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The propagation of electromagnetic waves in vacuum is often described within the geometrical optics
approximation, which predicts that wave rays follow null geodesics. However, this model is valid only in
the limit of infinitely high frequencies. At large but finite frequencies, diffraction can still be negligible, but
the ray dynamics becomes affected by the evolution of the wave polarization. Hence, rays can deviate from
null geodesics, which is known as the gravitational spin Hall effect of light. In the literature, this effect has
been calculated ad hoc for a number of special cases, but no general description has been proposed. Here,
we present a covariant Wentzel-Kramers-Brillouin analysis from first principles for the propagation of light
in arbitrary curved spacetimes. We obtain polarization-dependent ray equations describing the gravitational
spin Hall effect of light. We also present numerical examples of polarization-dependent ray dynamics
in the Schwarzschild spacetime, and the magnitude of the effect is briefly discussed. The analysis reported
here is analogous to that of the spin Hall effect of light in inhomogeneous media, which has been
experimentally verified.
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I. INTRODUCTION

The propagation of electromagnetic waves in curved
spacetime is often described within the geometrical optics
approximation, which applies in the limit of infinitely high
frequencies [1,2]. In geometrical optics, Maxwell’s equa-
tions are reduced to a set of ray equations and a set of
transport equations along these rays. The ray equations are
the null geodesics of the underlying spacetime, and the
transport equations govern the evolution of the intensity
and the polarization vector. In particular, the geometrical
optics approximation predicts that the ray equations deter-
mine the evolution of the polarization vector and there is no
backreaction from the polarization vector onto the ray
equations. However, this model is valid only in the limit of
infinitely high frequencies, and there has been interest in
calculating the light propagation more accurately. At large
but finite frequencies, diffraction can still be negligible but

rays can deviate from geodesics. This is known as the
gravitational spin Hall effect of light [3].
The mechanism behind the spin Hall effect is the spin-

orbit interaction [4], i.e., the coupling of the wave polari-
zation (spin) with the translational (orbital) motion of the
ray as a particle, resulting in polarization(spin)-dependent
rays. Related phenomena are found in many areas of
physics. In condensed matter physics, electrons traveling
in certain materials experience a spin Hall effect, resulting
in spin-dependent trajectories, and spin accumulation on
the lateral sides of the material [5,6]. The effect was
theoretically predicted by Dyakonov and Perel in 1971
[7,8], followed by experimental observation in 1984 [9] and
2004 [10]. In optics, the polarization-dependent deflection
of light traveling in an inhomogeneous medium is known as
the spin Hall effect of light [4,11]. The effect was predicted
by several authors [12–18] and has recently been verified
experimentally by Hosten and Kwiat [19] and also by
Bliokh et al. [20]. The spin Hall effect of light provides
corrections to the geometrical optics limit, which scale
roughly with the inverse of frequency. This, and several
other effects, can be explained in terms of the Berry
curvature [4,20–22].
There are several approaches aiming to describe the

dynamics of spinning particles or wave packets in general
relativity. Using a multipole expansion of the energy-
momentum tensor, the dynamics of massive spinning test
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particles has been extensively studied in the form of the
Mathisson-Papapetrou-Dixon equations [23–27]. A mass-
less limit of these equations was derived by Souriau and
Saturnini [28,29], and particular examples adapted to
certain spacetimes have been discussed in Refs. [30–32].
Another commonly used method is the Wentzel-Kramers-
Brillouin (WKB) approximation for various field equations
on curved spacetimes. For massive fields, this has been
done in Refs. [33,34] by considering a WKB approxima-
tion for the Dirac equation. For massless fields, using a
WKB approximation for Maxwell’s equations on a sta-
tionary spacetime, Frolov and Shoom derived polarization-
dependent ray equations [35,36] (see also Refs. [37–40]).
With methods less familiar in general relativity, using the
Foldy-Wouthuysen transformation for the Bargmann-
Wigner equations in a perturbative way, Gosselin et al.
derived ray equations for photons [41] and electrons [42]
traveling in static spacetimes (see also Refs. [43–45]). The
gravitational spin Hall effect of gravitational waves was
also considered in Refs. [37,46]. However, as discussed in
Ref. [3], there are inconsistencies between the predictions
of these different models, and some of these models only
work in particular spacetimes.
In this work, we are concerned with describing the

propagation of electromagnetic waves in curved spacetime
beyond the traditional geometrical optics approximation.
We carry out a covariant WKB analysis of the vacuum
Maxwell’s equations, closely following the derivation of
the spin Hall effect in optics [20,47,48], as well as the
work of Littlejohn and Flynn [49]. As a result, we derive
ray equations that contain polarization-dependent correc-
tions to those of traditional geometrical optics and capture
the gravitational spin Hall effect of light. As in optics,
these corrections can be interpreted in terms of the
Berry curvature. To illustrate the effect, we give some
numerical examples of the effective ray trajectories in the
Schwarzschild spacetime.
Our paper is organized as follows. In Sec. II, we start

by introducing the variational formulation of the vacuum
Maxwell’s equations. Then, we present the specific form of
the WKB ansatz to be used, discuss the role of the Lorenz
gauge condition, and state the assumptions that we are
considering on the initial conditions. In Sec. III, we present
the WKB approximation of the field action and the
corresponding Euler-Lagrange equations. After analyzing
these equations at each order in the geometrical optics
parameter ϵ, we obtain the well-known results of geomet-
rical optics. The dynamics of the polarization vector is
expressed in terms of the Berry phase. Finally, we derive an
effective Hamilton-Jacobi system that contains OðϵÞ cor-
rections over the standard geometrical optics results. In
Sec. IV, we use the corrected Hamilton-Jacobi equation to
derive the ray equations that account for the gravitational
spin Hall effect of light. The gauge invariance of these
equations is discussed, and noncanonical coordinates are

introduced. In Sec. V, we present some basic examples. For
Minkowski spacetime, we analytically show how the
effective ray equations reproduce the relativistic Hall effect
[50] and the Wigner translations of polarized electromag-
netic wave packets [51]. Using numerical computations, we
consider the effective ray equations on a Schwarzschild
background and compare with the results of Gosselin et al.
[41]. The magnitude of the effect is also estimated numeri-
cally. A summary of the main results, including the
effective Hamiltonian and the effective ray equations,
can be found in Sec. VI.

A. Notations and conventions

We consider an arbitrary smooth Lorentzian manifold
ðM; gμνÞ, where the metric tensor gμν has signature −þþþ.
The absolute value of the metric determinant is denoted as
g ¼ j det gμνj. The phase space is defined as the cotangent
bundle T�M, and phase space points are denoted as ðx; pÞ.
The Einstein summation convention is assumed. Greek
indices represent spacetime indices and run from 0 to 3.
Latin indices from the beginning of the alphabet,
ða; b; c;…Þ, represent tetrad indices and run from 0 to
3. Latin indices from the middle of the alphabet,
ði; j; k;…Þ, label the components of 3-vectors and run
from 1 to 3. For the curvature, we use the conventions of
Hawking and Ellis [52]. Finally, we use the O notation as
follows: a scalar function f depending on a parameter ϵ
satisfies fðϵÞ ¼ OðϵαÞ if there is a constant M such that
jfðϵÞj ≤ Mϵα for small ϵ.

II. MAXWELL’S EQUATIONS AND THE WKB
APPROXIMATION

A. Lagrangian formulation of Maxwell’s equations

Electromagnetic waves in vacuum can be described by
the electromagnetic tensor F αβ. This is a skew-symmetric
real 2-form, which satisfies the vacuum Maxwell’s equa-
tions [1, Sec. 22.4]

∇αF αβ ¼ 0; ∇½αF βγ� ¼ 0: ð2:1Þ

Solutions to Maxwell’s equations can also be represented
by introducing the electromagnetic four-potential Aα,
which is a real 1-form. Then, the electromagnetic tensor
can be expressed as

F αβ ¼ 2∇½αAβ�; ð2:2Þ

and Eq. (2.1) becomes [1, Sec. 22.4]

D̂α
βAβ ¼ 0; D̂α

β ¼ ∇β∇α − δβα∇μ∇μ: ð2:3Þ

This equation can be obtained as the Euler-Lagrange
equation of the following action:
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J ¼ 1

4

Z
M
d4x

ffiffiffi
g

p
F αβF αβ ¼ 1

2

Z
M
d4x

ffiffiffi
g

p
AαD̂α

βAβ; ð2:4Þ

where the last equality is obtained using integration
by parts.

B. WKB ansatz

We assume that the vector potential admits a WKB
expansion of the form

AαðxÞ ¼ Re½Aαðx; kðxÞ; ϵÞeiSðxÞ=ϵ�;
Aαðx; kðxÞ; ϵÞ ¼ A0αðx; kðxÞÞ þ ϵA1αðx; kðxÞÞ þOðϵ2Þ;

ð2:5Þ
where S is a real scalar function, Aα is a complex amplitude,
and ϵ is a small expansion parameter. The gradient of S is
denoted as

kμðxÞ ¼ ∇μSðxÞ: ð2:6Þ

Note that the ansatz (2.5) differs from the classical
WKB ansatz since the complex amplitude Aα depends
on the phase gradient kαðxÞ. In other words, we assume
that Aα is defined on the Lagrangian submanifold
x ↦ ðx; kðxÞÞ ∈ T�M. Such a dependency can be found
in standard textbooks, for example, Ref. [53, Sec. 3.3]. Up
to an application of the chain rule, our Eq. (2.5) is
equivalent to the standard WKB ansatz. In particular, the
dependency of A in k appears naturally in the geometrical
optics equation (3.16), and we observe in Sec. III D that
the polarization vector and the polarization basis naturally
depend on k, which is why the k dependence was intro-
duced in Eq. (2.5).
The limit ϵ ≪ 1 indicates that the phase of the vector

potential rapidly oscillates and its variations are much faster
than those corresponding to the amplitude Aαðx; k; ϵÞ. The
role of the expansion parameter ϵ becomes clear if we
consider a timelike observer traveling along the worldline
λ ↦ yαðλÞ with proper time λ. This observer measures the
frequency

ω ¼ −
tαkα
ϵ

; ð2:7Þ

where tα ¼ dyα=dλ is the velocity vector field of the
observer. The phase function S and ϵ are dimensionless
quantities. In geometrized units, such that c ¼ G ¼ 1 [54,
Appendix F], the velocity tα is dimensionless, and kα has the
dimension of inverse length. Hence, ω has the dimension of
the inverse length, as expected for frequency. Then, the
observer sees the frequency going to infinity as ϵ goes to 0.

