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The dynamical instability of relativistic polytropic spheres, embedded in a spacetime with a repulsive
cosmological constant, is studied in the framework of general relativity. We apply the methods used in our
preceding paper to study the trapping polytropic spheres with Λ ¼ 0, namely, the critical point method and
the infinitesimal and adiabatic radial perturbations method developed by Chandrasekhar. We compute
numerically the critical adiabatic index, as a function of the parameter σ ¼ pc=ðρcc2Þ, for several values of
the cosmological parameter λ giving the ratio of the vacuum energy density to the central energy density of
the polytrope. We also determine the critical values for the parameter σcr, for the onset of instability, by
using both approaches. We found that for large values of the parameter λ, the differences between the values
of σcr calculated by the critical point method differ from those obtained via the radial perturbations method.
Our results, given by both applied methods, indicate that large values of the cosmological parameter λ have
relevant effects on the dynamical stability of the polytropic configurations.
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I. INTRODUCTION

There are indications that contrary to the inflationary era,
in the recent era the dark energy could correspond to
the vacuum energy related to a repulsive cosmological
constant Λ > 0 implying important consequences in astro-
physical phenomena [1,2]. The estimate of the so-called
relic cosmological constant, governing the acceleration
of the recent stage of the Universe expansion, reads Λ ∼
10−52 m−2 [3]. Although the relic cosmological constant is
extremely small, its role in astrophysical phenomena could
be quite significant, being limited by the so-called static
radius introduced in [4] and discussed in [5–9]. The static
radius represents an upper limit on the existence of both
Keplerian [10] and toroidal fluids [11–14], accretion disks,
the limit on gravitationally bound galaxy systems [15–17],
and even the limit on gravitationally bound polytropic
configurations that could represent a model of dark matter
halos [18–20]. Test fields around black holes in spacetimes
with Λ > 0 were treated in [21,22], indicating possible
instabilities.
In spacetimes with a cosmological constant Λ, the

interior Schwarzschild solution with uniform distribution
of energy density was found in [23] for starlike configu-
rations and extended to more general situations in [24,25].
The effect of Λ on gravitational instabilities for isothermal

spheres in the Newtonian limit was considered in [26]. The
role of the cosmological constant on the so-called electro-
vacuum solutions was studied in [27].
In spacetimes with a positive cosmological constant, the

polytropic spheres represented by a polytropic index n, a
parameter σ, giving the ratio of pressure and energy density
at the center, and vacuum constant index λ, giving the ratio
of the vacuum energy to the central energy density, were
exhaustively discussed in [18,19]. It has been shown that in
some special cases of polytropes with sufficiently large
values of the polytropic index n, extremely extended
configurations representing a dark matter halo could have
gravitationally unstable central parts that could collapse
leading to the formation of a supermassive black hole [20].
The polytropic spheres are well-known models of

compact objects, as they represent extremely dense nuclear
matter inside neutron or quark stars. For example, they
describe the fluid configurations constituted from relativ-
istic (n ¼ 3) and nonrelativistic (n ¼ 3=2) Fermi gas [28],
considered as basic approximations of neutron stars matter.
Of course, in realistic models describing the neutron stars
interior, the equations of state (EOSs) of nuclear matter are
considered. However, in a recently developed approach,
such realistic EOSs are represented by sequences of
polytropes with appropriately tuned parameters [29].
The stability of the polytropic spheres can be addressed

from two different approaches. One of them is related to the
energetic considerations, or critical point method [28,30],
developed by Tooper [31]. A second approach deals with
the dynamical theory of infinitesimal, and adiabatic, radial
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oscillations pioneered in a seminal paper by Chandrasekhar
[32]. Using his pulsation equation, Chandrasekhar estab-
lished the conditions of stability, against radial oscillations,
for homogenous stars and polytropic spheres. The main
conclusion of this study is that the critical adiabatic index
γcr, for the onset of instability, increases due to relativistic
effects from the Newtonian value γ ¼ 4=3. The radial
oscillations method has been widely used in different
contexts [33–35]. The role of the cosmological constant
on the radial stability of the uniform energy density stars,
using Chandrasekhar’s method, was studied in [36,37].
These authors concluded that a large value of the vacuum
constant index λ increases significantly the critical adiabatic
index from its value with λ ¼ 0.
The purpose of this paper is to study in detail the role of

