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A complete theory of gravity impels us to go beyond Einstein’s general relativity. One promising
approach lies in a new class of teleparallel theory of gravity named fðQÞ, where the nonmetricity Q is
responsible for the gravitational interaction. The important roles any of these alternative theories should
obey are the energy condition constraints. Such constraints establish the compatibility of a given theory
with the causal and geodesic structure of space-time. In this work, we present a complete test of energy
conditions for fðQÞ gravity models. The energy conditions allowed us to fix our free parameters, restricting
the families of fðQÞ models compatible with the accelerated expansion our Universe passes through. Our
results strengthen the viability of fðQÞ theory, leading us close to the dawn of a complete theory for
gravitation.
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I. INTRODUCTION

The dark sector of the Universe is one of the most
challenging problems that science has been facing. The fact
that approximately 96% of the matter and energy contents
of the Universe is unknown suggests that our standard
description of gravity is incomplete [1]. The standard
description is based on Einstein-Hilbert field equations
for general relativity (GR), and, despite this issue on the
dark sector, such a theory has not been successfully tested
since 1919, when it predicted the perihelion advance of
Mercury. Recently, the observations of gravitational waves
performed by LIGO and Virgo [2], besides the captured
images of a black hole from the Event Horizon Telescope
[3], confirmed the success of Einstein’s general relativity as
a classical theory of gravity. However, standard general
relativity also fails as a fundamental theory to explain
gravity interaction at a quantum level.
Therefore, there are several motivations to explore

theories beyond the standard formulation of gravity.
Among these efforts, we highlight models based on the
so-called symmetric teleparallel gravity or fðQÞ gravity,
introduced by Jiménez, Heisenberg, and Koivisto [4],
where the nonmetricity Q is responsible for the gravita-
tional interaction. Investigations on fðQÞ gravity have been
rapidly developed as well as observational constraints to
confront it against standard GR formulation.

An interesting set of constraints on fðQÞ gravity were
done by Lazkoz et al. [5], where the fðQÞ Lagrangian
is written as a polynomial function of the redshift z.
The constraints for these models were successfully
derived using data from the expansion rate, type Ia super-
novae, quasars, gamma-ray bursts, baryon acoustic oscil-
lation data, and cosmic microwave background distance.
Another relevant analysis about fðQÞ gravity consists
in understanding its behavior under different energy
conditions.
As is known, the energy conditions represent paths to

implement the positiveness of the stress-energy tensor in
the presence of matter. Moreover, they can be used to
describe the attractive nature of gravity, besides assigning
the fundamental causal and the geodesic structure of space-
time [6]. In this paper, we studied the strong, the weak, the
null, and the dominant energy conditions for fðQÞ gravity,
working with a perfect fluid matter distribution. The actual
accelerating phase our Universe passes through has the
constraint that the strong energy condition should be
violated. This constraint, together with the actual values
of Hubble and deceleration parameters, allowed us to test
the viability of different forms of fðQÞ gravity.
The ideas presented in this paper are organized in the

following way: In Sec. II, we present the generalities on
fðQÞ gravity and the field equations as well as the energy
conservation equation for a perfect fluid. In Sec. III, we
show the explicit forms of the energy conditions derived
from the Raychaudhury equations. The two scenarios for
fðQÞ gravity and their constraints are carefully analyzed
through Sec. IV. We also verified the deviations between
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our scenarios and the ΛCDM cosmological model in
Sec. V. Our final remarks and perspectives are discussed
in Sec. VI.

