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In Einstein’s general relativity, gravity is mediated by a massless metric field. The extension of general
relativity to consistently include a mass for the graviton has profound implications for gravitation and
cosmology. Salient features of various massive gravity theories can be captured by Galileon models, the
simplest of which is the cubic Galileon. The presence of the Galileon field leads to additional gravitational
radiation in binary pulsars where the Vainshtein mechanism is less suppressed than its fifth-force
counterpart, which deserves a detailed confrontation with observations. We prudently choose 14 well-timed
binary pulsars, and from their intrinsic orbital decay rates we put a new bound on the graviton mass,
mg ≲ 2 × 10−28 eV=c2 at the 95% confidence level, assuming a flat prior on lnmg. It is equivalent to a

bound on the graviton Compton wavelength λg ≳ 7 × 1021 m. Furthermore, we extensively simulate times
of arrival for pulsars in orbit around stellar-mass black holes and the supermassive black hole at the Galactic
Center, and we investigate their prospects of probing the cubic Galileon theory in the near future.
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I. INTRODUCTION

The late-time accelerated cosmic expansion poses a
profound challenge for modern physics that is known as
the dark energy problem [1–3]. From observations, we
know that dark energy manifests at length scales signifi-
cantly larger than the galactic size or, in field-theoretic
terminology, in the infrared regime. Dark energy is often
hypothesized as a cosmological constant in the standard Λ
cold dark matter model [4], but its real nature remains
elusive. Astrophysical objects (in particular, the type Ia
supernovae) in the relatively nearby Universe and the
cosmic microwave background in the early Universe
provide two classes of independent probes to measure
the Hubble expansion parameter of today, H0. Recent
observations from them, however, have inferred inconsis-
tent values of H0 at a significance level of 4.4σ [5–7]. The
discrepancy aggravates the dark energy puzzle and, in the
meantime, has triggered tremendous interest in searching
for new physics beyond the standard paradigm.

One of the main approaches to explaining dark
energy phenomena involves infrared modifications to the
canonical gravity theory, general relativity (GR) [8–10].
Modifications usually introduce extra field contents, with a
scalar degree of freedom being the simplest and the most
widely investigated in the literature. However, such a new
scalar is likely to bring in a fifth force [8–10], which is
stringently constrained by observations in the Solar System
[11] and binary pulsars [12–17]. Therefore, to successfully
account for the accelerated expansion of the Universe, we
need a modified gravity theory where the theory gives rise
to order-1 corrections at cosmological scales but deviations
from GR are extremely suppressed in the Solar System,
which makes nonlinearity a crucial ingredient in the theory.
For a class of such infrared modifications of gravity,
including the Galileon models [18,19], this is achieved
by the Vainshtein mechanism [20,21], by which the new
scalar becomes nonlinearly coupled in the local dense
environment, thus suppressing the fifth force in the Solar
System. The length scale within which the scalar becomes
strongly coupled is called the Vainshtein radius, r⋆, and it is
only outside of the Vainshtein radius that the linear
perturbations can be trusted. It is important that when
dealing with models with the Vainshtein mechanism the
full nonlinear theory, as opposed to the linear theory, needs
to be solved to make the correct physical interpretations.
The Vainshtein mechanism is intimately related to

massive gravity, and the accelerated cosmic expansion
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may be due to a condensate of gravitons with a Hubble-
scale mass [22,23]. It was pointed out in the 1970s that the
unique (Lorentz invariant) linear theory of massive gravity
deviates from GR by order-1 corrections, known as the van
Dam–Veltman–Zakharov discontinuity [24–26]. Vainshtein
soon thereafter suggested that this cannot be used to rule
out massive gravity and that instead one needs to solve the
nonlinear theory in environments such as the Solar System
to get the right prediction [20]. In other words, while the
conventional helicity-2 modes of GR become strongly
coupled at the Schwarzschild radius, the extra modes of
massive gravity becomes strongly coupled within a much
larger Vainshtein radius for the same central mass. To
extract the most strongly coupled extra modes in massive
gravity, one takes the decoupling limit per the de Rham–
Gabadadze–Tolley (dRGT) tuning [27,28],

mg → 0; MPl → ∞; Λ ¼ ðm2
gMPlÞ1=3 → fixed; ð1Þ

where mg is the graviton mass and MPl ≡ 1=
ffiffiffiffiffiffiffiffiffi
8πG

p
is the

reduced Planck mass, and obtains a scalar effective field
theory with the Galileon symmetry

πs → πs þ aþ bμxμ; ð2Þ

where πs is the Galileon field and a and bμ are constants.
The decoupling limit (1) scales away the small effects
due to other modes and lets us focus on the physics
most important near the scale of Λ. In the presence of
matter sources, we also take the limit where the energy-
momentum tensor Tμν goes to infinity but the ratio between
Tμν=MPl is fixed. The Galileon scalar then couples to the
trace of Tμν and encapsulates the salient features, including
the Vainshtein mechanism, of the extra modes in massive
gravity [18,19].
In this paper, we study the simplest model that exhibits

the Vainshtein mechanism—namely, the cubic Galileon
[18]. This model is the decoupling limit of the Dvali-
Gabadadze-Porrati braneworld model [18,29], where the
graviton acquires a so-called soft mass from embedding
the 3-brane Universe in a four-dimensional bulk with an
Einstein-Hilbert term. The Galileon models are also the
decoupling limit of the recently discovered dRGT model
[27,28], a unique nonlinear (Lorentz invariant) massive
gravity with a so-called hard mass. The bigravity [30] or
multigravity extension of the dRGT model also leads to a
bi-Galileon or multi-Galileon theory [31–33]. Therefore,
the cubic Galileon model is often taken as a proxy to cover
all of the Lorentz invariant massive gravity models, though
by no means does it encode all aspects of a complete theory
of massive gravity where other terms, for example, the
quartic Galileon term, might appear.
Horndeski theory [34], the generalized scalar-tensor

theory with up to second derivatives in field equations,
can be rederived in the Galileon framework [35]. It is worth

