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Aspects of marginally trapped and antitrapped surfaces
in a D-dimensional evolving dust model
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In this paper, we explore the formation of the marginally trapped/ antitrapped surfaces that arise from the
evolution of dust in D-dimensions with and without the cosmological constant. We obtain analytical
expressions for such surfaces. We also derive closed form expressions for the norms of various quantities
that decide the Causal nature of the marginally trapped/antitrapped surfaces. We discuss several interesting
features of evolution of these surfaces that are significantly different from the four dimensional counterpart.
We obtain the expressions for the Ashtekar-Badrikrihnan’s area-balance law for dynamical horizon
(spacelike surface) tailored for the case of spherically symmetric dust evolution in D-dimensions.
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I. INTRODUCTION

The black-hole horizon is a very interesting arena where
quantum field theory and general relativity come face to
face. The relation between the area of the black-hole
horizon and its entropy is one of most important develop-
ments of recent times and has been a favorite testing ground
for various theories of quantum gravity. A study of the
dynamics of the horizon evolution is therefore of great
importance since one can track the evolution of quantities
like entropy and correlate it with the flux of matter or
gravitational waves crossing the horizon. The concept of
trapping horizons was coined (as against the event horizon)
to locally track the evolving horizon by Penrose [1].
Hayward in his paper [2] has refined the concept of
trapping horizons based on a 2+ 2 decomposition
framework which introduced various trapped horizons like
future outer trapped horizon (FOTH), future inner trapped
horizon (FITH), past outer trapped horizon (POTH) and
past inner trapped horizon (PITH). Ashtekar, Badrikrishnan
et al. [3-7] have formulated a closely related notions to
Hayward’s trapped horizons, which is based on a 3 + 1
space-time decomposition framework where they have
introduced isolated horizons, dynamical horizons, and
timelike membranes. The dynamical horizon is defined
as a spacelike hypersurface foliated by 2-Spheres such that
the expansion for outgoing (k%) and incoming (/*) null
normal are ®;, = 0 and ®; < 0 respectively on every leaf of
the foliation. The area of the dynamical horizon is shown to
increase monotonically provided the null energy condition
is satisfied. If there is no matter flux or gravitational waves
crossing the dynamical horizon then it becomes null and is
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called an isolated horizon. Likewise it is shown that one can
similarly construct a timelike membrane that arise in
cosmological or few cases of gravitational collapse. It is
shown in [6] that in contrast to the dynamical horizon case,
the area monotonically decreases for a timelike membrane.
In the work of Booth er al. [8], many possible situations
where one can find dynamical horizons, timelike membranes
are highlighted and also looked at their causal nature
following the prescription given in [9] to classify the
horizons as timelike or spacelike. Busso in [10] has
introduced a construction for past holographic screen and
future holographic screen which are be defined in terms of
marginally trapped surfaces (MTS) or marginally antitrapped
surfaces (MATS) respectively. Using this construction Busso
and Engelhardt in [11,12] have proved a new area law in
general relativity where the area of a holographic screen
changes monotonically even though the causal nature of the
screen (horizon) changes during its evolution.

In this paper, we work with a model [13] where the
matter content is pressureless dust in a spherically sym-
metric arrangement in D-dimensions (the Lemaitre-
Tolman-Bondi model generalized to D-dimensions). This
model for matter evolution has the advantage that it is
general enough to capture many features of Horizon
evolution and is simple enough to yield closed form
expressions for various scenarios like FOTH, FITH,
POTH, PITH. This can therefore yield the D-dimensional
versions of various results highlighted in [8,14—16]. The
area balance law for dynamical horizon given in 3 41
dimensions is extended to D dimensions for a spherical
topology, which is applied to this model. The analysis of
the model in this paper can be used to represent two
situations. First, it can represent the evolution of matter of a
star if we put a cut-off for the density at some finite radius.
Second, it can be interpreted as a cosmological solution
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(when we set the density to be homogeneous). This analysis
is inclusive of the cosmological constant.

In this model, we obtain the general expression @, 6,
by defining the outgoing and ingoing null rays in the
evolving space-time. Based on the expressions obtained,
we can obtain the curve ®; =0 or ®; =0 in the form
f(r,t,D,A) = constant in the relevant time and radial
coordinate (t, r) respectively. We evaluate the norm of
the vector orthogonal to these curves and from this deduce
the signature of the horizon. We show that this is equivalent
to the prescription given by Booth ef al. [8] where the
signature of the curves (horizons) is evaluated using the
ratio of Lie derivatives of ®; and ®,. Here we will see that
the causal nature of the D-dimensional horizon evolution is
indeed richer and more varied compared to the 3 41
scenario. For, e.g., it is well known that the for the case
of 3 4+ 1 dimensional Oppenheimer-Snyder matter evolu-
tion, the MTS is a timelike membrane. We show in the
article that in D-dimensional Oppenheimer-Snyder dust
evolution, the MTS is timelike for dimension D < 5 and is
null for D =5 and is space-like for D > 5. The causal
nature of the horizon becomes more interesting when we
analyze the MTS, MATS. We observe that in the evolution
of MTS and MATS, the Horizon makes a transition from
timelike to spacelike. We show the expressions highlight-
ing these transitions in the article. We show that even
though there is transition from timelike to spacelike, the
evolution of the Area is strictly monotonic in the time
coordinate used in the model (in accordance with the
results in [11,12]).