II. MOTION EQUATIONS IN f ðQÞ GRAVITY

Let us consider the action for fðQÞ gravity given by [4]

S ¼
Z

1

2
fðQÞ ffiffiffiffiffiffi

−g
p

d4xþ
Z

Lm
ffiffiffiffiffiffi
−g

p
d4x; ð1Þ

where fðQÞ is a general function of the Q, Lm is the matter
Lagrangian density, and g is the determinant of the
metric gμν.
The nonmetricity tensor and its traces are such that

Qγμν ¼ ∇γgμν; ð2Þ

Qγ ¼ Qγ
μ
μ; Q̃γ ¼ Qμ

γμ: ð3Þ

Moreover, the superpotential as a function of the non-
metricity tensor is given by

4Pγ
μν ¼ −Qγ

μν þ 2QðμγνÞ −Qγgμν − Q̃γgμν − δγðγQνÞ; ð4Þ

where the trace of the nonmetricity tensor [4] has the form

Q ¼ −QγμνPγμν: ð5Þ

Another relevant ingredient for our approach is the energy-
momentum tensor for the matter, whose definition is

Tμν ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δgμν

: ð6Þ

Taking the variation of action (1) with respect to the metric
tensor, one can find the field equations

2ffiffiffiffiffiffi−gp ∇γð
ffiffiffiffiffiffi
−g

p
fQPγ

μνÞ þ
1

2
gμνf

þ fQðPμγiQν
γi − 2QγiμPγi

νÞ ¼ −Tμν; ð7Þ

where fQ ¼ df
dQ. Besides, we can also take the variation of

(1) with respect to the connection, yielding

∇μ∇γð
ffiffiffiffiffiffi
−g

p
fQPγ

μνÞ ¼ 0: ð8Þ
Here we are going to consider the standard Friedmann-
Lemaître-Robertson-Walker (FLRW) line element, which
is explicitly written as

ds2 ¼ −dt2 þ a2ðtÞδμνdxμdxν; ð9Þ

where aðtÞ is the scale factor of the Universe. The previous
line element enables us to write the trace of the non-
metricity tensor as

Q ¼ 6H2:

Now, let us take the energy-momentum tensor for a perfect
fluid, or

Tμν ¼ ðpþ ρÞuμuν þ pgμν; ð10Þ

where p represents the pressure and ρ represents the energy
density. Therefore, by substituting (9) and (10) in (7), one
can find

3H2 ¼ 1

2fQ

�
−ρþ f

2

�
; ð11Þ

_H þ 3H2 þ
_fQ
fQ

H ¼ 1

2fQ

�
pþ f

2

�
; ð12Þ

as the modified Friedmann equations for fðQÞ gravity.
Here the dot ð:Þ represents one derivative with respect
to time. The modified Friedmann equations enable us to
write the density and the pressure for the Universe,
respectively, as

ρ ¼ f
2
− 6H2fQ; ð13Þ

p ¼
�
_H þ 3H2 þ

_fQ
fQ

H

�
2fQ −

f
2
: ð14Þ

In analogy with GR, we can rewrite Eqs. (11) and (12) as

3H2 ¼ −
1

2
ρ̃; ð15Þ

_H þ 3H2 ¼ p̃
2
; ð16Þ

respectively, where

ρ̃ ¼ 1

fQ

�
ρ −

f
2

�
; ð17Þ

p̃ ¼ −2
_fQ
fQ

H þ 1

fQ

�
pþ f

2

�
: ð18Þ

The previous equations are going to be components of a
modified energy-momentum tensor T̃μν, embedding the
dependence on the trace of the nonmetricity tensor.

III. ENERGY CONDITIONS

The energy conditions (ECs) are the essential tools to
understand the geodesics of the Universe. Such conditions
can be derived from the well-known Raychaudhury equa-
tions, whose forms are [7]
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dθ
dτ

¼ −
1

3
θ2 − σμνσ

μν þ ωμνω
μν − Rμνuμuν; ð19Þ

dθ
dτ

¼ −
1

2
θ2 − σμνσ

μν þ ωμνω
μν − Rμνnμnν; ð20Þ

where θ is the expansion factor, nμ is the null vector, and
σμν and ωμν are, respectively, the shear and the rotation
associated with the vector field uμ. For attractive gravity,
Eqs. (19) and (20) satisfy the following conditions:

Rμνuμuν ≥ 0; ð21Þ

Rμνnμnν ≥ 0: ð22Þ

Therefore, if we are working with a perfect fluid matter
distribution, the energy conditions recovered from standard
GR are

