
 

New anisotropic sudden singularities and dimensional reduction
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We demonstrate the existence of sudden finite-time singularities, with constant scale factor, expansion
rate, and density, in expanding Bianchi type-IX universes with free anisotropic pressures. A new type of
nonsimultaneous anisotropic sudden singularity arises because of the divergences of the pressures, which
may be of barrel or pancake type. The effect of one or more directions of expansion hitting a sudden
singularity is tantamount to dimensional reductions as the nonsingular directions continue expanding and
can see the sudden singularity in their past.
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I. INTRODUCTION

Sudden cosmological singularities, first introduced in
Ref. [1] and developed systematically in Refs. [2–8] and
reviewed in Ref. [9], have attracted widespread interest.
They appear in a wide range of gravity theories and
solutions. They typically occur when the pressure and
scale factor acceleration diverge at a finite time ts, while the
scale factor, density, and Hubble expansion rate remain
finite. Thus, all terms in the Friedman equation, or its
equivalent in other theories of gravity, remain finite while
finite-time singularities occur in the acceleration and
conservation equations.
Sudden singularities and their generalized counterparts

[3] are weak singularities in the senses of Tipler [10]
and Krolak [11], and their conformal diagrams have been
constructed in Ref. [12]. Geodesics are unscathed by
sudden singularities [13], and the general behavior of the
Einstein and geodesic equations in their neighborhood was
found in Refs. [5,6,14]. This behavior appears robust in the
presence of quantum particle production [7]. The first
examples were existence proofs that required unmotivated
pressure-density relations so that the density could remain
finite while the pressure diverged. However, more recently,
generalized singularities of this sort have been found by
Barrow and Graham [15] and appear in simple isotropic
Friedman universes with a scalar field having power-law
self-interaction potentials for a scalar field ϕ of the form
VðϕÞ ¼ V0ϕ

n, 0 < n < 1. They always develop a finite-
time singularity where the Hubble rate and its first
derivative are finite, but its second derivative diverges.
For noninteger n > 1, there is a class of models with even
weaker singularities. Infinities first occur at a finite time in
the ðkþ 2Þth time derivative of the Hubble expansion rate,
where k < n < kþ 1 and k is a positive integer [15]. These
models inflate, but inflation ends in a singular fashion.

In this paper, we study a new effect in anisotropic
cosmological models experiencing nonsimultaneous sud-
den singularities in all, or some, of their directional scale
factors. This can create a form of dimensional reduction in
which some directional scale factors experience sudden
singularities, while others do not. Those that do not
experience the singularities continue expanding as if in a
lower-dimensional universe. We use the Bianchi type-IX
“mixmaster” universe expanding away from the initial
strong curvature at t ¼ 0 to illustrate this point and derive
the general forms of the evolution of the three expansion
scale factors.
In what follows, we set c ¼ 1 ¼ 8πG. Planck’s constant

does not appear, and our study is entirely classical.
Quantum features can be studied using our paper Ref. [7].

II. THE MIXMASTER MODEL EQUATIONS

The spatially homogeneous diagonal Bianchi IX metric
is [16]

ds2 ¼ dt2 − γabðtÞeaμebνdxμdxν; ð1Þ

where

γabðtÞ ¼ diag½a2ðtÞ; b2ðtÞ; c2ðtÞ�; ð2Þ

and

eaμ ¼

0
B@

cos z sin z sin x 0

− sin z cos z sin x 0

0 cos x 1

1
CA: ð3Þ

The general relativistic field equations in vacuum
Bianchi type IX with scale factors aðtÞ, bðtÞ, cðtÞ, and
matter with density ρ and anisotropic pressures p1, p2, and
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p3 [16–18] are most simply expressed by introducing the τ
time defined in terms of the comoving proper time t by

dτ ¼ dt
abc

; ð4Þ

and 0 denotes d=dτ. The field equations are

ðln a2Þ00 þ a4 − ðb2 − c2Þ2 ¼ a2b2c2ðρ − paÞ; ð5Þ

and their two cyclic permutations obtained under the
transform a → b → c → a, together with pa → pb → pc.
A first integral, the mixmaster Friedman-like equation,
exists and is

4

�
a0b0

ab
þ b0c0

bc
þ a0c0

ac

�
¼ a4 þ b4 þ c4 − 2a2b2

− 2c2ðb2 þ a2Þ þ 4a2b2c2ρ:

ð6Þ

We see that when a ¼ b ¼ c, it reduces to

12
a02

a2
¼ 4a6ρ − 3a4:

Restoring the cosmic time derivative a3da=dt ¼ da=dτ,
we have (overdot denotes d=dt) the standard closed
isotropic universe’s Friedman equation after the coordinate
transform a → a

2
:

3
_a2

a2
¼ ρ

3
−

1

a2
:

When all the quartic terms are dropped in Eq. (5), then
they are just like the Bianchi I equations with a curvature
term that will dominate the matter at late times so long as
pi > −ρ=3. We looked at the flat Bianchi I and VII0 models
in Ref. [4].

