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In this paper, we explore the formation of the marginally trapped/ antitrapped surfaces that arise from the
evolution of dust in D-dimensions with and without the cosmological constant. We obtain analytical
expressions for such surfaces. We also derive closed form expressions for the norms of various quantities
that decide the Causal nature of the marginally trapped/antitrapped surfaces. We discuss several interesting
features of evolution of these surfaces that are significantly different from the four dimensional counterpart.
We obtain the expressions for the Ashtekar-Badrikrihnan’s area-balance law for dynamical horizon
(spacelike surface) tailored for the case of spherically symmetric dust evolution in D-dimensions.
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I. INTRODUCTION

The black-hole horizon is a very interesting arena where
quantum field theory and general relativity come face to
face. The relation between the area of the black-hole
horizon and its entropy is one of most important develop-
ments of recent times and has been a favorite testing ground
for various theories of quantum gravity. A study of the
dynamics of the horizon evolution is therefore of great
importance since one can track the evolution of quantities
like entropy and correlate it with the flux of matter or
gravitational waves crossing the horizon. The concept of
trapping horizons was coined (as against the event horizon)
to locally track the evolving horizon by Penrose [1].
Hayward in his paper [2] has refined the concept of
trapping horizons based on a 2þ 2 decomposition
framework which introduced various trapped horizons like
future outer trapped horizon (FOTH), future inner trapped
horizon (FITH), past outer trapped horizon (POTH) and
past inner trapped horizon (PITH). Ashtekar, Badrikrishnan
et al. [3–7] have formulated a closely related notions to
Hayward’s trapped horizons, which is based on a 3þ 1
space-time decomposition framework where they have
introduced isolated horizons, dynamical horizons, and
timelike membranes. The dynamical horizon is defined
as a spacelike hypersurface foliated by 2-Spheres such that
the expansion for outgoing (ka) and incoming (la) null
normal are Θk ¼ 0 and Θl < 0 respectively on every leaf of
the foliation. The area of the dynamical horizon is shown to
increase monotonically provided the null energy condition
is satisfied. If there is no matter flux or gravitational waves
crossing the dynamical horizon then it becomes null and is

called an isolated horizon. Likewise it is shown that one can
similarly construct a timelike membrane that arise in
cosmological or few cases of gravitational collapse. It is
shown in [6] that in contrast to the dynamical horizon case,
the area monotonically decreases for a timelike membrane.
In the work of Booth et al. [8], many possible situations
where one can find dynamical horizons, timelike membranes
are highlighted and also looked at their causal nature
following the prescription given in [9] to classify the
horizons as timelike or spacelike. Busso in [10] has
introduced a construction for past holographic screen and
future holographic screen which are be defined in terms of
marginally trapped surfaces (MTS) or marginally antitrapped
surfaces (MATS) respectively. Using this construction Busso
and Engelhardt in [11,12] have proved a new area law in
general relativity where the area of a holographic screen
changes monotonically even though the causal nature of the
screen (horizon) changes during its evolution.
In this paper, we work with a model [13] where the

matter content is pressureless dust in a spherically sym-
metric arrangement in D-dimensions (the Lemaitre-
Tolman-Bondi model generalized to D-dimensions). This
model for matter evolution has the advantage that it is
general enough to capture many features of Horizon
evolution and is simple enough to yield closed form
expressions for various scenarios like FOTH, FITH,
POTH, PITH. This can therefore yield the D-dimensional
versions of various results highlighted in [8,14–16]. The
area balance law for dynamical horizon given in 3þ 1
dimensions is extended to D dimensions for a spherical
topology, which is applied to this model. The analysis of
the model in this paper can be used to represent two
situations. First, it can represent the evolution of matter of a
star if we put a cut-off for the density at some finite radius.
Second, it can be interpreted as a cosmological solution
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(when we set the density to be homogeneous). This analysis
is inclusive of the cosmological constant.
In this model, we obtain the general expression Θk, Θl

by defining the outgoing and ingoing null rays in the
evolving space-time. Based on the expressions obtained,
we can obtain the curve Θk ¼ 0 or Θl ¼ 0 in the form
fðr; t; D;ΛÞ ¼ constant in the relevant time and radial
coordinate (t, r) respectively. We evaluate the norm of
the vector orthogonal to these curves and from this deduce
the signature of the horizon. We show that this is equivalent
to the prescription given by Booth et al. [8] where the
signature of the curves (horizons) is evaluated using the
ratio of Lie derivatives of Θk and Θl. Here we will see that
the causal nature of theD-dimensional horizon evolution is
indeed richer and more varied compared to the 3þ 1
scenario. For, e.g., it is well known that the for the case
of 3þ 1 dimensional Oppenheimer-Snyder matter evolu-
tion, the MTS is a timelike membrane. We show in the
article that in D-dimensional Oppenheimer-Snyder dust
evolution, the MTS is timelike for dimension D < 5 and is
null for D ¼ 5 and is space-like for D > 5. The causal
nature of the horizon becomes more interesting when we
analyze the MTS, MATS. We observe that in the evolution
of MTS and MATS, the Horizon makes a transition from
timelike to spacelike. We show the expressions highlight-
ing these transitions in the article. We show that even
though there is transition from timelike to spacelike, the
evolution of the Area is strictly monotonic in the time
coordinate used in the model (in accordance with the
results in [11,12]).

II. HIGHER DIMENSIONAL SPHERICALLY
SYMMETRIC DUST EVOLUTION

The general metric for an ðD ¼ nþ 2Þ dimensional
spherically symmetric spacetime is of the form

ds2 ¼ −eμðt;rÞdt2 þ eλðt;rÞdr2 þ R2ðt; rÞdΩ2
n ð1Þ

where dΩ2
n is the metric on unit n dimensional sphere, t is

the time coordinate and r is the comoving radial coordinate.
It is easily shown [13] that the g00 component of the metric
can be chosen to be minus one, i.e., g00 ¼ −1. The metric
then has the following form.

