PHYSICAL REVIEW D 102, 024061 (2020)

Editors' Suggestion Featured in Physics

Sixth post-Newtonian local-in-time dynamics of binary systems

Donato Bini ,1’2 Thibault Damour,3 and Andrea Geralico

1

Istituto per le Applicazioni del Calcolo “M. Picone,” CNR, I-00185 Rome, Italy
ZINFN, Sezione di Roma Tre, I-00146 Rome, Italy
*Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

® (Received 11 April 2020; accepted 26 May 2020; published 20 July 2020)

Using a recently introduced method [D. Bini, T. Damour, and A. Geralico, Phys. Rev. Lett. 123, 231104
(2019)], which splits the conservative dynamics of gravitationally interacting binary systems into a
nonlocal-in-time part and a local-in-time one, we compute the local part of the dynamics at the sixth
post-Newtonian (6PN) accuracy. Our strategy combines several theoretical formalisms: post-Newtonian,
post-Minkowskian, multipolar-post-Minkowskian, effective-field-theory, gravitational self-force, effective
one-body, and Delaunay averaging. The full functional structure of the local 6PN Hamiltonian (which
involves 151 numerical coefficients) is derived, but contains four undetermined numerical coefficients. Our

6PN-accurate results are complete at orders G* and G*, and the derived O(G?) scattering angle agrees,
within our 6PN accuracy, with the computation of [Z. Bern, C. Cheung, R. Roiban, C. H. Shen, M. P.
Solon, and M. Zeng, Phys. Rev. Lett. 122, 201603 (2019)]. All our results are expressed in several different
gauge-invariant ways. We highlight, and make a crucial use of, several aspects of the hidden simplicity of

the mass-ratio dependence of the two-body dynamics.
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I. INTRODUCTION

A new method for analytically computing the
conservative dynamics of gravitationally interacting binary
systems has been recently introduced [1]. This method
draws its efficiency from combining in a specific way
results coming from several different theoretical formal-
isms: post-Newtonian (PN), post-Minkowskian (PM),
multipolar-post-Minkowskian ~ (MPM), eftfective-field-
theory (EFT), gravitational self-force (SF), effective one-
body (EOB), and Delaunay averaging. We have recently
applied this method to the derivation of the fifth post-
Newtonian (5PN), and fifth-and-a-half post-Newtonian
(5.5PN) dynamics [2]. Here, we extend the application
of this method to the sixth post-Newtonian (6PN) level.

Let us recall the main idea and the various complementary
steps of our strategy. As the main purpose of the present paper
is to present our new, 6PN-level results, we will be as brief as
possible in guiding the reader through the results presented
below. For more details and references, see Refs. [1,2].

The main idea of our strategy is to decompose, from the
start, the total reduced’ two-body conservative action (Sy)

'The reduced two-body action is defined as the two-worldline
action obtained by integrating out the mediating field from the
original particle-plus-field action. It was introduced in electro-
magnetism by Schwarzschild, Tetrode and Fokker (see Ref. [3]
for references and further developments). Its generalization to the
gravitational two-body interaction was introduced in the PN
context in Ref. [4], and in the PM context in Ref. [5].
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in two separate pieces: a nonlocal-in-time part (S;onioc.f)
and a local-in-time part (S} ¢). This decomposition is done
at some given PN accuracy, say nPN, and yields (when
n > 4) an action of the form

St N x1(51), X2(52)] = Sion [x1 (51) . X2 (52)]

+ SN Txy (1), x2(55)].

nonloc,f

(1.1)

Here each action piece is a time-symmetric functional of
the worldlines of the two bodies, say x; (s;) and x,(s,). The
meaning of the additional subscript f (which stands for
“flexibility factor”) will be discussed below.

The fact that the PN-approximated dynamics of a
gravitationally interacting system must include, starting
at the 4PN level, a nonlocal-in-time part was discovered in
Ref. [6] by using the PN-matched [6—10] multipolar-post-
Minkowskian (MPM) formalism [11]. The description of
the 4PN-level nonlocal-in-time (henceforth abbreviated as
“nonlocal”’) dynamics by an action was initiated in
Ref. [12] (later refined in Ref. [13]) within the EFT
approach to the dynamics [14] of binary systems and their
coupling to radiation [15,16]. However, the nonlocal action
considered in Refs. [12,13] is a Schwinger-Keldysh-
type, in-in, action, with doubled fields, that is not appro-
priate to the Tetrode-Fokker-type approach we are using.
The corresponding appropriate time-symmetric 4PN-
level nonlocal action was first written down in Ref. [17].
See Refs. [18-21] for later discussions of this 4PN non-
local action.

© 2020 American Physical Society
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The extension of the nonlocal action to the SPN level was
obtained in Refs. [22,23], with extension to the 5.5PN level
in the latter reference. The derivation of these nonlocal
actions in Refs. [17,23] was obtained by combining infor-
mation from the MPM formalism, with special properties of
the 1PN-accurate interaction of a gravitationally system with
an external tidal field [24,25]. Here, we need the extension
of the nonlocal part of the action to the 6PN level. As
emphasized in Refs. [26,27], the EFT approach [14-16,28] is
useful in this respect and gives a guide for writing the
nonlocal part of the action beyond the leading order. We are,
however, confused by the meaning of some of the equations
presented in Refs. [26,27] because they seem to refer to non
conservative systems that should be treated by a doubled-
field Schwinger-Keldysh-type, while we are interested in the
Tetrode-Fokker-type time-symmetric action for conservative
systems. There is also a lack of explicit proof (beyond the
5PN level, which was explicitly treated in Ref. [23], see also
the Appendix A of Ref. [27]) that the multipole moments to
be used in the tail-transported nonlocal action are the same as
the “canonical” (or “algorithmic”) moments, M;, S;, para-
metrizing the fully nonlinear multipolar structure of gravi-
tationally radiating systems in the MPM formalism [11]. In
addition, a consistent 6PN-level evaluation of the nonlocal
action requires (as will be made clear below) that the
multipole moments, M;, S;, parametrizing the exterior
MPM gravitational field be expressed as functionals of
the source variables. The MPM formalism succeeded in
doing this task, and its appropriate results will be used below.
Recent work [27] provides some partial checks of this circle
of ideas at the level of the logarithmic terms associated with
nonlocal correlations,2 in the restricted case of circular
motions. Our work here will provide further checks con-
cerning elliptic motions.

II. NONLOCAL ACTION AT THE 6PN ORDER

The starting point for our method is to have in hand an
explicit expression for the nonlocal part of the action,
Snonloc.f- At the 6PN accuracy, the nonlocal action can be
linearly decomposed into its 4 + 5 4+ 6PN piece, and its
5.5PN piece

<6PN 4-+5+6PN 5.5PN
Snonloc f Snonloc f + Snonloc‘

(2.1)

The 5.5PN piece (which is independent of the flexibility
factor f) has already been treated in Ref. [2] and will not be
further discussed here. In view of the work recalled above,
the 4 + 5 4 6PN piece reads

S4+5+6PN{X1 (1), X2(82)] = /le4+5+6PN(t),

nonloc,f nonloc,f

(2.2)

*The fact that nonlocal interactions generate logarithmic terms
was pointed out in Refs. [29,30].

with

(2.3)

G M dt lit
HIN0 =S50 [ SRR,
Here, M denotes the total ADM conserved mass-energy of
the binary system,

r(z(t) = f(t)riy(0),

is a flexed version of the radial distance between the two
bodies (r,(t) denoting the harmonic-coordinate distance

and f(r) being a function of the instantaneous state of the

system), while F31(z,7') is the time-split version of the

fractionally 2PN-accurate gravitational-wave energy flux
(absorbed and) emitted by the (conservative) system. It can
be decomposed as

(2.4)

G .
FRN 1) = S IFE (0 0) + P F I, (7)

+ 0t FRY (1.2)], (2.5)
with
1
FRN (1) = g1y (01 (1),
Pt (t.1) = 1 R 1)) (t)l<4> () +1—6]<3)(Z)J(3)(t’)
13,J, 189 abc abc 45 ab ab ’
i 1 5
FP5, (1) = 53 Lopea (D (1)
4
+ g L 0I8L0), (2.6)

where 7 = 1/c¢ and the superscript in parenthesis denotes
repeated time-derivatives. The multipole moments I, J;
denote here the values of the canonical moments M;, S;
parametrizing (in a minimal, gauge-fixed way) the exterior
field (and therefore the relevant coupling between the
system and a long-wavelength external radiation field)
when they are reexpressed as explicit functionals of the
instantaneous state of the binary system. We employ here
the notation used’ in the early works on the PN-matched
MPM formalism [7,8,32] in which the source-related
values of the algorithmic multipole moments, M; =
I [source], S; = J [source], were obtained with 1PN frac-
tional accuracy. The latter accuracy suffices for the con-

tribution involving F}' bpht 7, (t,7) [and a fortiori F! splt 7, (t, t)

However, for the first contrlbutlon involving F ?;ht(t, /) w

need the 2PN-accurate value of the quadrupole moment
expressed in terms of the material source [33,34]. We need
also to use the explicit form of the 2PN-accurate dynamics

*In more recent developments [31] the notation I, J; refers to
slightly different source-related moments, with a difference
starting at order Cl—s which is, anyway, not relevant to the
present work.
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of a binary system in harmonic coordinates [35,36], and its
relation [37] to the 2PN-accurate Hamiltonian in Arnowitt-
Deser-Misner coordinates [38].

The nonlocal Hamiltonian can be further decomposed
into

4+5+6PN
Hng_nl;_cf ()

H4+5+6PN + Af_hH(Z),

nonloc,h

(2.7)

where, replacing M = Lﬂz where H is the Hamiltonian," and
introducing an intermediate length scale s,

GH :
Highii (1) = = =5 Phayc o

nonloc,h | |

+z—f;*:3:5< f)In (ﬂ) (238)

N

and

(f())-

The corresponding local Hamiltonians are defined so that

ATMH(r) = f;*;};g(z 1) In (2.9)

Htot Hloc h + Hnonloc h — Hloc,f + Hnonloc,f‘ (210)
In view of Eq. (2.7), we have
Hygen = Hioer + AT H (1), (2.11)

where it should be noted that A™"H(z) is (like f(¢)) a local
function of the dynamical variables.

Depending on the various sections of this paper, we shall
work either with the “h-route” nonlocal Hamiltonian

Hﬁ:nsljfﬁN, or the flexed “f-route” local Hamiltonian
Hfotsf%PN As discussed in [2], the use of a suitable

flexibility factor f(¢) within our strategy allows one to
cleanly separate the determination of the local Hamiltonian
H,.¢ from the nonlocal physics. The present paper will
focus on the explicit computation of the f-route local
Hamiltonian Hj,.; [under the sole assumption that
f(t) = O(v)]. We leave to a separate work a full study
of the complementary nonlocal Hamiltonian H o ¢, and
the determination of the flexibility factor f(z).

III. COMPUTING THE DELAUNAY AVERAGE
OF THE NONLOCAL-IN-TIME H-ROUTE
HAMILTONIAN

The first stage of our strategy consists of computing the
Delaunay average of the nonlocal h-route Hamiltonian
H onioens Eq. (2.8). This computation is conveniently
separated into several successive steps: (1) computing the
2PN-accurate multipole moments entering Fiax(z, ');
(2) using a generic 2PN quasi-Keplerian parametrization
of the motion; (3) computing the quasi-Keplerian

‘At the present level, we can use the 2PN-accurate

Hamiltonian.

parameters in harmonic coordinates; (4) computing the
quasi-Keplerian parameters in EOB coordinates; (5) evalu-
ating the multipole moments along the orbit; and finally,
(6) computing the Delaunay-average of the h-route nonlocal
Hamiltonian in harmonic coordinates.
In this section, we shall use as (rescaled) energy and
angular momentum variables
2
pofoME T
H GMu

(3.1)

Beware that we shall also use other rescaled energy
variables in other sections.

A. The 2PN-accurate multipole moments
in harmonic coordinates

In this subsection, x! and v’ = d" denote the harmonic-
coordinate relative center-of-mass posmon and velocity of
a two-body system One also uses the shorthand notation
L, =¢; ka’ v*. Using the standard notation for the sym-
metric and tracefree part of a tensor T, Ty, and for the

tensor product of two or more Vectors X;X;X... = Xjjr.
the following results hold
3
X(ijky = Xijk — §x2x(,-5jk),
1, 2
X(ijy) = X(ij0k) = 5 X010k = 5 (V- X)),
1, 2
X0y = Vi) 508 — 5 (V%) 0h,
6 3
Xijkty = Xijk — 7x25(ijxkz) + 5X45(,’j5k1),
1
L = Lixin = 5081w,
3
L(ixjkl) = L(ixjkl) - 7x25(iijXz), (3-2)
where x* = x-x = x'x’, v-x = v'x!, etc., and where

parentheses denote symmetrization (with weight one).
The mass quadrupole moment, /;; at the 2PN accuracy
[33,34], the mass octupole moment /;;, and mass hexadeca-
pole moment, /;;; at the 1PN accuracy [7], the spin quadru-
pole moment, J;;, and the spin octupole moment, J; ., at the
1PN accuracy [8,32], have the following expressions [39]

ﬂ[clx (ij) + CZ”(!/) + C3X< )]
ljk - ,M[B])C (ijk) + BZX(tjUk) —+ B3)C< >]
Lijn —M(l —31/) X(ijkl)s

= u[D\Lxj + D2L< vj),
l]k - (1 ) Jk)» (33)
where the various parameters Cy, C,, ... etc., are listed in

Table I.
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TABLE I. Parameters entering the multipolar moments used in the 2PN flux.
C, 1+112L%(1—31/)v2—%(5—81/)GTM]
= S+ )+ P - )
C, {5 (1 =30) + L (A0 335 —3802) + v (e - Blv + B + PG -Bv+ 3042}
G 2Pr{ =3+ 5v P[P (- G+ gy - ) F R v+ i)
By VIZB{-1 4+ 28 - R0) + (-3 + BT}
B, V1=4u(1 = 20)ri
B; /1 =4u(1 = 20)n*r?
D, VIZ o1+ P (8 (- B - B0) + (- 5+ )]}
D, V1 =dvri(— 3 — v

B. Generic 2PN quasi-Keplerian parametrization
of elliptic motion (valid in all coordinates)

The 2PN quasi-Keplerian parametrization [40-42] of
elliptic motion, in polar coordinates, (r, ¢), is the following

r=a,(l—e,cosu),
£=n(t—tp) =u—e;sinu+ f;sinV+g,(V—u,
e

¢ T V4 f,sin2V + g, sin3V, (3.4)
where
1+e,
V(u) = 2 arctan % tanE] . (3.5)
- €¢ 2

Here a, is the semimajor axis of the orbit, ¢,, e,, e, are
three kinds of eccentricities, K is the periastron advance
and n = 27” is the circular frequency of the radial motion.
This representation is valid (at 2PN) in any (usual)
coordinate systems: harmonic, ADM, or EOB. The
gauge-invariant quantities K and n are numerically the
same in all coordinates, while the quasi-Keplerian elements
a, e; e, e, depend on the coordinate system. We will
distinguish them by decorating them with an extra label; for
example e/ for the harmonic coordinate expression, e¢ for
the EOB coordinate expression, etc. To ease the notation,
we will omit the extra label specification when it is clear
from the context what are the coordinates used. Most of the
time we will (as in our previous works) use rescaled
versions of many physical quantities. Notably, we use a
dimensionless radial distance r = r?V$/(GMn?) and a
dimensionless radial period T = TPYs/(GMn?).

We recall that
,/l—eé ,/l—eésinu

V() = —"+—, sinV = ,
() 1—e¢cosu 1—e¢cosu
cosu—e
cosV=— 90 (3.6)
1—e¢cosu

02

These relations imply, for example, the following explicit

expression for £(u)
\/1—ejsinu

£ =u—esi -
u—e;sinu+ f, 1 —eycosu *ad Y
' sin u
:(1_gt)u—e,81nu+ftm1—e¢m
+e
+ 2g, arctan ? tan E] , (3.7)
—ey 2

or, equivalently, replacing u in terms of V, the explicit
expression for £(V)

1%

2

+ fisinV 4 g, V.

1=
I+

)
)

e fimg Y
! ‘/’1—|—e¢cosV

C. 2PN expressions of the orbital parameters in
harmonic coordinates

£ =2(1 - g,) arctan

tan

(3.8)

To get gauge-invariant expressions for the Keplerian
elements one needs to relate them to the conserved 2PN-
accurate energy and angular momentum [43]. We made use
of explicit (3PN-accurate) results in the literature [39,42].
[Note that, at the 3PN level, one needs to transform away
some harmonic-gauge-related logarithms.]