the cosmological constant in the stability of the polytropic
fluid spheres against radial oscillations, that is expected
to be relevant for extremely extended noncompact con-
figurations modeling galactic dark matter halos [18]. For
that purpose, we are reconsidering the analysis carried out
in [36] in two ways: first, we will apply the methods
introduced in our preceding paper [38] to study the stability
of polytropic spheres with Λ ¼ 0, namely, the shooting
method and trial functions to solve the Sturm-Liouville
equation and the critical point method based on the
energetic approach. Second, we will extend the analysis
to a larger family of spheres in the range of polytropic
indexes 0.5 ≤ n ≤ 3, for several values of the vacuum
constant index λ ∈ ½10−9; 10−1�.
The paper is organized as follows. In Sec. II, we review

the equations of structure of the relativistic polytropes in
the presence of a cosmological constant. In Sec. III, we
summarize the general properties and gravitational energy
for polytropic spheres with Λ. In Sec. IV, Chandrasekhar’s
procedure and the associated Sturm-Liouville eigenvalue
problem, including the cosmological term, are outlined. In
Sec. V, we present our methods and results. In Sec. VI, we
discuss our conclusions.

II. STRUCTURE EQUATIONS OF RELATIVISTIC
POLYTROPIC SPHERES WITH A
COSMOLOGICAL CONSTANT

We will consider throughout the paper perturbations
which preserve spherical symmetry. This condition guar-
antees that motions along the radial direction will ensue.
Thus, our starting point is a spherically symmetric space-
time in the standard Schwarzschild coordinates

ds2 ¼ −e2ΦðcdtÞ2 þ e2Ψdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ
where Φðr; tÞ and Ψðr; tÞ are functions of t and the radial
coordinate r. The energy-momentum tensor for a spheri-
cally symmetric configuration takes the form

Tμ
ν ¼ ðϵþ pÞuμuν þ pδμν; ð2Þ

where ϵ ¼ ρc2 is the energy density (written as the product
of the mass density ρ times the speed of light squared), p is
the fluid pressure, and uμ ¼ dxμ=dτ is its four-velocity.
Following our preceding paper [38], we consider the

models of static polytropic fluid spheres proposed by
Tooper [31], which are governed by the EOS,

p ¼ Kρ1þð1=nÞ; ð3Þ

where n is the polytropic index and K is a constant related
to the characteristics of a specific configuration. It is
conventional to introduce the parameter

σ ≡ pc

ρcc2
; ð4Þ

which denotes the ratio of pressure to energy density at the
center of the configuration. The radial profiles of the mass
density and pressure of the polytropic spheres are given by
the relations

ρ ¼ ρcθ
n; p ¼ pcθ

nþ1; ð5Þ

where θðxÞ is function of the dimensionless radius,

x≡ r
L
; L≡

�
σðnþ 1Þc2
4πGρc

�1
2

: ð6Þ

Here L is the characteristic length scale of the polytropic
sphere and it is determined by the polytropic index n, the
parameter σ, and the central density ρc. From Eq. (5), we
obtain immediately the boundary condition θðr ¼ 0Þ ¼ 1.
We consider a static configuration in equilibrium,

immersed in a cosmological background. The relevant
components of Einstein’s equations for this problem are
ðtÞðtÞ and ðrÞðrÞ, which in the presence of a cosmological
constant Λ are given by [39]

d
dr

ðre−2ΨÞ ¼ 1 −
8πG
c4

T0
0r

2 − Λr2; ð7Þ

2dΦ
dr

¼ e2Ψ − 1

r
−
8πG
c4

T1
1r − Λr: ð8Þ

Equation (7) can be recast into the form

e2Ψ ¼
�
1 −

2GmðrÞ
c2r

−
1

3
Λr2

�
−1
; ð9Þ

where

mðrÞ ¼ 4π

Z
r

0

ρðrÞr2 dr ð10Þ

is the mass inside the radius r. Using Eqs. (9) and (10), we
transform Eq. (8) into
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dΦ
dr