ds2 ¼ −dt2 þ eλðt;rÞdr2 þ R2ðt; rÞdΩ2: ð2Þ

For a nonzero cosmological constant (Λ ≠ 0), the Einstein
equations are

Gμν þ Λgμν ¼ κTμν ð3Þ

here κ is a constant and is related to gravitational constant
Gn, (κ ¼ 8πGn). The matter we are considering here is a
pressure less dust hence the only nonzero component of the
stress-energy tensor (in the comoving and synchronous

coordinate system) is T00 ¼ ϵðt; rÞ, where ϵðt; rÞ is the
energy density of the dust. With these conditions we get
the Einstein equations which are shown in [13] and
summarized below

G00 ¼
e−λ

R2

�
−ΛeλR2 þ nðn − 1Þ

2
ðeλð1þ _R2Þ − R02Þ

þ n
2
RR0λ0 þ n

2
ð−2RR00 þ eλR _R _λÞ

�
¼ kϵðt; rÞ ð4Þ

G01 ¼
n
2

ðR0 _λ − 2 _R0Þ
R

¼ 0 ð5Þ

G11 ¼
1

R2

�
nðn − 1Þ

2
ðR02 − eλð1þ _R2ÞÞ

þ ΛeλR2 − neλRR̈

�
¼ 0 ð6Þ

G22 ¼ −
1

4
e−λ½2ðn − 2Þðn − 1Þðeλð1þ _R2Þ − R02Þ

− 2ðn − 1Þð2RR00 − RR0λ0 − eλðR _R _λþ2RR̈ÞÞ
þ eλR2ð−4Λþ _λ2 þ 2λ̈Þ� ¼ 0: ð7Þ

The other nonzero relations are given by

Gðjþ1jþ1Þ ¼ sin2 θðj−1ÞGðjjÞ ð8Þ

where j takes values from 2 to nþ 1. The expressions for
the evolution of matter can be obtained by simplifying the
above set of equations. Solving for the G01 we get

eλ ¼ R02

1þ fðrÞ ð9Þ

where fðrÞ is an arbitrary function called the energy
function. Integration of the G11 equation after using the
above relation gives

_R2 ¼ fðrÞ þ 2Λ
nðnþ 1ÞR

2 þ FðrÞ
Rðn−1Þ ð10Þ

where FðrÞ is called the mass function. Solving for G00

we find

κϵðt; rÞ ¼ nF0

2RnR0 : ð11Þ

This gives us the expression for the mass function as

FðrÞ ¼ 2κ

n

Z
ϵð0; rÞrndr ð12Þ

where ϵð0; rÞ is the initial energy density of the dust and
choose that at t ¼ 0, R ¼ r. We work for the case of
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marginally bounded shells of dust where we require that
fðrÞ ¼ 0. The result (12) is obtained by keeping the
constant value of fðrÞ ¼ 0, and this holds true from here
on. Throughout the article we shall assume that ϵ > 0.
(weak energy condition is satisfied).

A. Solutions of homogeneous dust evolution

The advantage of the homogeneous case is that the
physical radius R (area radius) is separable into a time
dependent part and the comoving radius r

Rðr; tÞ ¼ aðtÞr ð13Þ

This model can be used in couple of ways. One is that these
solutions can be used to describe cosmological solutions.
The other way is that these solutions could represent the
generalization of Oppenheimer-Snyder evolution of dust to
a general dimension with a cosmological constant. In the
latter case the solutions described in this section will work
as the interior solutions that need to be matched to an
exterior solution (generalization of Schwarzschild solution
to higher dimensions including a cosmological constant).
We choose aðt ¼ 0Þ ¼ 1 thus the comoving radius r is

equal to the physical radius R (area radius) at initial time
(t ¼ 0). For a homogeneous dust collapse ϵðt; rÞ is a
function only of time t so the initial time density profile
of the dust cloud ϵð0; rÞ is taken to be a positive constant
which does not depend on the value of r. So the mass
function (12) in the homogeneous case is

FðrÞ ¼ 2g
nðnþ 1Þ r

nþ1 ð14Þ

where g ¼ κϵð0; rÞ and g > 0.
Also in the homogeneous case the expression (10)

becomes

_R2 ¼ 2Λ
nðnþ 1ÞR

2 þ 2grnþ1

nðnþ 1ÞRn−1 ð15Þ

and under the condition of (13) this reduces to

_aðtÞ2 ¼ 2Λ
nðnþ 1Þ aðtÞ

2 þ 2g
nðnþ 1ÞaðtÞn−1 : ð16Þ

In the subsections below, we look at the solutions of (16)
for various cases of the cosmological constant being zero,
negative and positive.

1. Case of flat spacetime

The equation (16) for flat spacetime is

_aðtÞ2 ¼ 2g
nðnþ 1ÞaðtÞn−1 ð17Þ

For the initial condition that we choose að0Þ ¼ 1 which
means that Rð0; rÞ ¼ r, then the solutions for aðtÞ are

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

! 2
1þn

ð18Þ

and

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

! 2
1þn

ð19Þ

2. Case of anti–de Sitter spacetime

The equation (16) for anti–de Sitter spacetime is

_aðtÞ2 ¼ −2Λ
nðnþ 1Þ aðtÞ

2 þ 2g
nðnþ 1ÞaðtÞn−1 ð20Þ

for the initial condition að0Þ ¼ 1 the solutions for aðtÞ are
 ffiffiffiffi

g
Λ

r
sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsin

ffiffiffiffi
Λ
g

s !! 2
nþ1

ð21Þ

and

 
−

ffiffiffiffi
g
Λ

r
sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arcsin

ffiffiffiffi
Λ
g

s !! 2
nþ1

: ð22Þ

3. Case of de Sitter spacetime

The equation (16) for de Sitter spacetime is

_aðtÞ2 ¼ 2Λ
nðnþ 1Þ aðtÞ

2 þ 2g
nðnþ 1ÞaðtÞn−1 : ð23Þ

The solutions of aðtÞ for our initial condition að0Þ ¼ 1 are

 ffiffiffiffi
g
Λ

r
sinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsin h

ffiffiffiffi
Λ
g

s !! 2
nþ1

ð24Þ

and

 
−

ffiffiffiffi
g
Λ

r
sinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arc sin h

ffiffiffiffi
Λ
g

s !! 2
nþ1

ð25Þ

III. MARGINALLY TRAPPED AND
ANTITRAPPED SURFACES

Marginally trapped surfaces (MTS) are defined as
codimension 2 sub-manifolds Σ whose expansion of null
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congruence Θk generated by the outgoing radial null vector
ka vanishes everywhere (Θk ¼ 0) on Σ and Θl which is
expansion of null congruence generated by incoming radial
null vector la is completely negative on Σ (Θl < 0). For
these definitions and more see the following references
[5,6,8,14,17–22].
Similarly we define marginally antitrapped surfaces

