduced
set given by Eq. (24). The effective potential for axial
perturbations within the reduced procedure (24) can be
found, for example, in [20]

VðrÞ ¼ fðrÞ
�ðlþ 2Þðl − 1Þ þ 2fðrÞ

r2
−
1

r
dfðrÞ
dr

�
; ð25Þ

while one of the two axial potentials for the full set
perturbations of the Einstein-Maxwell field for the
Reissner-Nordström black hole is

VðrÞ ¼
�
1 −

2M
r

þQ2

r2

��ðlþ 2Þðl − 1Þ þ 2

r2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4ðlþ 2Þðl − 1ÞQ2

p
r3

þ 16Q2 − 12Mr
4r4

�
:

ð26Þ

From Table III, one can see that for every value of the
electric charge Q, the effect given by the nonzero charge in
comparison with the Schwarzschild limit is smaller than
or of the same order as the error due to neglecting
perturbations of the energy-momentum tensor. Therefore,
we conclude that such neglecting cannot be used to provide
any reliable results. Thus, the full set of perturbation
equations is necessary to complement the quasinormal
spectrum of the Einstein-aether black holes and to conclude
about their stability.

VIII. CONCLUSIONS

In the present paper, we have shown that pervious
considerations of quasinormal spectrum of black holes in
the Einstein-aether theory [19,20] suffer from the two main
drawbacks: insufficient accuracy of reported quasinormal
frequencies at lower multipoles l, such that the effect is
frequently smaller than the error, and inconsistency of
treatment of gravitational perturbations for which the

FIG. 7. An example of the time-domain profile: scalar pertur-
bations of the second kind aether black hole (l ¼ 0, s ¼ 0,
c13 ¼ 0.45, c14 ¼ 0.2).
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linearization of the energy-momentum tensor cannot be
neglected. Here we compute accurate quasinormal modes
of massless test scalar and electromagnetic fields and, in
addition, consider a massive scalar field for which we
demonstrate the existence of the arbitrarily long-lived
quasinormal modes called quasiresonances. We also study
asymptotic tails and time-domain profiles of the Einstein-
aether theory and show that at asymptotic times the tails are
identical to those of the Einstein theory.
Our paper can be extended in a number of ways. First of

all, we showed that consideration of the full set of
perturbations equations is necessary to analyze the

gravitational spectrum and, therefore, to conclude about
the stability of the black hole in the Einstein-aether theory.
In addition, the fermionic perturbations can be further
considered in a similar way to the bosonic ones studied in
this paper.
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