We list in Table II the 2PN-accurate expressions of the
harmonic-coordinate orbital parameters, as functions of the
conserved energy and angular momentum of the system, as
defined in Eq. (3.1). We use the shorthand notation

e(E.j)=1+2E>. (3.9)

It is also useful to have the inverse expressions, i.e., E
and j expressed in terms of a, and e;:
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TABLE II. 2PN expressions of the harmonic-coordinates orbital parameters, as functions of the conserved energy and angular
momentum of the system, Eq. (3.1).

n (—2E)32[1 4 p? 21352 (2F) + n* C2EE (555 4 300 + 11,2 L (-5 + )]
@ oy [+ P T (22E) + 0 SR [ 4+ 02 4 s (v - 4)])
ef e§,+% 2[—8 + 8u — (—2E) 2(—17 + Tv)] + ZEL[4(3 + 180 + 502) — (—2E) 2(112 — 47u + 161%)
—@pp (74 +Tv) = 24V2Ej(=5 + ) + 335, (=5 +2v)Jy*
e2 ek +2E2 (3 —v)(-2E) + %}772
+@ [2(30 + 74v + 1) — (80 — 450 + 42)(=2E) > - ﬁ(% + )yt
e e} +2E/7((3 —§v)(2E) - B
—% [~416 + 91v + 1502 — 2(=2E)j2(~20 + 170 4 912) + (—2E)2j*(160 — 31v + 32)]n*
S (_ZE me” v(=15+v)nt
9 g“‘?/( 5+ 20)5
fo 7S (14 190 - 32)
94 —;743%3—“’ v(—=1+3v)
K T 37 + LR (<5 4 20) + 137 - 20)]
- 1 (=7+v) , (=32 +56v)] n*
E=-—-+"7 —24+Tv—25— ,
2a, 82 +[ v (1-¢) |16a
. l-v) 17
=1/a,(1-e})+ |=(-3+ NI Gl I o
J a( e;) |: ( v)(1 et) (1 _312)1/2 Va,
1 15 L6v+1v2+3) 1(=15+6v) 1(=7+12v+12)] »*
—(=5=3)(1 =)/ + = -3y 4 - —= . (3.10
+|:2( V)( e) +2 l/+2 (1—6)1/2 2 (1—6,2) 2 (1_e>’3/2 a§/2 ( )
from which one gets (we defined the usual periastron advance parameter k = K — 1)
L] +( 147 25 72 3(=5+2) 3(-4+M)] n*
" 2/i-a 2= |a*
87, 15, 129 27 4
k= { 27 % 222}_2’
(l—e,)ar (1—e7) ( —e7)’| a;
3\ 7 3 15 1 4 -\ n*
—e |1+ (4-2v) L4 (== =~ -3
e, e,[+< 2)a+< v+8u +<2 V)(l—e)1/2+(1—e,) )
1+ 172 961/—240 3w(v-27) (5v+9)(Bv-32)\ »*
e = eI =)ot 1/2 2 Ri-&) )&
15+v
fi= 7( 5 774,
8aZ\/1 — e’
3(=5+20)
9r = — )
2a:4/1 —e;
B e[(— - 190 +3%) ,
fo=- 8az(1 —e?)? d
v(-1+3
g,,,:—e’”( 30) 4 (3.11)

2r 27 a2l
32a2(1 — €?)?
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TABLEIII. 2PN expressions of the EOB-coordinates orbital parameters, as functions of the conserved energy and angular momentum
of the system, Eq. (3.1).
n (=2E)32[1 4 p? 21342 (2F) + o* C2EE (555 4 300 + 1112 + L (-5 + )]
4

ay = )—1—”3 2—%[8(4—U)+E} (14 22)]
e ex+EE[4+ PE(1T +v)] +LF E[eN(zu—s) i%—%(ﬁ — 1020 = 607) + 5 (190 + 90) + SE(v = 3) + 4 (v — 4)]
e, en + ZTE (-8 + JE(v—T7)] - & 3 E (W + 420 =T9)E3 j° — (50— 52)E2j2 — 80(v — 5)Ej2 + 32(4 — v)]
€y 4 E[ 12+ j2E(v—15)] + 8’;52 [(* +90v — 415)j°E% — 4(107v — 30)j*E? — 40(13v — 15)j2E — 16(9v — 13)]
fi 0 )

6(5-20)E* 4
I JV=2E

e2 (6v—1

f¢ _%,f
9y 0
K A+ 2 PR (o5 1 20) 1157 - )]

D. 2PN quasi-Keplerian orbital parameters
in EOB coordinates

The 2PN-accurate quasi-Keplerian representation (3.4) is
also valid in EOB coordinates. As we shall need to
transform the harmonic-coordinate 2PN expressions of
the orbital parameters into their EOB counterparts, it is
very useful to express both as functions of the conserved
energy and angular momentum of the system. The relations
a,(E,j) and e,(E,j) in EOB coordinates are easily
obtained by evaluating the reduced energy E = H=

H-Mc?
o and angular momentum j = GM” at the periastron

(r=a.(l1-¢,), u=0, p.,=0) and the apoastron
(r=a,(1+e,), u=mn, p, =0). The resulting expressions
are listed in Table III below. From these relations one finds
in particular

e <2(9e% -5-v)

—e 13 _ M (LT O—Y)
“ e’{ a, 22\ (1-¢)

_3(@—5))}
V1-eé2 ’

2 e )
e¢_er|:1+n_+ﬂ4w]

ar ar(l _e%> (312)

E. Evaluating the multipole moments along the orbit

Let us turn to the definition (2.6) of the 2PN split-flux.
The various multipole moments are functions of r(z) and
¢(1) and their derivatives up to the fifth order. In order to
compute the Delaunay average of the nonlocal Hamiltonian
(2.3) it is convenient to work with the “mean anomaly”,
i.e., the angular variable 7, with respect to which all
scalar functions are periodic with period 2z. [Note that
df/dt = n = cst.] Therefore, we first compute the multi-
pole moments as functions of u and ', and then replace

u=u(te,v), u =u (¢, e,v). Finally, we will take the
partie finie in £’ and the average over 2.
We need to invert the 2PN-accurate generalized Kepler
equation
£=u—e;sinu+ f,sinV+g,(V—-u), (3.13)
where V = V(u;e,,a,). At 1PN (i.e., when neglecting
fi = O(n*) = g,) this inversion is well known, because

Eq. (3.13) then reduces to the usual Kepler equation.
Namely,

N
u="=¢+ Z ci™N(e,)sin(n?) + O(n*), (3.14)
n=1

with the notation

2
ciPN(e,) = =Bessell(n, ne,).

n (3.15)

Evidently, the exact inversion of Kepler’s equation neces-
sitates to take the upper limit N = oo, but all our compu-
tations are done with a finite upper limit N, chosen large
enough to end up with the required accuracy on the
eccentricity expansion of the redshift z;.

The inversion of Eq. (3.13) at 2PN is obtained first by
expressing f;, g, and V as functions of ¢, and a,, and then
by looking for an O(y*)-modified relation of the type

35 (o

Zqﬁ,,(e,, )) sin(n?).  (3.16)
n=1
Substituting Eq. (3.16) into Eq. (3.13), and expanding in
series of e,, one straightforwardly obtains the expressions
listed in Table IV, where terms only up to e}° (included) are
shown. The 2PN coefficients ¢,(e,;v) depend at most
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TABLE IV. The expressions of the various ¢;(e,;v) entering Eq. (3.16).

hei) (530 e+ (5 + Bl + (B o+ 0] + (B~ - B
+ (1366080 ¥ ~ Toss0s0 Y 19588300249) el

$alesv) (v =R +)el + (—xv” +3v)el + GRr — & T 53:17)el + (— 36V + 7o ¥ — He)et
=zt — re T aiav)er’

¢s(eiv) (5" +gv—et + (v + 35— woav’)er + (oo — 153 T ameov el + Gsso? — T3 — w0 )er

palesv) (Bhr? =95 1 3 p)ed 4 (=122 1955 4 89)06 4 (8T,2 282 _0107,)08 | (23495 | TL,, 8639 ;2),10

¢s(esv) (51367 1502234 An Fo)er + Ry — 3y H5om)el + (- 5iner — stz ¥ T 36556 )er

Po(essv) (=168 + 30 v” — sev)er + (iosn v + 555 — om0 v)er + (= Sooe ¥ — w6 + 1asse v )er

¢1(ev) (- 323?23 — B0 + Sasao v el + Cisse — Ssie0Y” + Frsasioo Vel

Ps(esv) (= S0y + 350y —Hae + (-1 Y + iy + e

) (B - s - B

boles) e -+ BE

quadratically on v, and are even (respectively odd) poly-
nomials in e,, when n is even (respectively odd).

As a preparation for using the Delaunay-averaging
technique, it is useful to express the motion in terms of
the two independent angles entering the action-angle
description of equatorial motion: the angle £ measuring
the periodicity in the radial motion, and the angle g
measuring the mean periastron precession. These two angles
are canonically conjugated to two corresponding action
variables, traditionally denoted as L and G. [Modulo some
rescalings, the link between the Delaunay action variables L,
G and the usual action variables is L = I3 =1, + [, and
G = 1,.] The radial motion is entirely expressed in terms of
the sole angle #, while one must separate in the azimuthal
motion (given, on shell, by ¢(¢) = K¢ + W(£), where
K =1+ k) the contributions coming from # and from g
(which is equal to kZ on shell):

$(¢,9) =

Here, W(¢) is a periodic function of ¢, say

23

£+ g+ W) (3.17)

U8

¢ (env) + o P

k

(2)

w(7) K

N

[p
k=1
4

(e v) (e, v)

=

)

Py

+ (es. y)} sin(k¢)

SN

(= .

cilen v, a,,n)sin(kf). (3.18)

=~
I

1

The structure of the angular motion is then of the form

N
=/7+g+ Z cilen v, a.,n)sin(kf),
=1

P(Z.9) (3.19)

where we recall that one must consider the angle
g (mean periastron argument) as an independent angular

024061

variable. On-shell we have (remembering the notation

K=1+4+k)
bﬂonbhell I/ﬂ + nt,

onshell — p7 — o+ knt. 3.20
g 90

One then computes

eiqﬁ(f,g) — etfelgeiW(f)’ e—iqﬁ(f.g) — e—ife—ige—iW(f)’
(3.21)
with
N N
MO =14e, Y dl e + e 3 dP e 1
k=—N k=-N
(3.22)

expanded in series of ¢,. The Cartesian coordinates of the
relative (equatorial) motion are then expressed as the
following doubly periodic functions of £ and g:

1 . )
x(¢,g) = Erh(f)(g!tﬁ(f-g) + e 9,

¥(?,9)

Finally, one computes all the on-shell time derivatives
entering the definition of the multipole moments by using,
in view of Egs. (3.20), d¢/dt =n and dg/dt = kn =
o) + O(n*).

1 : »
= ra(£)(e€9) — g=id(£.9)), (3.23)
1

F. Computing the Delaunay-average of the nonlocal
Hamiltonian in harmonic coordinates

We are now ready to sketch the computation of the
Delaunay-average of the h-route nonlocal Hamiltonian,

ie., the average of the action-angle Hamiltonian
HISSN(L G, ¢, g) over the two angles 7, g:
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d dg
2n 2w

4+5+6PN

4+5+6PN
<H nonloc,h

nonloc,h

) = (L.G.2.g). (3.24)

/

We recall that

4+5+6PN
H nonloc,h

GHpn dr _gpii
(1) = _TPfZX/L. m}“;;l\}(t, t+7)

H - h
129 2PNF§‘1’,11'\§(t,t)ln<—r‘2(t)>, (3.25)
s
with
HzPN:1+I/E772= -+ (T=v)n*+0(°)
Mc? al 8(ah)
(3.26)

One must, in principle, express the nonlocal integrand
entering Eq. (3.25) in terms of two quadruplets of Delaunay
variables, (L,G,Z,g) and (L',G',¢',¢), where the first
quadruplet refers to the state of the system at time ¢ while
the second refers to the state at the shifted time ¢ = ¢ + 7.
[The Delaunay variables (L,G,?Z,g) are action-angle
variables for the main part of the Hamiltonian, to which

Hﬁ:rﬁif_}l:N is added as a first-order perturbation. In practice,

it suffices to use the 2PN-accurate Hamiltonian.] This
yields an integrand which can be expressed as a multi-
Fourier series of the general form

]:'split(L’ G, l/ﬂ, g Ll, Gl, f’, .d)

. Lﬂ /f/ !
E (jp'nw,.m,et(l7 +mg+p +m9)’

/ /
p.m,p'm

(3.27)

where the relative integers p,m, p’, m’ are summed from
—o0o to +oo, and where the coefficients C are
functions of (L,G,L’,G’).

As shown in Ref. [17], one can first use a nonlocal shift
of the phase-space variables to replace the second quad-
ruplet by its on-shell value in terms of (L, G, 7, g) and of
the time shift z. In other words, we can insert in Eq. (3.27)

/ !
p.m,p'.m

(L,G'.¢,¢d)—(L,G,¢+n(L,G)r,g+k(L,G)n(L,G)7),

(3.28)

where we used the simple equations of motion of the
Delaunay variables (L, G,?, g).

TABLE V. 6PN coefficients of the averaged nonlocal Hamiltonian (with scale 277, /c) in harmonic coordinates.

Coefficient Expression
ACPN(eh) 8.2 +@+61507581/+ (32 24 112783355%2+%8266 vy
+(312285?3512 33222 +629246548y2) 11’1(2)—1—(—@ 2_2434_% )11’1(3)
Jr[253213577 4409 v— 7%24 2 +(5717(;)521 269(2:3572 Jr2815 Ay +( 842@17 2 Jr39598485209 8983616) In(2)
(- 8%la6021 +201é889 +%o§§(3)23 ) In(3) + (97960576225_97165516225 v +97160506825 1) In(5)] (e")?
+[13(1)2§829y_11éiéa9 szggggm 2+(35022 2+1693451U_%)y
(- 235132760381 Jr13926;8751 2 Jr55700171)]11(2) +(_929§);t620703v Jr1841f)656t59 2 +9§?2(5)3)1n(3)
+(904296875y 2535&625_ 166(7);2625 1) In(5)](eh)*
_1_[598387141 1163%523416199 1/2—4]}(3)22325 + (4518;9927 + 154063 2 %328079 V)y
(- 17924;9163 + 34283342&%589 1013670784649 ) In(2) + (6203228797U _ 7342%4&7203 _ 800;22325131/2) In(3)
+(9947§4366;936125 1982%320625 +257215;H§;i375 12)In(5)
+(_968]i§2a(111()6407 +968§ggig407 2 +9687a96()£9()64107) n(7)](eh)®
_’_[40211661128860627 107%;?28469 7295221706729 2 +(3745525 2 +471(7)32(5)29_81994670429 vy
+(2521€;1166g§1()7193 +4964132298g53889 U2_970:§i%235;()6499 v)In(2) + (501(5)%349‘8087 + 11482%3%6951 952583328299 v)In(3)
(- 196%0245703125 2 — 67766936157786125 818101014?73697%4;75 v)In(5)
+(- 156?&;3323;2351 686934;323833]728563 2 +145214539420562(£g6069 )In(7)](e")®
+]- 97074060217 Jr405149913757 60917681120886t()3'33 24 (182458353y 6171993260773 Jr52120856%9)},
(- 9975543985969843 2 +3007?g2%g9259 400213750315(;0855969) In(2)
+(- 12053;8(3)30071641 +910??‘6‘2§§gg(3)931 +2404919%gg7807 2)In(3)
Jr(972942783453125 _ 11483‘1)3;2(3)2375 Jr2227202729915233407426875 /) In(5)
HEERR S | SN In) ()
BN (eh) _1?6 2 _% _sgggge+ (139(2‘4536_¥ 2 _%y)(e?)z (—303,2 1623451 + 1047607)(6?)4
(- 1548063 2 +%%879 _45387589027( 1o _,_(81?;%29 v— 47%2142(5)29_374654525 ) (eh)®
+(617398%460773D 182;&258%353 2 52105469)( 110
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After this replacement the crucial nonlocal 7 integral in
Eq. (3.25) can be explicitly evaluated by using the basic
formula (where y denotes Euler’s constant)

Py [ e
2
= —2ln<|(p’ +m' )n|i)
c

Using the latter formula for evaluating the 7 integral in
Eq. (3.25) yields a result which is a function of (L, G, ?, g).
Adding the local term 2%}" (1. 1) ln(rlllzs(')), we can
finally evaluate the double average over the two angular
variables £ and g.

For conceptual clarity, we have assumed here that we
were using the (2PN-accurate) Delaunay action variables L,
G as arguments in the double-Fourier expansion of the
nonlocal integrand (3.27). However, in practice, it suffices
to use the Keplerian elements a/ and " entering the
2PN-accurate quasi-Keplerian representation (3.4) of the
elliptic motion. At the end of the day, the method presented
above leads to an explicit expression for the Delaunay-
averaged h-route nonlocal Hamiltonian of the form

(3.29)

(o) = (HESSN) = Fi(al ). (3.30)
with
F'(a},el) = (aﬁ)S [APN(h) 4 BN (ol In o]
(ai’) [ATN(el) + BN (el Inal]
(a;) [ASPN(ef') + BN (ef) Inal]. (3.31)

The coefficients entering this decomposition are indepen-
dent of the intermediate scale s, and are obtained as
expansions in powers of e that we have computed up
to the order O((e!")'?) included. The values of the 4PN and
5PN coefficients have been given in Ref. [2]. We list the
6PN coefficients AN (e”), BN(el'), in Table V. [We use
here G = 1 = ¢, and we recall that af has been adimen-
sionalized by GM.]