(MATS) as codimension 2 submanifolds Ξ whose expan-
sion of incoming radial null congruence Θl vanishes
everywhere (Θl ¼ 0) on Ξ and the expansion of outgoing
radial null congruence Θk is completely positive on Ξ
(Θk > 0). These MTS and MATS are also referred to as
future and past holographic screens respectively, mostly in
the context of holographic theories [11,12,23].
From the metric (2) we have the future outgoing radial

null vector as

ka ¼ ð1; e−ðλ2Þ; 0; 0; 0;…; 0Þ ð26Þ

and the future incoming radial null vector as

la ¼ ð1;−e−ðλ2Þ; 0; 0; 0;…; 0Þ ð27Þ

these two future directed radial null vectors are normali-
zed as

kclc ¼ kcldgcd ¼ −2

and hab is the induced metric on the marginally trapped or
marginally antitrapped surface which is

hab ¼ gab þ
ðkalb þ lakbÞ
ð−kcldgcdÞ

¼ gab þ
1

2
ðkalb þ lakbÞ

so the expansion for outgoing bundle of null rays is

Θk ¼ hab∇akb ¼
n
R
ð _Rþ e−ðλ2ÞR0Þ

using Eq. (9) we have

Θk ¼
n
R
ð _Rþ 1Þ ð28Þ

similarly the expansion for ingoing bundle of null rays is

Θl ¼ hab∇alb ¼
n
R
ð _R − e−ðλ2ÞR0Þ

again using Eq. (9) we have

Θl ¼
n
R
ð _R − 1Þ: ð29Þ

A. Causal nature of the marginally trapped and
antitrapped tubes: General D dimensional LTB

The marginally trapped tubes (MTT) or marginally
antitrapped tubes (MATT) are codimension 1 submanifolds
which are foliated by the marginally trapped or marginally
antitrapped surfaces respectively. We look at the causal
nature of these tubes formed in the evolution of the dust,
these tubes can be timelike (Timelike tubes), spacelike
(dynamical horizons) or null (isolated horizons) depending
on various situations which emerge [8,14,15]. This is done
using two methods, in the first one we calculate the norm of
the normal to the tubes in ðr; tÞ plane and use it to classify
the causal nature of these tubes (applicable for the case of
Spherical Symmetry) while the second one is a standard
method used [9] where the ratios of lie derivatives of the
expansions are taken which determines the causal nature of
the tangent vector to the tube. We use these result to find the
causal nature of the tubes that are formed in the dust
evolution for the general case
METHOD I: For this model, we have explicit expression

for the tubes in the ðr; tÞ plane. If we consider the
expression for Θk ¼ c1 where c1 a constant and using
(10) and (28) expressions we get the curve in the ðr; tÞ
plane give by

Θk ¼
n
R
ð−

ffiffiffiffi
Δ

p
þ 1Þ ¼ c1 ð30Þ

where

Δ ¼ 2Λ
nðnþ 1ÞR

2 þ FðrÞ
Rðn−1Þ : ð31Þ

The norm of the normal to the curve in the ðr; tÞ plane
determines the causal nature, so the components of the
normal to this curve are

nt ¼ −
n _R
R2

ð1 −
ffiffiffiffi
Δ

p
Þ − n _Δ

2R
ffiffiffiffi
Δ

p

and

nr ¼ −
nR0

R2
ð1 −

ffiffiffiffi
Δ

p
Þ − nΔ0

2R
ffiffiffiffi
Δ

p

note that for c1 ¼ 0 this curve indicates the marginally
trapped tube. This means for evaluating the norm of this
normal we impose the conditions _R ¼ −1, Δ ¼ 1. The
norm works out to be,

βk ¼ −ðntÞ2 þ
ðnrÞ2
R02 ¼ n2

4R2

�
− _Δ2 þ Δ02

R02

�
ð32Þ

and also using (11) the norm simplifies as,
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βk ¼
4κϵR2

n2

�
κϵþ 2Λ −

nðn − 1Þ
R2

�
: ð33Þ

So the norm βk is a function of energy density (ϵ) on the
tube, the cosmological constant (Λ), the area radius (R) and
the number of dimensions (n ¼ D − 2).
Now repeating the same exercise for marginally anti-

trapped tubes with Θl as

Θl ¼
n
R
ð
ffiffiffiffi
Δ

p
− 1Þ ¼ c2 ð34Þ

where c2 is a constant. The norm evaluates to the same
expression given by,

βl ¼
4κϵR2

n2

�
κϵþ 2Λ −

nðn − 1Þ
R2

�
: ð35Þ

Method II: The standard method for determining the causal
nature of marginally (anti) trapped tubes was first discussed
in [8] and is done by calculation of ratio of Lie derivatives
of Θk and Θl. The signature of quantities αl and αk
discussed below determines the causal nature of the tangent
vectors to the MATT and MTT respectively. The lie
derivatives for Θk are

£kΘk ¼ ka∇aΘk

¼ n
R2

�
R _Δ
2
ffiffiffiffi
Δ

p þ RΔ0

2R0 ffiffiffiffiΔp − ð _Rþ 1Þð
ffiffiffiffi
Δ

p
þ 1Þ

�

£lΘk ¼ la∇aΘk

¼ n
R2

�
R _Δ
2
ffiffiffiffi
Δ

p −
RΔ0

2R0 ffiffiffiffiΔp − ð _R − 1Þð
ffiffiffiffi
Δ

p
þ 1Þ

�
:

The causal nature of the marginally trapped tube is
determined by the ratio

αk ¼
£kΘk

£lΘk
ð36Þ

which has to be evaluated at Θk ¼ 0 which implies _R ¼ −1
and Δ ¼ 1, we get

αk ¼
−κϵ�

κϵþ 2Λ − nðn−1Þ
R2

� : ð37Þ

Similarly the causal nature of the marginally antitrapped
tubes is determined by the ratio

αl ¼
£lΘl

£kΘl
ð38Þ

which has to be evaluated at Θl ¼ 0 which implies _R ¼ 1
and Δ ¼ 1, we get the αl ratio to be