mentioning that, while a large class of Horndeski models
have been ruled out by the coincident observation of the
gravitational-wave signal [36] and the electromagnetic
counterpart [37] from a binary neutron star inspiral
GW170817 [38–40],1 the cubic Galileon subset of
Horndeski theory, though being a simple straw man model,
is still comfortably alive. Consequently, it is intriguing to
study the cubic Galileon in light of recent research activities
in the field.
The fifth-force effects of massive gravity are often

screened by the Vainshtein mechanism so effectively that
the existing constraints in the dense environment can easily
be evaded [42], and only at a cosmological density in the
infrared regime can the theory deviate significantly from
GR, accounting for the dark energy. However, de Rham
et al. [43] found that, in binary pulsar systems, the
suppression factor in the extra gravitational radiation due
to the Galileon mode is less than the suppression factor in
the static fifth-force effect (see Sec. II). Therefore, it
becomes extremely interesting to check with the existing
tests related to the gravitational radiation in binary pulsars
for the cubic Galileon model.
In this work, we present a thorough phenomenological

study of the Galileon radiation for binary pulsar systems.
We carefully choose 14 well-timed binary pulsars to put
constraints on the theory parameter of the cubic Galileon.
Among these pulsars, recent observations of the double
pulsar PSR J0737 − 3039A [44,45] give the strongest
bound on the graviton mass, mg ≲ 3 × 10−28 eV=c2 at
the 95% confidence level (C.L.). Furthermore, a combina-
tion of all 14 pulsars in the Bayesian framework gives

mg ≲ 2 × 10−28 eV=c2 ð95% C:L:Þ; ð3Þ

with a flat prior on lnmg. It translates into a limit on the
graviton Compton wavelength λg ≳ 7 × 1021 m.
The paper is organized as follows. In Sec. II, we review

the basics for the Galileon radiation [43]. In Sec. III,
systematic studies are carried out to understand the
dependence of the Galileon radiation on system parameters
and the figure of merit to test it. Based on these studies, we
choose 14 binary pulsars to cast tight constraints on the
graviton mass. Limits are obtained from individual pulsars
as well as a combination of them. Moreover, in Sec. IV,
with a set of simulated times of arrival for near-future radio
telescopes, we investigate the prospects for using pulsars
around a stellar-mass black hole (BH) companion [46–48]
and the supermassive BH at the Galactic Center (namely,
Sgr A�) [49–52] to constrain the cubic Galileon theory.
Section V presents a discussion and briefly summarizes
the paper.

1Care, however, must be taken to interpret this result, as the
observed gravitational-wave frequencies are very close to the
cutoff of the Horndeski theory as an effective field theory [41].
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Throughout the paper, we implicitly assume units where
ℏ ¼ c ¼ 1, except for a couple of places where ℏ and c are
restored for the reader’s convenience.

II. THEORY

Since the Hulse-Taylor pulsar provided the first indirect
evidence for the existence of gravitational waves [53],
many more binary pulsars have been playing an important
role in probing the properties of the gravitational radiation
in alternative gravity theories [12,45,54–57]. We briefly
review the gravitational radiation for a binary pulsar in
GR and in cubic Galileon theory in Secs. II A and II B,
respectively.

A. General relativity

Consider a binary system with component massesm1 and
m2 in an orbit with a semimajor axis a and an eccentricity e.
Because of the finite propagating velocity of gravity, at
leading order the binary loses energy by radiating off
gravitational waves with an emitting power [58]

PGR ¼ 32η2

5c5
G4M5

a5

�
1þ 73

24
e2 þ 37

96
e4
�
ð1 − e2Þ−7=2; ð4Þ

where the total mass M ≡m1 þm2, the symmetric mass
ratio η≡m1m2=M2, and G and c are the gravitational
constant and the speed of light, respectively.
From Kepler’s third law for a binary system, we have

n2ba
3 ¼ GM; ð5Þ

where nb ≡ 2π=Pb, with Pb the orbital period. The non-
relativistic orbital energy at the Newtonian order for the
binary reads

Eb ¼ −
ηGM2

2a
: ð6Þ

Taking the time derivatives in Eqs. (5) and (6), we have

_a
a
¼ 2

3

_Pb

Pb
ð7Þ

and

_Eb

Eb
¼ −

_a
a
: ð8Þ

Finally, using the energy conservation law in GR,
PGR ¼ − _Eb, we have [58]

_PGR
b ¼ −

192π

5c5
ηðGMÞ5=3n5=3b

�
1þ 73

24
e2 þ 37

96
e4
�

× ð1 − e2Þ−7=2: ð9Þ

B. Cubic Galileon

As discussed in the Introduction, (Lorentz invariant)
massive gravity models in the decoupling limit essentially
reduce to Galileon models plus linearized helicity-2 modes.
For the cubic Galileon, we focus on the action [18,43]

S ¼
Z

d4x

�
−
1

4
hμνðEhÞμν þ

hμνTμν

2MPl

−
3

4
ð∂πsÞ2

�
1þ 1

3Λ3
□πs

�
þ πsT
2MPl

�
; ð10Þ

where hμν ≡ gμν − ημν is the perturbation of the metric, the
first two terms in the integrand are the linearized Einstein-
Hilbert term coupled to matter with the Lichnerowicz
operator ðEhÞμν ≡ − 1

2
□hμν þ � � �, T is the trace of the

energy-momentum tensor Tμν, and Λ is the strong coupling
scale of the Galileon sector, related to the mass of graviton
mg via Λ3 ¼ m2

gMPl. Therefore, the field equations for πs
and hμν decouple,

1

MPl
Tμν ¼ −

1

2
□hμν; ð11Þ

1

2MPl
T ¼ ∂μ

�
−
3

2
∂μπs

�
1þ 1

3Λ3
□πs

�
þ 1

4Λ3
∂μð∂πsÞ2

�
:

ð12Þ

For a static system whose total mass is M, one can define
the Vainshtein radius as

r⋆ ¼
�

M
16m2

gM2
Pl

�
1=3

¼ 1

Λ

�
M

16MPl

�
1=3

: ð13Þ

Within r⋆, the fifth force from the scalar degree of freedom
is strongly suppressed.
In a static system, the fifth force is suppressed by a factor