IV. DERIVING THE H-ROUTE NONLOCAL
EOB HAMILTONIAN

An important ingredient of our method is to translate the
h-route nonlocal averaged Hamiltonian computed in the
previous section into a canonically equivalent EOB
Hamiltonian. This is done by parametrizing the correspond-
ing h-route nonlocal EOB Hamiltonian by means of the
usual EOB potentials, in some fixed EOB gauge. At this

stage of our computation, it is most convenient to use the p,
gauge (introduced in Ref. [44]).

Explicitly, we look for a rescaled squared effective
EOB Hamiltonian of the general form (where u = 1/r =

h h .
GM /™, p, = pP™ /u, py = py™" | (GMp) = j)

Ay = A(us0) (1 + piu? + A(u;v)D(u;v) p}
+0(u, pr3v)), (4.1)
with potentials A(u;v), D(u;v) and
O(u, pr;v) = plas(u;v) + piqe(u;v)
+ Plas(uiv) + pPqo(usv) + ... (4.2)

All the potentials A(u;v), D(u;v), Q(u,p,;u) reduce to
their Schwarzschild values when v — 0: A(u;0) = 1-2u,
D(u;0) =1, Q(u,p,;O) =0, and can be expanded in
powers of v away from the test-mass limit:

A(u;v) = 1 = 2u +va” (u) + v2a” (u) + 12a” (u) + ...
(us0) = 14 vd” (u) +12d” (u) + 17d” (u) +
qa(usv) = vah (u) +02q4 (u) + 074 (u) + ...
( )= 6 (u) +12q% (u) +v7qf (u) + ..
(u3v) = v (

) +2q5 (u) + 35 (u) + ...

D(u;v
qe\usv

qsluv

(4.3)

Each EOB potential can be decomposed in a local part and
a nonlocal one:

A= Aloc.h +An0nloc,h
D Dloch +Dn0nloch

Q — Qloc,h 4 Qnonloc,h —

:Aloc,f +An0nloc,f
Dlocf +Dnonlocf

Qloc,t 4 Qnonloc,f. (44)
The nonlocal parts start at 4PN.They can be treated as first-
order perturbations of the local parts, which start at 2PN
(and also at 2PM). We, indeed, recall that the EOB
formalism has the remarkable feature to describe both
the 1PN-accurate dynamics and the 1PM one, by a
Schwarzschild effective metric. This means that all the
local contributions to A — (1 —2u), D — 1 and Q start at
order u> = O(G?) or more (and contain a factor v). [The
main A potential actually starts to deviate from 1 — 2u by a
term 2vu3.] For clarity, we have indicated that the precise
values of both the local and nonlocal EOB potentials will
depend on the choice of the flexibility factor f(¢) used in

defining the Pf scale r}, = f(¢)r", entering the nonlocal
action (2.3). The h-route is defined by choosing the default
value f =1, while the (tuned) f-route is defined by
choosing a value f = 1+ vO(5?) determined in the way
explained at 5PN in Ref. [2]. As a consequence the
difference between the h and f values of any quantity
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starts at 5PN and at the second-self-force (2SF) order, i.e.,
the order O(1?) in H%;. This corresponds to the order
O(v?) in the usual Hamiltonian. Indeed, the universal EOB
energy map says that the usual center-of-mass Hamiltonian
of the system, H = Mc? + -- - is given by

2\/ 1+ 20(Hee — 1),

where one should note the factor v in front of I:Ieff.
To simplify the notation, we shall denote the nonlocal
part of the squared effective EOB Hamiltonian as

H=Mc (4-5)

5h.f[:Ie [Heff]4+5+6PN

nonloc,h,f *

(4.6)

It is related to the corresponding (h-route or f-route)
nonlocal Hamiltonian via

spsiepn MM hf 772
nonlochf = m5 H. (4.7)

The prefactor on the right-hand side of Eq. (4.7) is given
(at the 2PN accuracy) by

ﬂM :M<ly+M 2

2HH 2 4ac
v(i-v+32-1) ,
_— on®) ), 4.8

where a¢ denotes the EOB-coordinate semi-major axis.
With this notation, the squared effective EOB
Hamiltonian reads

Ay =H fzsz.loc,h,f + (4.9)

where
Hgff,loc,h.f — Aloc,h,f[l _|_Aloc,h,fDloc.h,fp%
+ péMZ + Qloc.h,f] , (410)
and
My = [1+2(1 - 2u) p? + pRu?]s™ A
+ (1 = 2u)*p25"iD
+ (1 =2u)s" Q. (4.11)

At the 445+ 6PN accuracy, the expressions for the
nonlocal EOB potentials read

SA = anonloc 5 + anonloc 6 + anonloc 7
SD = dgonloc ut + dnonloc w + dnonloc u6
5@ =p (qggnloc 3 +qnonloc 4 +qn0nloc 5)
’
nonloc 2 nonloc 3 nonloc 4
+ (a8 + 963 + qequ’)
nonloc nonloc,,2 nonloc,,3
+ pH(gg™u + g u’ + g8 cu)

+ pr (qulgn&oc + qulgflllocu + qnonloc 2) , (4 12)
etc., where each coefficient will be decomposed in “constant,”
and “logarithmically running” parts according to the scheme:

atomoe — e 1 gM% 1y (y), ete. To ease the notation, we
have suppressed on each nonlocal quantity the extra label h
or f specifying whether this is computed by the h-route
or the f-route. A term o<q“°“1°°uq belongs to the n-PN
approximation with n = p 4+ ¢ — 1. Note that, contrary to
the local EOB potentials that must start at order u? at least, the
nonlocal ones, being obtained by matching a nonlocal action
by means of a nearzone eccentricity (or p,) expansion,
include, at high orders in p, powers of u that are smaller
than 2.

Having clarified the meaning of the nonlocal parts of the

EOB potentials, we can now determine the values of the

nonloc,h  Znonloc, h nonloc,h
- dn 2pq

that are gauge-equivalent to the h-route nonlocal Hamﬂtonian

computed in the previous section. These values are deter-
mined by writing the equality between the corresponding
Delaunay-averaged perturbed Hamiltonians, namely

<Hgonloc,h> ’

where the left-hand side is the Delaunay average of the EOB-
parametrized Hamiltonian

h-route nonlocal EOB potentials, aj,

< Heob > —

nonloc,h

(4.13)

uM [ d¢dg

—— A,
2HHA ) 2227

(4.14)

<Hr61?)]r3110c,h> =

and where the right-hand side is the function F"(a”, e")
computed in the previous section, see Eq. (3.30). The equality
Eq. (4.13) expresses the requirement that the EOB nonlocal
dynamics is canonically equivalent to the original nonlocal
dynamics, described by Eq. (2.3) (see Ref. [23]). The
computations needed to evaluate (H® ) are similar to
the computations described above (with the simplifying
feature that one only works with an Hamiltonian given as a
function of the instantaneous state of the system). One uses the
EOB version of the 2PN-accurate quasi-Keplerian represen-
tation of elliptic motions, as described in the previous section.

Finally, the identification Eq. (4.13) uniquely deter-
mines, from the knowledge of the function F"(al,e}),
Eq. (3.31), all the coefficients parametrizing the nonlocal
EOB potentials Eq. (4.12). We give the resulting values in
Table VI, up to the eight power of p,. Indeed, we will not

need in the following the coefficient g,o(u;v) of plO.
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TABLE VI. h-route nonlocal EOB coefficients.
BEIn) + 51003~
1139672 10132 | 10449 101272\, 2
(=55~ In(2) + 1557+ 77 In(3) + 557y )v
112 1214624 4860 3
nllog 2522 | 506362 3
a —=e=p 2P0 5 4 1617,
7 405 315
—nlc 6381680 2043541 | 1765881 64096, | 9765625
dg (=5 In(2) + S5 + 0 In(3) — 2550y + 255 In(5))v
28429312 3576231 167906 | 302752, _ 9765625 2
+(F g In(2) 70 In(3) + Fo5° + s 7 — 33 - In(5))v
9908480 _ 744704 | 9765625 2044 | 1275021 3
+H(=F6 In(2) - 555 + 755 In(5) + 55y + S5 In(3)),
—nllog 32048 151376 ,2 | 1472, 3
a — 32048, 4 151376,2 4 1472,
6 45 105 3
nle 70925884 13212013 _ 3873663 8787109375 _ 617716
445 (e In(2) + 2565 76— n(3) e - In(5) = %550y
92560887 12619052648 1437979 | 632344, |, 7755859375 2
+(3550 In(3) = gt In(2) — HFE + 0550y + s S In(5))y
_ 177316 | 11263031264 16544 ., _ 4091796875 2908467 3
(=550 + s In(2) + 2557y s In(5) + =55 In(3))v
nl,log 308858, | 3161722 | 82723
945 —T51s Vs vty
nle 211076833264 _ 137711989 _ 9678652821 447248 153776136875
de4 ( 175 In(2) — s soo0 — In(3) + 5575y + 5555~ In(5)
96889010407 11 (7Y),,
116640
44592947739 2411178384736 _ 126070663 _ 26848, _ 796015515625
+(F 5500 In(3) + =555 =" In(2) 4725 175 / 16— In(5)
_ 96BBO010407 1, (7,2
19440
40513708 _ 109566260523 1424826953125 96889010407 2368
(=55~ se0 - In(3) + 5 = In(5) + e In(7) + 555y
431564554688 3
— 88308 n(2) )y
nl,log 223624, 134242 | 1184 3
Ge4 555 Vs Vs v
nle 5196312336176 17515638027261 _ 63886617280625 _ 29247366220639
qs3 (55 In(2) + 250 In(3) 1016064 1n(5) o331 1n(7)
_ 709195549
132300
_ 177055674739808 _ 43719724468071 366449151015625 2650654923319
+( Sor675 - In(2) tses00 —In(3) + a0 In(5) + 555y n(7)
_ 1746293y, 2
70
57604236136064 10467583300341 73366198046875 7709596970957
+( s In(2) + 30500~ In(3) — =500~ In(5) — S5 In(7)
154862), 3
ST
nl,log
qs3 0

V. COMPUTING THE 1SF TIME-AVERAGED
REDSHIFT TO EIGHTH ORDER IN
ECCENTRICITY AND DERIVING ITS EOB
COUNTERPART

The second pillar of our method is to combine the
information extracted from the analytical knowledge of the
nonlocal part of the dynamics with a knowledge obtained
from self-force calculations, which gives information about
the total, local plus nonlocal, near-zone dynamics, at the first
order in mass ratio g = % beyond the test-mass limit.

Indeed, Refs. [45-47] have found a relation between the
m;-dependence of the Hamiltonian of a two-body system,
and the (regularized) redshift [48,49] z; = ds,/dt of particle
1 in the gravitational field created by the two particles. We
have developed efficient tools in previous work [50,51] for
tapping information by such self-force computations. The
current limitation of this technique (for non-spinning
bodies) is not the PN accuracy (which can be pushed to
extremely high levels [52,53]) but rather the order of

024061

expansion in the eccentricity of the considered elliptic
motion of a small mass m; around a large mass m,. Here,
we have extended our previous results [1,2,54,55] by
computing the first-order-self-force (1SF) correction to
the time-averaged redshift (z;) = (ds,/dt) [49] of body 1
to the eighth order in eccentricity and through the 9.5PN
accuracy. Obtaining the eight order in eccentricity is, by
itself, a major technical endeavour, and is crucial to allow us
to inform the terms ~gg(u;v) p? in the total EOB effective
Hamiltonian, and thereby to reach the 6PN approximation.

The gauge-invariant 1SF observable we are using is
defined as follows. One initially considers the averaged
redshift (z;) as a function of the two adimensionalized
frequencies of an elliptic motion: Q, = Gm,Q, and Q¢ =
GmyQ, and of the mass ratio g = m;/m,. The 1SF
expansion of the latter function yields:

(21)(Q,.94.q9) = (21)(2,.94.0) + 952, (£,.Q,) + O(g?).
(5.1)
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TABLE VII. List of the various coefficients entering the self-force based expression of 5z‘1’8(u).

15
G 64
3001 _ 287 2

G4 384 4096

c 4597 _ 162109375 11332791 55, | 15967961 _ 474715 2

5 96 5301~ 1n(5) BRo- In(3) + T + 557> In(2) — {gee 7

In 55
Cs 2

c 9863051 , 96889010407 64481546637 _ 5977, _ 16605499789 1466047 2 | 4761539921875

6 20320+~ aarzes In(7) Taess In(3) =55 v 010 In(2) + 55608 7 + 3006576~ In(5)
Cln _ 5977

6 480

7527343

Cizp 35 *

c 18761241007 _ 1251111253459 _ 75643996671875 53971661

7 870912 tq07955 — 1n(7) sosim— In(5) = 25560

13950859695883 32462513613 368710657 4 | 205074667027 2
+ a0 In(2) + =552 In(3) — Sy 7 + Sissaes T
Cin 53971661
7 90720
107115666451
Cispa 162570240
c 6488211537 45307496529 111806640625 111806640625 10769592586
8 ti206 7 In(3) 00> 1n(2) In(3) + 555567 In(5 )y + 5555622 In(5) In(2) 535 rIn(2)
1919773074129997 | 111806640625 2 | 1922666600157935849
+ 0050033600+ 2an = In(5)* + FE e n(7)
6488211537 2 | 223632 _ 555027930119 2 _ 5263490413, _ 396348077586606421 _ 4261220414023638519
a0 In(3)? + =557y 275 In(2) 453600 7 im0 1n(2) S5323009000 —— In(3)
2926 2572903425668796875 472342810483 _4 _ 83426620549601 2
520(3) + = 00504001 In(5) + *5o5306368 - © 4520848320

In 5263490413 | 22363 111806640625 5384796293 6488211537
& Go7200 - T <357+ aai02 —1n(5) 55~ 1n(2) a0 n(3)

In? 2363
Gy +5%0

76704522232619
Cirpa + 715088530400
c 92TIOI031462598777 _ T041196288536323 14 _ SMOSSIIUNITIOO0N 2 _ 6382001 o2 | 14BAIIEDRIITT |y (9)2 4 T6281 (3
9 3814050240000 687194767360 2536715059200 350 7 198450 5
445208365512387 2 _ 3307792499609375 2 _ 8816899947037 2 _ 297870709952219425357
+ 5 0035500~ 1n(3) ostaoas n(5) s63551  In(7) srvrsseso n(7)
242219572992492481181 344698525788968065625 _ 863597247149654361801 8816899947037
+ Ti0seesaco0 — 1n(2) + Sa0sisreanos > In(5) Teo7237632000n(3) 33776 v In(7)
8816899947037 40278774263897 445208365512387 1075881868211907
1776 10(2) In(7) + 255555055y In(2) + =555mas— v In(3) + =gi7e00 In(2) In(3)
_ 3307792499609375 42671896046383 ., _ 3307792499609375
toas70oa - In(5)r + 74636000 To2s7024  In(5) In(2)

In 42653978392783 _ 8816899947037 6382001, | 40278774263897 445208365512387 _ 3307792499609375
Cs + 7349272000 so5551 — In(7) = 55y + G50 In(2) + 555500 n(3) Ss1a0as 1n(5)
cin 6382001

9 1400

c 3162423854803 ., _ 3345263881047 1900712890625 _ 5131372911332653 _ 44111568271901365400513
Clos 95256000 7V Sgaooo 7 In(3) + =g = win(S) 55356000 - 7 In(2) 154661262852096000

_ 29555363129 /3
2721600

In 3162423854803

Clo +=750512000

where the ¢ =0 term is the test-mass (Schwarzschild)  where each coefficient 5ZTZ" (u) is computed as a PN
result. The 1SF redshift is the function 6z, (€, Q¢), which  expansion (i.e., an expansion in powers of &) up to some order.
can be alternatively expressed as a function of the unper- At the 4PN approximation, the functions 5zf2"(u) have
turbed (Schwarzschild-background) semi-latus rectum  been determined up to the order O(¢2°) in Refs. [55,56].
pPYs = Gm,p and eccentricity e. Denoting u = %, the  Higher-PN order computations of the functions 5z§2(u) and
function 6z;(u, e) is obtained as an expansion in powers 5zf4(u) were done in Refs. [54,55] through the 9.5PN order
of e, say (i.e., up to u®3), while the term 6z¢° () was computed to the
same accuracy in our recent SPN-level works [1,2]. For the
5z, (u.e) :5Zf0(u)+€25Zf2(u)+‘~'+685278(u)+0(610), present 6PN-level work, wse needed to extend this deter-
mination to the function 6z (u). Our result for this function
(5.2) (up to the 9.5PN order) reads:
|