αl ¼
−κϵ

ðκϵþ 2Λ − nðn−1Þ
R2 Þ

: ð39Þ

From Eqs. (33) and (37) it is clear that βk > 0 is equivalent
to αk < 0 and imply the MTT is timelike also βk < 0 is
equivalent to αk > 0 and imply the MTT is spacelike.
Similarly from (35), (39) when βl > 0 (αl < 0) imply
MATT is timelike and βl < 0 (αl < 0) means MATT is
spacelike. The expressions for αk and αl match with the
results obtained [Eq. (23)] in [15] and [Eq. (2.3)] in [8]
where the latter expression involves energy density, pres-
sure and the area. We note that the formula depending on
the “area” is valid in four dimensions only and in other
dimensions, the expression continues to depend on R2

which does not have the interpretation of area for the MTT
or MATT.
We summarize below the Lie derivatives for MTT

(Θk ¼ 0)

£kθk ¼ −κϵ ð40Þ

£lθk ¼
�
κϵþ 2Λ −

nðn − 1Þ
R2

�
ð41Þ

and MATT (Θl ¼ 0)

£lθl ¼ −κϵ ð42Þ

£kθl ¼
�
κϵþ 2Λ −

nðn − 1Þ
R2

�
: ð43Þ

The lie derivatives in Eqs. (41) and (43) are useful in further
characterization of the MTTandMATT into outer and inner
horizons as defined by Hayward [2].

1. Causal nature of marginally (anti) trapped tubes
in homogeneous dust evolution

Here we adapt the expressions derived for the D-
dimensional LTB model for the case of homogeneous
dust evolution. The mass function for the homogeneous
case (14) is of the form

FðrÞ ¼ c0rnþ1 ð44Þ

where c0 ¼ 2κϵð0; rÞ=ðnðnþ 1ÞÞ. We further can show
using the same relation that the energy density,
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κϵðt; rÞ ¼ nðnþ 1Þc0
2anþ1

ð45Þ

plugging _R2 ¼ 1 in the Eq. (10) yields the condition for the
MATT in the current context to be,

r2
�
c0
an−1

þ 2Λa2

nðnþ 1Þ
�
¼ 1: ð46Þ

The above equation relates the co-moving radius with the
scale factor for the horizon. Now substituting the above
relation into the expressions for βk (33) and βl (35) and
simplifying yields the relation,

βk ¼ βl ¼
2κϵ

n

�
3 − nþ 2ΛR2

n

�
ð47Þ

this is the formula for the norm of the normal to the MTT
and MATT that occur in homogeneous dust evolution in
terms of the energy density on the tube (κϵ), the dimension
of the space-time (D ¼ nþ 2), the cosmological constant
(Λ) and the area radius (R) of MTT or MATT. Similarly
computing the lie derivatives for the homogeneous case
we get

£kθk ¼ −κϵ ð48Þ

£lθk ¼
n

2R2

�
3 − nþ 2ΛR2

n

�
ð49Þ

£lθl ¼ −κϵ ð50Þ

£kθl ¼
n

2R2

�
3 − nþ 2ΛR2

n

�
ð51Þ

the formula for αk and αl is given by

αk ¼ −
−2κϵR2

n

�
3 − nþ 2ΛR2

n

�−1
¼ αl: ð52Þ

B. Marginally trapped surfaces (MTS)

The condition for marginally trapped surface (MTS) is

Θk ¼ 0 and Θl < 0 ð53Þ

from the relations (28) and (29) the above conditions
imply that

_R ¼ −1 and _R < 1 ð54Þ

so _R ¼ −1 satisfies both these conditions. This means that
for Rðr; tÞ ¼ r aðtÞ we can write comoving radius r for the
MTT as function of time

rh ¼
−1
_aðtÞ ð55Þ

and the areal radius is expressed as

Rhðt; rÞ ¼ −
aðtÞ
_aðtÞ ð56Þ

From the solutions we got for aðtÞ, we look at the behavior
of MTS as they evolve in time t, for the cases where Λ ¼ 0,
> 0 and < 0

1. MTS for flat case

We choose the solution for aðtÞ for MTS in the case of
Λ ¼ 0 as

aðtÞ ¼
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

! 2
1þn

ð57Þ

This solution of aðtÞ is chosen such that rh and Rh can have
positive values for MTS. We are interested in obtaining the
curve in the t–r plane for which θk ¼ 0. Using the
condition (55) we obtain the expression for rh asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðnþ 1Þ
2g

s  
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

!n−1
nþ1

ð58Þ

so we plot rh versus t for various dimensions (D ¼ 3 to 7) is
shown in Fig. 1.

FIG. 1. rh versus t for MTT with (Λ ¼ 0, g ¼ 1).
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These graphs represent the MTT which gives the evolu-
tion of the MTS in time t as each point on these curves is an
MTS andwe are tracking theseMTT curves from time t ¼ 0
to the timewhen they reach the shell with label r ¼ 0which
is a singularity as R also goes to zero here and also the Ricci
scalar blows up. We see there is an anomalous curve for
D ¼ 3 because there are no trapped surfaces in the absence
of cosmological constant for the case of 2þ 1 dimensions as
observed in [24]. The line for D¼3 represents when the
conical defect becomes 2π in the 2þ 1 dimensional
scenario and the relation between the conical defect and
the mass function FðrÞ can be seen in [24,25].
The causal nature of these graphs can be seen from the

expression for the norm (47), the sign of βk is positive for
D < 5 (n < 3) implying that the MTT is timelike. It
becomes null for D ¼ 5 (n ¼ 3) where the MTT curve
coincides with an ingoing null ray, this is an example where
the horizon need not be isolated and can still be null. The
MTT is uniformly spacelike for D > 5 (n > 3). We note
that forD ¼ 4, the MTT is timelike as seen in [8,14]. In the
above graph and the graphs that follow, we present the
evolution for a certain time interval which happens here
only due to the matter flux. The MTS unlike the event
horizon is defined locally without a need for the complete
global description. We look at the evolution for the Areal
Radius for these MTS using (57) which gives us a linear
relation between Rh and time (t) given by,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2g

s
−
ðnþ 1Þt

2
: ð59Þ

The plot for R versus t is shown in Fig. 2.