C. Lorenz gauge

In this section, we introduce the Lorenz gauge in the
context of WKB approximations. We shall impose this

gauge condition [cf. (2.21) below] in the rest of the paper,
with the exception of Sec. III B, where it is relevant to
discuss some aspects of geometrical optics without this
condition.
Maxwell’s equations in the form (2.3) do not have a well-

posed Cauchy problem. In particular, they admit pure
gauge solutions. This problem is usually eliminated by
introducing a gauge condition. Here we shall focus on the
Lorenz gauge condition

∇αAα ¼ 0: ð2:8Þ

We reproduce here, in the context of a WKB analysis,
the classical argument regarding the gauge fixing for
Maxwell’s equations (see for instance [55, Lemma 10.2]).
Using the identity

D̂α
βAβ −∇α∇βAβ ¼ −∇β∇βAα þ RαβAβ; ð2:9Þ

one observes that, if Maxwell’s equations (2.3) and the
Lorenz gauge (2.8) are satisfied, then the wave equation

−∇β∇βAα þ RαβAβ ¼ 0 ð2:10Þ

holds. Conversely, by solving Eq. (2.10), with Cauchy data
satisfying constraint and gauge conditions, one obtains a
solution to Maxwell’s equations in the Lorenz gauge.
Note that we consider here approximate solutions to

Maxwell’s equations

D̂α
βAβ ¼ Oðϵ0Þ: ð2:11Þ

Hence, it is sufficient to consider that the Lorenz gauge is
satisfied at the appropriate order:

∇αAα ¼ Oðϵ1Þ: ð2:12Þ

We reproduce the standard argument recovering Maxwell’s
equation in the Lorenz gauge from the wave Eq. (2.10),
taking into account that we are considering only approxi-
mate solutions. Assume that the wave equation holds:

−∇β∇βAα þ RαβAβ ¼ Oðϵ0Þ: ð2:13Þ

Upon inserting the WKB ansatz, this is equivalent to

kβkβA0α ¼ 0;

ikβkβA1α þ A0α∇βkβ þ 2kβ∇βA0α ¼ 0: ð2:14Þ

Furthermore, assume that the initial data for the wave
equation (2.13) satisfy

kαA0
α ¼ 0;

∇αA0
α þ ikαA1

α ¼ 0: ð2:15Þ
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Equation (2.13) implies that

∇β∇βð∇αAαÞ ¼ Oðϵ−1Þ: ð2:16Þ

The initial data (2.15) for Eq. (2.13) imply that, initially,

∇αAα ¼ Oðϵ1Þ: ð2:17Þ

Observe that the condition

Tβ∇βð∇αAαÞ ¼ Oðϵ0Þ ð2:18Þ

is automatically satisfied, where Tβ is a unit future-oriented
normal vector to the hypersurface on which initial data are
prescribed. Hence, the equation satisfied by the Lorenz
gauge source function (2.16) admits initial data as in
Eqs. (2.17) and (2.18) vanishing at the appropriate order
in ϵ [at Oðϵ1Þ and Oðϵ0Þ, respectively]. This implies that
Maxwell’s equations

D̂α
βAβ ¼ Oðϵ0Þ; ð2:19Þ

which can be expanded as

kβA0½βkα� ¼ 0;

2kβ∇βA0α − ð∇βA0
β þ ikβA1

βÞkα − kβ∇αA0β

− A0
β∇βkα þ A0α∇βkβ þ ikβkβA1α ¼ 0; ð2:20Þ

are satisfied in the Lorenz gauge

∇αAα ¼ Oðϵ1Þ ⇔
�
kαA0

α ¼ 0

∇αA0
α þ ikαA1

α ¼ 0
: ð2:21Þ

D. Assumptions on the initial conditions

We end Sec. II by summarizing the initial conditions
thatwe shall use in theWKBansatz forMaxwell’s equations.
(1) The Lorenz gauge (2.21) is satisfied initially. This

condition is used to obtain a well-defined solution to
the equations of motion, as discussed in Sec. II C.

(2) The initial phase gradient kα is a future-oriented null
covector. As will be seen, the condition that kα is
null is a compatibility condition that follows
from the Euler-Lagrange equations and the Lorenz
gauge condition (2.21) at the lowest order in ϵ;
cf. dispersion relation (3.8) below.

(3) Initially, the beam has circular polarization;
cf. Eq. (3.47). In Sec. III D we show that the initial
state of circular polarization is conserved. In Sec. IV
B this assumption ensures a consistent transition
between the effective dispersion relation and the
effective ray equations. Heuristically speaking,
due to the spin Hall effect, a localized wave packet
that initially has linear polarization can split into
two localized wave packets of opposite circular

polarization. While this does not represent a pro-
blem at the level of Maxwell’s equations (which are
partial differential equations), the same behavior
cannot be captured by the effective ray equations
(which are ordinary differential equations) obtained
in Sec. IV B.

III. HIGHER-ORDER GEOMETRICAL OPTICS

A. WKB approximation of the field action

We compute the WKB approximation for our field
theory by inserting the WKB ansatz (2.5) in the field
action (2.4):

J ¼
Z
M
d4x

ffiffiffi
g

p
ReðAαeiS=ϵÞD̂α

βReðAβeiS=ϵÞ

¼ 1

4

Z
M
d4x

ffiffiffi
g

p ½A�αe−iS=ϵD̂α
βðAβeiS=ϵÞ þ c:c:�

þ 1

4

Z
M
d4x

ffiffiffi
g

p ½AαeiS=ϵD̂α
βðAβeiS=ϵÞ þ c:c:�: ð3:1Þ

If S has a nonvanishing gradient, then eiS=ϵ is rapidly
oscillating. In this case, for f sufficiently regular, the
method of stationary phase [56, Sec. 2.3] impliesZ

M
d4x

ffiffiffi
g

p
e�i2SðxÞ=ϵfðxÞ ¼ Oðϵ2Þ: ð3:2Þ

Upon expanding the derivative terms in Eq. (3.1), and
keeping only terms of the lowest two orders in ϵ, we obtain
the following WKB approximation of the field action [for
convenience, we are shifting the powers of ϵ, such that the
lowest-order term is of Oðϵ0Þ]:

−ϵ2J ¼
Z
M
d4x

ffiffiffi
g

p h
Dα

βA�αAβ

−
iϵ
2
∇v μDα

βðA�α∇μAβ − Aβ∇μA�αÞ
i
þOðϵ2Þ;

ð3:3Þ
where

Dα
β ¼ 1

2
kμkμδ

β
α −

1

2
kαkβ;

∇v μDα
β ¼ kμδβα −

1

2
δμαkβ −

1

2
gμβkα: ð3:4Þ

Here, Dα
β represents the symbol [57] of the operator D̂α

β,
evaluated at the phase space point ðx; pÞ ¼ ðx; kÞ, and we

are using the notation ∇v μDα
β for the vertical derivative

(Appendix A) of Dα
β, evaluated at the phase space

point ðx; pÞ ¼ ðx; kÞ.
The action depends on the following fields: SðxÞ,∇μSðxÞ,

Aαðx;∇SÞ, ∇μ½Aαðx;∇SÞ�, A�αðx;∇SÞ, ∇μ½A�αðx;∇SÞ�.
Following the calculations in Appendix B, the Euler-
Lagrange equations are
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Dα
βAβ − iϵð∇v μDα

βÞ∇μAβ −
iϵ
2
ð∇μ∇

v
μDα

βÞAβ ¼ Oðϵ2Þ; ð3:5Þ

Dα
βA�α þ iϵð∇v μDα

βÞ∇μA�α þ iϵ
2
ð∇μ∇

v
μDα

βÞA�α ¼ Oðϵ2Þ; ð3:6Þ

∇μ

�
ð∇v μDα

βÞA�αAβ −
iϵ
2
ð∇v μ∇v νDα

βÞðA�α∇νAβ −Aβ∇νA�αÞ
�
¼Oðϵ2Þ: ð3:7Þ

In the above equations, the symbol Dα
β and its vertical

derivatives are all evaluated at the phase space point ðx; kÞ.
Note that the same set of equations can be obtained in a
more traditional way, by inserting the WKB ansatz (2.5)
directly into the field equation (2.3), or by following the
approach presented in Ref. [58]. More generally, a detailed
discussion about the variational formulation of the WKB
approximation can be found in Ref. [59].

B. Zeroth-order geometrical optics

Starting with Eqs. (3.5)–(3.7), and keeping only terms of
Oðϵ0Þ, we obtain

Dα
βA0β ¼ 0; ð3:8Þ

Dα
βA0

�α ¼ 0; ð3:9Þ

∇μ½ð∇
v

μDα
βÞA0

�αA0β� ¼ 0: ð3:10Þ

Equation (3.8) can also be written as

Dα
βA0β ¼

1

2
ðkμkμδβα − kαkβÞA0β ¼ 0: ð3:11Þ

The matrix Dα
β admits two eigenvalues when kα is not a

null covector. The first eigenvalue is 1
2
kμkμ with eigenspace

consisting of covectors perpendicular to kα. The second
eigenvalue is 0 with eigenvector kα. When kα is null, the
matrix Dα

β is nilpotent. It admits a unique eigenvalue 0
whose eigenspace is the orthogonal to kα, which contains
the covector kα.
The Lorenz gauge condition (2.21) implies that A0α is

orthogonal to kα. Hence, a necessary condition for Eq. (3.8)
to admit a nontrivial solution is that kα is a null covector. It
is also possible to deduce that kα is a null covector without
using the gauge condition. For completeness, we present
this argument below.
Equation (3.11) admits nontrivial solutions if and only if

A0β is an eigenvector of Dα
β with zero eigenvalue. Two

cases should be discussed: kα is a null covector, or kα is not
a null covector.
Assume first that kα is not a null covector, kμkμ ≠ 0.