(i) strong energy conditions (SECs) if ρ̃þ 3p̃ ≥ 0;
(ii) weak energy conditions (WECs) if ρ̃ ≥ 0;

ρ̃þ p̃ ≥ 0;
(iii) null energy condition (NEC) if ρ̃þ p̃ ≥ 0; and
(iv) dominant energy conditions (DECs) if ρ̃ ≥ 0;

jp̃j ≤ ρ.
Taking Eqs. (17) and (18) into WEC, NEC, and DEC

constraints, we are able to prove that
(i) WECs if ρ ≥ 0; ρþ p ≥ 0;
(ii) NEC if ρþ p ≥ 0; and
(iii) DECs if ρ ≥ 0; jpj ≤ ρ,

corroborating with the work from Capozziello et al. [6]. In
the case of the SEC, we yield to the constraint

ρþ 3p − 6 _fQH þ f ≥ 0: ð23Þ

Moreover, let us consider the Hubble, deceleration, jerk,
and snap parameters, whose forms are, respectively,

H ¼ _a
a
; q ¼ −

1

H2

ä
a
;

j ¼ 1

H3

_ä
a
; s ¼ 1

H4

̈ä
a
: ð24Þ

Such parameters enable us to represent the time derivatives
of H as

_H ¼ −H2ð1þ qÞ; ð25Þ

Ḧ ¼ H3ðjþ 3qþ 2Þ; ð26Þ

_Ḧ ¼ H4ðs − 2j − 5q − 3Þ: ð27Þ

So, by using Eqs. (25)–(27), we can rewrite (13) and (14) as

ρ ¼ f
2
− 6H2fQ; ð28Þ

p ¼
�
−H2ð1þ qÞ þ 3H2 þ

_fQ
fQ

H

�
2fQ −

f
2
; ð29Þ

respectively, which are the density and the pressure for the
fðQÞ gravity. Therefore, the previous equations establish
the following constraints for the energy conditions:

SEC∶ ρþ 3p − 6 _fQH þ f ¼ f
2
− 6H2fQ þ 3

�
−H2ð1þ qÞ þ 3H2 þ

_fQ
fQ

H

�
2fQ − 3

f
2
− 6 _fQH þ f ≥ 0; ð30Þ

NEC∶ ρþ p ¼ −6H2fQ þ
�
−H2ð1þ qÞ þ 3H2 þ

_fQ
fQ

H

�
2fQ ≥ 0; ð31Þ

WEC∶ ρ ¼ f
2
− 6H2fQ ≥ 0; ρþ p ¼ −6H2fQ þ

�
−H2ð1þ qÞ þ 3H2 þ

_fQ
fQ

H

�
2fQ ≥ 0; ð32Þ

DEC∶ ρ ¼ f
2
− 6H2fQ ≥ 0; ρ� p ¼ f

2
− 6H2fQ � 3

�
−H2ð1þ qÞ þ 3H2 þ

_fQ
fQ

H

�
2fQ − 3

f
2
≥ 0: ð33Þ

IV. CONSTRAINING f ðQÞ THEORIES

In this section, we discuss the viability of the functional
form of fðQÞ in FLRW space-time. In order to do so, we
take the present values for the Hubble and the decelerating
parameters as H0 ¼ 67.9 and q0 ¼ −0.503, respectively
[8,9]. Moreover, several observations confirm that the

Universe is going through an accelerated phase [10],
carried by a negative pressure regime. Such a scenario
imposes that SEC needs to be violated [8].
There are several approaches in the literature deriving

energy conditions beyond Einstein’s GR; we can see for
instance, EC constraints in fðRÞ theory [11,12], fðGÞ
theory [13,14], fðTÞ theory [15], fðG; TÞ theory [16],
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fðR; T; RμνTμνÞ theory [17], fðR;GÞ theory [18],
fðR;□R; TÞ gravity [19], fðR; TÞ theory [20], etc.
However, the previous studies are mainly focused on
the WEC, whereas our intent in this paper is to study the
constraint of all the ECs in fðQÞ theory. To investigate the
ECs with the present values of the geometrical parameters
in fðQÞ theory, we need to fix the functional form of fðQÞ.
Once this form fixed, it will be easy to investigate the
cosmological scenarios. In their beautiful work, Harko
et al. [21] discussed the coupling matter in modified Q
gravity by assuming a power law and an exponential form