I1. HIGHER DIMENSIONAL SPHERICALLY
SYMMETRIC DUST EVOLUTION

The general metric for an (D =n+2) dimensional
spherically symmetric spacetime is of the form

ds? = —etd? + A dr? + R2(1,r)dQ2 (1)

where dQ? is the metric on unit n dimensional sphere, ¢ is
the time coordinate and r is the comoving radial coordinate.
It is easily shown [13] that the gy, component of the metric
can be chosen to be minus one, i.e., goo = —1. The metric
then has the following form.

ds® = —di* + ") dr? + R*(1, r)dQ>. (2)

For a nonzero cosmological constant (A # 0), the Einstein
equations are

G;w + Ag/w = KTﬂlI (3)

here « is a constant and is related to gravitational constant
G,, (k = 87G,). The matter we are considering here is a
pressure less dust hence the only nonzero component of the
stress-energy tensor (in the comoving and synchronous

coordinate system) is Toy = €(t,r), where €(t,r) is the
energy density of the dust. With these conditions we get
the Einstein equations which are shown in [13] and
summarized below

) -1 .
Goo = ;—2 —Ae'R? + % (e*(1+R?*) = R?)
n g RR'A + g (—2RR" + &RR 1) | = ke(t.r) (4)
n(R'A—-2R')
Gy = =0 5
0n=5 % (5)

Gy = % {@ (R? — (1 + R?))

+ Ae*R? - ne’IRR] =0 (6)

Gy = —%e"l[Z(n -2)(n—1)(e*(1 + kz) —R"?)
—2(n—1)(2RR" = RR'Y = ¢*(RR A +2RR))
+ R (4N + 2% +20)] = 0. (7)

The other nonzero relations are given by
Gy = sin® 051 Gjj) (8)

where j takes values from 2 to n + 1. The expressions for
the evolution of matter can be obtained by simplifying the
above set of equations. Solving for the G,; we get

L R/2
“TI1r0 ©)

where f(r) is an arbitrary function called the energy
function. Integration of the G;; equation after using the
above relation gives

2A F(r)

R2
+n(n+ 1) +

R(n=1) (10)

R = f(r)

where F(r) is called the mass function. Solving for G
we find

nF’
K'€(t,r):m. (11)

This gives us the expression for the mass function as

F(r)= 2K/€(O, r)yr'dr (12)

n

where ¢€(0, r) is the initial energy density of the dust and
choose that at r =0, R = r. We work for the case of

024072-2



ASPECTS OF MARGINALLY TRAPPED AND ANTITRAPPED ...

PHYS. REV. D 102, 024072 (2020)

marginally bounded shells of dust where we require that
f(r)=0. The result (12) is obtained by keeping the
constant value of f(r) = 0, and this holds true from here
on. Throughout the article we shall assume that e > 0.
(weak energy condition is satisfied).

A. Solutions of homogeneous dust evolution

The advantage of the homogeneous case is that the
physical radius R (area radius) is separable into a time
dependent part and the comoving radius r

R(r,t) = a(t)r (13)

This model can be used in couple of ways. One is that these
solutions can be used to describe cosmological solutions.
The other way is that these solutions could represent the
generalization of Oppenheimer-Snyder evolution of dust to
a general dimension with a cosmological constant. In the
latter case the solutions described in this section will work
as the interior solutions that need to be matched to an
exterior solution (generalization of Schwarzschild solution
to higher dimensions including a cosmological constant).

We choose a(t = 0) = 1 thus the comoving radius r is
equal to the physical radius R (area radius) at initial time
(t =0). For a homogeneous dust collapse €(,r) is a
function only of time ¢ so the initial time density profile
of the dust cloud €(0, r) is taken to be a positive constant
which does not depend on the value of r. So the mass
function (12) in the homogeneous case is

__ %
Cn(n+1)
where g = ke(0,r) and g > 0.

Also in the homogeneous case the expression (10)
becomes

rn+1 (14)

. 2A 2 n+1
2 _ 2 gr - (15)
n(n+1) n(n+ 1)R"
and under the condition of (13) this reduces to
2A 29
)yY=—"——alt) + —F———. 16
a(1) nn+1) (07 + n(n+ 1)a(t)"! (16)

In the subsections below, we look at the solutions of (16)
for various cases of the cosmological constant being zero,
negative and positive.

1. Case of flat spacetime

The equation (16) for flat spacetime is

ar) =——9 (17)

For the initial condition that we choose a(0) = 1 which
means that R(0, r) = r, then the solutions for a(z) are

(1 + g(nTzl)t>ﬁ (18)

and

2. Case of anti—de Sitter spacetime

The equation (16) for anti—de Sitter spacetime is

—2A 29

C‘I(Z)z = ma(t)z -+ W (20)

for the initial condition a(0) = 1 the solutions for a(z) are

(el
e )

3. Case of de Sitter spacetime

The equation (16) for de Sitter spacetime is

2A 29
a0 G Dat

t) for our initial condition a(0) = 1 are

sinh nt 1 t—l—arcsmh " (24)
(VR (53]

and
g . A(n+1) ~ AN
(—\/gsmh(\/;t —arcsin h\/;>> (25)

III. MARGINALLY TRAPPED AND
ANTITRAPPED SURFACES

Marginally trapped surfaces (MTS) are defined as
codimension 2 sub-manifolds £ whose expansion of null

a(r)? = (23)

The solutions of a(
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congruence ©; generated by the outgoing radial null vector
k* vanishes everywhere (©; = 0) on £ and ©; which is
expansion of null congruence generated by incoming radial
null vector /, is completely negative on X (®; < 0). For
these definitions and more see the following references
[5.6,8,14,17-22].