Note that R decreases monotonically with the coordinate
time t for all the cases irrespective of the number of
dimensions and whether the MTT is spacelike or timelike.
The areal radius becomes zero at a finite time t indicating
singularity formation hence we don’t need to extend the
solutions beyond R ¼ 0, this hold true for all the cases to
follow.
These MTT can be further characterized as FOTH or

FITH as introduced by Hayward [2] and outlined in [16].
Looking at the sign of £lΘk ¼ nð3 − nÞ=2R2, we see
that for D > 5ðn > 3Þ the sign is negative indicating that
the horizon is an outer horizon (FOTH). For D < 5,
we see that the horizon is an inner horizon (FITH).
The nontrivial case is for D ¼ 5 where the horizon is
null but not isolated. We comment about the inner and
outer classification for D ¼ 5 in a note at the end of the
section.

2. MTS for AdS case

The solution for the scale factor a(t) in Homogeneous
dust evolution for the case with negative cosmological
constant is given by

 
−

ffiffiffiffi
g
Λ

r
sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arcsin

ffiffiffiffi
Λ
g

s !! 2
nþ1

: ð60Þ

One can see that the solutions are oscillatory in nature.
The evolution in the graphs given below represent the
situation where the matter cloud contracts from a given
initial configuration and collapses to a point. One can
also consider the reversed situation where the matter
expands out from a point (this situation is dealt with
when analyzing the MATS case). We therefore present a
segment of the entire evolution of the cloud for the
purpose of tracking the evolution of MTS. The negative
cosmological constant provides an extra “attractive
force" on the shells and the cloud collapses more effi-
ciently than the previous case where the cosmological
constant is kept to zero. The evolution of MTS as a curve
in the ðt; rÞ plane where the comoving radius rh is
given by

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
1

aðtÞ tan
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λðnþ 1Þ
2n

r
t − arcsin

ffiffiffiffi
Λ
g

s !
: ð61Þ

The plot for rh versus t is shown in Fig. 3.FIG. 2. R versus t for MTT with (Λ ¼ 0, g ¼ 1).
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For D ≥ 4, we can see that at time t equal to zero, the
comoving radius that has just for trapped is the intercept
the curve makes on the r axis. For all the comoving
radius, r > rh are already trapped. The evolution therefore
proceeds from a higher r to lower r and eventually zero.
Once again the case where D ¼ 3 is anomalous. One can
see in the above plot that the MTS never reaches less than
a particular value of comoving coordinate r. The reason is
that for the case of 2þ 1 dimensions not all shells can get
trapped [24]. In the case of negative cosmological con-
stant, there is a mass gap that needs to be filled before the
shells can get trapped. So the shells closer to r ¼ 0 do
not get trapped. In the next plot, we see that all these
shells that do not get trapped, do become singular due to
their physical radius R becoming zero. The expression
for R is

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
tan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arcsin

ffiffiffiffi
Λ
g

s !
ð62Þ

and the plot for R versus t is shown in Fig. 4.

As can be seen from Eq. (47), the MTT is spacelike
for D ≥ 5. Timelike behavior is possible only in
dimension less than 5. Any MTS that occurs at a areal
radius less thanR <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3 − nÞ=jΛjp

is timelike and forR >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3 − nÞ=jΛjp

it is spacelike. We can see that the above
statement is covariant since the areal radius can be defined in
a covariant manner based on the Killing vectors. We note
that the area of the MTS in the negative cosmological
constant case decreases monotonically with the coordinate
time t for all the cases irrespective of the number of
dimensions and whether the MTS is spacelike, timelike
or mix of timelike and spacelike segments.
We now look at the classification of outer/ inner based

on the expression £lΘk ¼ nð3 − nþ 2ΛR2=nÞ=2R2. For
Λ < 0, it is clear that for D ≥ 5 the horizon is uniformly
outer since the above expression is uniformly negative, it is
therefore FOTH. For D < 5 it is an FOTH at large R and is
FITH for small R. So there is a change from outer to inner
as the horizon evolves. This counterintuitive behavior is
addressed in the note at the end of the section.

3. MTS for dS case

The solution for scaling aðtÞ with positive cosmological
constant for MTS is chosen to be (this is choice is made
such that r, R are positive) 
−

ffiffiffiffi
g
Λ

r
sinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arc sin h

ffiffiffiffi
Λ
g

s !! 2
nþ1

: ð63Þ

The expression for the MTT curve in ðr; tÞ is plane is give
by comoving radius r which is

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

2Λ

r
1

aðtÞtanh
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λðnþ1Þ
2n

r
t−arcsinh

ffiffiffiffi
Λ
g

s !
: ð64Þ

The plot for r versus t is shown in Fig. 5.

FIG. 4. R versus t for MTT with (Λ ¼ 1, g ¼ 1). FIG. 5. r versus t for MTT with (Λ ¼ 1, g ¼ 1).

FIG. 3. r versus t for MTT with (Λ ¼ 1, g ¼ 1).
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Just like flat and AdS cases, the curve for the case when
D ¼ 3 is an anomaly. We look at the expression for the
areal radius R of the MTT curve which is

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
tanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
t − arcsinh

ffiffiffiffi
Λ
g

s !
ð65Þ

The plot for R versus t is shown in Fig. 6.
We see from the above graphs that just like flat and

negative cosmological constant cases, the evolution of
MTS for positive cosmological constant case is also
monotonic and the areal radius decreases monotoni-
cally with time t. Using the formula (47), we see that
for dimensions d ≥ 5, the MTS is timelike whenever
R >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3 − nÞ=ð2ΛÞp

and is spacelike when R <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3 − nÞ=ð2ΛÞp

. For dimension D < 5, the MTS hyper-
surface is timelike since the norm is always positive.
When we analyze the plot ðr; tÞ and ðR; tÞ together for

the case ofD ¼ 3 dimensions, we see that the portion of the
curve in (r, t) plot where the slope is positive is the relevant
portion. The peak and the downward portion is a result of
extending the curve beyond the singularity. This can be
seen because when we observe the plot (R, t), we can see
that the MTS has reached R ¼ 0while the curve in the ðr; tÞ
plot is still climbing. The anomalous behavior of the curve
in the ðr; tÞ plane is due to the fact that in D ¼ 3
dimensions, particles do not attract each other while the
positive cosmological constant has a repulsive effect on the
evolving dust. So if a shell of comoving radius r is such that
it’s _R ¼ −1 and therefore it is a point on the MTS curve.
Due to the repulsive nature of positive cosmological
constant, the shell of label r slows down so that it’s
_R > −1 and a shell with larger comoving radius will

have _R ¼ −1. This explains the peculiar behavior of
the D ¼ 3 curve. This differs from other dimensions where
the evolution of dust is not just dependent on the cosmo-
logical constant but also matter distribution that is attractive
in nature.
To characterize the MTS in terms of outer and inner, we

look at the sign of £lΘk ¼ nð3 − nþ 2ΛR2=nÞ=2R2. We
see that for dimensionD ≤ 5, the sign is uniformly positive
implying that the horizon is an inner horizon (FITH). For
D > 5, the horizon is inner horizon (FITH) for large R and
is outer horizon (FOTH) for small R.