III. THE SUDDEN SINGULARITY SCALE
FACTOR EVOLUTIONS

In order to establish the existence of anisotropic sudden
singularities in the mixmaster metric at late time, we look
for the following forms for the scale factors on approach to
a finite-time singularity s t → ts from below. The scale
factors, their first time derivatives, and the density ρ will be
assumed to be finite at ts, but second derivatives of the scale
factors, first derivatives of the density, and the principal
pressures will be allowed to diverge. Thus, we assume that
the asymptotic forms of the scale factors as t → ts have the
form that we know is part of the general solution of the
Einstein equations [5,6]. So, all terms in Eq. (6) will be
finite, and Eq. (5) reduce asymptotically to

ðln a2Þ00 ¼ −a2b2c2pa ¼ −Capa; ð7Þ

and cyclic. In this t → ts limit, we also have

a00 → äa2b2c2; ð8Þ

and cyclic, and so we have the simple system of asymptotic
equations:

ðln a2Þ̈ → −pa: ð9Þ

Therefore, explicitly in the limit t → ts, we have

�
ä
a
;
b̈
b
;
c̈
c

�
→ −

1

2
ðpa; pb; pcÞ: ð10Þ

However, we want to allow the sudden singularity to
arise at different times for the motions in the directions
of the different scale factors, so we introduce three sudden
singularity times tsa; tsb, and tsc > 0, thus,1

aðtÞ ¼
�

t
tsa

�
qaðasa − 1Þ þ 1 −

�
1 −

t
tsa

�
na
; ð11Þ

bðtÞ ¼
�

t
tsb

�
qbðasb − 1Þ þ 1 −

�
1 −

t
tsb

�
nb
; ð12Þ

cðtÞ ¼
�

t
tsc

�
qcðasc − 1Þ þ 1 −

�
1 −

t
tsc

�
nc
: ð13Þ

Here, the constants 0 < qa; qb; qc < 1 and 1 < na; nb;
nc < 2. Therefore,

ä ¼ qaðqa − 1Þ
t2sa

�
t
tsa

�
qa−2

− naðna − 1Þðtsa − tÞna−2;

ð14Þ

and the forms for b̈ðtÞ and c̈ðtÞ are given by in the same
form after substitution of the q0s and n0s. The values of
ä; b̈ðtÞ, and c̈ðtÞ can each diverge if the values of na, nb, nc

1Technically, we can create a slightly more general but rather
cumbersome form by including powers of logarithms. Thus, for
aðtÞ, we would have

aðtÞ ¼
�

t
tsa

�
qaðasa − 1Þ þ 1

−
�
1 −

t
tsa

�
na
�X∞

j¼0

XNj

k¼0

ajkðts − tÞj=Qðlogk½ts − t�Þ
�
;

where Nj ≤ j is a positive integer and Q is a positive rational.
For the corresponding expressions for bðtÞ and cðtÞ, we replace
ajk,Nj, and Q by different independent constants satisfying the
same inequalities.
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are less than 2 and greater than 1, as assumed. This will
create complementary divergences in the values of the
pressures because of Eq. (10). When na ¼ nb ¼ nc, this is
similar to the behavior in the Friedman model first
described in [3]. However, it is possible to create new
types of anisotropic sudden singularity in acceleration and
associated principal pressure by making na ≠ nb ≠ nc, or
allow some directions to avoid a sudden singularity while
others experience it. The possibilities are as follows:
(1) 1 < na; nb; nc < 2: Sudden singularities in all direc-

tions and their associated principal pressures at
different times if tsa; tsb, and tsc are unequal,
simultaneously if they are equal.

(2) 1 < na; nb < 2, and nc > 2 and similar for the
other two permutations ∶ sudden singularities in
two directions and their associated principal pres-
sures (but not in the third).

(3) 1 < na < 2 and nb; nc > 2 and similar for the other
two permutations: sudden singularity in one direc-
tion and its principal pressure (but not in the third).