Similarly we define marginally antitrapped surfaces
(MATS) as codimension 2 submanifolds = whose expan-
sion of incoming radial null congruence ®; vanishes
everywhere (®; = 0) on E and the expansion of outgoing
radial null congruence ©, is completely positive on E
(®; > 0). These MTS and MATS are also referred to as
future and past holographic screens respectively, mostly in
the context of holographic theories [11,12,23].

From the metric (2) we have the future outgoing radial
null vector as

A

k= (1,6-9,0,0,0,...,0) (26)
and the future incoming radial null vector as
I“=(1,-e"9,0,0,0,...,0) (27)

these two future directed radial null vectors are normali-
zed as

kl, = kg, = -2

and A, is the induced metric on the marginally trapped or
marginally antitrapped surface which is

(kalh + lukb)

1
—_— = —(kylp + 1,k
(—kcldgcd) gab+2( alp T 14 b)

hab = Gap T+

so the expansion for outgoing bundle of null rays is

O, = h**V k, = %(R + e R
using Eq. (9) we have
n .

similarly the expansion for ingoing bundle of null rays is

@, = h“'V, 1, = %(R — @R
again using Eq. (9) we have
n .
G)l:E(R—l). (29)

A. Causal nature of the marginally trapped and
antitrapped tubes: General D dimensional LTB

The marginally trapped tubes (MTT) or marginally
antitrapped tubes (MATT) are codimension 1 submanifolds
which are foliated by the marginally trapped or marginally
antitrapped surfaces respectively. We look at the causal
nature of these tubes formed in the evolution of the dust,
these tubes can be timelike (Timelike tubes), spacelike
(dynamical horizons) or null (isolated horizons) depending
on various situations which emerge [8,14,15]. This is done
using two methods, in the first one we calculate the norm of
the normal to the tubes in (r, ) plane and use it to classify
the causal nature of these tubes (applicable for the case of
Spherical Symmetry) while the second one is a standard
method used [9] where the ratios of lie derivatives of the
expansions are taken which determines the causal nature of
the tangent vector to the tube. We use these result to find the
causal nature of the tubes that are formed in the dust
evolution for the general case

METHOD I: For this model, we have explicit expression
for the tubes in the (r,7) plane. If we consider the
expression for ®, = ¢; where c¢; a constant and using
(10) and (28) expressions we get the curve in the (r, 1)
plane give by

O =5 (-VA+1) =¢ (30)
where
2A F(r)
A= R . 1
Tt DR R (31)

The norm of the normal to the curve in the (r, ) plane
determines the causal nature, so the components of the
normal to this curve are

nR nA

and

nR’ nA’
n— "R _VE)
A

note that for ¢; =0 this curve indicates the marginally
trapped tube. This means for evaluating the norm of this
normal we impose the conditions R=-1, A=1. The
norm works out to be,

n)?  n? BN
B =—(n,)* + <R’2 =1 <—A2 + ﬁ) (32)

and also using (11) the norm simplifies as,
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4xeR? -1
Pr = K; (:ce +2A - %) . (33)

So the norm f, is a function of energy density (¢) on the
tube, the cosmological constant (A), the area radius (R) and
the number of dimensions (n = D — 2).

Now repeating the same exercise for marginally anti-
trapped tubes with ©,; as

@,:%(\/K—l):cz (34)

where ¢, is a constant. The norm evaluates to the same
expression given by,

B = 4K;fz <K€ +2A - 7”("15 1>> . (35)

Method II: The standard method for determining the causal
nature of marginally (anti) trapped tubes was first discussed
in [8] and is done by calculation of ratio of Lie derivatives
of ®, and ©,. The signature of quantities a; and o
discussed below determines the causal nature of the tangent
vectors to the MATT and MTT respectively. The lie
derivatives for ®, are

£k®k - kava®k

n [ RA RA’ :
:F[m+2Rl\/Z—(R+1)(\/Z+1):|
£[®k:lava®k
n [ RA RA’ .
“ T hvs sy R DVE ]

The causal nature of the marginally trapped tube is
determined by the ratio

_ £0;

= 36
(273 £0, ( )

which has to be evaluated at ©, = 0 which implies R = —1
and A =1, we get

—K€

(K€+2A—%)‘

O = (37)

Similarly the causal nature of the marginally antitrapped
tubes is determined by the ratio

_£6

- 38

a;

which has to be evaluated at ®, = 0 which implies R = 1
and A = 1, we get the ¢; ratio to be

—Ke
a = . (39)
: (ke +2A - %)

From Egs. (33) and (37) it is clear that 8, > 0 is equivalent
to a; < 0 and imply the MTT is timelike also f;, < O is
equivalent to a; > 0 and imply the MTT is spacelike.
Similarly from (35), (39) when 8, >0 (o; <0) imply
MATT is timelike and f; < 0 (o; < 0) means MATT is
spacelike. The expressions for a; and @; match with the
results obtained [Eq. (23)] in [15] and [Eq. (2.3)] in [8]
where the latter expression involves energy density, pres-
sure and the area. We note that the formula depending on
the “area” is valid in four dimensions only and in other
dimensions, the expression continues to depend on R?
which does not have the interpretation of area for the MTT
or MATT.