675" (u) = C3u® + Cqu* + (C§ + CP Inu)® + (CS + Cl Inu)u® + C3pu'/?
+(C5 4+ C Inu)u” + Cys)pu'™? + (C§ + C Inu + C In? u)u® + Ci7pul”/?
+(C5+ Cg' Inu + C]9nz In* u)u’ + ( 39/2 + C]1n9/2 In ”)”]9/2 + Oln(u)(ulo)’ (53)

where the coefficients C; are listed in Table VIL
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TABLE VIII. List of the various coefficients entering the self-force based expression of u).
8
27734375 6591861 21668992 35772
By — 56~ In(5) + 557 In(3) + =55 1n(2) — 57
13841287201 393786545409 16175693888 875090984375 5790381
B, 7250 1n(7) Tses00  In(3) 575 In(2) + 55 = In(S) + 2535
5994461
Bs)y + 12700800 %
_ 29247366220639 _ 63886617280625 5196312336176 17515638027261 2843819611
B, 33120 In(7) T0igoed— In(5) + 3255551~ In(2) + =250 In(3) 529200
12986592749
By + 23759833600
c 25659132742, _ 2458476234653610278
By 606375 1 75073125 In(2)
835937500 835937500 21240840924
4080804948 3558749575168 _ 806339890542506373 581245383137875
575 rIn(3) ssns - rIn(2) T7osa0000 - 1n(3) + 5507~ In(5)
946254728855647813 417968750 2 2040402474 2 _ 60734915396608 2
+ =000~ In(7) + =572 1n(5) 55 In(3) o615 In(2)
_ 303760055 12 _ 6863427305713
11010048 185220000
In 12829566371 __ 1779374787584 2040402474 417968750
B + 506375 S5i05 In(2) g5 In(3) + =5722In(5)
341391869291507
By + 8435465216000
c 4856666007821 62438547832910967827 63988691154965631875
B 0306300 7T So0soa00a0—— In(2) + 5 rreeese - 1n(5)
_ 675460646171875  675460646171875 1155153739426227
sso0se—1n(5) In(2) sso0se - 1n(5)r + 373000 In(2) In(3)
496094995065267 5087539076789248 1259557135291 1259557135291
+ = 3000 v In(3) + s v In(2) 2060 1n(2) In(7) oo v In(7)
400332056150861177697 _ 6373038655368769648873
+ 751160000 In(3) Toe7as0280000 (7
1259557135291 2 _ 675460646171875 2 | 496094995065267 2 | 9330506645499392 2
3000 In(7) i n(5)* + =g In(3)” + s n(2)
_ 740234446559 12 | 82809381657923330131
176160768 13984850880000
In 4856666007821 | 2543769538394624 1259557135291 496094995065267 _ 675460646171875
B; 612600~ o aamsrs o n(2) S3om0- In(7) + =555 In(3) 77t 1n(5)
c 1849286832811 20550060546875  627504931547331563
By 1007600 7 In(3) + 5558 wIn(S) 3333900000~ 7 10(2)
L 1587378124097 | 37938867020820625604207 . _ 14835300571 /3
3333960000 7V 240584186658816000 95256000
g | 1587378124007
11/2 6667920000

The gauge-invariant information contained in the 1SF-
accurate (first order in mass ratio) function 5z§8 can then be
converted (by extending the results of Ref. [47]) into the
corresponding O(v) contribution to the EOB potential
gs(u;v) parametrizing the term gg(u;v)p® € O(u, p,).
More precisely, writing as above

qs(u;v) = vgy (u) + 02 (u) + 075 () + ..., (5.4)

the 1SF result 5z¢" (), Eq. (5.3), leads to the determination

of the O(v) coefficient ¢4 (u) to a reduced (fractional)
5.5PN accuracy. [In view of Eq. (4.12), such an accuracy
corresponds to an absolute 8.5PN accuracy of the
Hamiltonian, which is more than enough for reaching
our aimed 6PN accuracy.] We find the following u>

accurate value for g4 (u):

q’gl (u) = Byu + Bou® + 35/2u5/2 + Byu® + B7/2u7/2
+ (BS + B Inu)u* + By u’/?
+ (BS + BY Inu)u’ + (B, ), + BY , Inu)u''/?
+ Oln(u)(u6)’ (5.5)

where the various coefficients are listed in Table VIII.

VI. DETERMINING THE LOCAL
PART OF THE EOB POTENTIALS
AT ORDER »!

The next step of our strategy is to derive the local part
of the EOB Hamiltonian by subtracting the nonlocal
part of the EOB potentials (obtained in Sec. IV) from
their complete local-plus-nonlocal parts (obtained in
Sec. V from self-force computations). As the self-force
computation is only accurate to linear order in v, we
thereby determine the local part of the EOB potentials
only at the first order in v. The nonlocal part we
computed was of the h-type (and was determined exactly
in v). However, recalling that we will always consider
flexibility factors of the type f =1+ O(v), the h-route
and f-route versions of both the nonlocal and the local
Hamiltonians only differ at the second self-force
order, i.e., by terms of order O(v}) in the physical
Hamiltonians, Hyonioc > Hioenf> corresponding to terms
of order O(¢?) in the corresponding squared effective
Hamiltonians, HZ%;.

The values of the local EOB potentials at 4 + 5 + 6PN,
obtained from our results so far, can be written
as:
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~[(2275 2 4237 41 , 221\ ,] 5 1026301 246367 , W] 6
A44516PN Jocf = m 60 v+ ﬁ” ~ 5 viluw+ || — 1575 + 3072 v+ agp|u

[( 2800873 , = 608698367 1469618167) <w] ,
u

262142 © T 1769472 T T T 907200 a1
- 1679 23761 123 331054 63707 -t
d41546PNJoct = [( 1536 ) ( 2604_?” )’/2} ! < 175 Y~ 512 2 +d§,}> w
229504763 2_%135909 . 99741733409 ~)
ﬂ —
98304 262144 6350400 6. | "

v 93031 1580641 v
q4.4+5+6PN,IOC,f = (20U + q4(‘3))u3 + |:<_ 1536 7[2 + 3150 ) + q‘(‘4'),f:| M4

81030481 3492647551) © } S
u

* < 65536 423360 as.f
9 w1\ 2 123 W) W3
46,4+5+6PN,loc,f = —gy +qe |u”+ 10 VUt Qe |U

L[ 9733841 , 11221883 vl

327680 294000 oa.f
7447 }
48 5+6PN Joc.f = g (v)u* + (— 560 v+ 61§;3)> ul,
410,6PN,loc,f = 410,2(’/)”2- (6-1)

Here, the first coefficients in each line (except in the last two lines) belong to the 4PN level, and are equivalent to results

obtained in Ref. [23]. The explicit values of ¢ and ¢ are

27
g = -8312 + 100°, qg:_§w+@a (6.2)

As exemplified by these coefficients, we introduced here the general notation C*) to denote all the contributions to any -
dependent coefficient C(v) that are nonlinear in v, i.e.,

Clv)=C"v+CW; with CW =2+ + ... (6.3)

The second coefficients in each line (and the first on the penultimate line) belong to the SPN level, and were determined in
our recent work [1], modulo two unknown coefficients at order 2. They read

a(;})p Al v+ 4,
0 - 1069 205 .Y 4
sp=dsv <—3 "6 )Y
L3163, 615
40 — —— 2 3
iy = < 512 " > <6 035 ”j)”
qﬁg_f 9.0 4 116% - 1404, (6.4)

5

where a’gf and Zi‘s’?f are the only two numerical coefficients left undetermined at SPN by our method.

Finally, the values of the 6PN-level coefficients are determined at the linear-in-v level by our self-force computation and
can be written as
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() 2800873 4_%608698367
V) = — Vi T
7 loc,f 262144 1769472

1469618167) )

2

907200 a1.r
} 229504763 , 135909
d — 2 4
6loc. (V) < 08304 " T 262144
99741733409\ )
— — U s
6350400 6.f
81030481 , 3492647551 .
Gasioes¥) =\ Tg5536 7 " 260 )Y T Lo
9733841 , 112218283 )
Q64.100,f(y) = - 327680 = 294000 q64,f’
7447 ,
831006 (V) = 3560 Y + 9553)1‘ (6.5)

At this stage, we have no information about the nonlinear-

in-v coefficients a%’f}, Zié”}, qSLZ;),f’ qé;{f, and qég)f Let us,

however, anticipate on the results of the following section,

where we will show how to determine the four v-nonlinear

coefficients c_léﬁ,)c, 615;?, r ‘Iéit),f, qg;f, in terms of only two free

numerical parameters, namely d‘6’2, and qZ;f. In addition,

we will find that a%)( is at most cubic in v. Our final results

will then read:

— 2 V3
a7p=a;v"+ay v,

2 5 <45089 44489

72 1536

Al
Il
ul

AT
N

- c_lg2 - 15agz>y3

W 2 474899 36677 , 14\ ,
A N TR TR X
(T35, 1435 )
6 3 ")
qg:t),f = (_

21996581 156397 2) ,
/a2
6977 29665

21000 1280

6 256

L (L3640 287 N
—3 87'[ v,
) 963 , 117

=-__ 3 — 1470 + 1817,
ds3.f 6’ "oV TVt + 18v

(6.6)

In these results, the two coefficients a’gz and c_lgz come
from the 5PN level, while the new undetermined 6PN-
level numerical coefficients are a’7’2, a’7’3, Zigz, and qj’fs.
[The origin of these undetermined coefficients will be
discussed below.]

The coefficient g;0,(v) of pl°u* cannot be extracted
from our O(e?) self-force results, but it can be derived from
the exact knowledge of the 2PM (O(G?)) EOB

Hamiltonian [57], as will be shown below. Its value is

o1,

—_— — — —_

20 5
e —§u4 +61°.

21 7 7 (67)

qr02(v) =

Note the remarkable fact that the 4 + 5 4 6PN-accurate
local O(v) EOB Hamiltonian is logarithm free. Not only all
the In u terms present in the nonlocal EOB potentials have
disappeared (as expected because they have been known
for a long time to be linked to the time nonlocality), but
even the various numerical logarithms In2,1n 3, ..., as well
as Euler’s constant y have all disappeared. Only rational
numbers, and 7 ~ {(2) enter the O(v) local Hamiltonian.
In addition, the fractional powers of u have also disap-
peared because they only come from the nonlocal 5.5PN
action.

Note finally that, contrary to the nonlocal EOB potentials
shown above, there are no contributions to the local EOB
potentials featuring powers of u strictly smaller than 2. This
follows from the fact that the PM expansion of the exact
potential Q starts at order G* [57]. Contributions to Q
involving powers u" with n < 2 can only enter the nonlocal
part of the Hamiltonian, where they come from having
expanded the nonlocal Hamiltonian as a formally infinite
series of powers of p2 [23].

VII. USING THE MASS-RATIO DEPENDENCE OF
THE SCATTERING ANGLE TO DETERMINE
MOST OF THE »*>2 STRUCTURE OF THE 6PN
f-ROUTE LOCAL HAMILTONIAN

Up to this stage, our method has only determined
(besides the full nonlocal part of the Hamiltonian) the
linear-in-v part of the local Hamiltonian. The next stage of
our method is to use the special v-dependence of the
scattering angle pointed out in Ref. [58] to determine most
of the nonlinear dependence on v of the local Hamiltonian.
(See [59] for a generalization of this approach to the
dynamics of spinning bodies.) This is done by going
through several steps.

A. Going from the p,-gauge to the energy-gauge

As afirst step, it is convenient to transform the above p,.-
gauge form of the local EOB effective Hamiltonian, (4.10),
to its (H-type) energy-gauge version, defined by writing

I:Igf]faﬁ)c,f(u’ pr’j;y) = H% + (l - 2”)Qg?oc,f<u’HS;y)’
(7.1)

where Hg denotes the (rescaled) Schwarzschild

Hamiltonian, i.e., the square root of
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H3(u. proj) = (1= 20)[1 + (1= 2u)p2 + 2], (72)

and where

Q%?oc,f(”‘vHS;V) = ¢ (Hs; v) + g6 (Hs3v)
+ utqipe (Hsv) + w3 gleey ' (Hs; v)
+ u8qgps " (Hsiv) +ul g7ed (Hsi ).
(7.3)

We have added a label “H” on QE,?OM and its u-expansion
coefficients, as a reminder that we use here the H-version of
the energy gauge, by contrast to its E-version [58]. This
means that O is directly written as a function of the phase-
space variable ¢, p, via the argument Hg(u, p,, j). In the
E-version of the energy-gauge Q is written as a function of
u and the effective energy Efeff:

Q%%c,f(”’geffﬂ/) = MQCDEEG(geff; v) + u3q§EG(5eff; v)
+ 4Q4Eé(gf(5eff;l/) + usc]fé‘éf(feff;v)
+ uéqgé‘)ét(gerf, v) + ”7‘17%0(?, f(‘gerf;’/)-

(7.4)

The difference between the two sequences of expansion
coefficients only start at the u* o« G* level, so that the first
two functions® coincide with each other: gi(y;v) =
@ (riv), ¢k (riv) = g (viv). We henceforth denote
them simply as ¢, gg(y;v) and gsgg(y;v). [See below for
the link between the higher-order coefficients.] We did not
put any extra label “loc, f” on the first two coefficients
because the effect of the flexibility coefficient f only starts
at the G* level.

The energy-dependent coefficient qul"Gc’f(y; v) belongs to
the n-PM approximation because u" = (GM /(rP¥s¢?))" is
proportional to G". The 2PM coefficient ggg(y;v) is
known exactly. It has been first obtained in Ref. [57],
and then confirmed in Refs. [60-62]. The 3PM coefficient
q3eG(7;v) has so far only be derived (as a closed-form
function of y and v) in Refs. [61,62]. Its SPN expansion was
confirmed in Ref. [1], and its 6PN expansion was recently
confirmed in Refs. [2,63,64]. We will give below the details

of our derivation of the 6PN-accurate value of gspg(y;v).

The higher PM-order coefficients g™ (y; ) are currently

only known in their PN-expanded versions, say

g (rv) = Qpev) + ales @) (2 = 1)

+ @) (P = 1) + .. (7.5)

>When y is used, as here, to denote the argument of qfé((’; f, it is

understood as a mathematical argument, to be later replaced by
Hg(u, p;, J).

We recall that the properties of the EOB formalism are such
that the full potential Q(u,y;v) vanishes in the test-mass
limit v — 0, so that each PN expansion coefficient g7, (v)
must be ~v + 1% + -+ when v — 0.

The PN expansions of all the energy-gauge coefficients
g5 (y) are determined from the corresponding p,-gauge
coefficients entering the Hamiltonian (notably the 6PN-
level ones ag'“), c_l'éy), qé(é)’ q&) and qg;)) by computing the
canonical transformation connecting the two gauges. The
structure of this canonical transformation is

(rp,)[g2pn + g3pN + Gapn + spN + Gopn]»
(7.6)

g(r.p,) =

where the factor rp, would describe an identity trans-
formation, and where the leading-order term is at the 2PN
(and 2PM) level, and reads

Nz
—. 7.7
n 2 (7.7)

92PN =

N W

The 2PN (gopny) and 3PN (gspy) terms were derived in
Ref. [57]; the 4PN one (g4pN) Was derived in Appendix A of
Ref. [65]; and the 5PN one (gspy) Was derived in our recent
work [2]. We have extended the determination of the
canonical transformation ¢(r, p,) to the 6PN level. This
is done by using the method of undetermined coefficients.
The looked-for ggpy is parametrized as

QGPN:rl2 [Wl] 2+2_J+W3Pr+ +—
+ 64{ pi+ 72J P+ 84{ pr+ 93J P}
+W10J 2+ +W12 2+W]:5]
s +W1;7] } 78)

with unknown coefficients wy, ..., wy5. The values of these
coefficients are then determined by imposing that the two
(effective, squared) Hamiltonians (4.1) (with A = Aoy,
etc.) and (7.1) are equivalent (at the 6PN accuracy) through
this canonical transformation.

The explicit expressions of the 6PN coefficients w;...wys
will be displayed later, in their final form, in Table IX, after
we determine, using our strategy, all possible unknowns.

B. Computing the f-route local scattering angle

The next step in the determination of many of the
nonlinear-in-v coefficients in the local EOB Hamiltonian
proceeds through the computation of the corresponding
scattering angle, y'°>. This is most efficiently done in the
energy-gauge.
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TABLE IX. Final form of the coefficients w,...w s parametrizing the 6PN canonical transformation, Eq. (7.8).

6753 ,2 197 ,3 __ 4965 4 _ 1417 .5

W 236879

80640 ¥ 1702V T30Y T 256 Y T s Y

W -Zv-F 50 -84+ B

w3 — st~ Y el ~ et %Y

4 (i — e + romss 7 v + (St T b ds — e 7t 1k —gods — i)V
=P ™ et ads —Fag v Ut

ws —Jos0 ¥ 1 ~ Ha? — IV - iRy

We —Hy 3233 1A+ 85

wy —%v—%yz—%zﬁ—%f—k%f

2 (- R+ (BT + (B + BRI+

“ R R 1

Wio —%v—%yz—%y3—%y4+%y5

"y (- B - S + (PR + BB + (R + (B R +

e (S + TS -+ (- T 0 + (IR K+
+(%—%ﬂ2)1/4—%1/5

s (- BT S + (4 R+ + (R -1+ B
+(%—%ﬂ2)y4—%u5

wM (- - B+ T+ S+ (S R + CRP  HE + T

Wis —%u—%vz—k%ﬁ—%ﬁ—%us

Several procedures (discussed in Refs. [57,58]) can be
used to compute the expansion of y°“f(y, j) in powers of

% « G, at a fixed value of the EOB effective energy y = €.