Then, Eq. (3.11) leads to

A0α ¼
kβA0β

kμkμ
kα: ð3:12Þ

This entails that

A0½αkβ� ¼ 0 or F αβ ¼ ∇½αAβ� ¼ Oðϵ0Þ: ð3:13Þ

In other words, when kα is not a null covector, the
corresponding solution is, at the lowest order in ϵ, a pure
gauge solution. Since the corresponding electromagnetic
field vanishes, we do not consider this case further.
If kα is null, kμkμ ¼ 0, Eq. (3.11) implies

kβA0β ¼ 0: ð3:14Þ

This is consistent with the Lorenz gauge condition (2.21)
at the lowest order in ϵ. A similar argument can be applied
for the complex-conjugate Eq. (3.9), from which we
obtain kαA0

�α ¼ 0.
Using Eqs. (3.8)–(3.10), we obtain the well-known

system of equations governing the geometrical optics
approximation at the lowest order in ϵ:

kμkμ ¼ 0; ð3:15Þ

kαA0α ¼ kαA0
�α ¼ 0; ð3:16Þ

∇μðkμI0Þ ¼ 0; ð3:17Þ

where I0 ¼ A0
�αA0α is the lowest-order intensity (more

precisely, I0 is proportional to the wave action density
[59]). Equation (3.17) is obtained from Eq. (3.10) by using
the orthogonality condition (3.16). Using Eq. (2.6), we
have

∇μkα ¼ ∇αkμ; ð3:18Þ

and we can use Eq. (3.15) to derive the geodesic equation
for kμ:

kν∇νkμ ¼ 0: ð3:19Þ
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C. First-order geometrical optics

Here, we examine Eqs. (3.5) and (3.6) at order ϵ1 only:

Dα
βA1β−ið∇v μDα

βÞ∇μA0β−
i
2
ð∇μ∇

v
μDα

βÞA0β¼0; ð3:20Þ

Dα
βA1

�α þ ið∇v μDα
βÞ∇μA0

�α þ i
2
ð∇μ∇

v
μDα

βÞA0
�α ¼ 0:

ð3:21Þ

Using Eq. (3.4), we can also rewrite Eq. (3.20) as follows:

kμ∇μA0α −
1

2
kα∇μA0

μ −
1

2
kβ∇αA0

β

−
i
2
kαkβA1β þ

1

2
A0α∇μkμ

−
1

4
A0

β∇βkα −
1

4
A0

β∇αkβ ¼ 0: ð3:22Þ

Using Eq. (3.18), we can rewrite the last two terms as

−
1

4
A0

β∇βkα −
1

4
A0

β∇αkβ ¼ −
1

2
A0

β∇αkβ: ð3:23Þ

Using Eq. (3.16), we also have

0 ¼ ∇αðkβA0
βÞ ¼ kβ∇αA0

β þ A0
β∇αkβ: ð3:24Þ

Then, Eq. (3.22) becomes

kμ∇μA0αþ
1

2
A0α∇μkμ−

1

2
kαð∇μA0

μþikμA1
μÞ¼0: ð3:25Þ

The last term can be eliminated by using the Lorenz gauge
(2.21). The same steps can be applied to the complex-
conjugate Eq. (3.21):

kμ∇μA0α þ
1

2
A0α∇μkμ ¼ 0;

kμ∇μA0
�β þ 1

2
A0

�β∇μkμ ¼ 0: ð3:26Þ

Furthermore, using the lowest-order intensity I0, we can
write the amplitude in the following way:

A0α ¼
ffiffiffiffiffi
I0

p
a0α; A0

�α ¼
ffiffiffiffiffi
I0

p
a0�α; ð3:27Þ

where a0α is a unit complex covector (i.e., a0�αa0α ¼ 1)
describing the polarization. Then, from Eq. (3.26), together
with Eq. (3.17), we obtain

kμ∇μa0α ¼ kμ∇μa0�α ¼ 0: ð3:28Þ

The parallel propagation of the complex covector a0α along
the integral curve of kμ is another well-known result of the
geometrical optics approximation.

D. The polarization vector in a null tetrad

We observed that the polarization vector satisfies the
orthogonality condition

kαa0α ¼ 0: ð3:29Þ

Consider a null tetrad [60, Sec. 3] fkα; nα; mα; m̄αg
satisfying

mαm̄α ¼ 1; kαnα ¼ −1;

kαkα ¼ nαnα ¼ mαmα ¼ m̄αm̄α ¼ 0;

kαmα ¼ kαm̄α ¼ nαmα ¼ nαm̄α ¼ 0: ð3:30Þ

Note that we use the metric signature opposite to that used
in Ref. [60, Sec. 3]. The covectors nα; mα; m̄α are not
assumed to be parallel-propagated along the geodesic
generated by kα. It is only kα that is parallel-propagated
along the geodesic generated by kα, in accordance with
Eq. (3.19). Since the null tetrad is adapted to the covector
kα, the orthogonality conditions (3.30) imply that mα and
m̄α are functions of kα. The polarization covector a0α is
orthogonal to kα, so we can decompose it as

a0αðx; kÞ ¼ z1ðxÞmαðx; kÞ þ z2ðxÞm̄αðx; kÞ þ z3ðxÞkαðxÞ;
ð3:31Þ

where z1, z2, and z3 are complex scalar functions. Since a0α
is a unit complex covector, the scalar functions z1 and z2 are
constrained by

z�1z1 þ z�2z2 ¼ 1: ð3:32Þ

It is important to note that the decomposition (3.31), and
more specifically, the choice ofmα, requires choosing a null
covector nα. Fixing nα is equivalent to choosing a unit
timelike covector field tα that can represent a family of
timelike observers. We can always take nα as

tα ¼
1

2ϵω
kα þ ϵωnα: ð3:33Þ

Once nα (or tα) is fixed, the remaining SO(2) gauge
freedom in the choice of mα is described by the spin
rotation

kα ↦ kα; nα ↦ nα; mα ↦ eiϕðxÞmα; ð3:34Þ

for ϕðxÞ ∈ R. Polarization measurements will always
depend on the choice of mα and m̄α. However, as shown
in Sec. IV B 1, the modified ray equations describing the
gravitational spin Hall effect of light do not depend on the
particular choice of mα and m̄α. Thus, we can work with
any smooth choice of mα and m̄α that satisfy Eq. (3.30).
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Using Eqs. (3.31) and (3.19), the parallel-transport
equation for the polarization vector becomes

0 ¼ kμ∇μa0α

¼ z1kμ∇μmα þ z2kμ∇μm̄α þmαkμ∇μz1

þ m̄αkμ∇μz2 þ kαkμ∇μz3: ð3:35Þ

Contracting the above equation with m̄α, mα, and nα, we
obtain

kμ∇μz1 ¼ −z1m̄αkμ∇μmα;

kμ∇μz2 ¼ −z2mαkμ∇μm̄α;

kμ∇μz3 ¼ −ðz1mα þ z2m̄αÞkμ∇μnα: ð3:36Þ

Recall that in the above equations, the covectorsmα and m̄α

are functions of x and kðxÞ. The covariant derivatives are
applied as follows:

kμ∇μmα ¼ kμ∇μ½mαðx; kÞ�

¼ kμð∇h μmαÞðx; kÞ

þ kμð∇μkνÞð∇
v

νmαÞðx; kÞ

¼ kμ∇h μmα; ð3:37Þ

where ∇h μ is the horizontal derivative (Appendix A). It is
convenient to introduce the two-dimensional unit complex
vector

z ¼
�
z1
z2

�
; ð3:38Þ

which is analogous to the Jones vector in optics
[47,48,61,62]. We also use the Hermitian transpose z†,
defined as follows:

z† ¼ ð z�1 z�2 Þ: ð3:39Þ

Then, the equations for z1 and z2 can be written in a more
compact form:

kμ∇μz ¼ ikμBμσ3z; ð3:40Þ

where σ3 is the third Pauli matrix,

σ3 ¼
�
1 0

0 −1

�
; ð3:41Þ

and Bμ is the real 1-form extending to general relativity the
Berry connection used in optics [47,62]:

Bμðx; kÞ ¼
i
2
ðm̄α∇h μmα −mα∇

h

μm̄αÞ

¼ im̄α∇h μmα: ð3:42Þ

Furthermore, if we restrict z to an affinely parametrized null
geodesic τ ↦ xμðτÞ, with _xμ ¼ kμ, we can write

_z ¼ ikμBμσ3z; ð3:43Þ

where _z ¼ _xμ∇μz. Integrating along the worldline, we
obtain

zðτÞ ¼
�
eiγðτÞ 0

0 e−iγðτÞ

�
zð0Þ; ð3:44Þ

where γ represents the Berry phase [47,62],

γðτ1Þ ¼
Z

τ1

τ0

dτkμBμ: ð3:45Þ

Using either Eq. (3.36) or Eq. (3.43), we see that the
evolution of z1 and z2 is decoupled in the circular
polarization basis, and the following quantities are con-
served along kμ:

1 ¼ z�1z1 þ z�2z2 ¼ z†z;

s ¼ z�1z1 − z�2z2 ¼ z†σ3z: ð3:46Þ

Based on our assumptions on the initial conditions
(Sec. II D), we only consider beams which are circularly
polarized; i.e., one of the conditions

zð0Þ ¼
�
1

0

�
or zð0Þ ¼

�
0

1

�
ð3:47Þ

holds. Thus, we have s ¼ �1, depending on the choice of
the initial polarization state.
The results described in this section are similar to the

description of the polarization of electromagnetic waves
traveling in a medium with an inhomogeneous index of
refraction [62].