We summarize below the Lie derivatives for MTT
(©r =0)

£.0, = —«ke (40)
nn—1)
£19k = <K€+2A—R2> (41)
and MATT (®, = 0)
£191 = —K€ (42)
-1
£,0, = (K€ FOA— %) . (43)

The lie derivatives in Eqs. (41) and (43) are useful in further
characterization of the MTT and MATT into outer and inner
horizons as defined by Hayward [2].

1. Causal nature of marginally (anti) trapped tubes
in homogeneous dust evolution

Here we adapt the expressions derived for the D-
dimensional LTB model for the case of homogeneous
dust evolution. The mass function for the homogeneous
case (14) is of the form

F(r) = e’ (44)

where ¢y = 2ke(0,7)/(n(n+1)). We further can show
using the same relation that the energy density,
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n(n+ 1)cg
Ke(t, r) = W

(45)

plugging R* = 1 in the Eq. (10) yields the condition for the
MATT in the current context to be,

20a
rZ[ S 4= (46)

<+1>} -

The above equation relates the co-moving radius with the
scale factor for the horizon. Now substituting the above
relation into the expressions for £, (33) and f; (35) and
simplifying yields the relation,

B 2ke

ﬁk:ﬁl——<3—”+

(47)

n n

2AR2)
this is the formula for the norm of the normal to the MTT
and MATT that occur in homogeneous dust evolution in
terms of the energy density on the tube (x¢), the dimension
of the space-time (D = n + 2), the cosmological constant
(A) and the area radius (R) of MTT or MATT. Similarly
computing the lie derivatives for the homogeneous case
we get

£k0k = —K€ (48)
(0= (301 0F (49)
Pk oR? " n
£,0, = —xe (50)
00— (3-p 1+ E (51)
=——=|3-n
TR
the formula for o, and «; is given by
—2keR? 2ARM\ !
@ = — —X¢ (3—n—|— ) —a. (52)
n n

B. Marginally trapped surfaces (MTS)
The condition for marginally trapped surface (MTS) is

0,=0 and ©;,<0 (53)

from the relations (28) and (29) the above conditions
imply that

R=-1 and R<1 (54)

so R = —1 satisfies both these conditions. This means that
for R(r,t) = r a(r) we can write comoving radius r for the
MTT as function of time

n = % (55)
and the areal radius is expressed as
a(t)
R =——=
h(t’ r) d([) (56)

From the solutions we got for a(7), we look at the behavior
of MTS as they evolve in time ¢, for the cases where A = 0,
>0and <0

1. MTS for flat case

We choose the solution for a(f) for MTS in the case of
A=0as

a(r) = (1 - %x)m (57)

This solution of a(t) is chosen such that r, and R, can have
positive values for MTS. We are interested in obtaining the
curve in the 7—r plane for which 6, = 0. Using the
condition (55) we obtain the expression for r;, as

nn+1) gln+1) it
T(l— Tz) (58)

so we plot r;, versus t for various dimensions (D = 3 to 7) is
shown in Fig. 1.

TN IS S T S ST N T N S IS T S T N St

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 1. r, versus ¢ for MTT with (A =0, g=1).
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These graphs represent the MTT which gives the evolu-
tion of the MTS in time t as each point on these curves is an
MTS and we are tracking these MTT curves from time ¢ = 0
to the time when they reach the shell with label r = 0 which
is a singularity as R also goes to zero here and also the Ricci
scalar blows up. We see there is an anomalous curve for
D = 3 because there are no trapped surfaces in the absence
of cosmological constant for the case of 2 + 1 dimensions as
observed in [24]. The line for D=3 represents when the
conical defect becomes 2z in the 2+ 1 dimensional
scenario and the relation between the conical defect and
the mass function F(r) can be seen in [24,25].

The causal nature of these graphs can be seen from the
expression for the norm (47), the sign of f, is positive for
D <5 (n<3) implying that the MTT is timelike. It
becomes null for D =5 (n = 3) where the MTT curve
coincides with an ingoing null ray, this is an example where
the horizon need not be isolated and can still be null. The
MTT is uniformly spacelike for D > 5 (n > 3). We note
that for D = 4, the MTT is timelike as seen in [8,14]. In the
above graph and the graphs that follow, we present the
evolution for a certain time interval which happens here
only due to the matter flux. The MTS unlike the event
horizon is defined locally without a need for the complete
global description. We look at the evolution for the Areal
Radius for these MTS using (57) which gives us a linear
relation between R; and time (t) given by,

n(n—i—l)_(n—i—l)t. (59)

29 2

The plot for R versus ¢ is shown in Fig. 2.

P T SR SN ST WA AT SO S N R L AAlAAt

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 2. R versus ¢ for MTT with (A =0, g = 1).

Note that R decreases monotonically with the coordinate
time ¢ for all the cases irrespective of the number of
dimensions and whether the MTT is spacelike or timelike.
The areal radius becomes zero at a finite time ¢ indicating
singularity formation hence we don’t need to extend the
solutions beyond R = 0, this hold true for all the cases to
follow.