∼ðL=r⋆Þ3=2, where L is the typical length scale of the
system [21]. For example, for an imaginary “static” binary
system, we can choose it to be the semimajor axis of the
orbit, L ∼ a. However, binaries are not static. de Rham
et al. [43] and Chu and Trodden [59] explicitly worked out
the gravitational radiation behaviors in a time-dependent
binary system at lowest orders. They found that (i) extra
Galileon radiation powers exist at the monopole, dipole,
and quadrupole levels, and (ii) for the dominant radiation
the suppression factor is weakened from ðL=r⋆Þ3=2 to
ðnbr⋆Þ−3=2.
As with GR, the Newtonian-order contribution of both

the monopole and dipole Galileon radiation vanishes, due
to the conservation of energy and linear momentum of
the system, respectively. Post-Newtonian-order contribu-
tions do exist for them. For the quadrupole radiation, the
Newtonian-order contribution is nonzero. We collect the
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radiation powers of these multiple moments from Ref. [43]
(see also the numerical calculation in Ref. [60]) in the
following for later use in this work.
(a) Monopole radiation. In the cubic Galileon model (10),

the monopole radiation power at leading order for a
binary system is

Pmono ¼
25

48
πβ2n2b

ðnbaÞ4
ðnbr⋆Þ3=2

M2
mono

M2
Pl

X∞
n¼0

jImono
n ðeÞj2;

ð14Þ

where the constant β and the “monopole mass”Mmono
(also known as the reduced mass) are defined,
respectively, as

β≡ 33=8

Γð3=4Þ
�
π

32

�
1=4

≃ 0.6897; ð15Þ

Mmono ≡ ηM ¼ m1m2

M
; ð16Þ

with Γð·Þ the gamma function and the eccentricity
mode function Imono

n ðeÞ is as given in Eq. (24) and
Fig. 1.

(b) Dipole radiation. The dipole radiation power at
leading order for a binary system is

Pdipole ¼
c21
8
n2b

ðnbaÞ6
ðnbr⋆Þ3=2

M2
dipo

M2
Pl

X∞
n¼0

jIdipon ðeÞj2; ð17Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Eccentricity mode functions for the Galileon radiation. (Left panels) Absolute values of Imono
n ðeÞ, Idipon ðeÞ, and Iquadn ðeÞ given

from top to bottom. (Right panels) Cumulative contribution of these functions to the Galileon radiation power, in the form of (top panel)P
N
n¼0 jImono

n ðeÞj2 for the monopole, (middle panel)
P

N
n¼0 jIdipon ðeÞj2 for the dipole, and (bottom panel)

P
N
n¼0 jIquadn ðeÞj2 for the

quadrupole. Notice that, for clarity, (b) and (d) use a logarithmic scale for the vertical axes, while all of the other axes use a linear scale.
For a direct check, the solid black lines in the right column of panels reproduce the result in Fig. 1 of de Rham et al. [43] for the Hulse-
Taylor pulsar PSR B1913þ 16, whose orbital eccentricity is e ≃ 0.617 [61].
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where the constant c1 and the “dipole mass” are
defined, respectively, as

c1 ≡ 37=8ðπ=2Þ1=4
8Γð7=4Þ

�
1þ 3

16

Γð7=4Þ
Γð11=4Þ

�
≃ 0.4408; ð18Þ

Mdipo ≡ XMmono ¼ Mmono

�
m1 −m2

M

�
; ð19Þ

where X ≡ ðm1 −m2Þ=M and the eccentricity mode
function Idipon ðeÞ is as given in Eq. (25) and Fig. 1.

(c) Quadrupole radiation. Supplementing the quadrupole
radiation power in Eq. (4), the extra power at leading
order reads

Pquad ¼
5λ2

32
n2b

ðnbaÞ3
ðnbr⋆Þ3=2

M2
quad

M2
Pl

X∞
n¼0

jIquadn ðeÞj2; ð20Þ

where the constant λ and the “quadrupole mass”Mquad
are defined, respectively, as

λ≡ 39=8π1=4

217=4Γð9=4Þ ≃ 0.2125; ð21Þ

Mquad ≡ YMmono ¼ Mmono

� ffiffiffiffiffiffi
m1

p þ ffiffiffiffiffiffi
m2

p
ffiffiffiffiffi
M

p
�
; ð22Þ

where Y ≡ ð ffiffiffiffiffiffi
m1

p þ ffiffiffiffiffiffi
m2

p Þ= ffiffiffiffiffi
M

p
and the eccentricity

mode function Iquadn ðeÞ is as given in Eq. (26)
and Fig. 1.

The eccentricity mode functions, Imono
n ðeÞ, Idipon ðeÞ, and

Iquadn ðeÞ, can be defined in a uniform way via the master
function,

Iðp;qÞn ðeÞ≡ npþ1
4

2π
ð1 − e2Þp

Z
2π

0

e−iqx

ð1þ e cos xÞp dx: ð23Þ

The above-mentioned eccentricity functions for monopole,
dipole, and quadrupole radiations are

Imono
n ðeÞ ¼ Iðp¼2;q¼nÞ

n ðeÞ; ð24Þ

Idipon ðeÞ ¼ Iðp¼3;q¼n−1Þ
n ðeÞ; ð25Þ

Iquadn ðeÞ ¼ Iðp¼3=2;q¼n−2Þ
n ðeÞ: ð26Þ

The behaviors of these functions are illustrated in Fig. 1 for
different values of the eccentricity.
Using the same reasoning of energy balance in Sec. II A,

we can get the extra contributions to _Pb from the extra
Galileon radiation powers in Eqs. (14), (17), and (20),

_Pmono
b ¼ −25

ffiffiffi
2

p
β2π5=2

ηðGMÞ7=6n1=6b

ℏc3=2
mg

X∞
n¼0

jImono
n ðeÞj2;

ð27Þ

_Pdipo
b ¼ −6

ffiffiffi
2

p
c21π

3=2 ηX
2ðGMÞ11=6n5=6b

ℏc7=2
mg

X∞
n¼0

jIdipon ðeÞj2;

ð28Þ

_Pquad
b ¼ −

15ffiffiffi
2

p λ2π3=2
ηY2ðGMÞ5=6
n1=6b ℏc1=2

mg

X∞
n¼0

jIquadn ðeÞj2: ð29Þ

In obtaining these results, at leading order we used the
Newtonian binding energy for the orbit in Eq. (6), and we
made use of the orbital-averaged radiating powers as
discussed above. Such a simplification is sufficient for
the analysis in this paper. Notice that the extra contributions
to _Pb are all proportional to the graviton mass mg, while
in the linearized Fierz-Pauli theory [48,62,63] the extra
_Pb ∝ m2

g.