E. Extended geometrical optics

Now, we take Eqs. (3.5)–(3.7), but without splitting them
order by order in ϵ. Our aim is to derive an effective
Hamilton-Jacobi system that would give us OðϵÞ correc-
tions to the ray equations.

1. Effective dispersion relation

By contracting Eq. (3.5) with A�α and Eq. (3.6) with Aβ,
and also adding them together, we obtain the following
equation:
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Dα
βA�αAβ

−
iϵ
2
ð∇v μDα

βÞðA�α∇μAβ − Aβ∇μA�αÞ ¼ Oðϵ2Þ: ð3:48Þ

Using Eqs. (3.4) and (3.16), we can rewrite the above
equation as follows:

1

2
kμkμðA0

�αA0α þ ϵA0
�αA1α þ ϵA1

�αA0αÞ

−
iϵ
2
kμðA0

�α∇μA0α − A0α∇μA0
�αÞ

þ iϵ
4
kαðA0

�μ∇μA0
α − A0

μ∇μA0
�αÞ ¼ Oðϵ2Þ: ð3:49Þ

Using Eq. (3.16), we obtain

0 ¼ A0
�μ∇μðkαA0

αÞ ¼ kαA0
�μ∇μA0

α þ A0
�μA0

α∇μkα;

ð3:50Þ

so we can write

iϵ
4
kαðA0

�μ∇μA0
α −A0

μ∇μA0
�αÞ ¼ −

iϵ
2
∇μkαA0

�½μA0
α� ¼ 0;

ð3:51Þ

where the last equality is due to Eq. (3.18). Then, Eq. (3.48)
becomes

1

2
kμkμðA0

�αA0α þ ϵA0
�αA1α þ ϵA1

�αA0αÞ

−
iϵ
2
kμðA0

�α∇μA0α − A0α∇μA0
�αÞ ¼ Oðϵ2Þ: ð3:52Þ

Let us introduce the Oðϵ1Þ intensity

I ¼ A�αAα

¼ A0
�αA0α þ ϵA0

�αA1α þ ϵA1
�αA0α þOðϵ2Þ: ð3:53Þ

Then, we can rewrite the amplitude as

Aα ¼
ffiffiffiffi
I

p
aα ¼

ffiffiffiffi
I

p
ða0α þ ϵa1αÞ þOðϵ2Þ; ð3:54Þ

where aα is a unit complex covector. Then, from Eq. (3.52)
we obtain

1

2
kμkμ −

iϵ
2
kμða0�α∇μa0α − a0α∇μa0�αÞ ¼ Oðϵ2Þ: ð3:55Þ

This can be viewed as an effective dispersion relation,
containing OðϵÞ corrections to the geometrical optics
equation (3.15). Finally, let us introduce

Kμ ¼ kμ −
iϵ
2
ða0�α∇μa0α − a0α∇μa0�αÞ ð3:56Þ

and rewrite the effective dispersion relation as

1

2
KμKμ ¼ Oðϵ2Þ: ð3:57Þ

It is worth noting that this equation can also be obtained
directly from the effective field action (3.3), specifically by
varying the latter with respect to I .

2. Effective transport equation

Using Eqs. (3.4), (3.15), and (3.16), the effective trans-
port equation (3.7) becomes

∇μ

�
kμðA0

�αA0α þ ϵA0
�αA1α þ ϵA1

�αA0αÞ

−
iϵ
2
gμνðA0

�α∇νA0α − A0α∇νA0
�αÞ

þ iϵ
4
ðA0

�α∇αA0
μ − A0

μ∇αA0
�αÞ

þ iϵ
4
ðA0

�μ∇αA0
α − A0

α∇αA0
�μÞ

−
ϵ

2
kαðA0

�μA1
α þ A1

�αA0
μÞ
�
¼ Oðϵ2Þ: ð3:58Þ

We can perform the following replacements in the above
equation:

A0
�α∇αA0

μ ¼ ∇αðA0
�αA0

μÞ −∇αA0
�αA0

μ;

∇αA0
�μA0

α ¼ ∇αðA0
�μA0

αÞ − A0
�μ∇αA0

α: ð3:59Þ

After rearranging terms, the effective transport equation
becomes

∇μ

�
kμðA0

�αA0α þ ϵA0
�αA1α þ ϵA1

�αA0αÞ

−
iϵ
2
gμνðA0

�α∇νA0α − A0α∇νA0
�αÞ

−
iϵ
2
A0

μð∇αA0
�α − ikαA1

�αÞ

þ iϵ
2
A0

�μð∇αA0
α þ ikαA1

αÞ

þ iϵ
4
∇αðA0

�½αA0
μ�Þ
�
¼ Oðϵ2Þ: ð3:60Þ

The last term above vanishes due to the symmetry of the
Ricci tensor:

∇μ∇αðA0
�½αA0

μ�Þ ¼ ∇½μ∇α�ðA0
�αA0

μÞ
¼ ðRανμ

ν − Rμνα
νÞA0

�αA0
μ

¼ ðRαμ − RμαÞA0
�αA0

μ

¼ 0: ð3:61Þ
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Furthermore, after using the Lorenz gauge condition (2.21),
we are left with the following form of the effective transport
equation:

∇μ

�
kμðA0

�αA0α þ ϵA0
�αA1α þ ϵA1

�αA0αÞ

−
iϵ
2
gμνðA0

�α∇νA0α − A0α∇νA0
�αÞ
�
¼ Oðϵ2Þ: ð3:62Þ

Introducing the intensity I and the vector Kμ, we obtain

∇μ

�
I
�
kμ −

iϵ
2
gμνða0�α∇νa0α − a0α∇νa0�αÞ

��
¼ ∇μðIKμÞ ¼ Oðϵ2Þ: ð3:63Þ

This is an effective transport equation for the intensity I,
which includes OðϵÞ corrections to the geometrical optics
Eq. (3.17). As discussed in Ref. [59], the direction of Kμ

coincides with the direction of the wave action flux.

IV. EFFECTIVE RAY EQUATIONS

A. Hamilton-Jacobi system at the leading order

The lowest-order geometrical optics equations (3.15) and
(3.17) can be viewed as a system of coupled partial
differential equations:

1

2
gμνkμkν ¼ 0; ð4:1Þ

∇μðI0kμÞ ¼ 0; ð4:2Þ

where kμ ¼ ∇μS. Equation (4.1) is a Hamilton-Jacobi
equation for the phase function S, and Eq. (4.2) is a
transport equation for the intensity I0 [63]. The Hamilton-
Jacobi equation can be solved using the method of
characteristics. This is done by defining a Hamiltonian
function on T�M, such that

Hðx;∇SÞ ¼ 1

2
gμνkμkν ¼ 0: ð4:3Þ

It is obvious that in this case, the Hamiltonian is

Hðx; pÞ ¼ 1

2
gμνpμpν: ð4:4Þ

Note that in contrast to the dispersion relation (4.3), the
Hamiltonian (4.4) is a function on the whole phase space
T�M, with pμ being an arbitrary covector. Hamilton’s
equations take the following form:

_xμ ¼ ∂H
∂pμ

¼ gμνpν; ð4:5Þ

_pμ ¼ −
∂H
∂xμ ¼ −

1

2
∂μgαβpαpβ: ð4:6Þ

Given a solution fxμðτÞ; pμðτÞg for Hamilton’s equations,
we obtain a solution of the Hamilton-Jacobi Eq. (4.3) by
taking [64, p. 433]:

Sðxμðτ1Þ; pμðτ1ÞÞ ¼
Z

τ1

τ0

dτ½_xμpμ −Hðx; pÞ� þ const:

ð4:7Þ

Note that the above equation represents an action, with the
corresponding Lagrangian related to the Hamiltonian (4.4)
by a Legendre transformation [65, Example 3.6.10]. The
Euler-Lagrange equation is equivalent to the geodesic
equation [65, Theorem 3.7.1] and with Hamilton’s equa-
tions (4.5) and (4.6). Once the Hamilton-Jacobi equation is
solved, the transport Eq. (4.2) can also be solved, at least in
principle [63]. However, our main interest is in the ray
equations governed by the Hamiltonian (4.4). The corre-
sponding Hamilton’s equations (4.5) and (4.6) describe null
geodesics. These equations can easily be rewritten as

ẍμ þ Γμ
αβ _x

α _xβ ¼ 0; ð4:8Þ

or in the explicitly covariant form:

pν∇νpμ ¼ _xν∇ν _xμ ¼ 0: ð4:9Þ

B. Effective Hamilton-Jacobi system

The effective dispersion relation (3.57), together with the
effective transport equation (3.63) introduce Oðϵ1Þ correc-
tions over the system discussed above:

1

2
gμνkμkν −

iϵ
2
kμða0�α∇μa0α − a0α∇μa0�αÞ ¼ Oðϵ2Þ;

ð4:10Þ

∇μ

�
I
�
kμ −

iϵ
2
gμνða0�α∇νa0α − a0α∇νa0�αÞ

��
¼ Oðϵ2Þ:

ð4:11Þ

Using Eq. (3.31), the effective dispersion relation becomes

1

2
gμνkμkν −

iϵ
2
kμðz†∂μz − ∂μz†zÞ − ϵskμBμ ¼ Oðϵ2Þ;

ð4:12Þ

where Bμ ¼ Bμðx; kÞ is the Berry connection introduced in
Eq. (3.42), and s ¼ �1, depending on the initial polariza-
tion. Using Eq. (3.44), together with the assumption on the
initial polarization, we can write