¼ ðG=c2ÞmðrÞ − Λ
3
r2 þ ð4πG=c4Þpr3

r2½1 − 2GmðrÞ
c2r − Λ

3
r2�

: ð11Þ

Using the energy-momentum conservation’ Tμν
;ν ¼ 0, we

can write Eq. (11) as a relation between pressure and
energy density in the form [23,37]

dp
dr

¼ −ðϵþ pÞ ðG=c
2ÞmðrÞ þ ½ð4πG=c4Þp − Λ

3
�r3

r2½1 − 2GmðrÞ
c2r − Λ

3
r2�

; ð12Þ

which is the Tolman-Oppenheimer-Volkoff equation,
including the effect of the cosmological constant.
Once an EOS p ¼ pðρÞ is given, Eqs. (10) and (12) can

be integrated subject to the boundary conditions mð0Þ ¼ 0
and pðRÞ ¼ 0, where R is the radius of the star. In the
exterior of the configuration, Eq. (10) gives the total mass
M ¼ mðRÞ, and the spacetime is described by the Kottler
metric [40]. The mass relation Eq. (10) can be written in
terms of the parameter σ as follows:

σðnþ 1Þdθ ¼ −ðσθ þ 1ÞdΦ: ð13Þ

Solving Eq. (13) with the condition that the interior and
exterior metrics are smoothly matched at the surface r ¼ R,
we have

e2Φ ¼ ð1þ σθÞ−2ðnþ1Þ
�
1 −

2GM
c2R

−
Λ
3
R2

�
; ð14Þ

which is a function of θ and σ. In order to find a relation for
the function θ, we rewrite Eq. (13) in the form

dΦ
dr

¼ −
σðnþ 1Þ
1þ σθ

dθ
dr

: ð15Þ

Substituting Eq. (15) into Eq. (8), we have

σðnþ 1Þr
1þ σθ

�
1 −

2GmðrÞ
c2r

−
Λ
3
r2
��

dθ
dr

�

þGmðrÞ
c2r

−
Λ
3
r2 ¼ −

Gσθ
c2

�
dm
dr

�
: ð16Þ

Similarly, the mass relation Eq. (10) can be written in terms
of θ as follows:

dm
dr

¼ 4πr2ρcθn: ð17Þ

To facilitate the numerical computations, it is convenient to
write Eq. (11) in a dimensionless form by using Eq. (6) and
the quantities

vðxÞ≡ mðrÞ
4πL3ρc

¼ mðrÞ
M

; ð18Þ

λ≡ ρvac
ρc

; ð19Þ

where M is a characteristic mass scale of the polytrope

M ¼ 4πL3ρc ¼
c2

G
σLðnþ 1Þ; ð20Þ

and λ indicates the vacuum constant index giving the ratio
between the vacuum energy density and the central energy
density of the polytropic sphere. The cosmological constant
Λ is related to the energy density of the vacuum by

Λ ¼ 8πG
c2

ρvac: ð21Þ

Thus, the index λ in Eq. (19) is connected with Λ through
the relation

λ ¼ Λc4

8πGρc
: ð22Þ

In terms of Eqs. (6), (18), and (20), Eq. (11) takes the final
form

dθ
dx

¼
��

2λ

3
− σθnþ1

�
x −

v
x2

�
ð1þ σθÞgrr; ð23Þ

dv
dx

¼ x2θn; ð24Þ

where

grr ≡
�
1 − 2σðnþ 1Þ

�
v
x
þ λ

3
x2
��

−1
: ð25Þ

These equations, subject to the boundary conditions

θð0Þ ¼ 1; vð0Þ ¼ 0 ð26Þ

can be solved numerically to give the radius x ¼ x1 of the
configuration as the first solution θðxÞ ¼ 0.

III. GENERAL PROPERTIES OF THE SOLUTIONS

A. Structural parameters

Except for the case n ¼ 0, corresponding to a constant
density configuration [23,37], the structure equations (23)
and (24) do not admit analytic solutions in a closed form for
σ ≠ 0. Thus, one must turn to numerical integration.
Considering that a configuration in equilibrium has positive
density and monotonically decreasing pressure (see how-
ever [35]), we will concentrate in the range of values of x
such that θ > 0.
Assuming that λ, n, σ, and ρc are given, we start the

numerical integration at the center of the sphere x ¼ 0,
where θð0Þ ¼ 1 and vð0Þ ¼ 0, and advance by small steps
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until the first zero θðx1Þ ¼ 0 is found at x1, if it exists.
Using this value in Eq. (6), we can determine the radius of
the polytrope as