III. CONSTRAINTS FROM BINARY PULSARS

Now we would like to better understand the physical
effect of the Galileon radiation in Eqs. (27)–(29) to
different kinds of binary pulsars. We present some general
considerations in Sec. III A concerning the dependence on
the orbital eccentricity e, the orbital period Pb, and the
component masses ðm1; m2Þ. We cast constraints on the
graviton mass in the cubic Galileon theory from precision
timing of 14 carefully chosen binary pulsars in Sec. III B.

A. General considerations

From Fig. 1 we see that (i) given an eccentricity, the
absolute values of the eccentricity mode functions, InðeÞ,
increase at first, then have a peak at a particular n ¼ npeak

before they decrease; (ii) with the eccentricity increasing,
npeak happens at a larger n—therefore, when we deal with
highly eccentric binary pulsars, more modes are to be
included in order to guarantee the convergence of the sum;
and (iii) the cumulative contributions of these mode
functions to the Galileon radiation powers in Eqs. (14),
(17), and (20) saturate after a particular n, and for e≲ 0.95,
summing up to N ∼ 15 is generally sufficient. In the
following calculation, we choose N ¼ 30 for better accu-
racy. However, one should remember that, for extremely
eccentric binaries with 1 − e ≪ 10−2, a larger cutoff N is
needed.
Based on the contribution to the Galileon radiation

power, we define

fGRðeÞ≡
�
1þ 73

24
e2 þ 37

96
e4
�
ð1 − e2Þ−7=2 ð30Þ
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and

fmonoðeÞ ∝
X∞
n¼0

jImono
n ðeÞj2; ð31Þ

fdipoðeÞ ∝
X∞
n¼0

jIdipon ðeÞj2; ð32Þ

fquadðeÞ ∝
X∞
n¼0

jIquadn ðeÞj2: ð33Þ

These are the dependence shown in the GR radiation
[Eq. (9)] and Galileon radiation [Eqs. (27)–(29)]. The
proportional factors in Eqs. (31)–(33) can be arbitrary
normalization values for the convenience of specific
demonstration.
The fðeÞ functions in Eqs. (30)–(33) are plotted in Fig. 2

with a choice of normalization. We can see that the more
eccentric binaries are emitting more gravitational waves
and contributing more significantly to _Pb. This is true for
the three types of Galileon radiation, as well as the
quadrupole radiation in GR. If the binary is extremely
eccentric with 1 − e ≪ 1, a huge amplification factor
occurs, especially for the dipole radiation [Eq. (28)] in
the cubic Galileon. As we will see below, the quadrupole
Galileon radiation is, in general, the main contributor to _Pb
for binaries with comparable component masses [43]. The
increase of fquadðeÞ at large eccentricities is slower than the
other ones. Notice that the curves in the figure represent
only one numerical factor in the radiation power, defined in
Eqs. (30)–(33), while the other dependences (for example,
the dependence on the orbital period and the component
masses) are omitted here and will be investigated in the
following. It is worth noting that the increased radiation due
to eccentricity will generally tend to circularize the orbits
(see, e.g., in GR [58]), making highly eccentric binaries less
likely to exist at this point.

It is interesting to observe that, compared with _PGR
b =

Pb ∝ n8=3b in GR [see Eq. (9)], Galileon radiations have
_Pmono
b =Pb ∝ n7=6b [see Eq. (27)], _Pdipo

b =Pb ∝ n11=6b [see

Eq. (28)], and _Pquad
b =Pb ∝ n5=6b [see Eq. (29)]. It is a

noteworthy feature for the gravitational radiation with
the screening mechanism. With such a dependence, while
more relativistic binaries are more prominent in emitting
gravitational waves in GR, this may not always be true in
the cubic Galileon. It resembles the dependence on nb in
Lorentz-violating massive gravity [62,63] and gravity
theories with a time-varying gravitational “constant”
GðtÞ [12,48].
In Fig. 3, we plot three types of Galileon radiation as a

function of the orbital period for a binary pulsar system
with component masses similar to the Hulse-Taylor pulsar,
and a graviton mass mg ¼ 10−27 eV=c2. First, we observe
that the dipole radiation is orders of magnitude smaller than
the other two types of Galileon radiation; thus the dipole
radiation can be totally ignored. Though, as we recall from
Fig. 2, the dependence of the fðeÞ factor for the dipole
radiation on the eccentricity e is one of the steepest, the
overall effect from dipole radiation is negligible even for
e ¼ 0.98. Then we observe in Fig. 3 that, while for binaries
with e≲ 0.6 the quadrupole radiation dominates [43], for
highly eccentric binaries with relativistic orbits (namely,
smaller Pb), the monopole radiation might dominate
instead. This happens when Pb ≲ 103 s for e ¼ 0.9, and
Pb ≲ 105 s for e ¼ 0.98. It is caused by the fact that _Pmono

b

FIG. 2. The fðeÞ factor in _Pb, defined in Eqs. (30)–(33), with a
normalization such that fGR ¼ fmono ¼ fdipo ¼ fquad for the
double pulsar [44] whose e ≃ 0.088 (dotted vertical line).