For example, in the second case (2), we have a non-
simultaneous sudden singularity in the a and b directions,
with

aðtÞ ¼
�

t
tsa

�
qaðasa − 1Þ þ 1 → asa; ð15Þ

bðtÞ ¼
�

t
tsa

�
qb
ðasb − 1Þ þ 1 → asb; ð16Þ

while the expansion parallel to the c direction continues
with nc > 2, and there is no singularity in cðtÞ as t → tsc,
and so it continues past the singularities affecting particles
moving parallel to the a and b directions for t > tsc,

cðtÞ ¼
�

t
tsc

�
qcðasc − 1Þ þ 1 −

�
1 −

t
tsc

�
nc

→

�
t
tsc

�
qcðasc − 1Þ þ 1 −

�
1 −

t
tsc

�
nc
: ð17Þ

The relative values of qc and nc determine this evolution.
Typically, we expect nc > qc, and so

cðtÞ →
�

t
tsc

�
qcðasc − 1Þ þ 1 −

�
1 −

t
tsc

�
nc

→ 1 −
�

t
tsc

�
ncð−1Þnc : ð18Þ

For example, for odd nc, we have for t > tsc,

cðtÞ →
�

t
tsc

�
nc
: ð19Þ

For even nc, we have for t > tsc, from (17),

cðtÞ →
�

t
tsc

�
qcðasc − 1Þ − 1þ

�
t
tsc

�
nc
; ð20Þ

and the possibility of a switch between the two asymptotic
time dependences.

IV. DIMENSIONAL REDUCTION AND ITS
PHYSICAL INTERPRETATION

The possibility of sudden singularities occurring aniso-
tropically at different times is a new feature of this
phenomenon. There are no strong curvature singularities
associated with any of the sudden singularities, and we
expect geodesics to be unscathed by the experience unless
the underlying expansion anisotropy contributed strong
tidal forces [13]. The appearance of finite-time singularities
for the motion of only some of the expansion scale factors
is created by the anisotropic pressures. It means that
particles moving in the singular directions will hit the
pancake or barrel-like sudden singularity, leaving those
moving in the directions orthogonal to them unscathed.
This has an interesting consequence. Suppose that we
repeated our calculations for anisotropic cosmological
models with many space dimensions N, then we might
have S of those dimensions experiencing sudden singular-
ities (not necessarily all at the same time), eventually
leaving N − S to continue expanding. In effect, this is a
cosmological dimensional reduction process. If N − S ¼ 3,
then we would be left with a three-dimensional expanding
space. Observers in that space could in principle look back
down their past light cones and see consequences of the
sudden singularities in the other nonevolving dimensions.
This will have consequences for the constants of nature. If
the true constants are defined in the N-dimensional space,
then in all subspaces of lesser dimension, the apparent
constants in their space will be seen to evolve in time on
the same timescale that the extra dimensions change on.
Observers in an (N − S)-dimensional expanding subspace
will at first see small variations in quantities like their
local fine structure “constant,” or the Newtonian gravitation
constant, following the overall volume expansion. But
when the extra dimensions hit their finite-time singularities,
there could be dramatic evolution of the local three-
dimensional constants [19–22]. However, the sudden sin-
gularities are characterized by the scale factors tending to
constant values at the singularity. Since the evolution of the
local constants is determined by inverse powers of the mean
scale of the extra dimensions, there will no dramatic
evolution of the values of local constants toward zero or
infinity [23,24]. The global structure of singular cosmo-
logical models of this type may prove to be interesting and
quite different from that accompanying strong curvature
singularities. A case for comparison is of parallel propa-
gated curvature singularities which can result in singular-
ities that are directional—but of a different sort from
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those discussed here because they possess curvature sin-
gularities. [25,26]. We do not expect quantum particle
production effects or their classical analog of bulk viscosity
because the local expansion rates on which these processes
depend are assumed constant on approach to the sudden
singularity [7]. Higher-order versions of sudden singular-
ities [3,15] will also be possible in these cosmological
models.

V. CONCLUSIONS

We have studied the presence of sudden singularities,
with finite scale factors, expansion rates, and matter
densities in the most general closed spatially homogeneous
universes of Bianchi type IX. They permit divergences in
scale factor accelerations and pressures at finite-time
singularities, where no curvature invariants diverge. In

the presence of anisotropic pressures, we have found a
new variety of nonsimultaneous directional sudden singu-
larity which can occur in all or any of the expanding
directions. This allows expansion in some directions to end
at a sudden singularity while those in other nonsingular
directions do not. This creates a new form of dimensional
reduction driven by the anisotropic pressures, some of
which may diverge at finite time while others remain finite.
The expansion continues unaffected in the nonsingular
directions and the sudden singularities, and their conse-
quences could be observed in the past of the nonsingular
directions.
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