These MTT can be further characterized as FOTH or
FITH as introduced by Hayward [2] and outlined in [16].
Looking at the sign of £,0, =n(3 —n)/2R?>, we see
that for D > 5(n > 3) the sign is negative indicating that
the horizon is an outer horizon (FOTH). For D < 5,
we see that the horizon is an inner horizon (FITH).
The nontrivial case is for D =5 where the horizon is
null but not isolated. We comment about the inner and
outer classification for D = 5 in a note at the end of the
section.

2. MTS for AdS case

The solution for the scale factor a(t) in Homogeneous
dust evolution for the case with negative cosmological
constant is given by

<_\/% sin ( \/@z — arcsin @) >_1 (60)

One can see that the solutions are oscillatory in nature.
The evolution in the graphs given below represent the
situation where the matter cloud contracts from a given
initial configuration and collapses to a point. One can
also consider the reversed situation where the matter
expands out from a point (this situation is dealt with
when analyzing the MATS case). We therefore present a
segment of the entire evolution of the cloud for the
purpose of tracking the evolution of MTS. The negative
cosmological constant provides an extra “attractive
force" on the shells and the cloud collapses more effi-
ciently than the previous case where the cosmological
constant is kept to zero. The evolution of MTS as a curve
in the (7,r) plane where the comoving radius r, is
given by

n(n+1) 1 A(n—|—1) . A
_ T%tanQ/Tz‘—mcsm\/;). (61)

The plot for r;, versus ¢ is shown in Fig. 3.
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r

n n n n 1 n n n n 1 n n n n 1 n n t
0.0 0.5 1.0 1.5 2.0

FIG. 3. r versus f for MTT with (A =1, g=1).

For D > 4, we can see that at time ¢ equal to zero, the
comoving radius that has just for trapped is the intercept
the curve makes on the r axis. For all the comoving
radius, r > ry, are already trapped. The evolution therefore
proceeds from a higher r to lower r and eventually zero.
Once again the case where D = 3 is anomalous. One can
see in the above plot that the MTS never reaches less than
a particular value of comoving coordinate r. The reason is
that for the case of 2 4 1 dimensions not all shells can get
trapped [24]. In the case of negative cosmological con-
stant, there is a mass gap that needs to be filled before the
shells can get trapped. So the shells closer to r =0 do
not get trapped. In the next plot, we see that all these
shells that do not get trapped, do become singular due to
their physical radius R becoming zero. The expression
for R is

D (ST, )

and the plot for R versus ¢ is shown in Fig. 4.

R
40

30
20

10

n n n n 1 n n n n T
0.0 0.5 1.0 1.5 2.0 t

FIG. 4. R versus t for MTT with (A =1, g = 1).

As can be seen from Eq. (47), the MTT is spacelike
for D >5. Timelike behavior is possible only in
dimension less than 5. Any MTS that occurs at a areal

radius less than R < \/n(3 — n)/|A| is timelike and for R >
\/n(3 —n)/|A| it is spacelike. We can see that the above

statement is covariant since the areal radius can be defined in
a covariant manner based on the Killing vectors. We note
that the area of the MTS in the negative cosmological
constant case decreases monotonically with the coordinate
time ¢ for all the cases irrespective of the number of
dimensions and whether the MTS is spacelike, timelike
or mix of timelike and spacelike segments.

We now look at the classification of outer/ inner based
on the expression £,0, = n(3 —n+2AR?/n)/2R?. For
A <0, it is clear that for D > 5 the horizon is uniformly
outer since the above expression is uniformly negative, it is
therefore FOTH. For D < 5 it is an FOTH at large R and is
FITH for small R. So there is a change from outer to inner
as the horizon evolves. This counterintuitive behavior is
addressed in the note at the end of the section.

3. MTS for dS case

The solution for scaling a(#) with positive cosmological
constant for MTS is chosen to be (this is choice is made
such that r, R are positive)

(fsmh<\/“”7t_msmh\[>> )

The expression for the MTT curve in (r, ¢) is plane is give
by comoving radius r which is

_ ('H—l(lt (\/ (n+1 t arcs1nh\/7> (64)

The plot for r versus ¢ is shown in Fig. 5.
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FIG. 5. r versus t for MTT with (A =1, g=1).
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FIG. 6. R versus t for MTT with (A =1, g=1).

Just like flat and AdS cases, the curve for the case when
D =3 is an anomaly. We look at the expression for the
areal radius R of the MTT curve which is

_\/@tanh (@t - arcsinh\/é) (65)

The plot for R versus ¢ is shown in Fig. 6.

We see from the above graphs that just like flat and
negative cosmological constant cases, the evolution of
MTS for positive cosmological constant case is also
monotonic and the areal radius decreases monotoni-
cally with time ¢. Using the formula (47), we see that
for dimensions d > 5, the MTS is timelike whenever

R > \/n(3—n)/(2A) and is spacelike when R <
n(3 —n)/(2A). For dimension D < 5, the MTS hyper-
surface is timelike since the norm is always positive.
When we analyze the plot (r,7) and (R, t) together for
the case of D = 3 dimensions, we see that the portion of the
curve in (7, t) plot where the slope is positive is the relevant
portion. The peak and the downward portion is a result of
extending the curve beyond the singularity. This can be
seen because when we observe the plot (R, t), we can see
that the MTS has reached R = 0 while the curve in the (r, 1)
plot is still climbing. The anomalous behavior of the curve
in the (r,7) plane is due to the fact that in D =3
dimensions, particles do not attract each other while the
positive cosmological constant has a repulsive effect on the
evolving dust. So if a shell of comoving radius r is such that

it’'s R = —1 and therefore it is a point on the MTS curve.
Due to the repulsive nature of positive cosmological
constant, the shell of label r slows down so that it’s

R> —1 and a shell with larger comoving radius will

have R = —1. This explains the peculiar behavior of
the D = 3 curve. This differs from other dimensions where
the evolution of dust is not just dependent on the cosmo-
logical constant but also matter distribution that is attractive
in nature.