FIG. 3. Galileon radiation induced orbital decay as a function of
the orbital period Pb for three different eccentricities. We have
assumed the graviton mass mg ¼ 10−27 eV=c2 and component
masses per the Hulse-Taylor pulsar—namely, m1 ¼ 1.438 M⊙
andm2 ¼ 1.390 M⊙. The dotted vertical lines indicate the orbital
periods of (left) the double pulsar and (right) the Hulse-Taylor
pulsar. The dashed, dot-dashed, and dotted lines indicate the
contributions from monopole, dipole, and quadrupole radiation,
respectively, while the solid lines are their sum. The dipole
radiation is visible only for e ¼ 0.98 at the bottom left corner of
the figure. Open circles on the solid curves represent systems that
have lifetimes of 106 yr before merger in GR.
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increases for larger nb (smaller Pb), while _Pquad
b increases

for smaller nb (larger Pb). Therefore, particularly for highly
eccentric binaries to be discovered in the future, we should
be cautious when considering only the quadrupole Galileon
radiation. This also applies to highly eccentric galactic
binaries (if they exist) in the millihertz gravitational-wave
band for the Laser Interferometer Space Antenna (LISA)
[64,65]. A similar discussion will also be mentioned for
pulsar-BH systems in Sec. IV. In the following calculation,
we keep all three types of Galileon radiation summed,
regardless of their relative strength.
In Fig. 4, we plot the relative contribution of the Galileon

radiation to the quadrupole radiation in GR. First, we see
that the relative contribution increases when the orbital
period is larger. This is in accordance with the screening
mechanism, which works less well when the size increases
[21], while the GR effects are more prominent when the
orbit is more compact. Specifically it is caused by the
following: (i) in this regime, the quadrupole Galileon
radiation dominates, which increases as ∝P1=6

b when Pb
becomes larger, and (ii) the quadrupole radiation in GR

FIG. 4. The contribution from the Galileon radiation (summa-
tion of the monopole, dipole, and quadrupole radiations), relative
to the quadrupole radiation in GR, for several different eccen-
tricities. We have assumed m1, m2, and mg per Fig. 3. The dotted
vertical lines indicate the orbital periods for (left) the double
pulsar and (right) the Hulse-Taylor pulsar. Open circles represent
systems that have a lifetime of 106 yr before merger in GR.

FIG. 5. The relative strength to _Pb versus component masses ðm1; m2Þ, with given orbital period Pb and orbital eccentricity e. (Top left
panel) The GR radiation. (Top right panel) monopole, (lower left panel) dipole, and (lower right) quadrupole Galileon radiation. The
results are calculated with respect to a fiducial mass pair m1 ¼ 1.438 M⊙ and m2 ¼ 1.390 M⊙, denoted by the blue square. Red circles
are the other 13 pulsars that are used in this paper (see Table I).
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decreases as ∝P−5=3
b . With mg ¼ 10−27 eV=c2 the Galileon

radiation may even be larger than the GR one when Pb ≳
day for nearly circular orbits. Moreover, we find that while
the absolute Galileon quadrupole radiation increases with
larger eccentricity (see Fig. 2), the relative contribution to
GR decreases. This can be understood from the steepness
of the curves in Fig. 2 for the quadrupole radiation in GR
(black dots) and in the cubic Galileon (magenta circles).
The latter is less steep, thus decreasing the relative ratio of
_Pb with larger eccentricity.
Lastly, to understand the effect of the component

masses, in Fig. 5 we plot the relative strength to _Pb
for different mass pairs normalized to ðm1; m2Þ ¼
ð1.438; 1.390ÞM⊙, which is the fiducial mass pair based
on the Hulse-Taylor pulsar [61]. Figure 5 is useful for
analyzing binaries with a given orbital period and eccen-
tricity but different component masses. It is well known that
for the quadrupole radiation in GR, the so-called chirp
mass,M≡ ðm1m2Þ3=5=M1=5, plays a key role. Its contours
in the m1 −m2 parameter space are shown in the upper
left panel in Fig. 5. The monopole and quadrupole
Galileon radiations depend on the component masses in
a quantitatively different—but qualitatively similar—way,
as shown by the right panels in the figure. But for the dipole
radiation, shown in the bottom left panel, the dependence is
totally different. Asymmetric binaries are preferred for
manifesting the dipole radiation. Notice that from the color
bars, the enhancement from the asymmetric component
masses for the dipole radiation can be as large as ∼103,
while for the other three types of radiation the change
with component masses is within a relatively limited range.

This point will be clearly observed for pulsar-BH systems
in Sec. IV.

B. Constraints

After having looked at the general features for the
Galileon radiation in the last subsection, we now turn to
realistic binary pulsar systems. We carefully choose 14
binary pulsars that are known to be precisely timed. They
are chosen from the pool of millisecond pulsars in the
second data release of the International Pulsar Timing
Array program [66], as well as several other well-known
systems with measurement of _Pb [44,45,54,61,67–76]. The
relevant parameters for the test of the Galileon radiation are
listed in Table I. Because binary pulsars have a large variety
in terms of system parameters and observational character-
istics, for detailed descriptions of these systems readers
are referred to the original timing papers which are given
for each pulsar in the table. As one can see from the last
subsection, the Galileon radiation depends on a set of
physical parameters of the binary pulsar system. These
pulsars in Table I represent, to our best knowledge and
resources, a set of the most suitable binary pulsar systems
to date to perform the test in this paper.
For the chosen binary pulsars, post-Keplerian parameters

other than _Pb were used to calculate the component masses
m1 and m2, assuming the validity of GR expressions
[12,78]. The component masses are listed in the fourth
and fifth columns in Table I. In the strictest sense, the
component masses should be calculated consistently using
cubic Galileon theory instead of GR. Nevertheless, as the
Vainshtein suppression of the fifth force is more significant

TABLE I. Relevant parameters for a collection of binary pulsars for testing the Galileon radiation. Component masses were derived
using post-Keplerian parameters other than _Pb, based on the validity of GR; σ _Pobs

b
is the measurement uncertainty of the timing parameter

_Pb, while σ _Pint
b
is the uncertainty of _Pb after accounting for the kinematic Shklovskii effect and the galactic acceleration contribution

[77,78]. Numbers in parentheses represent the 1σ uncertainty in the last digit(s) quoted. For more details, interested readers are referred
to the cited references alongside the pulsar name for each pulsar.