C. Marginally antitrapped surfaces (MATS)

The condition for marginally outer trapped surfaces is

θþ > 0 and θ− ¼ 0: ð66Þ

These conditions imply

_R ¼ 1 and dotR > −1 ð67Þ

when _R ¼ 1 we can write co.moving radius as function of
time as

r ¼ 1

_aðtÞ ð68Þ

and the physical radius is expressed as

Rðt; rÞ ¼ aðtÞ
_aðtÞ : ð69Þ

We will look at the behavior of MATS for the cases where
Λ ¼ 0, > 0, and < 0.

1. MATS for flat case

The solution for the case of expanding cloud of dust is
given by,

aðtÞ ¼
 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

! 2
1þn

ð70Þ

we obtain r as a function of time given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2g

s  
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðnþ 1Þ

2n

r
t

!n−1
1þn

: ð71Þ

The plot for r versus time for the above relation is shown
in Fig. 7.

FIG. 6. R versus t for MTT with (Λ ¼ 1, g ¼ 1).

ASPECTS OF MARGINALLY TRAPPED AND ANTITRAPPED … PHYS. REV. D 102, 024072 (2020)

024072-9



Then the expression for the physical radius R for the
MATS curve is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2g

s
þ ðnþ 1Þt

2
: ð72Þ

The plot for R versus t is shown in Fig. 8.
We see a monotonic evolution of R with time. Just as

with MTT, the MATT curve is timelike for dimension
D < 5, is null for D ¼ 5 and is spacelike for D > 5.
The MATS could also be further characterized based

on the sign of (51) from which we can see that for D < 5
the horizon is inner (PITH) and for D > 5 the horizon is
outer (POTH).

2. MATS for AdS case

The solution for the scale factor aðtÞ as a function of
time for the case with a negative cosmological constant is
obtained below (the choice is made such that r, R are
positive)

 ffiffiffiffi
g
Λ

r
sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsin

ffiffiffiffi
Λ
g

s !! 2
nþ1

: ð73Þ

The expression for comoving radius r is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
1

aðtÞ tan
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λðnþ 1Þ
2n

r
tþ arcsin

ffiffiffiffi
Λ
g

s !
: ð74Þ

The plot for r versus t is shown in Fig. 9.
The expression for areal radius R is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
tan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsin

ffiffiffiffi
Λ
g

s !
ð75Þ

and the plot for R versus t is shown in Fig. 10.
One sees that the solutions aðtÞ are oscillatory in nature.

We consider the expanding part of the solution and track the
evolution of MATS. The cloud expands to a maximum
and starts contracting back in a finite comoving time t. The
steep slope of the MATS curve owes its explanation to the
previous sentence.
Just like MTS, for dimension D < 5, the MATS curve

transitions from timelike for small R to spacelike for large
R. For D ≥ 5, the curve is uniformly spacelike. When we
look at the sign of (51), we conclude that for D < 5 the

FIG. 8. R versus t of MATT with (Λ ¼ 0, g ¼ 1).

FIG. 9. r versus t of MATT with (Λ ¼ 1, g ¼ 1).

FIG. 7. r versus t for MATT with (Λ ¼ 0, g ¼ 1).
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horizon is a PITH for small R and POTH for large R and for
dimensions D ≥ 5, the horizon is POTH.

3. MATS for dS case

The solution for the scaling factor aðtÞ for MATS in
positive cosmological constant is

 ffiffiffiffi
g
Λ

r
sinh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsinh

ffiffiffiffi
Λ
g

s !! 2
nþ1

: ð76Þ

The expression for r for MATS is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
1

aðtÞ tanh
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λðnþ 1Þ
2n

r
tþ arcsinh

ffiffiffiffi
Λ
g

s !
ð77Þ

and the plot for r versus t is shown in Fig. 11.
and the expression for areal radius R as a function of

time is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

2Λ

r
tanh

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λðnþ 1Þ

2n

r
tþ arcsinh

ffiffiffiffi
Λ
g

s !
ð78Þ

the plot for R versus time for MATS evolution is shown
in Fig. 12.

From the expression (47) it is clear that if D ≤ 5 the
curve is timelike and is a PITH. As is well known from
various work on cosmological horizons in 4 dimensions
regarding horizon evolution due to flux of matter [6]. For
dimension D > 5 we have MITS curve is spacelike (also
POTH) for small R (whenever R <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3 − nÞ=ð2ΛÞp

) and
is timelike (also PITH) for R >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3 − nÞ=ð2ΛÞp

. Just like
MTS, there is a transition from spacelike to timelike as the
MATS evolves. As can be observed from the above plots,
R evolves monotonically with time t. The plot R vs t is
horizontal for large time t. This is because most of the
matter interior to the MATS surface has crossed the
“cosmological horizon” and therefore the flux of matter
is negligible thereof.

FIG. 11. r versus t for MATT with (Λ ¼ 1, g ¼ 1).

FIG. 12. R versus t for MATT with (Λ ¼ 1, g ¼ 1).