One uses the fact that, given any (local) Hamiltonian, the
corresponding scattering angle of hyperboliclike motions is
given by the integral (u = 1/r) [66]

1 Unax O du
et +m == [ Lol (19)
where Uy = Umax (V5 j) = 1/ Fmin corresponds to the dis-
tance of closest approach of the two bodies, and where the
radial momentum p, = p,.(u;y, j) is obtained from writing
the energy conservation at a given angular momentum.
When using the H-version of the energy gauge, Eq. (7.1)
directly defines the squared effective Hamiltonian,

a5 +(u, p,. j;v), as a function of p,, j and u. To obtain

A

p, as a function of y = £ one should then iteratively solve
for p, (in a PM expanded way, i.e., using the scaling
u +— Gu and j > G~'j) the energy conservation law

2 &2 §F12EG .
= geff - Heff,loc,f(u’ Prs ]’V)

:Hg’_'—(l_zu)Azcl;oc,f(WHS;V)’ (710)
where Hg(u, p,,j) was defined in Eq. (7.2), and
QE,?OCJ»(M, Hg;v) in Eq. (7.3). The computation of the
function p,(geff, Jj) is simpler when using the E-version
of the energy gauge, i.e., Eq. (7.4). Indeed, in that case the

EOB mass-shell condition reads

& _ R )
—ﬁJF L+ (1=2u)p? + j2u* + Qfocs (1, Eegisv) = 0,
(7.11)

which is a linear equation in p?(Euy. j,u) whose exact
solution reads (denoting again y = &)

2= (1=2u)(1 + j2u® + OF . o (u.7;v))
(1 —2u)? '

pr(y.jou) =
(7.12)

In both cases, one expands p,(y,j,u), as it appears in
Eq. (7.9), in powers of u +— Gu, say

pr=p+GpV G p?P + ... (1.13)
whose first two terms read
P = /=142 - (7.14)
and
-1 2 2 _ 2.2

/—1+y2—j2u2 ’

All the integrals that appear in the PM expansion of
Eq. (7.9) are elementary and are evaluated (following
[40]) by using Hadamard’s partie finie.

The scattering angle is then obtained as a PM expansion
of the form
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1 oty Denoting, for brevity,
2 7ot (y, jiv) Z)(n (r:v (7.16)
r=l Ara(r) = 2a(r) =20™ (7). (7.17)
Here, each n-PM-order expansion coefficient ;(10“(;/;1/) is  the scattering-angle coefficients obtained from the E-
determined from the value of the corresponding n-PM-  version Q. ;(u,y;v) corrected of the energy gauge
order energy-gauge coefficient ¢ (y;v), or ¢5s" (y;v),  [which is simpler to implement in view of the explicit
together with the values of the lower PM-order coefficients. expression (7.12)] read

T 2 _
Bal) =Gl Al == - \R - lat)

B(r) = 7 6020 = (1 + 57)a) = (-1 + 3)aslr) ~ 3aE ()07 - )|

2 _ 2 6 _ 4
Ays(y) = quz(r)2 + {2\/ v —1gs(y) - 2(607" =5 647"~ 1207 )} a>(7)

3

oo |

/},2 -1 3 (7/2 - 1)3/2
8y + 1 -8/ 447 - 1)Vr -1 47— 1)
—2(72—\/—_1)Q3(}’) - ( 3) qf<7/) _%QSE(}/)’

5 45 225 45 . 15 15 15
A - 3 S M 2 _ - 2\ E
16(r) = =35 42(7) +< et er? )fh(if) + [(167 16) 5(r )+< 6 T 167 >q4(7)

17325 , 4725 , 525 15, 15 ) 1575 , 525 , 75

256 © T g 256} %)+ (327’ 3z)q () +( 6 U T3 Tea) B

525 4 225, 45\ . 75, 15 45 )\ 15 15, 15 .\ ,
il a2 B (71
+< o +32y 64) () + ( AR ) s(r) + 2 n! Tl q5(v). (7.18)

The first three equations above (for y,, y3, y4) agree with the corresponding ones in Ref. [58].
While the E-version of the energy-gauge is more simply connected to the scattering angle, the H-version is more simply
connected to the usual p,-gauge EOB Hamiltonian. This is why we use the H-version in practice, as indicated in Eq. (7.5).

Let us therefore complete the above E-type scattering-angle results by the transformation between the E-type coefficients,
qf]la"(‘; "(y;v), and the H-type ones, anEkg’f(y; v). We recall that the first two, ¢, and g3, are the same. To write the link between
the higher-order ones, it is convenient to provisionally use as common argument for these functions x = y. By writing that
Egs. (7.10) and (7.11) define the same mass-shell constraint one finds (where, for uniformity, we have left the labels E or H

on ¢f = ¢l = g, and ¢£ = ¢} = ¢3):

(6) = g50) + g (0 2=,

(%) = (¢f) 250 "2 4 g () + 9L gy

) = 3T g0 + g5 (12 ) (g ) - 20800) P2
(a5 - 2050 B 4 g ) 1 g5 M),

() = (2500 + g (2)g <x>>‘pj;§ D S g+ (a5 - aafo) (1210
#2205+ 50) - 2450 | “B 4 (g5 0) - 245 L
(g5 - 2080 B0 4 b ) 1 g5 1), (7.19
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which can also be written in the reverse direction:

dg5 (x)

95 (x) = === a3 (x) + 43/ (%),

05 = L i) 4 28 () - 1L

a0 = =0 g+ (1LY g0 -
Y (g1(2) ~ 248(1) + gl ().

H
) X

dgi (x) 1d’qf (x)
X 4

(g3 (x) = 24§ (x)) + 5

54 g5 (x)]?

() =~ () (g () + 202 () TL)
+ 2B ) - )+ 244 0]
dqf (x)

+ (=i (x) + 245 (x))

25 (—qft () + 245 ()

fziz(x) a5 (x)? + (¢ (x) — 44f (x)) (dq;f")>

(%)
dx

dqi (x) _ dqf (x) H
dx dx

(7.20)

C. Using the mass-ratio dependence of the f-route local scattering angle

Applying the scattering-angle results derived in the previous subsection to our PN-expanded parametrization of the
H-type energy-gauge coefficients, Eq. (7.5), yields explicit, PN-expanded (6PN-accurate) expressions for the scattering
angle. [These can also be obtained by directly evaluating the integral (7.9) in a PN-expanded way]. Let us only give here one

specific example:

1 2 32— 8y 1168 41
loc,f 2 4
= -+ i +[320+<——+
> 5pk P Poo 3

* 144 135 24

1460479

506 22705 287
640+( - Z s (-

15

+

2)1/ + 24v i|p°ol’]6
7342
+ >I/2 - 401/3} pind

L 1792 L1049 )\ (41026 40817 d”
5 525 960 ~ )

640 15 )

212879, 63
384 © 64

+

<205 , 253361) \
14

Here, we used as energy variable the EOB asymptotic
momentum p,, defined as

PH=r-1L (7.22)
This quantity naturally appears in the PM-expanded mass-
shell condition, see Eq. (7.14), and is also a convenient PN-
expansion parameter p2, > > pZ.. We recall that the qﬁEG’s
appearing in Eq (7.21) are the coefficients of the expansion
in powers of pZ, of the H-type ¢"2s (y; 1) coefficients, see
Eq. (7.5).

Having in hands the expressions of the ;" (pe;v)’s

(which we shall indifferently denote as ;(1°°f( y;v)), let us

loc, f(

1 4 1 1
5 2)1/ + 56v ]poon'0+ [(92330034 T

4
2q3EG 4‘1431150 3 ngG:| p&n'.

, 498343703 2827607 31633 ) ,
- 14 - - |V
604800 1152 768

(7.21)

now consider the following energy-rescaled versions of
these coefficients

o rsw) = () (), (7.23)

where

hirsv) =+/1+2u(y—1) = ek (7.24)

Reference [58] has shown that the fotal (local plus non-
local) scattering angle satisfied the following condition:

CO 79y p) = with d, [n ; 1]. (7.25)

P (v);
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TABLE X. List of the f-route EOB potentials in p,-gauge.

alsocf (- 4237+22172'5ﬂ2)y+ (32ﬂ 221)1/2
aléoc,f (- 10]25673501 +248;g7 )+ a 2 443

(=300 + BN - MR 15+

azoc,f (% 213573661 2+ (12% 2 _260)1?

[‘llsoc,t (331170554 _ %7#) + dp y + (_ZIﬁﬂ.Z + M) 3

et (R0 72 | 1390 14 _ AT, | G2y (S 2 B 1507 )07 — 48
qz";'f 20v — 83v% + 1003

qﬁ:,f (1538105%11 9135031 2+ (- 2075+3;?22 722 + (640 — 85 72),3

qlf;_c.f (81605350346817[2 —343322‘2851)1/—#(]451/ + (_ d” +3161657277T2 %)ﬁ + (%ﬂz_%)yzx
4" -T2 6

qt By - 69u2+ 11607 — 1404

' (T B + (3 2007 4 (O - + (B - 50
qgozc,f 7U+178U2+24 3 _ 64

g @ggu 93,2 1,3 1474 4 1805

dis3 Bo-42 -2 -3t 4 60

Here, and below, the notation P’ (v) denotes a generic
polynomial of degree < k, with y- (or, equivalently, p..-)
dependent coefficients.

In Ref. [2] we pointed out the simplification brought in
the determination of the local Hamiltonian by choosing a
flexibility factor f(¢) in the definition of the Pf scale r/, =

f(2)r", such that the condition C' separately applies to

the nonlocal contribution ;("0“1°°f(

y;v), and to the local
one y*'(y;v). [We recall that y(y;v) =y (y;0) +
;(20”1“ t( ;v), because the nonlocal part can be treated as
a first-order perturbation.] We showed there that it was
always possible to construct such a flexibility factor f =
1 4+ O(%) at the 1PN fractional accuracy. We will show in a
separate work that this holds also at the 2PN fractional
accuracy, of relevance to the present study. This choice of
such a tuned f allows us to separate the determination
of the f-route local Hamiltonian, from the discussion of the
corresponding nonlocal contribution to the scattering
angle )(nonlocf(y; IJ).
We shall then enforce the condition (with d, = [%51])

Clocf ~10c f( ;IJ) _ sz, (y); (7.26)

ie.,

o 7 () = cpo(r) + e (v + - + cpg ().

(7.27)

This condition yields strong constraints on the v-dependence
of the various coefficients in the local Hamiltonians (in any
gauge), and allows one to determine most of the coefficients
entering the (usual) local Hamiltonian H'%!(r, p,, j).

Applying the condition CKX*' for n=2,...,7, we
could determine the nonlinear v-dependence of the coef-
ficients entering the 6PN-accurate p,-gauge effective
Hamiltonian A2 loc.f» €xcept for the following four numeri-
cal coefficients

l/3 —DZ

as',ay,ds, and gl (7.28)
We recall that, at the SPN level, we could determine the
nonlinear v-dependence of the EOB potentials except for
two numerical coefficients: agz, and c_l’gz. We list in Table X
the knowledge of the coefficients parametrizing the f-route
local EOB potentials. We note that among the 52 coefficients
entering the 5 4+ 6PN local EOB potentials our method
allowed to determine 46. To complete the previous infor-
mation we also list in Tables XI, XII the parameters entering
the H-type and E-type energy-gauge (squared) effective
Hamiltonian for n > 3 and n > 4, respectively. [We recall
that ¢§ = ¢f']

The situation is even more impressive if one considers
the usual Hamiltonian, expressed in terms of the effective
one by Eq. (4.5), as a function of u, p,, and p> = p? + j>u®

FJlocf.6PN _ C(21>( ) 2k 21y, T—k—1

v)p*piu (7.29)

SKS USSR,

Indeed, the v-dependence of this 6PN-level Hamiltonian
(see Table XIII) contains 151 (or 147, if we consider that four
coefficients start at O(v*)) numerical coefficients, and our

method determines 151 — 4 = 147 (or 147 4 = 143) of
Zn 2k n

them. The v-dependent coefficients C2k ( )=
are listed in Table XIII.
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TABLE XI. List of the p% -expansion coefficients of the u-coefficients in the H-type energy-gauge (squared) effective Hamiltonian for
n >3, see Egs. (7.3) and (7.5).

e Sv

TigG 27v - 24_3”2

P 1%11/ 45,2 | 49

i o

o -+ 8t -

i V(P -5a%) -3

oo (32 36%&%17[ Yot (=05 4123 2),2 4 133

Tiec (- P57 + 00V +(1106§5 - T + (=57 + 130)° — FF0*

o (~ A L+ (- TR+ R+ OB+ TR MDA

B (3 S0+ (3P4 B 43

e (1540691 _ 22?2%7”2)D+(7dg LSSS1 4 37673 72y, 2 4 (_1I63 2 4 51313 93,8

a (VI S )+ G, + S - A+ (BRR + 3 -3
(41833 4 3535 22,4 4 6579

e (3363 72 _ 69133), | (LUT1T @ +lc_i”2 + 12837 ﬂz)u n (326 2&7 ) =Ly

dbo G - ST + S 4 (127 + R+ Bt + SRR+ R + 12
+(_%ﬂ.2_%_idv -3 2,3 4 (263 | 2050y, 4 4 T3S

o (-5 TR R )+ (U - G0+ of B+ 44— )
+( y3+317232%6g 2 d" -3 a’ _22049),3 4 (L3004 615 12,4 L 13,3

TABLE XII.  List of the pZ -expansion coefficients [similarly to Eq. (7.5)] of the E-type energy gauge (squared) effective Hamiltonian,
Eq. (7.4), for n > 4.

qu)E.EG (ﬁ—%” )V_%Vz

qéllE.EG (5632 %3601 )y + (_ﬂ +@ﬂ2)y2 + Ql;

q%E.EG ( 2%81 —%n’ )I/-I—( 92;83 _1_11069363 2)1/ +( 615 2 +60]) 23@1/4

ez (R (R R OB G

q(S)E.EG ( 269194147 2 4312(5)7),/ + (26045 7[2 2747)1/ +

qéE,EG (1525;&2006091 22?2237 7.[2) + ( 29501 + 32407468703 71.2 + dy )1_/ + ( 1275663 71,2 + 6499) ?2 1/4

e (- T )+ G — T+ S + (B 3+
+(5551325 2 %)y + 66547 1/5

ng,EG ( 62;83 5?01234603 ;1'2)1_/4—( V2 5083 _|_357152307 71.2 + du ) (% 26%3 7[2)1/3 %1/4

dlerc BB - PR SR+ (I B
+( 936037?2509 2 + 183665(;3 _ 7dl’ _5 u )If + (21065 ”2 42773) + Zg 1/5

e (S “838;%3228“ P (7 O R i ety — S+ a2
e A A S+ G
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TABLE XIII. Coefficients entering the 6PN real EOB Hamiltonian (7.29).

Coefficient Powers Value

C(S;)(I/) pip"u’ iVt oot t oot Tl T om? Tt +aw?

Cﬁ?(v) prpu wom? Hiomat it —sad — 1t — oV

Clo (v) prpu —shv st —anl —avt — s H i+ Y

Céo)(l/) piptu’ BV~ meV sl Tt Tt 3 gV

W) e Gt G gt et R R - B

WA G GRS + GR-FE + ER BR + CR
30—

) prpiu® —Hv+ (215;218183 - 8?33083)V + (250000 — e o+ fal )W + (S5t — fag - S
H- R 3+

W e R R s e+ B b Y
RV P I

C%)(l/) prp'ou! 256’/+256’/2+ RS AR 1A 1A

By A e - -

Céz) ) p2pSu’ —35—21/ _ 185,281,320, 4 269,54 1356

Cff)(z/) p2ptut Dy (SLo2T9,2),2 | (L1320 Ty 3 4 (L3920 g2 IS4y (694 360 2),5 45,6

)R s (R N AR LR SRR - 9
+(—1m + B+ Bos

P A s CURRERT T R OB Lo 3 - B 1)
B 1

) piptu® Brv-Z+3r+ v+ S+ 2

c(w) piptu’ By 42— 6,3 —@1/4—%?—751/

W (e R IR ¢ (A2 R+ (e 1

VW) A e (M S (R L - B+ (21 + SR
(20 g2 — 4133),9

Ci6)(y) Pephi S R WY A N NN

C§6) ) PSP Sy ys 34 300,5 46

C(()6)(l/) P8 p0u Ly 4 (- 100101883 _ 9733801 12y, 2 4 (156307 72 _ 20052881,3 4 (20665 12 | 29551y, 4
+(3 - %)Lﬁ 318

C§8>(1/) PEphu VYL U B

<8>(1/) P8 P03 _us1 7526101 A ?ZZ) V9215 4 6y
C(()lo)(y) P02 SR L1044 5,5 53,6

VIII. VALUES OF THE 6PN-ACCURATE f- ROUTE LOCAL SCATTERING ANGLE
AT PM ORDERS G*, G*, G°, AND G*

Having determined most of the coefficients parametrizing the f-route local Hamiltonian we can write down the (PN-
expanded) values of the corresponding successive n-PM contributions, y,, to the scattering angle. The results are more
compactly expressed when writing them in terms of the difference between the energy-rescaled angle (7.23) and the
corresponding test-mass (Schwarzschild value).
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Let us first recall that the exact values of the Schwarzschild scattering angle coefficients are

ZSChW(PQ:iﬂLZPW 1M (peo) = (%Jr%p%o), I3 (Peo) = = L +i+24pm+634pw

X3 (Poo) = <125 %p%o %p‘éo) 13 (o) = 5;00 p220+;—i+3zopm+640pm+%92p20,

LM () = (1 1855 . 456(245 2 131521835 . 255512255 n ) |

B (pe) = = 7;7>o+5;°—;260+12£+4480p00+14336p00 86(5)16pgo+49;52p;. 8.1)

We then find that the differences 710" — 5 [recalling the definition Eq. (7.23)] read

1 47, 313 749 7519 211469
—1 loc __ Schw —1 loc _ Schw —— - _ _ 10 ,,7 129
(73 )= (73 )= 3pm’7 B 1 Po 2417 P 3201900'1 22307 PotTemag0! P
15 557 123 4601 33601
—1_—1(zlocf _ Schwy_ _ -9 4 _22 2 _ 2).8,.4
v ) 4”+< 16 256" )'7 °°+< 96 +16384”>’7 °°
3978707 93031 ,\ o . (29201523 , 5058313\ . .
- T n 0 + 00
134400 ' 32768 33554432" ' 627200
2 121 1\ 4 19457 59 41
e ~loc,f Schw — 2 o= _ 7 6
s J=5p1" +< 1o+5> +< 60 10°"8” )’”’°°
o 10681 L5069 , 4572503\
YTaa T T T 4300 o
L2407, 4 o, SSS862STISTT N L, s
A _
5760 Y7 T15Y T 33600 4320 V)T P
. o 184881 , 1219303 , 16844006729 15827493497\ ., ,
vmT — v 5
35 Y45 4480 20160 21163000 42336000 )T P
L (T ) 625 @ 615 _1s4s 257195 , 10065 224113\ ¢ ,
4 256" TS5 8102 T T 192 %
+ 10 .4

[Se]

15 Uz_g Jo 61855, 2321185 , 4625 20420849
32” 6 7327 7327687 T 16384 192°7 76720

+< 35 d” 5 —yz 4911465305 11437991 35

15
64 64" 25165824 © 8960 64”‘6 a1

2363865 , 679545 1343882527) b6

00

65536 °7 T16777216" 10160640

3 227 3\ 4 60377 339 41 , 1 )\ 7

—1 loc,f Schw 2 st 2 o _ e o2 L2
(7 )= 7p§°”+<28 7”>pgo+< 168 14V tTg” 7”>poo

33131, 221, 158129 152237341 123 )\
192 7 "8 TT112 YT 20160 g T )T Pee

378953 , 18343 , 41, , 64315 , . .