Pulsar PbðdÞ e m1ðM⊙Þ m2ðM⊙Þ σ _Pobs
b

(s s−1) σ _Pint
b
(s s−1)

J0348þ 0432 [67] 0.102424062722(7) ð2.6� 0.9Þ × 10−6 2.01(4) 0.172(3) 4.5 × 10−14 4.5 × 10−14

J0437 − 4715 [66,68] 5.7410458(3) 1.9182ð1Þ × 10−5 1.44(7) 0.224(7) 3 × 10−15 2.8 × 10−13

J0613 − 0200 [66,69] 1.198512575217(10) 4.50ð9Þ × 10−6 1.42(46) 0.14(3) 7 × 10−15 2.3 × 10−14

J0737 − 3039A [44,45] 0.10225156248(5) 0.0877775(9) 1.3381(7) 1.2489(7) 1 × 10−15 1 × 10−15

J1012þ 5307 [66,70] 0.604672723085(3) ð1.1� 0.1Þ × 10−6 1.83(11) 0.174(7) 4 × 10−15 8 × 10−15

J1022þ 1001 [66,69] 7.805136(1) 9.704ð5Þ × 10−5 1.72(65) 1.03(36) 7 × 10−14 2 × 10−13

J1141 − 6545 [71,72] 0.19765096149(3) 0.171876(1) 1.27(1) 1.02(1) 2.5 × 10−14 2.5 × 10−14

B1534þ 12 [73] 0.420737298879(2) 0.27367752(7) 1.3330(2) 1.3455(2) 3 × 10−16 1.1 × 10−14

J1713þ 0747 [66,74] 67.8251299228(5) 7.49403ð7Þ × 10−5 1.33(10) 0.290(11) 1 × 10−13 1 × 10−13

J1738þ 0333 [54] 0.3547907398724(13) ð3.4� 1.1Þ × 10−7 1.46(6) 0.181(8) 3.1 × 10−15 3.2 × 10−15

J1756 − 2251 [75] 0.31963390143(3) 0.1805694(2) 1.341(7) 1.230(7) 5 × 10−15 8 × 10−15

J1909 − 3744 [66,69] 1.533449475278(1) 1.04ð6Þ × 10−7 1.48(3) 0.209(1) 3 × 10−15 1.4 × 10−14

B1913þ 16 [61] 0.322997448918(3) 0.6171340(4) 1.438(1) 1.390(1) 1 × 10−15 4 × 10−15

J2222 − 0137 [76] 2.44576456(13) 0.380940ð3Þ × 10−4 1.76(6) 1.293(25) 9 × 10−14 9 × 10−14
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than the Galileon radiation [43,79], it is safe to use the GR
formulas to extract these parameters.
As we can see in the penultimate column in the table,

most of the chosen pulsars have uncertainties for the value
of measured _Pb at the level of σ _Pobs

b
∼ 10−15 s s−1. PSR

B1534þ 12 has an even better measurement, with σ _Pobs
b

≃
3 × 10−16 s s−1 [73]. The excellent timing precision is
attributed to the long-term observation of these pulsars
and the continuous improvements of the instruments at
large radio telescopes [78,80,81]. However, these values
cannot be directly used due to the astrophysical contribu-
tion and imperfect knowledge about their distances as well
as the Milky Way’s gravitational potential [77,78]. The
most significant contribution comes from the kinematic
Shklovskii effect and the galactic acceleration contribution.
These contributions need to be subtracted using the mea-
surement of the proper motion and the modeling of the
galactic potential [77]. The subtraction introduces extra
uncertainties in the intrinsic _Pb parameter. The uncertainty
after the subtraction, denoted as σ _Pint

b
, is listed in the last

column of Table I for each pulsar.
All of the pulsars in the table have passed the tests of GR

[12]. In particular, the measured orbital decay rates, after
subtracting the kinematic Shklovskii effect and the galactic
acceleration contribution, agree with the GR prediction in
Eq. (9) within uncertainty for all binary pulsars that we
consider. Therefore, here we do not look for evidence of the
Galileon radiation; instead we put upper bounds on the
graviton mass by constraining the extra Galileon radiation.
By plainly assuming that the Galileon radiation is smaller
than the uncertainty in _Pb, we obtain upper bounds for the
graviton mass for each pulsar. These bounds are plotted in
Fig. 6 for cases using σ _Pint

b
and σ _Pobs

b
as a function of the

orbital period Pb and the orbital eccentricity e.
The scenario of using σ _Pint

b
should be taken as providing

the current bounds onmg. In this scenario, the best bound is

given by the agreement of _Pb with the GR prediction within
10−3 from the recent observation of the double pulsar PSR
J0737 − 3039A [45]. The bound on mg reads

mg ≲ 3 × 10−28 eV=c2 ð95% C:L:Þ; ð34Þ

which is 2 times better than the bound from the Hulse-
Taylor pulsar PSR B1913þ 16, which gives mg ≲ 6 ×
10−28 eV=c2 (95% C.L.) [61]. Although the larger eccen-
tricity of PSR B1913þ 16 (e ≃ 0.617) is beneficial for the
test, compared with a mildly small eccentricity for PSR
J0737 − 3039A (e ≃ 0.088), the astrophysical contribution
introduces a significant uncertainty to the intrinsic _Pb of
PSR B1913þ 16 [77]. The double pulsar, being relatively
close to Earth, is not yet limited by the astrophysical
contribution in _Pb [44].
The scenario of using σ _Pobs

b
, on the other hand, should be

taken as overly optimistic, representing the ability of clean
binary pulsar systems in constraining the graviton mass.
This is possible only when both the kinematic Shklovskii
effect is measured and the galactic acceleration is modeled
to be better than the observational uncertainty. In such an
idealized case, the best pulsar would be PSR B1534þ 12

[73], which gives mg ≲ 6 × 10−29 eV=c2 (95% C.L.) by
itself alone. These overly optimistic results are also plotted
in Fig. 6, with orange circles, but they are considered only
to be indicative of technology capability and are not used in
the following analysis.
Because the theory parameter, mg, is universal in dif-

ferent pulsars, we can combine the constraints from
individual pulsars into a single constraint. We assume that
the measurements for different binary pulsars are indepen-
dent; thus the covariant matrix is diagonal for them. We
make use of a simple (logarithmic) likelihood lnL≡
− 1