To characterize the MTS in terms of outer and inner, we
look at the sign of £,0, = n(3 —n + 2AR*/n)/2R*. We
see that for dimension D < 5, the sign is uniformly positive
implying that the horizon is an inner horizon (FITH). For
D > 5, the horizon is inner horizon (FITH) for large R and
is outer horizon (FOTH) for small R.

C. Marginally antitrapped surfaces (MATS)

The condition for marginally outer trapped surfaces is
0, >0 and 6_=0. (66)

These conditions imply
R=1 and dotR> -1 (67)

when R = 1 we can write co.moving radius as function of
time as

and the physical radius is expressed as

R(t,r) = %. (69)

We will look at the behavior of MATS for the cases where
A=0,>0,and <O.

1. MATS for flat case

The solution for the case of expanding cloud of dust is
given by,

a(t) = (1 + %z)m (70)

we obtain r as a function of time given by

7”(”2; 1)<1 gyt Ur) Cm

The plot for r versus time for the above relation is shown
in Fig. 7.
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FIG. 7. r versus t for MATT with (A =0, g =1).

FIG. 8.

R versus t of MATT with (A =0, g=1).

Then the expression for the physical radius R for the
MATS curve is

n(n + 1)+(n—|—1)t.

7 : (72)

The plot for R versus ¢ is shown in Fig. 8.

We see a monotonic evolution of R with time. Just as
with MTT, the MATT curve is timelike for dimension
D <5, is null for D =5 and is spacelike for D > 5.

The MATS could also be further characterized based
on the sign of (51) from which we can see that for D < 5
the horizon is inner (PITH) and for D > 5 the horizon is
outer (POTH).

2. MATS for AdS case

The solution for the scale factor a(r) as a function of
time for the case with a negative cosmological constant is
obtained below (the choice is made such that », R are
positive)

AlkAAlkkklkkklkkklkkklkkklkkt

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

FIG. 9.

<\/% sin (\ / A(nz—:l)t —+ arcsin \/%> )m. (73)

The expression for comoving radius r is

The plot for r versus ¢ is shown in Fig. 9.
The expression for areal radius R is

\ /%tan (\ / %t + arcsin \/§> (75)

and the plot for R versus ¢ is shown in Fig. 10.

One sees that the solutions a(¢) are oscillatory in nature.
We consider the expanding part of the solution and track the
evolution of MATS. The cloud expands to a maximum
and starts contracting back in a finite comoving time ¢. The
steep slope of the MATS curve owes its explanation to the
previous sentence.

Just like MTS, for dimension D < 5, the MATS curve
transitions from timelike for small R to spacelike for large
R. For D > 5, the curve is uniformly spacelike. When we
look at the sign of (51), we conclude that for D < 5 the

r versus t of MATT with (A =1, g =1).
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FIG. 10. R versus t of MATT with (A =1, g = 1).

horizon is a PITH for small R and POTH for large R and for
dimensions D > 5, the horizon is POTH.

3. MATS for dS case

The solution for the scaling factor a(t) for MATS in
positive cosmological constant is

<\/% sinh (\ / A(r;—jl)t + arcsinh\/§> ) m‘ (76)

The expression for r for MATS is

@ﬁ tanh (@t + arcsinh \/§> (77)

and the plot for r versus ¢ is shown in Fig. 11.
and the expression for areal radius R as a function of
time is

\/@tanh <\/@t + arcsinh\/§> (78)

the plot for R versus time for MATS evolution is shown
in Fig. 12.

r

0 2 4 6 8 10 12

FIG. 11. r versus ¢t for MATT with (A =1, g=1).

n n n n n n n n n n n n 1
4 6 8 10 12 t

R versus t for MATT with (A =1, g = 1).

From the expression (47) it is clear that if D <5 the
curve is timelike and is a PITH. As is well known from
various work on cosmological horizons in 4 dimensions
regarding horizon evolution due to flux of matter [6]. For
dimension D > 5 we have MITS curve is spacelike (also

POTH) for small R (whenever R < /n(3 —n)/(2A)) and
is timelike (also PITH) for R > /n(3 — n)/(2A). Just like

MTS, there is a transition from spacelike to timelike as the
MATS evolves. As can be observed from the above plots,
R evolves monotonically with time ¢. The plot R vs ¢ is
horizontal for large time ¢. This is because most of the
matter interior to the MATS surface has crossed the
“cosmological horizon” and therefore the flux of matter
is negligible thereof.
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D. Note: Outer and inner horizon classification criteria
for D=5 and monotonicity of horizon evolution

In this note, we elaborate on two separate points from the
results on the section on MTS and MATS. The first point is
the classification of inner and outer for the case of D =5
with zero cosmological constant. We have seen that the
horizon is uniformly null but not isolated. This is seen for
both the MTS and MATS case. Now in order to classify the
horizon in terms of being outer or inner, we can check with
the Lie derivatives £,0, and £,0, (48), (49), (50), (51), both
are indeed zero. In such situations, we propose another
criteria to characterize the outer or inner nature of the
horizon.