- 1% 1% rva

384 ¢ 128 TRV T 336 Y 6
—wal 10,3

[Se]

2208701 6769922309
480 7 201600

(42,2 24141687 , 3474679 , 64 .. 196222844821 1811850763
—ds v — - vn®——vds — - v
57 69120 3840 507 16934400 1008000
596213 , 128 . 8 ., 8, . 8 _, 12 ., 11471 , , 666241

To0 V75 Y 5t m5pial —svd —Sudism e ey T e (82)
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These results for the scattering angle provide a lot of new information that offers gauge-invariant checks for future
independent computations of the dynamics of binary systems.

In particular, using the fact (explicitly proven in Ref. [67]) that the nonlocal dynamics starts contributing to the scattering
angle only at O(G*), so that y* = ¥, our result above for y*° actually describes the total 3PM-level scattering angle. The
corresponding explicit 6PN-accurate expression of the unrescaled, and unsubtracted 3PM-level scattering angle (which is
equivalent to the simpler rescaled, subtracted result above) reads

)(3:——3“1‘——‘!‘(24 81/)

64 91
3 <?—361/+8v2>p20 + <—?v+34v2 - 8u3>p5

69 51 1447 93 27
+ <—l/+—1/ - 320 +8v > + ( — 12—+ 30 - 81/5)p2° +0(pl)).

1 4
70 5 5040° " 56 T 10 (83)

This result is in agreement with the corresponding 6PN-level term in the PN expansion of the 3PM-level recent result of
[61,62]. It has also been recently obtained in Refs. [63,64].

Let us emphasize that our results also provide a complete, 6PN-accurate value for the 4PM-level scattering angle

loc,f
X4 = X4

exhibit the unrescaled, unsubtracted value of y“'. Tt reads

+ yienloet We will discuss separately the 6PN-accurate nonlocal contribution x5*°“'. Let us, for completeness,

ﬂ—lxl‘oc.f _ (%_ij)
PREIEN < 109 123 2>y+45 }pw
8 2 256 8
, [3465 <3360l , 19597> (4827 3697[2)y2 225 D3] "
| 128 16384 192 64 512 32
N (_ 1945583 93031,,2>y+ (1937 94899”2>U2 . < 2895 | 1845 ﬂ2>y3 525 4 "
| 33600 32768 16 32768 322048 64
n _<3879719 29201523 ﬂ2>y n (4843207 _469191 ﬂ2> 2 <444975 2o 15875> ¥
313600 33554432 89600 131072 131072 128
(1(1)3;515 2382 7z2> - 457%1/5} P +0(pl). (8.4)

Finally, concerning our results above for the SPM, 6PM,

and 7PM local scattering angles, if we transcribe them in

loc,f loc,f _ loc,f
terms of the unrescaled coefficients, ¥, ¢, x7 ", they
contain (in spite of the presence of undetermined param-
eters at the O(1?) level) a lot of new information, both for
the linear-in-v contributions, and for many terms involving

higher powers of v.

IX. RADIAL ACTION AND ITS HIDDEN
STRUCTURE

In Ref. [2] we pointed out the existence of a hidden
simplicity in the mass-ratio-dependence of the (rescaled)
radial action

. 1
Ir(y’J)_Z%prdri (91)

when it is expressed in terms of the EOB effective energy
y = é'eff (or equivalently p.) and of the rescaled angular

|
momentum j = J/(GMu). We work here with dimension-
less scaled variables I, = IY™°/(GMy), p, = p™™*/u,
r=rPs/GM.

This hidden simplicity consists in noting the remarkably
simple v-dependence of the coefficients 7, (y;v) entering
the following way of writing the 6PN-accurate expression
for 1,:

S U
1y, j) = —j + I3(y) + % + IES;)3)
Is(r;v) | Ii(rsv)
(hjy (i)’
L(y;v)  ILi(ysv)
(hj)° ()™ (9'2)

First, the second term I(y) in this expression is indepen-
dent of v and equal to the analytic continuation (in y)
of y; [68]
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272 —1
Vi-7

and, second, and most importantly, after having factored
out the same power of % as the power of %, the numerator

Ii(y) =

(9.3)

L,41(y;v) is a polynomial in v of degree n:

v)+ ZIQnJrl I

The latter polynomial structure was not pointed out in
previous discussions [40,68] of the radial action. Several
conditions are needed to reveal it: the use of the effective
EOB energy éeff as energy variable, and a PN-complete
account of each coefficient I, (Eu:v). We note in this
respect that Eq. (3.10) of Ref. [40] used the specific binding
energy (H — Mc?)/u as energy variable, and that Eq. (4.29)
of Ref. [68] is a PN-incomplete 2PM truncation of /,,
which does not satisfy the simple rule (9.4).

As pointed out (and proven) in our previous work [2], the
10 terms (corresponding to the v — 0 limit) in Eq. (9.4) can
be exactly computed (for all values of n) because they
correspond [like the term 7§ (y)] to the test-mass dynamics,
described by a Schwarzschild metric of mass M = m; +
m,. The exact values of the most 6PN-relevant 29,
Schwarzschildlike, terms read

12n+1 (7/’ l/) 2n+1 (94)

3 15
IS — .2
1(7) 1 + 1 I
35 315 1155
S T 2
L =g 5"t e
15() = %§l_k9009 45045 %_51051 .
sV)= "256 T 256 256 7 T 256 1
56) ::32175__546975y2 10392525 ,
7 16384 4096 8192
_ 14549535 (47805615
4096 16384
IS(><___323323_k33948915 , 260275015 ,
o) = T 65536 65536 32768
1301375075 5019589575 ¢
32768 65536
3234846615 |,
65536 | (9:5)
Let us only cite the y—1 value of the last

Schwarzschildlike coefficient entering Eq. (9.2) (which
suffices at the 6PN accuracy)

14196819
—

2 _
%6 O(y> = 1).

Iy (y) = (9.6)
The most useful consequence of the expression (9.2) for
the radial action is that it condenses the irreducible (post-

test-mass) information about the 6PN local dynamics in a

rather small number of coefﬁcients, namely the fifteen
energy-dependent coefficients 12n 4i(y), with 1 <k<n
and 1 < n < 5. Our 6PN-accurate computation yields these
coefficients in the form of a PN expansion, i.e., an
expansion in powers of p% =y? —1. [Note that the so-
defined quantity p2% is negative for bound states.] We
found, for example,

, 5 41 557
I __2.4 2 2 6
5 (r) 51l +—<128 24>poof7

L (L4601 33601 L\
144 245767 )Pl

3978707 , 93031 ,\ ¢ g
201600 ' 491527 )P

(9733841 )

5058313\ , |
+940800)”“"7 - 07

The other v-dependent contributions can be read off
Table XIV, which lists the PN expansions of the full

coefficients 1,1 (r;v) = 13,1 (r) + iy Bt (V)0
We recall that the periastron-advance parameter is
derived from the radial action as follows [40]:

16777216

o

==L 93)

Inserting the expression (9.2) in the latter formula yields

() L)
k , N — 1 )
(7/ ]) hjz h3j4

+3

Is(y;v)
h5j6

Iy(y;0)
110

+5

111(7;1/)
hnjlz ’

+9 + 11

(9.9)

where the various coefficients [,(y,v) are listed in
Table XIV.

Recently, Ref. [68] pointed out that the periastron
precession @(y, j) — 2z = 2zk(y,j) could (under some
conditions) be identified with a suitably defined analytic
continuation of y(y, j) + x(y,—Jj). The v-structure of the
formula (9.9) is then seen to be a consequence of the rule,
Egs. (7.26), (7.27), found in Ref. [58], about the poly-
nomial v-structure of the energy-rescaled scattering angle
h" 'y, (y,v). We then tried to replace the imposition of the
constraint (7.27) by the imposition of the polynomiality
constraint (9.4) directly to the radial action [or, equivalently
to the periastron precession k(y, j), Eq. (9.9)]. However,
imposing the polynomiality constraints (9.4) or (9.9) is not
equivalent, and, in fact, significantly weaker than imposing
the conditions (7.27). Imposing the conditions (9.4) or (9.9)
at the 6PN level leaves undetermined many more coef-
ficients than imposing (7.27). This non equivalence essen-
tially follows from the fact that 1,, | (y; v) is proportional to
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TABLE XIV. List of the various coefficients 7,(y,
radial action.

v) (expressed in terms of pZ =y — 1 < 0) entering the expression (9.2) of the

IO(poo) \/_17(1 + 2’72P§o)
I (Pe) 37 + 30 p
I3(poosv) Byt + 125 pan® + 133 pen®
+H=3nt + (s — 2D pan® + (=5 + 5567 P’ + (= a0 + B2 ) Pen'
R + S
Is(pwiv) BLy6 1 9009 2 8 4 20027 4 10y SI0SL o 12
+[(}§§7r2 125)6 4 (= 224113 | S1430 722 8 4 (464237 12 _ 20420849 4 10
135009 -4 _ 982293061 ;2 | 1343882527
+(— 8388008 2583912 %+ 35301600 ) Pool I
2 3,2
+EA+ (- iggﬂz +2°'3)1Doof78+(%—i - 5ds - Bh ) pn
R o 3t~ h0 — LR SR
I(pesiv) 3261475’,]8 . 109395 109395 poonlo +2o;§gos i
(s ﬂz 248057),8 | (210485 72 _ 9LII883) 2 10
109665759605 -2 __ 28658940500 | 81987555 4 12
+(=Fsao7am 7 e T Tasweos 7 )Py
=2
(1025 72 4 18925),8 +( 153(5)%5 72 4 1089309 _ 185a6 —330) py'0
103473815 /2 _ 15 405 832072211 _ 135 7 __ 15 p? | 25215 4\ 4 1272
+(= 56608 Bdis —pag —ay + 161280 — 3 ds —5ds +65536” )P v
+—EUS+(—M+?8ZZFZ)POJIIO+(IS & - 15 g +5585 4155 2 4 13 ) phn')?
Io(peiv) 323323 10 | 11316305 2 12
; Toa o
121807 72 _ 6817563),10 551913398477 2 | 387365405 -4 _ 23711330921y 2 12
+Gor 7 =% +( T32i6208 7 T sssscos F - saseo0 )Pl Y
[(__du _1_57122?9 32 — 1755159 12),10
1 1
35 176505 -4 _ 122488583 "2 _ 1925 35 g 6530060163 2 y12],2
+-Ba - ‘145__‘17 + 32768 * o152 T T3 ag - dy + 115200 )pan'lv
+[(1oo45 2 42665)n10+(105a6 +35d,ﬂ+13076035ﬂ2 B 11754113)p 712
1024 9% 98304 8 2304 /P
510 4 (201655 _ 10035 72 2 1], 4
In(peiv) 14196810 12
3236467169 _ 188085303629 72 | 350055909 /4 12
+l(- 30240 50331648 + %3ss008 % v
520515 74 | 2062272503 _ 1911 _ 179354853 2 _ 273 w2, 12],2
H( dy + 65336 7 22400 32 “6 _*‘145 7 65536 7 ~ 3 ds n'*ly
H(-Ba TS gy 2498005 2 978061 463 i) pi2], 3
32 65536 i T3
(38743 72 | 428085),12] 4
[ 819 12),5
Xon2(y,v) and therefore misses the v-information con- 1 _,2 = _p2 — l 34 + (9 - 21/)%
tained in the odd scattering-angle coefficients y,,.(y,v). V) J
Finally, let us recall the well-known fact that the gauge- 154 41 ,\ 1
invariant relation between energy and angular momentum 54— 3 v+ 3_2” v _8 +os
along circular orbits can be conveniently obtained by o.11
setting I, = 0 in Eq. (9.2). The resulting equation, (9-11)
or, equivalently,
s i . .
j 715(7/) +Il (7/) 13(7/,11) 15(}/’1/> 17(]/,11) 1 9 81 1
— 1y . . N N7 _ ploc,fci
hj (hj)? (hj)3 (hj) y=Eg =1 _2_j2_8_j4+ <—R+V> 1_6
Iy(y;v 1 7
4 Dolry) | Iulry) (9.10) 3861 157 41 |
(hj)? — (hj)" — etV )
128 6 64 J
4+ (9.12)

can then be easily perturbatively solved to get eitherji2 as an

expansion in powers of pZ, or p2 as an expansion in
powers of j% say

The local contribution to the circular energy then straight-
forwardly follows:
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goctsine(j) = MyJ1 4 2(BSEE 1) (9.13)
Here, we have simply indicated the 3PN-accurate begin-
ning of these expansions. It is easy to use our results to
derive the 6PN-accurate local circular energy. We leave to
future work the completion of these results to the full 6PN
level, obtained by adding the 4+ 5+ 6PN nonlocal
contribution.

X. POST-MINKOWSKIAN VIEW OF THE
DETERMINATION OF THE LOCAL DYNAMICS

At any given PN accuracy, our new method is able to
determine most of the structure of the two-body dynamics
except for a relatively small number of numerical coef-
ficients. When working at the 5PN accuracy, only two
numerical coefficients are left undetermined in the local
dynamics, namely ag2 and c_lgz. When working at the 6PN
accuracy, four more numerical coefficients are left unde-
termined, namely a%z, a%g, Elgz, and qzzs. Let us clarify the
basic reason underlying this incompleteness, in a way
which will allow us to anticipate the number and structure
of the higher-order analogs of these undetermined param-
eters. This is easily done by working within a PM-
expanded scheme, and by using some of the structural
results of PM gravity discussed in Ref. [58]. It was found
there that the general structure of the PM coefficients
qE(y,v) of the EOB Q potential in the E-type energy gauge
was

E qn.1 (J/) Qn,n—l (}/)
@ (7:v) = quo(y) + R s vy
( ) 0( ) /’l(}’,l/) h 1(7/’1/)
n—1
_ qkn,k(r) 7 (10.1)
=0 h (}’, V)
with the constraint
n—1
3 quily) =0. (102)
k=0

The important structural information in the expression
(10.1) is the fact that the v-dependence of ¢Z(y,v) is
entirely described through the powers of h(y,v) entering
the denominators. All the corresponding numerators g, ;(7)

A

depend only on the EOB effective energy y = & The

constraint (10.2) expresses the fact that
lim g5y, v) =0, (10.3)
V=

i.e., the basic feature of the EOB formalism that the v — 0

limit of the EOB mass-shell condition reduces to a geodesic

in a Schwarzshild metric of mass M. Let us also note that
the behavior of the coefficients ¢Z(y, ) in the y> — 1 limit,

qus' (riv) = deecV) + Ghppc@)(* = 1)

+ e =12+ ... (10.4)

is smooth, i.e., the expansion coefficients, and notably the
first one, ¢% pg(v), are all finite [and O(v)].