of fðQÞ. This investigation motivated us to work with a
polynomial form for fðQÞ gravity. Moreover, we also
introduce a logarithmic dependence of fðQÞ, which we
are going to analyze carefully.

A. f ðQÞ=Q+mQn

In this subsection, we presume the fðQÞ as an algebraic
polynomial function of Q with free parameters m and n.
The previous function establishes that the ECs need to
satisfy the following conditions:

SEC∶ 3H2
0 −m6nf2−1ð2n − 1Þ − 1gH2n

0 þ 1

2
½H2

0ð6 − 12q0Þ −m6nð2n − 1ÞH2n
0 fnðq0 þ 1Þ − 3g�

þ 21þn3nH2n
0 mð−1þ nÞnð1þ q0Þ ≥ 0; ð34Þ

NEC∶ − 3H2
0 −m2−16nð2n − 1ÞH2n

0 þ 1

6
½H2

0ð6 − 12q0Þ −m6nð2n − 1ÞH2n
0 fnðq0 þ 1Þ − 3g� ≥ 0; ð35Þ

WEC∶ − 3H2
0 −m2−16nð2n − 1ÞH2n

0 ≥ 0

and − 3H2
0 −m2−16nð2n − 1ÞH2n

0 þ 1

6
½H2

0ð6 − 12q0Þ −m6nð2n − 1ÞH2n
0 fnðq0 þ 1Þ − 3g� ≥ 0; ð36Þ

DEC∶ − 3H2
0 −m2−16nð2n − 1ÞH2n

0 ≥ 0

and − 3H2
0 −m2−16nð2n − 1ÞH2n

0 � 1

6
½H2

0ð6 − 12q0Þ −m6nð2n − 1ÞH2n
0 fnðq0 þ 1Þ − 3g� ≥ 0: ð37Þ

From (34)–(37), one can easily observe that the ECs
directly depend on the free parameters m and n.
Nevertheless, one cannot take the values of m and n
arbitrarily, which may violate the ECs as well as the
current scenario of the Universe dominated by the dark
energy. Therefore, using (34)–(37), we found some restric-
tions on the model parameters m and n. Using WEC, we
found that m should be less than or equal to −1 (m ≤ −1)
and n should be greater than or equal to 0.9 (n ≥ 0.9). Also,
we found that (34), (35), and (37) reduce the range of the
model parameter to 0.9 ≤ n ≤ 2, in order to proper describe
SEC, NEC, and DEC. Finally, we conclude that, form≤−1

and 0.9 ≤ n ≤ 2, this model represents the current stage of
the Universe. In addition to this, we showed the profile of
all energy conditions for some range of model parameters
m and n. From Fig. 1, one can observe that WEC, NEC, and
DEC are satisfied, while SEC is violated, corroborating
with an accelerated expansion [22,23].

B. f ðQÞ=α+ β logQ
Here, we introduce fðQÞ as a logarithmic function of the

nonmetricity with free parameters α and β. Therefore, the
ECs are impelled to obey the constraints