−
iϵ
2
kμðz†∂μz − ∂μz†zÞ ¼ ϵskμ∂μγ: ð4:13Þ
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Since the value of s is fixed by the initial conditions, the
only unknowns are the phase function S and the Berry
phase γ. We can write an effective Hamilton-Jacobi
equation for the total phase eS ¼ Sþ ϵsγ:

Hðx;∇S̃Þ ¼ 1

2
gμνkμkν þ ϵskμ∂μγ − ϵskμBμ þOðϵ2Þ

¼ 1

2
gμν∇μS̃∇νS̃ − ϵsgμνBμ∇νS̃þOðϵ2Þ: ð4:14Þ

Note that the phase S̃ represents the overall phase factor,
up to order Oðϵ2Þ, of a circularly polarized WKB solu-
tion,Aα¼Reð ffiffiffiffi

I
p

mαeiγeiS=ϵÞ orAα ¼Reð ffiffiffiffi
I

p
m̄αe−iγeiS=ϵÞ,

depending on the state of circular polarization. As dis-
cussed in Ref. [15], the Berry phase γ, which comes as a
correction to the overall phase of the WKB solution, is
responsible for the spin Hall effect of light. The corre-
sponding Hamiltonian function on T�M is

Hðx; pÞ ¼ 1

2
gμνpμpν − ϵsgμνpμBνðx; pÞ; ð4:15Þ

and we have the following Hamilton’s equations:

_xμ ¼ gμνpν − ϵsðBμ þ pα∇v μBαÞ; ð4:16Þ

_pμ ¼ −
1

2
∂μgαβpαpβ þ ϵspαð∂μgαβBβ þ gαβ∂μBβÞ: ð4:17Þ

These equations contain polarization-dependent correc-
tions to the null geodesic Eqs. (4.5) and (4.6), representing
the gravitational spin Hall effect of light. For ϵ ¼ 0, one
recovers the standard geodesic equation in canonical
coordinates.
We can also write these ray equations in a more compact

form �
_xμ

_pμ

�
¼
�

0 δμν

−δνμ 0

� ∂H
∂xν
∂H
∂pν

!
; ð4:18Þ

where the constant matrix on the right-hand side is the
inverse of the symplectic 2-form, or the Poisson tensor [66].

1. Noncanonical coordinates

The Hamiltonian (4.15) contains the Berry connection
Bμ, which is gauge dependent. The latter means that Bμ

depends on the choice of mα and m̄α; for example, the
transformation mα ↦ mαeiϕ causes the following trans-
formation of the Berry connection:

Bμ ↦ Bμ −∇μϕ: ð4:19Þ
This kind of gauge dependence was considered by
Littlejohn and Flynn in Ref. [49], where they also proposed
how to make the Hamiltonian and the equations of motion

gauge invariant. The main idea is to introduce noncanonical
coordinates such that the Berry connection is removed from
the Hamiltonian and the symplectic form acquires the
corresponding Berry curvature, which is gauge invariant.
This is similar to the description of a charged particle in an
electromagnetic field in terms of either the canonical or the
kinetic momentum of the particle. The Berry connection
and Berry curvature play a similar role as the electromag-
netic vector potential and the electromagnetic tensor [67].
We start by rewriting the Hamiltonian (4.15) as

Hðx; pÞ ¼ H0ðx; pÞ − ϵsgμνpμBνðx; pÞ; ð4:20Þ

where H0 ¼ 1
2
gμνpμpν. Following Ref. [49], the Berry

connection can be written in the following way, by using
the definition of the horizontal derivative:

pμBμðx; pÞ ¼ ipμm̄α∇h μmα

¼ ipμm̄α∇μmα þ ipμpσΓσ
μρm̄α∇v ρmα

¼ i
∂H0

∂pμ
m̄α∇μmα − i

∂H0

∂xμ m̄α∇v ρmα: ð4:21Þ

The Berry connection can be eliminated formally from
the Hamiltonian (4.15) by considering the following sub-
stitution on T�M:

Xμ ¼ xμ þ iϵsm̄α∇v μmα; ð4:22Þ

Pμ ¼ pμ − iϵsm̄α∇μmα: ð4:23Þ

It is possible to obtain this substitution as the linearization
of a change of coordinates. For more details, see
Appendix D.
Since the symplectic form transforms nontrivially under

this substitution, ðX;PÞ are noncanonical coordinates. The
Hamiltonian (4.15) is a scalar, so we obtain

H0ðX;PÞ¼Hðx;pÞ

¼HðXμ− iϵsm̄α∇v μmα;Pμþ iϵsm̄α∇μmαÞ

¼HðX;PÞ− iϵs
∂H0

∂xμ m̄
α∇v μmαþ iϵs

∂H0

∂pμ
m̄α∇μmα

¼H0ðX;PÞ: ð4:24Þ

In the new coordinate system ðX;PÞ, we obtain the
following Hamiltonian:

H0ðX;PÞ ¼ 1

2
gμνðXÞPμPν: ð4:25Þ

The corresponding Hamilton’s equations can be written in a
matrix form as
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� _Xμ

_Pμ

�
¼ T 0

 ∂H0
∂Xν

∂H0
∂Pν

!
; ð4:26Þ

where T 0 is the Poisson tensor in the new variables.
Following Marsden and Ratiu [66, p. 343], we obtain

T 0 ¼
� ϵsðFppÞνμ δμν þ ϵsðFxpÞνμ
−δνμ − ϵsðFxpÞνμ −ϵsðFxxÞνμ

�
; ð4:27Þ

where we have the following Berry curvature terms:

ðFppÞνμ ¼ ið∇v μm̄α∇v νmα −∇v νm̄α∇v μmα

þ m̄α∇v ½μ∇v ν�mα −mα∇
v ½μ∇v ν�m̄αÞ;

ðFxxÞνμ ¼ ið∇μm̄α∇νmα −∇νm̄α∇μmα

þ m̄α∇½μ∇ν�mα −mα∇½μ∇ν�m̄αÞ;
ðFpxÞνμ ¼ −ðFxpÞμν

¼ ið∇v μm̄α∇νmα −∇νm̄α∇v μmαÞ: ð4:28Þ

The Poisson tensor in noncanonical coordinates T 0
automatically satisfies the Jacobi identity, since it is a
covariant quantity obtained from the Poisson tensor in
canonical coordinates T through a change of variables on
the cotangent bundle.
Simplified expressions for the Berry curvature terms can

be found in Appendix C. Now we can write Hamilton’s
equations in the new variables:

_Xμ ¼ Pμ þ ϵsPνðFpxÞνμ þ ϵsΓα
βνPαPβðFppÞνμ; ð4:29Þ

_Pμ ¼ Γα
βμPαPβ − ϵsPνðFxxÞνμ − ϵsΓα

βνPαPβðFxpÞνμ:
ð4:30Þ

The last term on the right-hand side of Eq. (4.29) is the
covariant analogue of the spin Hall effect correction
obtained in optics, ð _p × pÞ=jpj3, due to the Berry curvature
in momentum space [4,47]. This term is also the source of
the gravitational spin Hall effect in the work of Gosselin
et al. [41]. In Eq. (4.30), the second term on the right-hand
side contains the Riemann tensor and resembles the
curvature term obtained in the Mathisson-Papapetrou-
Dixon equations [27].
Given a null covector Pμ, the class of Lorentz trans-

formations leaving Pμ invariant define the little group,
which is isomorphic to SE(2), the symmetry group of the
two-dimensional Euclidean plane [51]. In terms of a null
tetrad fP; n;m; m̄g, the action of the little group can be split
into the following types of transformations [68, p. 53]:

Type 1 : P ↦ P; n ↦ n;

m ↦ meiϕ; m ↦ m̄e−iϕ;

Type 2 : P ↦ P; n ↦ nþ āmþ am̄þ aāP;

m ↦ mþ aP; m ↦ m̄þ āP; ð4:31Þ

where ϕ is a real scalar function and a is a complex scalar
function. The transformations of Type 1 are the spin
rotations mentioned in Sec. III D, while the transformations
of Type 2 can be considered as a change of observer tμ,
based on Eq. (3.33). It can easily be checked that the Berry
curvature terms in Eq. (4.28) are invariant under Type 1
transformations. However, the Berry curvature terms are
not invariant under Type 2 transformations. As a conse-
quence, the ray equations (4.29) and (4.30) depend on the
choice of observer. It is shown in the following section how
this observer dependence is related to the problem of
localizing massless spinning particles [50,51].

V. EXAMPLES

In this section, we apply the modified ray equations
describing the gravitational spin Hall effect of light to two
concrete examples. The first example, concerning the rela-
tivistic Hall effect andWigner translations, is treated analyti-
cally,while thesecondexample, describing thepropagationof
polarized light rays close to a Schwarzschild black hole, is
treated numerically.
When working with the modified ray equations, in either

the canonical form given in Eqs. (4.16) and (4.17) or the
noncanonical form given in Eqs. (4.29) and (4.30), one
needs to specify the background metric gμν, and the choice
of polarization vectors mα and m̄α. The polarization vectors
are needed in order to compute the Berry connection and
the Berry curvature. A particular choice of polarization
vectors can easily be constructed by introducing an
orthonormal tetrad ðeaÞμ, with ðe0Þμ ¼ tμ representing
our choice of family of timelike observers. Adapting the
polarization vectors used in optics [47], we can write
pμ ¼ PaðeaÞμ, vμ ¼ VaðeaÞμ, and wμ ¼ WaðeaÞμ, where
the components of these vectors are given by

Pa ¼

0BBB@
P0

P1

P2

P3

1CCCA; Va ¼ 1

Pp

0BBB@
0

−P2

P1

0

1CCCA;

Wa ¼ 1

PpPs

0BBB@
0

P1P3

P2P3

−ðPpÞ2

1CCCA; ð5:1Þ

where
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Pp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1Þ2 þ ðP2Þ2

q
;

Ps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP1Þ2 þ ðP2Þ2 þ ðP3Þ2

q
: ð5:2Þ

The vectors vμ and wμ are real unit spacelike vectors that
represent a linear polarization basis satisfying Eq. (C2).
They are related to the circular polarization vectors mα and
m̄α by Eq. (C1). Using this particular choice of polarization
vectors, the Berry connection and the Berry curvature terms
can be computed, and the modified ray equations can be
integrated, either analytically or numerically.