2

P
ið _Pπ

b=σ _Pint
b
Þ2, where _Pπ

b is a sum of Galileon radiations

in Eqs. (27)–(29), σ _Pint
b

is as given in Table I, and the

FIG. 6. Constraints on the graviton mass in cubic Galileon theory from individual binary pulsars versus their (left panel) orbital periods
and (right panel) eccentricities at 68% C.L. Orange circles and blue triangles are bounds obtained using σ _Pobs

b
and σ _Pint

b
, respectively. The

Hulse-Taylor pulsar PSR B1913þ 16 [61] and the double pulsar PSR J0737 − 3039A [45] are annotated.
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summation is over all binary pulsars considered in this
paper. We can also assign prior knowledge to the graviton
mass within the framework of Bayesian statistics [82]. In
Fig. 7, we plot the combined cumulative probability
distribution of the graviton mass for two different sets of
prior knowledge. The combined bound is dominantly
influenced by PSRs J0737 − 3039A and B1913þ 16,
while the other 12 pulsars play only a minor role. From
the figure, we obtain

mg ≲ 3 × 10−28 eV=c2 ð95% C:L:Þ ð35Þ

when a uniform prior on mg ∈ ð10−29; 10−27Þ eV=c2 is
assumed, and

mg ≲ 2 × 10−28 eV=c2 ð95% C:L:Þ ð36Þ

when a uniform prior on lnmg for mg ∈ ð10−29;
10−27Þ eV=c2 is assumed; the high end of the prior
range—namely, 10−27 eV=c2—comes from the analysis
in Ref. [43]. While the former bound [Eq. (35)] is very
robust, the latter bound [Eq. (36)] using a uniform prior
on lnmg depends on our choice of prior range. It is a
generic feature of Bayesian analysis. In a cosmologically
favored reasoning, one might expect the graviton mass
to be around the current Hubble scale—namely, mg ∼
H0 ∼ 10−33 eV=c2. If we had used a uniform prior on
lnmg for mg ∈ ð10−34; 10−27Þ eV=c2, we would have
obtained a much tighter bound of mg. However, such a
bound is dominated by our prior knowledge. It means that
binary pulsars are not yet sensitive to a cosmologically
small graviton mass. Therefore, we stick to our relatively
conservative result in Eq. (36). In contrast, the above
change in the prior range does not affect the bound in
Eq. (35) when a uniform prior on mg is adopted.

The results here for mg improve on those in Ref. [43],
mg ≲ 10−27 eV=c2 (95% C.L.) due to uses of an updated
analysis and recent observational results of pulsar timing,
in particular, use of the double pulsar results given
in Ref. [45].

IV. PROJECTED CONSTRAINTS WITH
PULSAR-BH SYSTEMS

A well-timed pulsar around a BH companion is a long-
sought-after holy grail in pulsar astronomy. The discovery
of these systems will enable a couple of unprecedented tests
of gravity theories, in particular, on the aspects related
to the property of BH solutions [17,46,48,80,81,83]. To
date, despite extensive dedicated searches, no conclusively
convincing candidate has been found. The uncertainty in
the estimation of the number of these potential systems per-
tains mainly to their formation channels. Wewill not further
discuss the involved astrophysics here. Nevertheless, sev-
eral studies have shown good potential for discovering
pulsar-BH systems in the near future [47,49,51,52,84]. If
such a pulsar-BH system is discovered, it will provide a
completely new playground in which to perform interesting
tests of gravity, including Galileon radiation [48].
In Fig. 8, we plot the expected contribution of Galileon

radiation to the orbital decay rate for a pulsar–10 M⊙ BH
system. In the figure, the graviton mass is assumed to be
mg ¼ 10−28 eV=c2, which is roughly the best bound from
the combination of the current binary pulsars, obtained
in Eqs. (35) and (36). Because of the asymmetric masses,
for extreme (unrealistic) systems with Pb ≲ 1 min and
e≳ 0.95, the Galileon dipole radiation could be relevant to
the total radiation. However, even if any such systems exist,
they are unlikely to be detected with radio telescopes due to
the large orbital acceleration and limited computation
resources [47]; however, fast imaging and imaging searches
based on significant circular polarization or scintillation
might help [85–87]. The expected number for the LISA
detector is very low as well due to their short lifetimes
before the merger [64]. For binaries with Pb ≳ 1day, the
Galileon quadrupole radiation is still the dominant
contributor.
Depending on the eccentricity, the Galileon monopole

radiation could now play an essential role for binaries with
Pb ≲ 1day. Discovery of such binaries might be realistic
for current and upcoming radio telescopes [47,80]. Liu
et al. [47] conducted extensive time-of-arrival (TOA)
simulation for a pulsar-BH system with masses ðm1; m2Þ ¼
ð1.4; 10ÞM⊙.
As with Ref. [47], we have conducted extensive mock-

data simulations for different pulsar-BH configurations. For
all of these simulations, we have assumed one observing
session per week with ten TOAs of given uncertainty σTOA
over a period of five years. We further assume that the
TOAs follow a Gaussian distribution and are uncorrelated

FIG. 7. Cumulative probability for the graviton mass with flat
priors in mg (dashed line) and lnmg (solid line). Shaded regions
show the excluded graviton mass values at 95% C.L. [see
Eqs. (35) and (36)].
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(white noise). Our simulations cover an orbital period range
from 0.2 to about 100 days. We find that with a given
orbital period the precision in measuring _Pb, denoted by the
(dimensionless) quantity σ _Pb

, is only weakly dependent on
the orbital eccentricity. The dependence on Pb is nicely
fitted by

log10σ _Pb
¼ Aþ Blog10

�
Pb

day

�
; ð37Þ

where ðA;BÞ ¼ ð−15.67; 1.331Þ, ð−14.67; 1.331Þ, and
ð−13.68; 1.332Þ, when σTOA is 0.1, 1, and 10 μs, respec-
tively. In fact, to good approximation one can use A ¼
−14.7þ log10 ðσTOA=μsÞ and B ¼ 1.33. The actual uncer-
tainty obtained for a TOA depends on various aspects, like
pulsar luminosity, pulse profile, integration time, and
telescope and backend parameters. The assumed uncer-
tainties and number of TOAs are typical for precision
timing observations in pulsar astronomy (see, e.g.,
Ref. [66]). The expected precision for the three different
values of σTOA is shown as shaded regions in Fig. 8. We see
that pulsar-BH systems have great potential to improve the
current best bound on mg. For example, if a σTOA of about
0.1 μs (10 μs) is achieved, an eccentric pulsar with Pb ≲ 1
month (Pb ≲ 1 day) can probe mg down to the level of
10−28 eV=c2. We emphasize that the timing precision
assumed here can generally be achieved only for recycled
pulsars, even with large radio telescopes like the Five-
hundred-meter Aperture Spherical Telescope [88,89]
or the upcoming Square Kilometre Array [80,81,83]. Such
pulsar-BH systems could, in principle, be the result of an

exchange encounter in regions with high stellar density, like
globular clusters and the Galactic Center region (see, e.g.,
Ref. [90]). The actual timing precision will, in addition,
depend on other parameters like pulsar luminosity and
pulse shape.
In Fig. 9, we plot the projected bounds on mg using the