SEC∶ − β − 2βðq0 þ 1Þ þ 3

2
½αþ β log ð6H2

0Þ� −
3H2

0½α − 2β þ β log ð6H2
0Þ� − 2βH2

0ðq0 þ 1Þ
2H2

0

≥ 0; ð38Þ

NEC∶ − β þ 1

2
½αþ β log ð6H2

0Þ� −
3H2

0½α − 2β þ β log ð6H2
0Þ� − 2βH2

0ðq0 þ 1Þ
6H2

0

≥ 0; ð39Þ

WEC∶ − β þ 1

2
½αþ β log ð6H2

0Þ� ≥ 0

and − β þ 1

2
½αþ β log ð6H2

0Þ� −
3H2

0½α − 2β þ β log ð6H2
0Þ� − 2βH2

0ðq0 þ 1Þ
6H2

0

≥ 0; ð40Þ
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DEC∶ − β þ 1

2
½αþ β log ð6H2

0Þ� ≥ 0

and − β þ 1

2
½αþ β log ð6H2

0Þ� �
3H2

0½α − 2β þ β log ð6H2
0Þ� − 2βH2

0ðq0 þ 1Þ
6H2

0

≥ 0: ð41Þ

The ECs shown in Eqs. (38)–(41) unveil their direct
dependence on free parameters α and β. The previous
equations also established that we cannot choose arbitrary
values for these free parameters, as observed in our
previous model. Through Eqs. (38)–(41), we found that
SEC is violated and WEC is partially satisfied (ρ > 0) if
α ≥ −9β; ðβ ≤ −1Þ, besides NEC and DEC are still obeyed.
This violation of WEC with positive density notably makes
this fðQÞ theory behaves like scalar-tensor gravity models
[24], and such a violation can be interpreted as natural
contributions from quantum effects to classical gravity

[25]. The features of these conditions can be appreciated in
Fig. 2, where the graphics were depicted considering a
specific range of values for parameters α and β.

V. DEVIATION FROM THE STANDARD
ΛCDM MODEL

So far, the ΛCDM is the most successful model used to
describe the actual observations of the Universe. Such a
model has been broadly tested by several different surveys
along the past few years, such as WMAP, Planck, and The

FIG. 1. Energy conditions for fðQÞ ¼ QþmQn derived with the present values of H0 and q0 parameters.
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Dark Energy Survey. As pointed out by Lazkoz et al. [5],
the fðQÞ model can mimic the ΛCDM one by taking
fðQÞ ¼ fΛðQÞ ¼ −Q. Therefore, considering this specific
mapping for fΛ, we find the following energy conditions:

(i) SEC: 6H2q ≥ 0,
(ii) NEC: 2H2ð1þ qÞ ≥ 0,
(iii) WEC: 3H2 ≥ 0 and 2H2ð1þ qÞ ≥ 0, and
(iv) DEC: 3H2 ≥ 0 and 2H2ð1þqÞ≥ 0 or −2H2ð−2þ

qÞ ≥ 0.
By taking the actual values of H0 and q0 in the above

conditions, one can prove that WEC, NEC, and DEC are
satisfied; however, SEC is violated. This is the expected
behavior for a standard accelerated phase for the Universe.
Moreover, we realize an analogous description with respect
to energy conditions between our first model for fðQÞ
gravity and the ΛCDM.

Besides, the recent observations from the Planck
Collaboration, as well as the ΛCDM model, confirm that
the equation of state parameter is ω ≃ −1 [8]. This behavior
corresponds to a negative pressure regime for the Universe,
which configures its current accelerated phase. Therefore,
ω parameter presents as a suitable candidate to compare our
models with ΛCDM. Once the equation of state parameter
is defined as

ω ¼ p
ρ
; ð42Þ

our previous model yields to the following forms of ω:

ω ¼ −1þ 2ðq0 þ 1Þfm6nnð2n − 1ÞH2n
0 þ 6H2

0g
3m6nð2n − 1ÞH2n

0 þ 18H2
0

ð43Þ

for fðQÞ ¼ QþmQn gravity and

FIG. 2. Energy conditions for fðQÞ ¼ αþ β logQ derived with the present values for H0 and q0 parameters.
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ω ¼ −1þ 2βðq0 þ 1Þ
3α − 6β þ 3β log ð6H2

0Þ
ð44Þ

for fðQÞ ¼ αþ β logQ. In Figs. 3 and 4, we have shown
the profiles of the equation of state parameter for both
fðQÞ models here introduced. The graphics were depicted
considering the energy condition constraints for free
parameters m, n, α, and β. From these figures, one can
observe that the values of ω are very close to −1, which
is in agreement with the recent observational data.
Consequently, our models fit the equation of state param-
eter as good as ΛCDM, corroborating the violation of SEC,
and confirming their viability to describe an accelerated
Universe.