A. Relativistic Hall effect and Wigner translations

The relativistic Hall effect [50] is a special relativistic
effect that occurs when Lorentz transformations are
applied to objects carrying angular momentum. In particu-
lar, consider a localized wave packet carrying intrinsic
angular momentum and propagating in the z direction in
Minkowski spacetime. If a Lorentz boost is applied in the x
direction, then the location of the Lorentz-transformed
energy density centroid is shifted in the y direction,
depending on the orientation of the angular momentum.
This shift corresponds to the Wigner translation [51,69,70].
The following example shows that an effect analogous to

the Wigner translation discussed in Ref. [51] appears in the
effective ray equations (4.29) and (4.30). We consider the
Minkowski spacetime in Cartesian coordinates ðt; x; y; zÞ,
with

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2; ð5:3Þ

and we want to compare the effective rays obtained from
Eqs. (4.29) and (4.30) with two different choices of obser-
ver. In the first case, we consider the standard orthonormal
tetrad

e0 ¼ ∂t; e1 ¼ ∂x; e2 ¼ ∂y; e3 ¼ ∂z; ð5:4Þ

where ðe0Þμ is our first choice of observer. With this
orthonormal tetrad, the polarization vectors are defined
as in Eq. (5.1), and the Berry curvature terms can be com-
puted. The ray equations reduce to the geodesic equations

_Xμ ¼ Pμ; _Pμ ¼ 0: ð5:5Þ

In order to describe light rays traveling in the z direction,
we impose initial conditions Xμð0Þ ¼ ð0; 0; 0; 0Þ and
Pμð0Þ ¼ ð−1; 0; 0; 1Þ, and we obtain

XμðτÞ ¼ ðτ; 0; 0; τÞ;
PμðτÞ ¼ ð−1; 0; 0; 1Þ: ð5:6Þ

As a second case, we apply a time-dependent boost in the x
direction to the standard orthonormal tetrad in Eq. (5.3). We
obtain

e00 ¼ cosh t ∂t − sinh t ∂x; e02 ¼ ∂y;

e01 ¼ − sinh t ∂t þ cosh t ∂x; e03 ¼ ∂z; ð5:7Þ

where ðe00Þμ is our second choice of observer. Note that
ðe00Þμ represents a family of observers boosted in the x
direction, with the rapidity of the boost represented by the
time coordinate t. The polarization vectors are chosen as in
Eq. (5.1), but this time with respect to the orthonormal
tetrad in Eq. (5.7). The Berry curvature terms in Eqs. (4.29)
and (4.30) can be explicitly computed, and we obtain

_Xμ ¼ Pμ þ ϵsPνðFpxÞνμ; ð5:8Þ

_Pμ ¼ 0; ð5:9Þ

where

PνðFpxÞνμ ¼
Pt

½ðe00ÞμPμ�2

0BBB@
0

0

Pz

−Py

1CCCA: ð5:10Þ

We impose the same initial conditions as in the previous
case: Xμð0Þ ¼ ð0; 0; 0; 0Þ and Pμð0Þ ¼ ð−1; 0; 0; 1Þ. Since
the frequency is defined as ω ¼ −ðe00ÞμPμ=ϵ, the small
parameter ϵ can be identified with the wavelength of the
initial light ray, as measured by the observer ðe00Þμ at the
spacetime point xμ ¼ Xμð0Þ. Then, the ray equations can be
analytically integrated, and we obtain

XμðτÞ ¼ ðτ; 0;−sϵ tanh τ; τÞ;
PμðτÞ ¼ ð−1; 0; 0; 1Þ: ð5:11Þ

Thus, given a circularly polarized light ray traveling in
the z direction and two families of observers ðe0Þμ and
ðe00Þμ, which are related by boosts in the x direction, we
obtained the polarization-dependent Wigner translation
in the y direction, Δy ¼ sϵ tanh τ, in agreement with
[51, Eq. (28)]. Note that the Wigner translation is always
smaller than one wavelength.
Recovering the results of Ref. [51] suggests that a

worldline XμðτÞ representing a solution of Eqs. (4.29)
and (4.30) could be interpreted as the location of the energy
density centroid of a localized wave packed with definite
circular polarization, as measured by the chosen family of
observers.
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B. The gravitational spin Hall effect on
a Schwarzschild background

To illustrate how the polarization-dependent correction
terms modify the ray trajectories on a Schwarzschild
background, let us provide some numerical examples.
For convenience, we perform the numerical computations
using canonical coordinates ðx; pÞ and treat x0 as a
parameter along the rays. Hence, Eqs. (4.16) and (4.17)
become

_x0 ¼ 1; ð5:12Þ

_xi ¼ giνpν − ϵsðBi þ pα∇v iBαÞ
g0νpν − ϵsðB0 þ pα∇v 0BαÞ

; ð5:13Þ

_pi ¼
− 1

2
∂igαβpαpβ þ ϵspαð∂igαβBβ þ gαβ∂iBβÞ

g0νpν − ϵsðB0 þ pα∇v 0BαÞ
; ð5:14Þ

and p0 is calculated from

1

2
gμνpμpν − ϵsgμνpμBνðx; pÞ ¼ 0: ð5:15Þ

This equation can be solved explicitly, using the fact that
the velocity _xα is future oriented:

p0 ¼
1

g00

h
−ðg0ipi − ϵsg0μBμÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg0ipi − ϵsg0μBμÞ2 − g00ðgijpipj − 2ϵspigiμBμÞ

q i
:

ð5:16Þ
Note that in general Bμ depends on p0. However, since this
is an Oðϵ1Þ term, we can replace the Oðϵ0Þ expression for
p0 in Bμ.
In order to compare with the results of Gosselin et al.

[41], we consider a Schwarzschild spacetime in Cartesian
isotropic coordinates ðt; x; y; zÞ:

ds2 ¼ −
�
1 − rs

4R

1þ rs
4R

�
2

dt2 þ
�
1þ rs

4R

�
4

ðdx2 þ dy2 þ dz2Þ;

ð5:17Þ

where rs ¼ 2GM=c2 is the Schwarzschild radius and
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. We also define the following ortho-

normal tetrad:

e0 ¼
1þ rs

4R

1 − rs
4R

∂t; e1 ¼
�
1þ rs

4R

�
−2∂x;

e2 ¼
�
1þ rs

4R

�
−2∂y; e3 ¼

�
1þ rs

4R

�
−2∂z; ð5:18Þ

where tμ ¼ ðe0Þμ is our choice of observer.

The Berry connection Bμ can be explicitly computed
by introducing a particular choice of polarization vectors,
using Eq. (5.1) and the orthonormal tetrad (5.18). We now
have all the elements required for the numerical integration
of Eqs. (5.12)–(5.14). For this purpose, we used the
NDSOLVE function of Mathematica [71]. For these exam-
ples, we used the default settings for the integration
method, precision, and accuracy.
After obtaining a numerical solution ðxðtÞ; pðtÞÞ to

Eqs. (5.12)–(5.14), in order to ensure the gauge invariance
of our results, we have to evaluate the gauge-invariant non-
canonical quantities ðXðtÞ; PðtÞÞ, as given in Eqs. (4.22)
and (4.23). These are the quantities used to represent the
trajectories in Figs. 1 and 2. A comparative discussion
between the use of canonical and noncanonical ray equa-
tions in optics, together with numerical examples, can be
found in Ref. [47].
As the first step, we numerically compare our ray

Eqs. (5.12)–(5.14) with those predicted by Gosselin et al.
[41]. This is done by numerically integrating Eqs. (5.12)–
(5.14), as well as Eq. (23) from Ref. [41]. Up to numerical
errors, we obtain the same ray trajectories with both sets
of equations. However, while the equations obtained by
Gosselin et al. only apply to static spacetimes, Eqs. (5.12)–
(5.14) do not have this limitation.
The results of our numerical simulations are shown in

Fig. 1, which illustrates the general behavior of the gravi-
tational spin Hall effect of light around a Schwarzschild
black hole. [The actual effect is small, so the figure is
obtained by numerical integration of Eqs. (5.12)–(5.14)
for unrealistic parameters.] Here, we consider rays of
opposite circular polarization (s ¼ �1) passing close to
a Schwarzschild black hole, together with a reference
null geodesic (s ¼ 0). Except for the value of s, we are
considering the same initial conditions, ðxið0Þ; pið0ÞÞ, for
these rays. Unlike the null geodesic, for which the motion is
planar, the circularly polarized rays are not confined to
a plane.
As another example, we used initial conditions ðxið0Þ;

pið0ÞÞ such that the rays are initialized as radially ingoing
or outgoing. In this case (not illustrated, since it is trivial),
the gravitational spin Hall effect vanishes, and the circu-
larly polarized rays coincide with the radial null geodesic.
Using these numerical methods, we can also estimate the

magnitude of the gravitational spin Hall effect. As a
particular example, we consider a similar situation to the
one presented in Fig. 1, where the black hole is replaced
with the Sun. More precisely, we model this situation by
considering a Schwarzschild black hole with rs ≈ 3 km.
We consider the deflection of circularly polarized rays
coming from a light source far away, passing close to the
surface of the Sun, and then observed on the Earth. This
situation is illustrated in Fig. 2. The numerical results are
based on the initial data presented in the caption of Fig. 2.
When reaching the Earth, the separation distance between
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the rays of opposite circular polarization depends on the
wavelength. For example, taking wavelengths of the order
λ ≈ 10−9 m results in a separation distance of the order
d ≈ 10−15 m, while for wavelengths of the order of λ ≈ 1 m
we obtain a separation distance of the order d ≈ 10−6 m.
Although the ray separation is small (about six orders of
magnitude smaller than the wavelength), what really
matters is that the rays are scattered by a finite angle.
Therefore, the ray separation grows linearly with distance
after the reintersection point. This means that the effect
should be robustly observable if one measures it sufficiently
far from the Sun. Furthermore, massive compact astro-
nomical objects, such as black holes or neutron stars, are
expected to produce a larger gravitational spin Hall effect.
As a consistency check, we also performed the numeri-

cal computations using different coordinates, such as
the standard Schwarzschild spherical coordinates and