FIG. 10. R versus t of MATT with (Λ ¼ 1, g ¼ 1).
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D. Note: Outer and inner horizon classification criteria
for D= 5 and monotonicity of horizon evolution

In this note, we elaborate on two separate points from the
results on the section on MTS and MATS. The first point is
the classification of inner and outer for the case of D ¼ 5
with zero cosmological constant. We have seen that the
horizon is uniformly null but not isolated. This is seen for
both the MTS and MATS case. Now in order to classify the
horizon in terms of being outer or inner, we can check with
the Lie derivatives £lΘk and £kΘl (48), (49), (50), (51), both
are indeed zero. In such situations, we propose another
criteria to characterize the outer or inner nature of the
horizon.
The classification is made possible by defining a space-

like vector given by ϵ ¼ ∂=∂R in a coordinate chart
ðt; R; θ;ϕÞ where t is the comoving time. The vector
∂=∂t is everywhere timelike a good time coordinate
everywhere except at curvature singularity. Now ϵ points
in the direction of increasing areal radius. We can now
construct the quantities, £ϵΘk for MTS and £ϵΘl for MATS.
The horizon is outer if £ϵΘk is positive and inner if £ϵΘk is
negative for MATS. Similarly, the horizon is Outer if
£ϵΘl < 0 and Inner if £ϵΘl > 0. The use of the vector ϵ
is limited to the case when the MTT or MATT is null. The
reason for this is that if the horizon is for space-like, then
the expression of the type £ϵΘk can have variable sign
(depending on the time coordinate being used) even though
£lΘk has an invariant sign.
Evaluating the expression £ϵΘk, we obtain the general

expression for D ¼ 5 with zero cosmological constant,

£ϵθk ¼
3

R2

�
2 −

F0

R0R

�
ð79Þ

Using the results (44), (46) for D ¼ 5 we obtain,
£ϵθk ¼ −6=R2, which means we have an inner horizon.
Similarly, we can classify MATS for the D ¼ 5 as an inner
horizon. We note that we can reach the same conclusion if
we used the space-like vector field to be ∂=∂r in the
comoving coordinate chart ðt; r; θ;ϕÞ coordinates system
(with the additional assumption that R0 > 0 and therefore r
and R are monotonically increasing functions of each other).
The second point that is the observation that in the

presence of a cosmological constant, the horizon evolution
makes a transition from timelike to spacelike as is observed
in deSitter case for dimension D > 5. We note that for
larger R, the horizon is timelike and small R it is spacelike.
What seems nontrivial in these cases is that when one
classifies the horizon as an inner or outer horizon, one
encounters the following situation that as long as the curve
is timelike the horizon is an inner surface whereas in the
spacelike segment it is an outer surface. When we see the
plots for the horizon evolution, we see a monotonic
decrease in the areal radius R for both the timelike and
spacelike segments of the curve. The transition from inner

surface to outer surface is counterintuitive. The analysis of
such curves has been done rigorously in [11,12]. The
understanding is that for the spacelike segment of the curve
that decreases monotonically with the coordinate t, one can
show that for a different choice of coordinates, the time
ordering of the events of the spacelike segment can be
reversed. So in this coordinate system, the spacelike part
of the horizon evolves from R ¼ 0 with an increasing area
(since it is outer and therefore FOTH) and meets the
timelike segment of the curve at the radius R (where the
curves in the plots transition from timelike to spacelike).

IV. AREA LAWS IN MARGINALLY
TRAPPED SURFACES

The area law for a dynamical horizon (codimension 1
spacelike surface) and a timelike membrane (codimesion 1
timelike surface) in 3þ 1 dimensions is given by Abhay
Ashtekar and Badri Krishnan [5,6]. They obtained an area
balance law for the dynamical horizon which is�
R2

2G
−
R1

2G

�
¼
Z
ΔH

Tabτ̂
aξbðrÞd

3v

þ 1

16πG

Z
ΔH

Nrðjσ2j þ 2jζj2Þd3v: ð80Þ

The two terms on the right-hand side are the matter energy
flux and the gravitational energy flux along the evolution
vector ξbðrÞ and similarly the area balance law for the

timelike membrane is�
R2

2G
−
R1

2G

�
¼ −

Z
ΔH

Tabr̂aξbðtÞd
3v

−
1

16πG

Z
ΔH

Ntðjσ2j − 2jζ0j2Þd3v: ð81Þ

Using these area laws they have also argued that the area
increases for dynamical horizons and decreases for timelike
membrane monotonically.
Following there derivation of area laws closely we look

to extend these laws for marginally (anti) trapped yubes
which are spacelike codimension 1 hyper-surfaces to a
higher dimensional spacetime ðD ¼ nþ 2Þwith a topology
ofR2 × Sd. For a codimension-1 foliation of the spacetime,
specifying the evolution vector field ξa will also specify
the lapse function and shift vectors in the 1þ ðnþ 1Þ
decomposition.

Nτa þ Na ¼ ξa ð82Þ

H is a MTT and is a codimension-1 hypersurface with the
Cauchy data and there constraint equations are

Cðq; kÞ ≔ Rþ k2 − KabKab ¼ 2κTabτ
aτb ð83Þ
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Caðq; kÞ ≔ DbðKab − KqabÞ ¼ κTbcτcqab ð84Þ

where Tab ¼ Tab − ðΛgab=κÞ and τa is the unit normal
to H. To get the flux through the a region of MTT (ΔH)
bounded by two marginally trapped surfaces at different
times we need to evaluateZ

ΔH
ðNCþ NaCaÞdnþ1v ð85Þ

using the Eqs. (83) and (84) we haveZ
ΔH

ðNCþ NaCaÞdnþ1v

¼ 2κ

Z
ΔH

ðNTabτ
aτb þ 2NaTbcτcqabÞdnþ1v: ð86Þ

For a MTT the choice of the evolution vector field is ξa ¼
Nka and a further 1þ n decomposition of H with Σ as a
MTS which is a codimension-2 hypersurface with a top-
ology of Sn. With this setup and following the steps as
in [5] we end up with a similar equation as (3.21) in [5]Z

ΔH
NR̃dnþ1v ¼ 2κ

Z
ΔH

Tabξ
aτbdnþ1v

þ
Z
ΔH

Nðjσj2 þ jζj2Þdnþ1v: ð87Þ

The quantities in the gravitational flux energy term are
defined below. The shear for the outgoing bundle of light
rays is