_Pb precision in Eq. (37) with σTOA ¼ 0.1 μs. As we can see
in the figure, if we can time a near-circular pulsar-BH
binary with Pb smaller than a few days, the bound
[Eq. (36)] in this paper can be improved. If the binary is
highly eccentric, then an orbital period Pb smaller than a
few months is sufficient to improve the bound, as was
indicated in Fig. 8. On the other hand, if one wants to probe
the cosmologically interested range for mg ∼ 10−33 eV=c2

[43], a subminute circular binary or a subhour highly
eccentric binary is needed. We consider such cases highly
unlikely to be discovered with near-future technologies,
leaving aside the fact that the existence of such a system in
our Galaxy is almost certainly excluded due to its short
merger time.
In another direction, extensive searches for pulsars

around the Sgr A�, the supermassive BH at the center of
our Galaxy, are ongoing [49,51,52,91]. In Fig. 10, we plot
the Galileon radiation for a pulsar-Sgr A� BH system for
different eccentricities with mg ¼ 10−28 eV=c2. For eccen-
tric systems with Pb ≲ 1 yr, the Galileon monopole radi-
ation prevails over the Galileon quadrupole radiation for
e≳ 0.6. Therefore, there might be an opportunity to test the
Galileon monopole radiation within this class of systems.
To address this question, we perform mock-data simula-
tions to investigate the precision one can expect for _Pb for a
pulsar in a suitable orbit around Sgr A*. As was done in
Ref. [49], we have created mock data with one TOA of

FIG. 8. Same as Fig. 3, but for m1 ¼ 1.4 M⊙, m2 ¼ 10 M⊙,
and mg ¼ 10−28 eV=c2. Open circles represent systems that have
lifetime of 106 yr before the merger in GR. Shaded regions show
the estimated measurement precision that can be achieved with
(from dark to light) σTOA ¼ 0.1, 1, and 10 μs; the precision is
found to be independent of eccentricity. Note that our simulations
are performed for orbits with Pb ≳ 0.2 day, and in this figure
orbits with Pb ≲ 0.2 day are extrapolated using Eq. (37).

FIG. 9. Projected bounds at 68% C.L. on mg from a pulsar-BH
system with σTOA ¼ 0.1 μs. Open circles represent systems that
have a lifetime of 106 yr before merger in GR. As in Fig. 8,
results for orbits with Pb ≲ 0.2 day are extrapolated using
Eq. (37).
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100 μs precision every week over a time span of five years.
Furthermore, we have assumed that the pulsar orbit is
unperturbed, and therefore our parameter estimation is
based on a phase-connected timing solution that provides
a perfect fit over the whole time span of observations. Even
under such optimistic assumptions, we find, for an orbit
with Pb ¼ 0.5 yr and e ¼ 0.8, that it is unlikely to get a σ _Pb

better than 10−12 s s−1. Therefore, only in the event of a
pulsar in a highly eccentric orbit with Pb ≲ 1 day being
discovered might we be able to improve the bound
[Eq. (36)]. However, we consider the existence of a pulsar
in such an orbit extremely unlikely.
The tests in this section depend sensitively on the

actual eccentricity of the pulsar-BH system, as shown in
Figs. 8–10. In fact, the analysis with Figs. 8 and 10 is
conservative because the Galileon radiation power was
calculated by averaging over the orbital timescale [43]. In
reality, during the periastron passage the gravitational
radiation is maximized and produces prominent features.
These features are believed to provide even more dis-
tinguishable signals. An analysis resolving the orbital
timescale is beyond the scope of this paper. Because all
three kinds of Galileon radiation are proportional to mg,
the results discussed in Figs. 8 and 10 can be rescaled
easily with different graviton masses for different binary
systems.

V. DISCUSSION

In this paper, we systematically studied the Galileon
radiation in cubic Galileon theory [43] in the context of
pulsar timing. Because the Galileon radiation is screened
differently than its fifth-force counterpart, such a study is
essential to better understand the basic role of the
Vainshtein mechanism in screening the gravitational
radiation.

From a collection of 14 well-timed binary pulsars, we
obtained a new bound on the theory parameter for the cubic
Galileon, namely, the graviton mass

mg ≲ 2 × 10−28 eV=c2 ð95% C:L:Þ; ð38Þ

when a uniform prior on lnmg for mg ∈
ð10−29; 10−27Þ eV=c2 is used. This improves on a previous
bound from the Hulse-Taylor pulsar [43] by a factor of 5.
Though the bound [Eq. (38)] is weaker than a few other
bounds, such as the bounds from the Earth-Moon-Sun
system and dark matter clusters [23], it is nevertheless a
robust bound from a completely different regime—namely,
from the dynamic gravitational radiation instead of the
static environments. It is also immune from uncertain
assumptions about the dark matter distributions and the
virialization of the gravitating systems. Therefore, we
consider this bound complementary to the existing bounds.
Finally, de Rham et al. [79] discussed radiation from a

generic Galileon theory with all allowed interactions in
four-dimensional spacetime. The inclusion of quartic or
quintic Galileon complicates the calculations considerably.
The authors found that naive perturbation theory predicts
divergent results in the radiation power when these higher-
order terms are considered, meaning that the perturbations
themselves are nonlinear. Partial results were obtained for
binary systems with specific assumptions about the screen-
ing length scales. In particular, only circular binary orbits
were analyzed, and they are not applicable to most of the
systems that we considered in this paper. For circular orbits
that were considered in Ref. [79], meaningful bounds can
be derived when there is a hierarchy of strong coupling
scales. We wish to perform a more complete analysis with
higher-order Galileon interactions in a future study.
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FIG. 10. Same as Fig. 3, but for m1 ¼ 1.4 M⊙, m2 ¼
4 × 106 M⊙, and mg ¼ 10−28 eV=c2.
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