R ¼ Lx1: ð27Þ

The mass of the configuration is determined by the solution
of vðxÞ at the surface

M ¼ 4πL3ρcvðx1Þ ¼
c2

G
σLðnþ 1Þvðx1Þ: ð28Þ

From Eqs. (27) and (28), we can obtain the mass-radius
relation,

C≡GM
c2R

¼ σðnþ 1Þvðx1Þ
x1

; ð29Þ

which gives the ratio between the gravitational radius
rg ≡ 2GM=c2 and the coordinate radius R, once σ has
been specified. The gtt and grr metric components can be
written in terms of the function θ and the parameter σ as

e2Φ ¼
1 − 2σðnþ 1Þ½vðx1Þx1

þ λ
3
x21�

ð1þ σθÞ2ðnþ1Þ ; ð30Þ

e−2Ψ ¼ 1 − 2σðnþ 1Þ
�
vðxÞ
x

þ λ

3
x2
�
: ð31Þ

The exterior region is described by the Kottler metric, or
Schwarzschild–de Sitter spacetime, which represents a
Schwarzschild mass embedded into an asymptotically de
Sitter spacetime. In the Schwarzschild coordinates, the
exterior metric takes the form [39]

e2Φ ¼ e−2Ψ ¼ 1 −
2GM
c2r

−
Λ
3
r2: ð32Þ

B. Gravitational energy

In the relativistic theory, the total energy E of certain
fluid sphere, which includes the internal energy and the
gravitational potential energy, isMc2 whereM corresponds
to the mass producing the gravitational field

E ¼ Mc2 ¼ 4π

Z
R

0

ϵr2 dr: ð33Þ

The proper energy and proper mass of a spherical gas is
defined by

E0g ¼ M0gc2 ¼ 4π

Z
R

0

ðρgc2ÞeΨr2 dr; ð34Þ

where M0g equals (approximately) the rest mass density of
baryons in the configuration and ρgc2 is the rest energy

density of the gas particles. For polytropic spheres, the
gas density can be written in terms of the total mass density
as [31]

ρg ¼
ρcθ

n

ð1þ σθÞn : ð35Þ

In our analysis of stability using the energy considerations,
an important quantity is the ratio

E0g

E
¼ 1

vðx1Þ
Z

x1

0

θnx2

ð1þ σθÞn½1 − 2σðnþ 1Þðvx þ λ
3
x2Þ�1=2 dx;

ð36Þ
which gives the proper energy of the gas in units of the
total energy E ¼ Mc2. Note that Eq. (36) generalizes the
expression given in [31] to the case of a nonvanishing
cosmological constant.
These two quantities define the binding energy of the

system, namely, Eb ¼ E0g − E, which corresponds to the
difference in energy between an initial state with zero
internal energy where the particles that compose the system
are dispersed, and a final state where the particles are
bounded by gravitational interaction.

IV. RADIAL OSCILLATIONS OF RELATIVISTIC
SPHERES IN SPACETIMES WITH A

COSMOLOGICAL CONSTANT

In this section, we discuss the theory of infinitesimal, and
adiabatic, radial oscillations of relativistic spheres devel-
oped by Chandrasekhar [32], and its extension to the case
of a nonvanishing cosmological constant [36,37].
We consider pulsations which preserve spherical sym-

metry; therefore, these do not affect the exterior gravita-
tional field. In other words, there is no gravitational
monopole radiation. Thus, we are considering a situation
with the line element, Eq. (1), and a mass distribution
described by the energy-momentum tensor, Eq. (2).
The pulsation dynamics will be determined by the

Einstein equations, including the cosmological constant,
together with the energy-momentum conservation, baryon
number conservation, and the laws of thermodynamics.
The relevant components of the Einstein equations with Λ
are given in [37,39].
To obtain the radial pulsation equation for spherical

fluids immersed into a cosmological background, the
metric coefficients Ψðr; tÞ and Φðr; tÞ together with the
fluid variables ρðr; tÞ, pðr; tÞ and the number density of
baryons nðr; tÞ, as measured in fluid’s rest frame, are
perturbed generally in the form

qðr; tÞ ¼ q0ðrÞ þ δqðr; tÞ; ð37Þ

where the canonical variable q≡ ðΦ;Ψ; ϵ; p; nÞ indicates
the metric and physical quantities, and the subscript 0 refers
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to the variables at equilibrium. At first order in the
perturbations, the components of the energy-momentum
tensor Eq. (2) are given by