σkab ¼
�
hcahdb −

1

2
habhcd

�
∇ckd ð88Þ

where hab is the projection operator onto the n-sphere and is
given by

hab ¼ δab − lbla − kakb ð89Þ

computing the norm of the shear for outgoing null rays
we get

jσkj2 ¼ σkabσ
kab ¼ nðn − 2Þ2

4

e−λðR0 þ eðλ2Þ _RÞ2
R2

ð90Þ

and using the condition 28 for MTS we can see that the
norm of the shear for outgoing null rays is zero. Similarly
the shear for the ingoing bundle of null rays is

σlab ¼
�
hcahdb −

1

2
habhcd

�
∇cld ð91Þ

and computing the norm of the shear for ingoing null rays
we get

jσlj2 ¼ σlabσ
lab ¼ nðn − 2Þ2

4

e−λðR0 − eðλ2Þ _RÞ2
R2

ð92Þ

and using the condition (29) for MATS we see that the
shear norm go to zero. The quantity ζ for MTT is given by
the expression

ζa ¼ sabra∇ckb ð93Þ

where sab is the intrinsic metric on MTS. One can easily
check that for a spherical symmetry the norm jζj2 is always
zero for both the MTS and the MATS. We can see that
for spherical dust evolution the gravitational wave energy
term always vanishes. Hence the only contribution for the
change in marginally trapped surfaces comes from the
matter energy flux.
The volume element on the MTT (H) can be written as

dnþ1v ¼ N−1dRdnv so the expression (87) reduces to

Z
R2

R1

dR
I
Sn
R̃dnv ¼ 2κ

Z
ΔH

ðNTablaτbÞdnþ1v: ð94Þ

The n-dimensional volume element on Sn is dnv¼
Rn sinθ1 sin2θ2…:sinn−1θn−1dθdθ1dθ2…:dθn−1 and Ricci
scalar R̃ for the n-sphere is R̃ ¼ nðn − 1Þ=R2, where R is
the areal radius. So volume integral of Ricci scalar for the
n-sphere is

I
Sn
R̃dnv ¼ 2πð

nþ1
2
Þnðn − 1ÞRn−2

Γðnþ1
2
Þ ð95Þ

and the area of the n-sphere with radius R is given by

AðRÞ ¼ 2πð
nþ1
2
ÞRn

Γðnþ1
2
Þ : ð96Þ

The left-hand side of the integral (94) becomes

Z
R2

R1

dR
I
Sn
R̃dnv ¼ 2πð

nþ1
2
Þn

Γðnþ1
2
Þ ðRn−1

2 − Rn−1
1 Þ: ð97Þ

For evaluating the matter flux term of the equation (94) we
use the relation dnþ1v ¼ N−1dRdnv again and also (11)
which simplify the expression as

2κ

Z
ΔH

�
N

�
Tab −

Λgab
k

�
laτb

�
dnþ1v

¼ 2
2πð

nþ1
2
Þ

Γðnþ1
2
Þ
Z
ΔR

�
nF0

2RnR0 þ Λ
�
RndR: ð98Þ

Now the expression (94) reduces to the form
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Z
ΔR

nðn − 1ÞRn−2dR − 2Λ
Z
ΔR

RndR ¼ n
Z
Δr

F0dr:

Upon integration we have the relation

ðRn−1
2 − Rn−1

1 Þ − 2Λ
nðnþ 1Þ ðR

nþ1
2 − Rnþ1

1 Þ

¼ Fðr2ÞR2
− Fðr1ÞR1

ð99Þ

where the subscript R2 or R1 indicates the value of R
where FðrÞ needs to be evaluated at. The above expression
therefore is,

ΔRn−1 −
2Λ

nðnþ 1ÞΔR
nþ1 ¼ ΔFðrÞ: ð100Þ

This is same as the relation (10) under the marginally (anti)
trapped condition _R2 ¼ 1 which is either _R ¼ −1 ðΘk ¼ 0Þ
and _R ¼ 1 ðΘl ¼ 0Þ. Note that the area balance law has
been reduced to an algebraic relation between the misner-
sharp mass FðrÞ and the area radius R. Also this extension
to D-dimensional area balance law is done for only
spacelike MTS or MATS.

V. CONCLUSIONS

We have generalized the evolution of MTS and MATS in
D-dimensions with and without the cosmological constant
due to the evolution of pressure-less matter. The model
under consideration is simple enough to yield closed form
expressions for various aspects of the horizon evolution in
these space-times and general enough to capture the various
scenarios possible. This advantage makes this model
particularly useful in the study of entropy evolution and
quantum gravity scenarios. Particularly interesting result
among them is the formula for the causal nature of the
horizon. The formula highlights the dependence on dimen-
sion, local energy density, cosmological constant and the
area radius (D-dimensional generalization of area).

The analysis of MTS and MATS in D-dimensions yields
many results that are not a straightforward extension of the
results of 3þ 1 dimensions. We observe that the qualitative
features of the dynamics of the horizons depends crucially
on the number of dimensions D. In the examples that were
shown, there were cases where MTS and MATS were
uniformly null but not isolated and moreover the area
evolves monotonically with the comoving time. We have
also shown that the generalization of Oppenheimer-Snyder
model inD-dimensions yields the horizon to be timelike for
dimension D < 5 and is spacelike for D > 5. This is
interesting since the area monotonically decreases with
co-moving time in-spite of the horizon being spacelike,
timelike in different segments of the same curve. These
results make the analysis in d-dimensions counter-intuitive.
When we consider the case of Homogeneous distribution of
dust, we obtain the result that whenever the segment of the
MTS or MATS curve that is at an area radius R < Rcritical,
(Rcritical ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð3 − nÞ=ð2ΛÞp

), the curve is timelike and for
R > Rcritical it is spacelike. When one explores the expres-
sion for Rcritical, we see that it depends only on dimension
and cosmological constant Λ. The length scale of this
partitioning of Area radius is decided solely by the
cosmological constant. The details of the transitions across
Rcritical can yield very interesting result and are left for
future considerations.
We have found expressions for the Ashtekar,

Badrikrishnan’s area balance law in D-dimensions for a
restricted class of Sn topologies that are relevant for
the model under consideration. The expressions obtained
in the article are valid for the Dynamical Horizons.
One can extend the expressions for the case of timelike
membranes too (as is shown in the paper Ashtekar et al.
[6]). In the cases considered we show that the horizon
transitions from timelike to spacelike during the course
of evolution. The generalization of the 3þ 1 of [6]
where such transitions are allowed will be attempted in
a later work.
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