The classification is made possible by defining a space-
like vector given by ¢ = 0/OR in a coordinate chart
(t,R,0,¢) where t is the comoving time. The vector
0/0t is everywhere timelike a good time coordinate
everywhere except at curvature singularity. Now e points
in the direction of increasing areal radius. We can now
construct the quantities, £,0, for MTS and £.0, for MATS.
The horizon is outer if £.0, is positive and inner if £,0, is
negative for MATS. Similarly, the horizon is Outer if
£.0; <0 and Inner if £.0; > 0. The use of the vector ¢
is limited to the case when the MTT or MATT is null. The
reason for this is that if the horizon is for space-like, then
the expression of the type £.0®, can have variable sign
(depending on the time coordinate being used) even though
£,0; has an invariant sign.

Evaluating the expression £,0,, we obtain the general
expression for D = 5 with zero cosmological constant,

3 F'
Using the results (44), (46) for D=5 we obtain,
£.6, = —6/R?, which means we have an inner horizon.
Similarly, we can classify MATS for the D = 5 as an inner
horizon. We note that we can reach the same conclusion if
we used the space-like vector field to be 0/Jr in the
comoving coordinate chart (¢, r,6,¢) coordinates system
(with the additional assumption that R’ > 0 and therefore r
and R are monotonically increasing functions of each other).

The second point that is the observation that in the
presence of a cosmological constant, the horizon evolution
makes a transition from timelike to spacelike as is observed
in deSitter case for dimension D > 5. We note that for
larger R, the horizon is timelike and small R it is spacelike.
What seems nontrivial in these cases is that when one
classifies the horizon as an inner or outer horizon, one
encounters the following situation that as long as the curve
is timelike the horizon is an inner surface whereas in the
spacelike segment it is an outer surface. When we see the
plots for the horizon evolution, we see a monotonic
decrease in the areal radius R for both the timelike and
spacelike segments of the curve. The transition from inner

surface to outer surface is counterintuitive. The analysis of
such curves has been done rigorously in [11,12]. The
understanding is that for the spacelike segment of the curve
that decreases monotonically with the coordinate ¢, one can
show that for a different choice of coordinates, the time
ordering of the events of the spacelike segment can be
reversed. So in this coordinate system, the spacelike part
of the horizon evolves from R = 0 with an increasing area
(since it is outer and therefore FOTH) and meets the
timelike segment of the curve at the radius R (where the
curves in the plots transition from timelike to spacelike).

IV. AREA LAWS IN MARGINALLY
TRAPPED SURFACES

The area law for a dynamical horizon (codimension 1
spacelike surface) and a timelike membrane (codimesion 1
timelike surface) in 3 + 1 dimensions is given by Abhay
Ashtekar and Badri Krishnan [5,6]. They obtained an area
balance law for the dynamical horizon which is

R, R, _
L) = T .24 b d3
<2G 2G> /AH Sy

! / N, (0| + 2¢P)dPn.  (80)
AH

+ 162G

The two terms on the right-hand side are the matter energy
flux and the gravitational energy flux along the evolution
vector éfr) and similarly the area balance law for the

timelike membrane is

Ry Ry _ T sagh g3
(2(; 2(;)_ /AHT“”V oY
1
- N,(|6*| = 2|¢'|>)d’v. 81
oG L Nl =2 (81

Using these area laws they have also argued that the area
increases for dynamical horizons and decreases for timelike
membrane monotonically.

Following there derivation of area laws closely we look
to extend these laws for marginally (anti) trapped yubes
which are spacelike codimension 1 hyper-surfaces to a
higher dimensional spacetime (D = n + 2) with a topology
of R? x S?. For a codimension-1 foliation of the spacetime,
specifying the evolution vector field £ will also specify
the lapse function and shift vectors in the 1+ (n+1)
decomposition.

N4 4 NO = & (82)

H is a MTT and is a codimension-1 hypersurface with the
Cauchy data and there constraint equations are

C(q.k) =R+ k> — KK, = 2T ,,t°t"  (83)
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C(q.k) = Dy(K® = Kq*) = kT"z.qj,  (84)

where Ty, = Typ — (Aga,/x) and 7¢ is the unit normal
to H. To get the flux through the a region of MTT (AH)
bounded by two marginally trapped surfaces at different
times we need to evaluate

/ (NC + N,C%)d" 'y (85)
AH
using the Egs. (83) and (84) we have
/ (NC + N,Cd" v
AH
= 2K/ (NT 77> + 2N, Tz.q%)d" . (86)
AH

For a MTT the choice of the evolution vector field is & =
Nk and a further 1 + n decomposition of H with X as a
MTS which is a codimension-2 hypersurface with a top-
ology of S". With this setup and following the steps as
in [5] we end up with a similar equation as (3.21) in [5]

NRd" 1y = 21</
AH

Tabga,[bdn+] v
AH

+/ N(|o|> + [¢]?)a™ v, (87)
AH

The quantities in the gravitational flux energy term are
defined below. The shear for the outgoing bundle of light
rays is