As explicitly discussed in the 3PM case, n =3, in
Ref. [58], there are more constraints on the n energy-
dependent coefficients g, ,(y) which determine some of
them in terms of the lower PM orders. Indeed, let us first
insert the decomposition (10.1) in the expressions (7.18)
relating the PM-expansion coefficients gZ(y, ) of the EOB
potential to the PM-expansion coefficients y,(y,v) of
the scattering angle. This yields explicit expressions for
the y,(y,v)’s in terms of the gZ(y,v)’s. For instance, at the
lowest PM order (n = 2) we have

T

0rv) =6 () = 7ar.v)
_ Schw,y _ % 9.1 (7) 1
=50 = () + 220). (103
so that
= _ Schw z z
)(2(7”1/) =hy, =hl x5 (7) —192,0(7’) —ZQ2,1(?’)'

(10.6)

Imposing the condition that ¥, is independent of v reduces
to imposing that the coefficient of A(y, v) on the right-hand
side vanishes. This yields the constraint

Schw

7M™ () =5 d20(r) = 0. (10.7)

which determines g, o(y) in terms of 5™ (y). The summed

constraint (10.2) then determines ¢, ;(y) = —g0(7). One
then recovers the result [66]

0 (y.v) = %){?hw(y) <1 —%) = %(5)/2 -1 <1 — %)
(10.8)

In other words, the 2PM dynamics is entirely determined
by the test-mass scattering angle.
At the 3PM level the three coefficients entering

613,1(7) q32(7)
h(y.v) K (r.v)’

satisfy two constraints. First, the sum constraint (10.2), i.e.,

a3(r,v) = qso(y) + (10.9)

730(7) +q3.1(r) + q32(r) =0, (10.10)

and then the condition that 75(y,v) = h’y;3(y,v) be linear
in v. The second Eq. (7.18) allows one to express y3(y,v) in
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terms of the g3 (y)’s. It is easily seen that inserting the
expression (10.8) of ¢,(y,v) in the second Eq. (7.18) yields
73(r,v) in the form of a polynomial in A, namely,

272 —1

7(rv) = B3 (7) \/?lhzcn(% v)
y —_—

-\ = 1h%q5(y,v)

22—-13
_ 7,2,,Schw _ et 2 1)\ (W2 =
h)(3 y2_12(57 )(h h)
— /7 = 1(RPqa0(y) + hqs 1 (v) + q32(r))-

(10.11)

As h? =1+ 2u(y — 1), the condition to be linear in v (at a
fixed value of y) is equivalent (for a polynomial in /2 with y-
dependent coefficients) to having the structure ¢, + c,h>.
This gives one constraint, namely the vanishing of the
coefficient of 4!. This constraint determines the coefficient
g3.1(y) to have the value [58]

a1 (r) = %(27 -1)(5r° - 1) ‘

10.12
h (10.12)

The two remaining coefficients ¢3 o(y), g3, (y) then satisfy
the single sum constraint (10.10). The conclusion is that the
general solution of the 3PM constraints is a Q potential of
the form

q3(r-v) = 431 (7) <%— 1)

(v.v)

+q32(r) <#’J) - 1) ,

where ¢3(y) is determined from (10.12), and where
g32(y) is, at this stage, left undetermined by the general
PM-EOB constraints of Ref. [58]. On the other hand, let us
assume that one has somehow determined (maybe to some
limited PN accuracy) the value of the gauge-invariant 3PM
scattering angle, which must have the structure

(10.13)

)(3,2(7)
R (y,v)

Let us now insert in the second Eq. (7.18) the expres-
sions of y3(y,v) and g;(y.v) as polynomials in ; (with
coefficients depending only on y), i.e., Egs. (10.9) and
(10.14). As both sides are polynomials in %, we can identify

23(rv) = r30(r) + (10.14)

the coefficients of # on both sides. Indeed, we are dealing
here with expressions depending on v only through the
energy parameter 4(y, v). Therefore, two functions of y and
v, which can written as polynomials in % can be equal only

if all the y-dependent (but crucially v-independent) coef-
ficients of the various powers of % agree with each other.
This yields the simple link:

)(3,2(7) =\ 72 - 1Q3,2(7)-

In addition, using the fact that 3™ (y) = y3(y,0)+
x32(7), we can rewrite Eq. (10.14) as

(10.15)

(r = Dx3a(y)

20r0) (10.16)

23(r.v) =253 (y) - 2v

This formula shows that the function y;,(y) parametrizes
the deviation of y3(y,v) away from its test-mass limit
lim,_ox3(7,v) = 3™ (y). Let us again emphasize (fol-
lowing Ref. [58]) that even if one knows only the linear-in-
v (1SF) expansion of the 3PM scattering angle, Eq. (10.16)
shows that this suffices to fully determine the function
%3.2(7). Then having extracted the function x5, (y) from the
ISF expansion of y;(y,v), we can compute g3, (y) from
Eq. (10.15), and thereby obtain the full 3PM dynamics by
using Egs. (10.12), (10.13).

As our method, when applied at any PN approximation,
determines (in particular) the 1SF expansion of the local
dynamics, we see that it will determine the function g3 5 (y)
with the PN accuracy with which we work. This is why we
could determine the 6PN expansion of g3,(y), i.e., of the
local 3PM dynamics.

In view of the several independent 6PN-accurate con-
firmations ([63,64], and the present work) of the value of
x3(y,v) derived in Refs. [61,62], we shall assume in the
following that g3 ,(y) is exactly known, namely (using the
notation® of [58])

, (10.17)
with

B} 2
CE(y) = §Y(14y2 +25)

4t — 1277 -3 —1
+4- T2 " 2 resinh(/F=). (10.18)
y -1 2

This assumption will allow us to simplify the discussion of
the determination of the higher PM-order coefficients.
Let us indeed indicate how the above 2PM and 3PM
results extend at higher PM levels. This will allow us to
clarify the effectiveness (associated with a partial

SThe coefficients 430(7)-43,1(7). g32(y) are respectively de-
noted A(y), B(y), C(y) there, with C(y) = —(y — 1)C(y).
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ineffectiveness) of our method in determining (or leaving
undetermined) the parameters entering the local dynamics.

The structure of the 4PM-level EOB Q potential is
q43(7)

qs1(r) | qax(y)

a5 (r.v) = quo(y) +

h(y,v) W (y.v) R (rv)’
(10.19)
with the usual constraint
qa0(¥) + qa1(r) + qs2(y) + qa3(y) = 0. (10.20)

The third Eq. (7.18) leads to an expression for y4(y,v) of
the form

3z
2= 145 (r0)

+ Klg2(r.v), q3(7. V)],

where K|[g», g3] denotes some known terms, namely

ichw (

xa(y.v) = 3™ () -

(10.21)

3 9
Klgr. 3] =1 RCI%(%V) T (57> = D)ga(r.v)

(37* = Dgs(r.v)|- (10.22)

oo | W

Inserting the % parametrization (10.19) of ¢ (y,v), together
with the above explicit expressions of ¢, (y, v), and ¢3(y,v)
(as polynomials in %), then leads to an expression for
x4(7,v) having also the structure of a polynomial in %, say

)(Z,z (r) 12,3 (v)
W (y.v) W(rv)

where the superscript ¢ means that all the coefficients
X4 (y) are explicit expressions in the g, ;’s.

The rule found in [58] restricts h3y,(y,v) to be linear in
v. This is equivalent to the following restricted polynomial
structure for y,(y,v):

)(Z,l (}’)
h(y,v)

xalyv) =xio(r) + (10.23)

X4 (r)  xaz(y)

X4y V) = , 10.24
)= Ty 102
with the constraint

2a1(¥) +243(r) = 23™ (7). (10.25)

For the general reason already explained above, the equal-
ity (for all values of v) between two functions of y and
v, which can both be written as polynomials in % with
y-dependent (but crucially v-independent) coefficients,
implies the equality of the y-dependent coefficients of all
the various powers of % We therefore conclude that the
coefficients g4, must satisfy the two equations

Xio() =0, xi,(r) =0. (10.26)
In view of Eq. (10.21), the latter two equations are
respectively linear in g,0(y) and g¢4,(y), and contain
“source terms” provided both by 3™ (y) and by
K[g,(y,v), q3(y,v)]. We can then solve the system of the
two equations (10.26) for g4 0(y), and g4,(y). This yields
the (unique) solution

qa2(r) = ax(y) + ba(r)q32(7),

qao(r) = —ai(y) — ax(y) = b2(r)g32(r), (10.27)
where we denoted
9(57% —1)?
ax(y) = g}/zi_l’
32 -1
b =—-—,
2(7) 7/2 -1
1875y% — 2529y* 4 905y% — 59
= - . 10.28
a1(7> 16(}/2— 1)2 ( )

Let us now consider the sum constraint, Eq. (10.20). The
latter constraint, together with the solution (10.27), yields
the following expression for g, ;(y):

g4, (r) =a(y) - 443 (7). (10.29)

In other words, the exact structure of the 4PM Q
coefficient is

) =) (551

(r:v)
+ @)+ )20 (51
tas) (o). (1020

In this expression, ¢3,(y) can (as far as we know) be
replaced by (10.17), so that the only undetermined function
of y is the last coefficient g45(y). The latter can be
determined by the knowledge of y4(y,v). Indeed, the link
(10.21) between g4 and y, implies that the coefficient y, 3
of 5k in the J-polynomial expression (10.24) of y is directly
linked to g45(y) via

3

243(7) = == (r* = 1)qa3(7).

g (10.31)

In addition, we note that Eq. (10.24) can be rewritten as
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(1SF order) suffices to determine the exact function y43(y),
and thereby to have the full v dependence of the scattering
angle, as defined by the expression (10.32).

We have derived above the 4PM scattering angle y,4(y, v)
with 6PN accuracy. Using the representation (10.32) we
can transcribe our results into the following corresponding
6PN knowledge of the more primitive function y, 3(y):

25™ () 1
nGr) A3 (m, 9 h(w))
_a™y) o xas()
=) 2T VG0

The latter expression clearly shows that the knowledge of
the O(G*) scattering angle y,(y,v) at the linear order in v
|

x4(yv) =

(10.32)

[So]

” s 391 123 . (4597 35560 .\ , . (372943 217695 .\ ,
=0|l-—+——==7 ——— - T
ras\r 4p2 8 256 48 16384 )P=T\"5600 ~ 65536 )7

4976527 49220339
( 2) S+ 0(p§o)] ,

T 1881600 335544327 (10.33)

where p2, = y?> — 1. The latter result can then be transcribed in a corresponding 6PN-accurate knowledge of the function
g43(7), and thereby of the full 4PM Q potential ¢4 (y,v), using Eq. (10.30). We note in passing that the result (10.33)
implies for g43(y) a behavior in the small p, limit of the form

(= O (L0 AL\ L (497 3569 L\ (372943 7265 )
= - —_—— —_— —_— _—— —_— _— — T
93\ =""1a 3 ") 18 ' 6144 " 2100 8192 " )Pe

4976527 49220339 L\
0(pS,). 10.34
<705600 12582912" >p°°+ (P&) (10:34)
so that the corresponding contribution to ¢%(y,v), Eq. (10.30), reads
N 1
PO\ G) ” hr)
10 767 41
:—gol/—i- |:—151J2 + (7—3—271'2)1/]
(75 123 4033 33601
- -1 2 2 T2 2
+_41/+< 88+647r>v+(18 6144”)417“’
L1750, (3685 615 )\ L (31633 , 13921\ , (93031 , 6514457\ 1
——VU —_— 1% - v - 1
B 16 256" 4006 © 48 12288 " 750400 )| P
L [1575 5, (1435 , 12635 . (58775 148325 ) 1114333 | 156397 )\ ,
12 /i v —_— T - T
64 512 48 192~ 16384 8400 = 16384
6850063 9733841 .\ |
- - o(pt,). 10.35
+< 235200 4194304 >”}p°°+ (Pa) (1035)

This contribution is singular as p,, — 0. However, it is
easily checked that the other contributions to ¢4 (y,v) in
Eq. (10.30) cancel this low-velocity singularity and leave a
finite result,

175 41

7
E ("2 _ .2 2

in agreement with the result listed in Table XII.

[

Let us sketch the extension of these results to the > 5 PM
orders. [See Appendix for more technical details.] Again
the basic trick is to express all dynamical functions as
polynomials in % with y-dependent coefficients. This trick
is efficient because the PM-EOB results Egs. (7.18) involve
no explicit v dependence. In turn, this property follows
from the basic fact that the 1PM-accurate EOB dynamics is
v-independent when expressed in terms of the EOB

effective energy y = geff [66].
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The structure of the SPM Q potential reads

a5 (r.v) = a50(r) + zs(;(zi
o
with the usual constraint
qs0(r) +qs1(r) + as2(r) + g53(7) + gs4(r) = 0.
(10.38)

The fourth Eq. (7.18) leads to a corresponding expression
for y5(y,v) of the form

Ay - 1)*?

3 q5(y) + Klq2. 43 q4].

(10.39)

x5(r.v) = 253 (y) -

where the “known” contribution, K[g,, g3, qs], which
involves previous PM orders, ¢,, g3, and g4, will be found
in Appendix.

The rule restricting the v structure of ys(y,v) [58] is
equivalent to imposing:

X5 2(7) x5 4(7)
V) = . . , 10.40
x5(r.v) = xs0(r) + W(r0) () ( )
with the constraint
X50(7) +x52(7) + x54() = 25 (7). (10.41)

Imposing this structure on the expression following from
Eq. (10.39) then yields two constraints expressing the
vanishing of the terms o j and o ;5. This yields two

h
equations of the type

qs.1 (7’) = known,

g53(y) = known, (10.42)

whose explicit form will be found in Appendix.
In addition, we have the third equation (10.38). The latter
equation yields an expression for gs(y) of the form

4s0(r) = —aqs2(y) — qs4(y) + known. (10.43)

At the end of the day, we have a general expression for
qs(y,v) of the form

g% (y.v) = known + gs»(y) (% - 1>

+ g54(r) (ﬁ - 1) ;

where “known” means here

(10.44)

known = g5 ; (y) (% - 1) +4s55(7) (% - 1), (10.45)
with ¢s1(y) and gs3(y) given in Egs. (A3).

The expression (10.44) involves only two undetermined
(at this stage) parameters gs,(y) and gs4(y). As before
(mutatis mutandis), the two remaining parameters gs,(y)
and g5 4(y) would be determined by the knowledge of the
two corresponding coefficients in ys(y,v), Eq. (10.40),
namely ys,(y) and ys4(y). Indeed, we have the two
equations

( )_45y4—34y2+7
4 2 3/2
—5(7 —1)°/2g5,(y)

3(149% = 5)(=1 + 5¢2)?
Ay -npr

613,2(7)

Xs54(r) = —%(J/z —1)32gs54(y). (10.46)

where we recall that the 3PM-level function g¢;,(y)
is known.

However, there is now a difference with what happened
at lower PM orders. Indeed, we can rewrite Eq. (10.40) in
the form

25(r.v) = 5™ (y) + x52(7) (m B 1)

— <m - 1) , (10.47)
o, equivalently,
x5(r.v) = 25" (y)

[ 1= 0 (a0 + 200

2= 0P sa) Fasa)| . (1049

In other words, after factoring 1/h* the difference
x25(7.v) = x5™(y) has a v structure of the type ~v + 1.
By contrast, we previously had a difference y4(y,v) —

25 ()
h(y.w)

of the type ~v. This change of v dependence (from
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~v to ~v + %) implies that, at the 5SPM level, there appear
two independent functions of y parametrizing the scattering
function, after having taken into account the general
structural information about its v dependence, while there
appeared only one function of y at the 3PM and 4PM levels.
As a consequence, our method (which completes a linear-
in-v self-force information by a general v-dependence
information) is able to get complete PN-expanded results
at the 3PM and 4PM levels (up to the PN accuracy it uses).
However, at the SPM (and also 6PM) levels, it can only
determine one combination of the two independent func-
tions of y appearing at these levels (namely the function
parametrizing the coefficient of v among the total ~v + 12
dependence just mentioned). More specifically, at the SPM
level, one sees from Eq. (10.48) that, when working at
some given PN accuracy, our method will be able to
determine, within this PN accuracy, the PN expansion of
the function ys4(y) +3xs2(y), but will leave (partially)
undetermined that of the complementary combination
X54(7) + xs52(7). Using our results, we find

()+1 (y) = i+ 41 2_'_587 L
X547 2)(5,27 p 16 3 ) pa

< 10507 , 480263)
540 )7
+( 715139 , 30034567> X
11520 18900 ) F°
<1160329 2 411639569) S
161280 1176000
+o(p (10.49)

which is, indeed, fully determined to our 6PN accuracy,
while

X54(7) +x52(7)

8 406 41 2 1
e — _|_ _
P o " Peo
112333 N 4 . 18487
270 159 T 5760 ©
N 4 N 2 e 1993193869 5049671 2,
35945 T 159 1323000 80640
+ 0(p)-

[Se]

(10.50)

involves the undetermined parameters c_lgz and qﬁ’é.

When translating this knowledge in terms of the EOB Q
potential (in E-type energy gauge’), this means that our
method is able to determine the function gs 4(y) + 1 gs2(7).