VI. CONCLUSION

There are several theories of gravity beyond Einstein’s
GR; however, one critical role to define their self-
consistencies is the energy condition. The physical moti-
vation for a new theory of gravity is related to its
compatibility with the causal and geodesic structure of
space-time, which can be addressed through different
sets of energy conditions. In the present study, we derived
the strong, the weak, the null, and the dominant energy
conditions for two different fðQÞ gravity models. Inspired
by the work of Harko et al. [21], our first model was a
polynomial function of the nonmetricityQ and has two free
parameters m and n. The energy conditions established
m ≤ −1 and 0.9 ≤ n ≤ 2 as constraints to describe an
accelerated expansion of the Universe.
As a second approach, we introduced a gravity model

with a logarithmic dependence on the nonmetricity.
Such a model means that the fðQÞ smoothly tends to
the Einstein-Hilbert model [fðQÞ ∝ Q] and had two free
parameters named α and β. The graphics presented in Fig. 2
unveil a desired accelerating Universe for 18 ≤ α ≤ 20 and
−2 ≤ β ≤ −1. Moreover, such a theory violates both SEC
and WEC with positive density, exhibiting a behavior
analogous to scalar-tensor field gravity models [24].
As a matter of completeness, we compared our energy

constraints with those from the ΛCDM model. In the
ΛCDM gravity, all energy conditions are satisfied except
SEC. This behavior is compatible with our first proposed
model, where fðQÞ ¼ QþmQn, strengthening its poten-
tial as a promising new description for gravity.
Moreover, the equation of state parameters, derived from

our two fðQÞ approaches, are compatible with a current
phase of negative pressure, presenting values close to −1.
This behavior also corroborates the ΛCDM description
for dark energy, as well as current experimental observa-
tions [8].
These previous results allowed us to verify the viability

of different families of fðQÞ gravity models, lighting new
routes for a complete description of gravity compatible with
the dark energy era. Another interesting fact is that there is
plenty of freedom for our free parameters, enabling several
testable scenarios for fðQÞ gravity. Such tests could include
the absence of ghost modes, gravitational wave constraints,
and cosmological parameters derived from the cosmic
microwave background. Besides, it would be interesting
to study carefully the coupling of fðQÞ with inflaton fields,
looking for possible analytic models or for cosmological
parameter constraints. We intend to address some of these
investigations in the near future and hope to report on them.

ACKNOWLEDGMENTS

S. M. acknowledges Department of Science and
Technology (DST), Government of India, New Delhi,
for awarding a Junior Research Fellowship (File

FIG. 3. Equation of state parameter ω for fðQÞ ¼ QþmQn

derived with the present values for H0 and q0 parameters.

FIG. 4. Equation of state parameter ω for fðQÞ ¼ αþ β logQ
derived with the present values for H0 and q0 parameters.

ENERGY CONDITIONS IN FðQÞ GRAVITY PHYS. REV. D 102, 024057 (2020)

024057-7



No. DST/INSPIRE Fellowship/2018/IF180676). J. R. L. S.
thanks CNPq (Grant No. 420479/2018-0), CAPES, and
PRONEX/CNPq/FAPESQ-PB (Grants No. 165/2018 and
No. 0015/2019) for financial support. We are very much

grateful to the honorable referee and the editor for
the illuminating suggestions that have significantly
improved our work in terms of research quality and
presentation.

[1] S. Capozziello and V. Faraoni, Beyond Einstein Gravity: A
Survey of Gravitational Theories for Cosmology and
Astrophysics (Springer, Dordrecht, 2011).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016); 119, 161101
(2017); 123, 011102 (2019).

[3] Event Horizon Telescope Collaboration et al., Astrophys. J.
Lett. 875, L1 (2019); 875, L5 (2019).
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