Gullstrand-Painlevé coordinates. The results are indepen-
dent of the choice of coordinates. However, the polarized
rays are not invariant under a change of observer. This is due
to an effect analogous to the Wigner translations discussed
in Sec. VA. For example, instead of the static observer
introduced in Eq. (5.18), one could consider a free-falling
observer. In this case, the ray trajectories presented in
Figs. 1 and 2 are slightly modified, due to the Wigner
translations, and preliminary investigations indicate that
these modifications are smaller than one wavelength, as in
the case discussed in Sec. VA. It is not clear how to separate
the purely gravitational effect from the observer-dependent
Wigner translations. However, this is not a problem. The
Wigner translation represents the observer-dependent ambi-
guity in defining the location of the ray on a single-
wavelength scale and remains bounded. In contrast, the
purely gravitational effect can affect the angle of light
scattering off a gravitating object and thus the ray displace-
ment associated with this effect accumulates linearly with
the distance. This means that the latter effect dominates at
large distances. Amore detailed analysis of themodified ray
equations, at both the analytical and the numerical levels,
will be carried out in future work.

VI. CONCLUSIONS

In summary, we have presented a first comprehensive
theory of the gravitational spin Hall effect that occurs due to
the coupling of the polarization with the translational
dynamics of the light rays. The ray dynamics is governed
by the corrected Hamiltonian

Hðx; pÞ ¼ 1

2
gμνpμpν − ϵsgμνpμBνðx; pÞ: ð6:1Þ

FIG. 2. Results of numerical simulations illustrating the
gravitational spin Hall effect of light around the Sun. The
effect is exaggerated for visualization purposes. The separation
distance d is observed from the Earth. The blue and the red
trajectories correspond to rays of opposite circular polarization,
s ¼ �1, while the green trajectory represents a null geodesic.
We take rs ¼ 3 km, and we start with the initial position
xið0Þ ¼ ð−107rs; 3 × 105rs; 0Þ, and initial normalized momen-
tum pi ¼ ð1; 0; 0Þ.

FIG. 1. Results of numerical simulations illustrating the gravitational spin Hall effect of light around a Schwarzschild black hole. The
effect is exaggerated for visualization purposes. The two figures present the same rays from different viewing angles. The central sphere
represents the Schwarzschild black hole, and the small orange sphere represents a source of light. The blue and the red trajectories
correspond to rays of opposite circular polarization, s ¼ �1, while the green trajectory represents a null geodesic. We take rs ¼ 1, and
we start with the initial position xið0Þ ¼ ð−50rs; 15rs; 0Þ, and initial normalized momentum pi ¼ ð1; 0; 0Þ. The wavelength λ is set to a
sufficiently large value to make the effect visible on this plot.
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Here, the first term represents the geometrical optics
Hamiltonian, and the second term represents a correction
of Oðϵ1Þ that is due to the Berry connection, which is
given by

Bμðx; pÞ ¼ im̄α

� ∂
∂xμ mα − Γσ

αμmσ þ Γσ
μρpσ

∂
∂pρ

mα

�
¼ im̄α∇h μmα: ð6:2Þ

Assuming the noncanonical coordinates (4.22), the corre-
sponding ray equations are

_Xμ ¼ Pμ þ ϵsPνðFpxÞνμ þ
2iϵs

ðtαPαÞ2
Γα
βνPαPβm½νm̄μ�; ð6:3Þ

_Pμ ¼ Γα
βμPαPβ þ ϵsPν½iRαβμνmαm̄β þ ðF̃xxÞνμ�

þ ϵsΓα
βνPαPβðFpxÞμν; ð6:4Þ

where the terms Fpx and F̃xx and the timelike vector tα

are given in Appendix C. The last term on the right-hand
side of Eq. (6.3) is the covariant analogue of the spin
Hall correction term usually encountered in optics [20,41],
while the Riemann curvature term in Eq. (6.4) is reminis-
cent of a similar term appearing in the Mathisson-
Papapetrou-Dixon equations [27]. InMinkowski spacetime,
theFpx term is responsible for the relativistic Hall effect [50]
and Wigner translations [51].
The resulting deviation of the ray trajectories from those

predicted by geometrical optics is weak but not unobserv-
able. First of all, even small angular deviations are
observable at large enough distances. Second, as shown
in Ref. [19], weak quantummeasurement techniques can be
used to detect the spin Hall effect of light, even when the
spatial separation between the left-polarized and the right-
polarized beams of light is smaller than the wavelength.
Potentially, this work can be naturally extended in two

directions. First, the corrected ray equations are yet to be
studied more thoroughly, both analytically and numerically.
Rigorous numerical investigations are needed to obtain a
precise prediction of the effect, in particular for Kerr black
holes. Second,Maxwell’s equations are a proxy to linearized
gravity. It is expected that a similar approach can be carried
out to obtain an effective pointwise description of a
gravitational wave packet, extending the results of Ref. [46].
As discussed in Ref. [4], the spin Hall effect of light is

directly related to the conservation of total angular momen-
tum. For the discussion presented so far, the considered
rays carry extrinsic orbital angular momentum, associated
with the ray trajectory, and intrinsic spin angular momen-
tum, associated with the polarization. However, it is well-
known that light can also carry intrinsic orbital angular
momentum [72–74] (see also Ref. [75] and references
therein). In principle, the magnitude of the spin Hall effect
can be increased by considering optical beams carrying
intrinsic orbital angular momentum [76]. The method and

ansatz that we have adopted are insufficient to describe this
effect. A more realistic and more precise approach involv-
ing wave packets, such as Laguerre-Gaussian beams,
should be considered. It may be possible to do so using
the machinery developed in Ref. [58].
A formulation of the special-relativistic dynamics of

massless spinning particles and wave packets beyond the
geometrical optics limit has been previously reported by
Duval and collaborators (cf. Ref. [77] for the spin-1=2 case;
see also Ref. [78]). This analysis relates the modified
dynamics to the approach of Souriau [79], making use of
so-called spin enslaving. This has been extended to general
helicity by Andrzejewski et al. [80]. We expect that the
Hamiltonian formulation presented here corresponds to a
general relativistic version of the models considered in the
mentioned papers. This will be considered in a future work.
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APPENDIX A: HORIZONTAL AND VERTICAL
DERIVATIVES ON T�M

Let ðxμ; pμÞ be canonical coordinates on T�M.
Considering fields defined on T�M, such as uαðx; pÞ and
vαðx; pÞ, the horizontal and vertical derivatives are defined
as follows [81, Sec. 3.5]:

∇v μuα ¼
∂

∂pμ
uα; ðA1aÞ

∇h μuα ¼
∂
∂xμ uα − Γσ

αμuσ þ Γσ
μρpσ

∂
∂pρ

uα; ðA1bÞ
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∇v μvα ¼ ∂
∂pμ

vα; ðA2aÞ

∇h μvα ¼
∂
∂xa v

α þ Γα
σμvσ þ Γσ

μρpσ
∂

∂pρ
vα: ðA2bÞ

The extension to general tensor fields on T�M is straight-
forward. Note that in contrast to Ref. [81, Sec. 3.5], we
have the opposite sign for the last term in the definition of
the horizontal derivative. This is because our fields,
uαðx; pÞ and vαðx; pÞ, are defined on T�M, and not on
TM, as is the case in the reference mentioned before. We
can make use of the following properties:

½∇h μ;∇
v

ν� ¼ 0; ½∇v μ;∇v ν� ¼ 0;

∇h μpα ¼ ∇h μgαβ ¼ ∇v μgαβ ¼ 0: ðA3Þ

APPENDIX B: VARIATION OF THE ACTION

Here, we derive the Euler-Lagrange equations that
correspond to the action

J ¼
Z
M
d4x

ffiffiffi
g

p
L; ðB1Þ

where the Lagrangian density is of the following form:

L ¼ LðSðxÞ;∇μSðxÞ;
Aα½x;∇SðxÞ�;∇μfAα½x;∇SðxÞ�g;
A�α½x;∇SðxÞ�;∇μfA�α½x;∇SðxÞ�gÞ: ðB2Þ

Here, SðxÞ is an independent field, while Aα and A�α cannot
be considered independent, since they depend on ∇μS.
Following Hawking and Ellis [52, p. 65], we define the
variation of a field Ψi as a one-parameter family of fields
Ψiðu; xÞ, with u ∈ ð−ε; εÞ and x ∈ M. We use the follow-
ing notation:

∂Ψiðu; xÞ
∂u

				
u¼0

¼ ΔΨi: ðB3Þ

Note that the derivative with respect to the parameter u
commutes with the covariant derivative, so we have

d
du

∇μSðu; xÞ ¼ ∇μ

�∂S
∂u
�
; ðB4Þ

d
du

Aαðu; x;∇Sðu; xÞÞ ¼ ∂Aα

∂u þ ∂Aα

∂∇νS
∇ν

�∂S
∂u
�
; ðB5Þ

d
du

∇μ½Aαðu; x;∇Sðu; xÞÞ� ¼ ∇μ

�
d
du

Aαðu; x;∇Sðu; xÞÞ
�
¼ ∇μ

�∂Aα

∂u þ ∂Aα

∂∇νS
∇ν

�∂S
∂u
��

: ðB6Þ

We consider the variation of the action, taking special care when applying the chain rule:

0 ¼ dJ
du

				
u¼0

¼
Z
M
d4x

ffiffiffi
g

p �∂L
∂S ΔSþ ∂L

∂∇μS
Δð∇μSÞ

þ ∂L
∂Aα

�
ΔAα þ

∂Aα

∂∇μS
∇μðΔSÞ

�
þ ∂L
∂∇μAα

∇μ

�
ΔAα þ

∂Aα

∂∇νS
∇νðΔSÞ

�
þ ∂L
∂A�α

�
ΔA�α þ ∂A�α

∂∇μS
∇μðΔSÞ

�
þ ∂L
∂∇μA�α ∇μ

�
ΔA�α þ ∂A�α

∂∇νS
∇νðΔSÞ

��
: ðB7Þ

Integrating by parts and assuming the boundary terms vanish, we obtain

0 ¼ dJ
du

				
u¼0

¼
Z
M
d4x

ffiffiffi
g

p �� ∂L
∂Aα

−∇μ
∂L

∂∇μAα

�
ΔAα þ

� ∂L
∂A�α −∇μ

∂L
∂∇μA�α

�
ΔA�α

þ ∂L
∂S ΔS −∇μ

� ∂L
∂∇μS

þ ∂Aα

∂∇μS

� ∂L
∂Aα

−∇ν
∂L

∂∇νAα

�
þ ∂A�α

∂∇μS

� ∂L
∂A�α −∇ν

∂L
∂∇νA�α

��
ΔS
�
: ðB8Þ

Since the above equation must be satisfied for all variations ΔS, ΔAα, and ΔA�α, we obtain the following Euler-Lagrange
equations:
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∂L
∂A�α −∇μ

∂L
∂∇μA�α ¼ Oðϵ2Þ; ðB9Þ

∂L
∂Aα

−∇μ
∂L

∂∇μAα
¼ Oðϵ2Þ; ðB10Þ

∂L
∂S −∇μ

� ∂L
∂∇μS

þ ∂Aα

∂∇μS

� ∂L
∂Aα

−∇ν
∂L

∂∇νAα

�
þ ∂A�α

∂∇μS

� ∂L
∂A�α −∇ν

∂L
∂∇νA�α

��
¼ Oðϵ2Þ: ðB11Þ

Furthermore, Eq. (B11) can be simplified by using
Eqs. (B9) and (B10). Thus, as a final result, we have the
following set of Euler-Lagrange equations:

∂L
∂A�α −∇μ

∂L
∂∇μA�α ¼ Oðϵ2Þ;

∂L
∂Aα

−∇μ
∂L

∂∇μAα
¼ Oðϵ2Þ;

∂L
∂S −∇μ

∂L
∂∇μS

¼ Oðϵ2Þ: ðB12Þ

APPENDIX C: BERRY CURVATURE

In order to calculate the Berry curvature terms (4.28), it is
enough to use a tetrad ftα; pα; vα; wαg, where tα is a future-
oriented timelike vector field representing a family of
observers and pα is a generic vector, not necessarily null,
representing the momentum of a point particle (ray). The
vectors vα and wα are real spacelike vectors related to mα

and m̄α by the following relations:

mα ¼ 1ffiffiffi
2

p ðvα þ iwαÞ; m̄α ¼ 1ffiffiffi
2

p ðvα − iwαÞ: ðC1Þ

The elements of the tetrad ftα; pα; vα; wαg satisfy the
following relations:

tαtα ¼ −1; pαpα ¼ κ; tαpα ¼ −ϵω;

vαvα ¼ wαwα ¼ 1;

tαvα ¼ tαwα ¼ pαvα ¼ pαwα ¼ vαwα ¼ 0: ðC2Þ
Note that the vectors vα and wα depend of pμ through the
orthogonality condition, while tα is independent of pμ. We
start by computing the vertical derivatives of the vectors vα

and wα. Using the tetrad, we can write

∇v μvα ¼ ∂vα
∂pμ

¼ c1μtα þ c2μpα þ c3μvα þ c4μwα; ðC3Þ

∇v μwα ¼ ∂wα

∂pμ
¼ d1μtα þ d2μpα þ d3μvα þ d4μwα; ðC4Þ

where ciμ and diμ are unknown vector fields that need
to be determined. Using the properties from Eq. (C2), we
obtain

∇v μvα ¼ ϵω

ϵ2ω2 þ κ
vμtα −

1

ϵ2ω2 þ κ
vμpα þ c4μwα;

∇v μwα ¼ ϵω

ϵ2ω2 þ κ
wμtα −

1

ϵ2ω2 þ κ
wμpα þ d3μvα: ðC5Þ

Applying the same arguments to the terms∇μvα and ∇μwα,
we also obtain

∇μvα ¼ −
1

ϵ2ω2 þ κ
ðϵωpσ∇μvσ þ κtσ∇μvσÞtα

þ 1

ϵ2ω2 þ κ
ðpσ∇μvσ − ϵωtσ∇μvσÞpα þ f4μwα;

∇μwα ¼ −
1

ϵ2ω2 þ κ
ðϵωpσ∇μwσ þ κtσ∇μwσÞtα

þ 1

ϵ2ω2 þ κ
ðpσ∇μwσ − ϵωtσ∇μwσÞpα þ g3μvα:

ðC6Þ
Note that the fields c4μ, d3μ, f4μ, and g3μ are undetermined
within this approach, but this is not a problem, because they
do not affect the Berry curvature.

1. Fpp

We compute ðFppÞνμ by using Eq. (C5) and setting
κ ¼ 0. Since vertical derivatives commute [see Eq. (A3)],
we can write

ðFppÞνμ ¼ ið∇v μm̄α∇v νmα −∇v νm̄α∇v μmαÞ

¼ ∇v νvα∇v μwα −∇v μvα∇v νwα

¼ 2

ϵ2ω2
v½νwμ�

¼ 2i
ϵ2ω2

m½νm̄μ�: ðC7Þ

2. Fxx

We have

ðFxxÞνμ ¼ ið∇μm̄α∇νmα −∇νm̄α∇μmα

þm̄α∇½μ∇ν�mα −mα∇½μ∇ν�m̄αÞ: ðC8Þ

The last two terms can be expressed in terms of the
Riemann tensor:
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iðm̄α∇½μ∇ν�mα −mα∇½μ∇ν�m̄αÞ ¼ −iRαβμνmαm̄β: ðC9Þ

The first two terms can be computed using Eq. (C6) and
κ ¼ 0:

ðF̃xxÞνμ ¼ ið∇μm̄α∇νmα −∇νm̄α∇μmαÞ
¼ ∇νvα∇μwα −∇μvα∇νwα

¼ 1

ϵ2ω2
ðpσ∇μvσpρ∇νwρ − pσ∇νvσpρ∇μwρ

− ϵωpσ∇μvσtρ∇νwρ þ ϵωpσ∇νvσtρ∇μwρ

− ϵωtσ∇μvσpρ∇νwρ þ ϵωtσ∇νvσpρ∇μwρÞ

¼ 1

ϵ2ω2
ðpσ∇μmσpρ∇νm̄ρ − pσ∇νmσpρ∇μm̄ρ

− ϵωpσ∇μmσtρ∇νm̄ρ þ ϵωpσ∇νmσtρ∇μm̄ρ

− ϵωtσ∇μmσpρ∇νm̄ρ þ ϵωtσ∇νmσpρ∇μm̄ρÞ:
ðC10Þ

3. Fpx and Fxp

Since ðFpxÞνμ ¼ −ðFxpÞμν, it is enough to compute only
one term. Using Eqs. (C5) and (C6), and setting κ ¼ 0, we
obtain

ðFpxÞνμ ¼ ið∇v μm̄α∇νmα −∇νm̄α∇v μmαÞ

¼ ∇νvα∇
v

μwα −∇v μvα∇νwα

¼ 1

ϵ2ω2
½ðpσ∇νwσ − ϵωtσ∇νwσÞvμ

− ðpσ∇νvσ − ϵωtσ∇νvσÞwμ�
¼ i

ϵ2ω2
½ðpσ∇νm̄σ − ϵωtσ∇νm̄σÞmμ

− ðpσ∇νmσ − ϵωtσ∇νmσÞm̄μ�: ðC11Þ

APPENDIX D: COORDINATE
TRANSFORMATION

The substitution from Eqs. (4.22) and (4.23) can be
obtained, up to terms of order ϵ2, as a linearization of the
following composition of changes of coordinates on the
cotangent bundle T�M. Consider the family of diffeo-
morphisms ðΦϵÞ generated by the vector field on M

Y ¼ ism̄α∇v μmα∂xμ ; ðD1Þ
that is to say

d
dϵ

ΦϵðxÞ ¼ YðΦϵðxÞÞ with Φ0ðxÞ ¼ x: ðD2Þ

By construction, the Taylor expansion in a coordinate chart
ofΦϵ at order ϵ1 leads to Eq. (4.22).Φϵ naturally lifts to the
cotangent bundle using the pullback Φ�

ϵ :

Φ�
ϵ∶ ðx; pÞ ↦ ðΦϵðxÞ; p∘dΦ−1

ϵ jΦϵðxÞÞ: ðD3Þ

Note that the choice of the lift is not unique. The mapping
Φ�

ϵ is, at order one in ϵ, in coordinates,

ðxμ; pμÞ ↦ ðxμ þ isϵm̄α∇v μmα; pμ − iϵspβ∂xμðm̄α∇v βmαÞÞ:
ðD4Þ

Consider next the translation of the momentum variable
defined by

Ψϵ∶ ðx; pÞ ↦ ðx; p − ϵσÞ; ðD5Þ

where σ ¼ isðm̄α∇μmα þ pβ∂xμðm̄α∇v βmαÞÞdxμ. The lin-
earization in ϵ of the diffeomorphism Ψϵ∘Φϵ

� provides by
construction the change of variables in Eqs. (4.22)
and (4.23).
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