1
65/) = (l’lgh;{ - Ehathd> Vc.kd (88)

where hj is the projection operator onto the n-sphere and is
given by

h = 5 — 1,19 — kK, (89)

computing the norm of the shear for outgoing null rays
we get

2 n(n=2)2e (R + eDR)?
P = yotor =M 2E IR

and using the condition 28 for MTS we can see that the
norm of the shear for outgoing null rays is zero. Similarly
the shear for the ingoing bundle of null rays is

1
Glab = <h2hz - Ehathd) Vcld (91)

and computing the norm of the shear for ingoing null rays
we get

(n—2)?e (R — e@R)?
4 R?

n
112 I _lab
| =0,,0" =

o (92)
and using the condition (29) for MATS we see that the
shear norm go to zero. The quantity ¢ for MTT is given by
the expression

¢4 = sV k,, (93)

where s is the intrinsic metric on MTS. One can easily
check that for a spherical symmetry the norm |¢]? is always
zero for both the MTS and the MATS. We can see that
for spherical dust evolution the gravitational wave energy
term always vanishes. Hence the only contribution for the
change in marginally trapped surfaces comes from the
matter energy flux.

The volume element on the MTT (H) can be written as
d"'v = N~'dRd"v so the expression (87) reduces to

R, - _
/ de Rd"v = 2K/ (NT 192" d" v, (94)
R, " AH

The n-dimensional volume element on S" is d"v=
R"sin6,sin’6,....sin""'0,_,d0d6,do,....do,_, and Ricci
scalar R for the n-sphere is R = n(n — 1)/R?, where R is
the areal radius. So volume integral of Ricci scalar for the
n-sphere is

ntl

N 272 n(n — 1)R"2
]fRd"v: 7 n(n—1) (95)
;

and the area of the n-sphere with radius R is given by

n+1

27" R

& (96)

T+
N

The left-hand side of the integral (94) becomes

ntl

Ry ~ 22T )n
dR]{ Rd"v = RV — R (97
[ ar g, R =Sl R R (07)

For evaluating the matter flux term of the equation (94) we
use the relation d"*'v = N~'dRd"v again and also (11)
which simplify the expression as

A
2% / (N(Tu,, —g‘”’> z%h)d"w
AH k

n

27r(+1)/ < nF’ >
=2 + A |R"dR. 98
(L) Jar \2R"R' (%)

Now the expression (94) reduces to the form
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/ n(n—1)R"2dR - ZA/ R"dR = n/ F'dr.
AR AR Ar

Upon integration we have the relation

2A
n—1 _ pn—=1Y _ n+l _ pn+l
(RZ Rl ) n(n+1)(R2 Rl )
= F(ra)g, = F(rig, (99)

where the subscript R, or R; indicates the value of R
where F(r) needs to be evaluated at. The above expression
therefore is,

2A
nn+1)

This is same as the relation (10) under the marginally (anti)
trapped condition R* = 1 which is either R = —1 (@, = 0)
and R =1 (®; = 0). Note that the area balance law has
been reduced to an algebraic relation between the misner-
sharp mass F(r) and the area radius R. Also this extension

to D-dimensional area balance law is done for only
spacelike MTS or MATS.

AR — AR™! = AF(r).  (100)

V. CONCLUSIONS

We have generalized the evolution of MTS and MATS in
D-dimensions with and without the cosmological constant
due to the evolution of pressure-less matter. The model
under consideration is simple enough to yield closed form
expressions for various aspects of the horizon evolution in
these space-times and general enough to capture the various
scenarios possible. This advantage makes this model
particularly useful in the study of entropy evolution and
quantum gravity scenarios. Particularly interesting result
among them is the formula for the causal nature of the
horizon. The formula highlights the dependence on dimen-
sion, local energy density, cosmological constant and the
area radius (D-dimensional generalization of area).

The analysis of MTS and MATS in D-dimensions yields
many results that are not a straightforward extension of the
results of 3 4+ 1 dimensions. We observe that the qualitative
features of the dynamics of the horizons depends crucially
on the number of dimensions D. In the examples that were
shown, there were cases where MTS and MATS were
uniformly null but not isolated and moreover the area
evolves monotonically with the comoving time. We have
also shown that the generalization of Oppenheimer-Snyder
model in D-dimensions yields the horizon to be timelike for
dimension D <5 and is spacelike for D > 5. This is
interesting since the area monotonically decreases with
co-moving time in-spite of the horizon being spacelike,
timelike in different segments of the same curve. These
results make the analysis in d-dimensions counter-intuitive.
When we consider the case of Homogeneous distribution of
dust, we obtain the result that whenever the segment of the
MTS or MATS curve that is at an area radius R < R_jgcal»

(Resiticat = \/1n(3 —n)/(2A)), the curve is timelike and for

R > R_jical it 1s spacelike. When one explores the expres-
sion for R ;ca, We see that it depends only on dimension
and cosmological constant A. The length scale of this
partitioning of Area radius is decided solely by the
cosmological constant. The details of the transitions across
R iitica can yield very interesting result and are left for
future considerations.

We have found expressions for the Ashtekar,
Badrikrishnan’s area balance law in D-dimensions for a
restricted class of S" topologies that are relevant for
the model under consideration. The expressions obtained
in the article are valid for the Dynamical Horizons.
One can extend the expressions for the case of timelike
membranes too (as is shown in the paper Ashtekar et al.
[6]). In the cases considered we show that the horizon
transitions from timelike to spacelike during the course
of evolution. The generalization of the 3+ 1 of [6]
where such transitions are allowed will be attempted in
a later work.
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