"The relations we gave above then allow one to translate the
g%’s into their H-type correspondents g%

but leaves partly undetermined the complementary function
gs4(y) + gs2(y). Concerning the other coefficient func-
tions gs(y), with k = 0, 1, 3, parametrizing gs(y,v), the
generalization of the reasoning explained above for ¢4(y, v)
shows that they are fully determined in terms of the lower
PM information.

One can check that a similar situation occurs at the 6PM
level, where the structure of the scattering angle reads

M) L
X6(y,v) = hr0) +)56~3(y)<h3(y,u) h(w))
+)(6,5(7)<

1 1
W (y.v)  h(r. v)>' (10.31)
The two independent functions y¢3(7), x6.5(7) parametrize
a structure ~A~> (v + v?). Similarly to Eq. (10.48), this can
be made manifest by introducing the following two
combinations (with y-dependent coefficients) of y¢3(y)
and y5(7), say

Zeu(r) =—4(r—1) (%)(6,3(7) +Z6,5(}’)>’

Re2(r) = =4y = 1)*(x63(r) + x65(1)), (10.52)
such that Eq. (10.51) reads
Schw 5 25
2™ (r) | vl (r) + V76,2 (7)
V) = 10.53
)(6(7/ ) ]’l(]/,l/) I’ls(]/, 1/) ( )

Again, our method can only determine one combination
[namely 74, (7)] of the two functions y45(y), x6.5(7). When
translating this knowledge in terms of the EOB Q potential
(in energy gauge), this means that our method will be able
to determine only one combination of the two functions
g6.3(7),and g 5(7), via the link of Egs. (A4). On the other
hand, the other coefficient functions g . (7), with k = 0, 1,
2, 4, parametrizing g4(y, v) are fully determined in terms of
lower PM information.

At 7PM, one finds that there are three independent
functions of y, namely y7,(7), ¥74(7), and y76(7). They are
linked to their EOB counterparts g7,(7), ¢7.4(y) and g7 6(y)
(and to lower PM functions) via the relations Egs. (AS5).
The three functions y7,(y), x7.4(7) and y7 ¢(y) parametrize
a v dependence of the type ~(v+ 1% +1%)/hS. More
precisely, there are three combinations of y7,(y), x74(7).

and 76 (7). say

27,(7) ==2(r = ) (r72(r) + 207.4(r) +3x76(7))s
F1.2(r) = =40y = 1)*(2072(r) + 3x74(r) + 3276(7))-
F150) = =80 =1’ (r72(r) + 27.4(r) + 27.6(1))-

(10.54)
such that
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FIG. 1. Schematic representation of the irreducible information

contained, at each post-Minkowskian level (keyed by a power of
u = GM/r), in the local dynamics. Each vertical column of dots
describes the post-Newtonian expansion (keyed by powers of p?)
of an energy-dependent function parametrizing the scattering
angle. The various columns at a given post-Minkowskian level
correspond to increasing powers of the symmetric mass-ratio v.
See text for details.

D)?7.u(?) + 1/2)?7,1/2 (Y) + 1/3)?7”/3 (Y)
ho(y.v) ’

x1(7.v) = 5 (y) +

(10.55)

The situation is similar at the 8PM level, with three
independent functions of yygs3(y), xss(r), and yg7(7).
related to their corresponding EOB functions gg;(y),
ggs(y), and gg;(y) via the relations Egs. (A6). The three
functions yg3(7), x3.5(7), and yg;(y) parametrize a ~ (v +
V2 +13)/h7 structure for the difference yg(y,v)—
3™ (7). And again our method can only determine
one combination of these three functions.

We summarize in a pictorial manner the irreducible
information contained, at each PM level, in the local
dynamics in Fig. 1. The horizontal axis indicates the
successive PM orders, while the vertical axis indicates
successive PN orders, keyed by powers of p? (representing
p% =y*>—1 when working in the energy-gauge). This
figure displays the information contained either in the PM-
expansion coefficients y,(y,v) of y, or in the PM-expan-
sion coefficients ¢Z(y,v) of QOF(u,y;v). [We have
explained above the (recursive) one-to-one map between
these two sequences of coefficients.] By irreducible

information we mean the building blocks that depend only
on y and that parametrize the v-dependence of the coef-
ficients y,(y,v) or ¢g&(y,v). For instance, at the PM level
n=3 (or ¥’ in QE(u,y;u)), the 3PM local dynamics is
fully described by Eq. (10.14), which we write again for
conceptual clarity,

)(3,2(7)
h(y,v)’

i.e., by two independent functions of y: y30(y) and y3,(y).
One half of this information comes from the test-mass limit,
v—0 (namely y30(y) +x32(r) = 25™ (), while the
other half is encoded in the 1SF (linear in v) expansion
of y3(y,v). This is clear if one rewrites Eq. (10.56) in the
form of Eq. (10.16), i.e.,

23(rv) = r30(r) + (10.56)

(r = Dxso(y)
R (y.v)

Here we are talking about the PM expansion. When
working within a PN approximation scheme, some of
the functions of y entering as irreducible building blocks
are only known in their PN-expanded forms, i.e., only a
limited number of terms in their expansion in powers of
p =y? —1 is known. For instance, we derived here, by
working at the 6PN approximation, the first five terms of
the function y3,(7), in the form of the related function

x3(rv) =53 (y) - 2w (10.57)

y—1

Cly) = 5 13207) = =(r = Daza(y).  (10.58)
namely
_ 91 69
6PN _ 2 4 _ 6
C (y)—4+18poo+*10poo 120 P>
1447 o
- . 10.
10080 7> T O(Pe) (10.59)

See Eq. (10.33) for the analogous result at the 4PM level.

Having in mind this PN-expansion of the y-dependent
irreducible PM building blocks y, ;(y), we represent in
Fig. 1 each such building block y, () by a vertical line of
filled circles. At the 1PM and 2PM levels there is only one
irreducible building block, and therefore only one vertical
line of dots. Moreover, these building blocks can be entirely
deduced from the test-mass limit, i.e., they are encoded in
the v — 0 limit (or Schwarzschild limit) of the scattering
angle. At the 3PM level, there are two independent
irreducible functions of y, represented as two vertical
sequences of filled circles in the figure. One can think
of the left column of dots as being of order 1° in the SF
expansion, and therefore as being entirely deducible from
the Schwarzschild limit. By contrast, the right column of
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dots represents (modulo some h-dependent prefactor) a
1SF-level information, i.e., itis encoded in the O(¢') term in
the expansion of y3(y, v) in powers of v. Atthe 4PM level we
have again only two vertical sequences of dots, say one
encoded in the v — 0 limit, and the other one representing a
fresh 1SF information encoded (modulo some /-dependent
factor) in the O(v') term in the v-expansion of y4(y,v).
[Note in passing that the v-dependence of the 4PM EOB
potential g4(y,v) deduced from y,(y,v) is more involved
than the one of y,(y,v). In particular, the O(¢') term in
q4(y,v) is partly determined by the O(v!) information
present at the 3PM level, and by fresh O(v!) information
contained in y,(y,v).]

At the 5SPM and 6PM levels, we have three independent
building blocks [see Egs. (10.48) and (10.53)], represented
as three vertical columns of dots. Again the left column can
be thought of as being O(1°) (and Schwarzschildlike), the
middle column as being O(v') and 1SF-determined, while
the third column is now O(1?), i.e., encoded at the 2SF
level. The only knowledge we currently have of this SPM
third column is its lowest PN approximation, i.e., the filled
circle located at ©° on the horizontal axis. Indeed, this term
~v*u’ p® was determined by the computation of the 4PN
dynamics. In the p, gauge, it is described by the contri-
bution +(# 7> —221),2 to the coefficient af" of the u’
term in the EOB radial A(u,v) potential. The 5PN
approximation consists of collecting the terms along the
second slanted line represented in Fig. 1. We see that the
slanted 5PN line passes through two of the O(+?) third
vertical columns. In the current implementation of our
method, the third (and higher) vertical columns, corre-
sponding to O(v>?) (2SF and higher) contributions are left
undetermined. We highlight this fact by using empty circles
to represent these columns. This visually explains the
origin of the two coefficients left undetermined by our
method at 5PN. The empty circle in the u’ column
corresponds to d?’, while the empty circle at the u® location

on the horizontal axis corresponds to a’gz.

At the 7PM and 8PM levels, we have four independent
building blocks parametrizing a ~.° + 1! + 1% + 13 struc-
ture [see Eq. (10.55)]. When considering the 6PN, upper
slanted line, we now understand clearly why there were
four extra coefficients left undetermined by our method at
6PN. Namely: one in the u> O(?) third vertical column
(¢4spiud); one in the u® O(v?) third vertical column

(d% p?u®); and two on the u” location on the horizontal

axis, linked to the third and fourth columns (v?a% u’

and 13ay’u’).

Looking at Fig. 1, we can also see what information
could give a 7PN-level extension of our method (completed
by a 6.5PN-level purely nonlocal dynamics). It would:

(i) provide a 7PN-level test of the 3PM dynamics of
Refs. [61,62]; (ii)) improve the knowledge of the 4PM
dynamics at the 7PN level; (iii) improve the knowledge of
the O(v')-encoded local dynamics at the SPM, 6PM, 7PM,
and 8PM levels; but (iv) leave undetermined six numerical
coefficients encoding effects of the type
Plp® +ubp* +u’p? + ub) + A’ p? +ud). (10.60)
[In the p,-gauge all the powers of p have to be interpreted
as being powers of p,.] Note that the current lack of
determination of coefficients entering v? and 1* effects is
not a conceptual limitation of our method. It is rather a
technical limitation of the current development of SF theory
which cannot yet compute any genuine O(2?) effects. [See,
however, [69] for significant progress toward that goal.]
The combination of our method with a 2SF-level technol-
ogy would allow one to cover, in principle, many more dots
in the plane of Fig. 1.

XI. CONCLUDING REMARKS

We have extended the application of a new approach to
binary dynamics [1] to the 6PN level. Our approach has
allowed us to derive an almost complete expression for the
6PN-level action, given by the sum of a 4PN + 5PN +
5.5PN + 6PN nonlocal action, Egs. (2.1), (2.2), (2.3), and

of a local one [ pdq— Hp\3"Ndr. We succeeded in

determining the full functional structure of HfffN (which
contains 151 numerical coefficients), except for four
coefficients: three r3-level coefficients, and one v*-level
one (when counting powers of v in the unrescaled
Hamiltonian H = Mc? + - --). One of the crucial tools in

our derivation of HfffN has been the computation of the

Detweiler-Barack-Sago redshift invariant along eccentric
orbits in a Schwarzschild spacetime, up to the eight power
of the eccentricity and the 9.5th power of the inverse semi-
latus rectum. This computation alone has been the most
time-consuming element of our work, and has extended the
frontier of analytical gravitational self-force theory.

We have expressed our final results in five different
gauge-invariant ways: (i) in terms of the PM-expanded
scattering angle (see Eqgs. (7.16), (7.18) and discussion in
the text); (ii) in terms of the PN-expanded radial action (see
Egs. (9.2), (9.5), with results summarized in Table XIV);
(iii) in terms of the p,-gauge effective EOB Hamiltonian
(see Egs. (6.1)—(6.7) as well as the summary in Table X);
(iv) in terms of the H-type energy-gauge effective EOB
Hamiltonian (see the defining relation in Eq. (7.4) and
results listed in Table XI); and also, (v) in terms of the
irreducible building blocks parametrizing a general PM
dynamics [see Sec. X, and notably Egs. (10.33) and
(10.59)].

024061-34



SIXTH POST-NEWTONIAN LOCAL-IN-TIME DYNAMICS OF ...

PHYS. REV. D 102, 024061 (2020)

Among our new results, let us emphasize: (1) the
obtention of the 6PN-accurate O(G?) scattering angle y3
[see notably Eq. (8.3)], in agreement with the PM compu-
tation of Refs. [61,62] (and with the PN computations of
Refs. [63,64]); (2) the obtention (without any undetermined
parameters) of the 6PN-accurate, 4PM (O(G*)) local
scattering angle ' [see notably Eq. (8.4)]; (3) the
obtention of the linear-in-v contributions to the 6PN-
accurate 5PM, 6PM and 7PM local scattering angles
)(150°‘f, )(g’c‘f, )(17°°'f [see Egs. (8.2)]; (4) the derivation of
the explicit link between the PM-expanded scattering angle
and the PM-expanded EOB Q potential (in energy gauge)
at the 5SPM, 6PM and 7PM levels. We leave to future work
the derivation of the nonlocal contributions to the scattering
angle, and the associated explicit determination of the
tuned flexibility factor f(¢) used here to define the local
part of the dynamics.

Finally, in Sec. X we have discussed the synergistic

Minkowskian, and gravitational self-force results. It has
also allowed us to discover the hidden simplicity of binary
dynamics through a deeper understanding of the mass-ratio
dependence of perturbative results (see, notably Egs. (9.2),
(9.3), and (9.4), and the discussion of Sec. X).
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APPENDIX: HIGHER POST-MINKOWSKIAN
LINKS BETWEEN THE SCATTERING ANGLE
AND THE E-TYPE ENERGY-GAUGE EOB QF
POTENTIAL

The terms on the right-hand side of Eq. (10.37) read

interplay between four approaches to binary dynamics: 23 (y) = 275/2(17927/]0 —5760y%
post-Minkowskian, effective-one-body, gravitational self- 5P =1
force, and post-Newtonian (see Fig. 1). Effective-one-body + 6720y° — 3360y* + 630y —21), (Al)
theory offers an efficient framework for combining gauge-
invariant information coming from post-Newtonian, post-  and
|
(22 -1) 2 (64y5 — 120y* + 60y% — 5)
K[q>.q3.q4) = CI%(V)W‘F 26]3(7)(72— 1)'/2—§ (7/2— 1)3/2 a:(7)
(8" 82 +1) 4 (47" =577+ 1)
—245(7) TP 394(7) TR (A2)
The explicit form of Eqgs. (10.42) (where the 4PM-level term g45(y) is considered as being known) is
9(5¢7> - 1) (472 -1) 1
=5 — —————— (11160y® — 20193y° + 137 — 2323y% + 11603y*),
gs.1(7) 27 =1) q32(7) + =1 q43(r) + 16(2 —1)° ( Y r+ r+ ")
9572 -1 492 -1
45alr) = 2 = gy - G =D (43)

- m a32(r) = m q43(7)-

At 6PM, the explicit links between the irreducible blocks of the scattering angle and the corresponding building blocks of

the QF potential read

15 15
)(6,3(7) = —ﬁ”(—ﬂ + 1743’2 - 34574)43.2(7’) -
5 N 15
—5”(7 —1)°qe5(7) —ﬁ”
5, 2
X6s(y) = —3—2ﬂ(7 —1)°q65(7).

At 7PM, we have the analogous links:

o 2 04
128ﬂ( 10 4-48y* — 70y*)q45(7)

(=9 + 135y — 675y* + 1125¢°),
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I 2 1
= 34 2 9 2 1 1/2 + +2685 8 1692 6
)(7,2(7) 5q3,2(7)( 4 )(7 ) 20( 2 1)3/2( 4 14

6
+ 4626y* — 692y> —27)q34(7) — S qa3(r)(34y* = 9) (-1 + 572)(y* — 1)!/?

2 8
+ gqs.z(y)(9974 - 622 +13)(y* - 1)"/2 - 5617,2(7/)(7/2 —1)3/2

3
T (=14 5y2)(60330y8 — 1144775 + 656517* — 12773y* + 669),
400/2_1)3/2( +57%)( /4 o+ Y r® +669)

2 45
x14(y) =— WQ%Q(}’)(MJ’Z -9)+ 7%,2(7)(2574 — 1077 + 1)(y* = 1)"?

6 2
+§CI4.3(J’)(17074 =797 +9) (- 1)2 + g%,4(7>(9974 — 627> + 13)(y* - 1)1/2

8
~3 %,4(7)(72 - 1)5/2’

1r6r) = =5 4160) (2 = 1. (43)

The analogous 8PM links read:

945
x33(7) = @”(72 —)(=1+ 57’2)‘1%,2(7)

35 35
(=141 - 11 — o (—18032y* 4 92698y* -+ 889 + 40485y — 1390805
| (= 1)ETy )q4,3(7/)+2048(y2_1)( v+ r*+889+ v r°)|432(r)
35
(65 +2792y5 — 15907* + 301y® — 32)2
10247[(7/2_1)( +2792y r*+301y° =327%)q45(7)

105
+ﬁ7z(y2 —1)(=1+57%)(47y* = 11)gs,(7)

35 35
+@ﬂ(33r4 — 1972 +4)(y* — 1)ge5(7) —aﬂ(yz —1)3q5(7)
945

(14 5y2)2(185y5 — 3359y% + 162772 — 85).
”8192(;/2—1)( +577)*(185y vt + 1627y )
945 35
xs5(7) = —”ﬁ(}’z — 1) (1457 q32(r)* - ”@(4772 —11)(* = 1)q43(r)q32(7)
2835 105
+7 (=14572)2(r* = 1)qa3(y) + a= (477> = 11) (=1 +57%) (y* = 1)g5.4(7)
512 256
35 4 2 2 35 2 3
+a (33" =197 +4)(r* = 1)qes(y) —n— (r" = 1)°qs5(7).
64 64
35
)(8.7(7) = —”a(yz - 1)3518,7(3’)- (A6)
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