T0
0 ¼ −ϵ0; ð38Þ

Ti
i ¼ p; i ¼ 1; 2; 3 ðno summationÞ; ð39Þ

T1
0 ¼ −ðϵ0 þ p0Þv; ð40Þ

T0
1 ¼ ðϵ0 þ p0Þve2ðΨ0−Φ0Þ; ð41Þ

where v ¼ dr=dx0. The pulsation is represented by the
radial, or Lagrangian, displacement ξ of the fluid from the
equilibrium position ξ ¼ ξðr; tÞ, defined as

ur

ut
¼ ∂ξ

∂t ≡ _ξ: ð42Þ

The derivation of the expressions for the linear perturba-
tions in the quantities qðr; tÞ follows the same lines as for
the case Λ ¼ 0 discussed in [32,41]; therefore, we just
summarize the main results here. All the relevant equations
must be linearized relative to the displacement from the
static equilibrium configuration. We have to obtain the
dynamic equation for evolution of the fluid displacement
ξðt; rÞ, and a set of initial-value equations, expressing the
perturbation functions δΦ, δΨ, δϵ, δp, δn in terms of the
displacement function ξðt; rÞ.
No nuclear reactions are assumed during small radial

perturbations; therefore, the dynamics of the energy density
and the pressure perturbations is governed by the baryon
conservation law

ðnuμÞ;μ ¼ 0: ð43Þ

Using Eq. (43), we obtain the initial value equation for the
pressure perturbation

δp ¼ −γp0

eΦ0

r2
ðr2e−Φ0ξÞ0 − ξðp0Þ0; ð44Þ

where 0 ¼ ∂=∂r, and we introduce

γ ≡
�
p
∂n
∂p

�
−1
�
n − ðϵþ pÞ ∂n∂ϵ

�
; ð45Þ

as the adiabatic index that governs the linear perturbations
of pressure inside the star [28,32]. In general, this γ is not
necessarily the same as the adiabatic index associated to the
EOS (see discussion in [38]).
The initial-value equation for the Lagrangian perturba-

tion of the energy density δρ, and the metric functions δΦ
and δΨ, takes a similar form as for the case Λ ¼ 0,

δϵ ¼ −
eΦ0

r2
ðϵ0 þ p0Þðr2e−Φ0ξÞ0 − ξðϵ0Þ0; ð46Þ

δΨ ¼ −ξðΨ0 þΦ0Þ0; ð47Þ

ðδΦÞ0 ¼
�

δp
ðϵ0 þ p0Þ

−
�
Φ0

0 þ
1

r

�
ξ

�
ðΨ0 þΦ0Þ0: ð48Þ

It is conventional to assume that all the perturbations have a
time dependence of the form eiωt, where ω is a character-
istic frequency to be determined. Thus, using the previous
initial-value equations for the perturbations, and introduc-
ing the renormalized displacement function’ ζ [41],

ζ ≡ r2e−Φ0ξ; ð49Þ

we obtain the Sturm-Liouville dynamic pulsation equation
with a cosmological constant

d
dr

�
P
dζ
dr

�
þ ðQþ ω2WÞζ ¼ 0; ð50Þ

where the functions PðrÞ, QðrÞ, and WðrÞ are defined as

PðrÞ≡ γp0

r2
e3Φ0þΨ0 ; ð51Þ

QðrÞ≡ e3Φ0þΨ0

r2

� ðp0
0Þ2

ϵ0 þ p0

−
4p0

0

r

−
�
8πG
c4

p0 − Λ
�
ðϵ0 þ p0Þe2Ψ0

�
; ð52Þ

WðrÞ≡ ϵ0 þ p0

r2
eΦ0þ3Ψ0 : ð53Þ

The boundary conditions must guarantee that the displace-
ment function is not resulting in a divergent behavior of the
energy density and pressure perturbations at the center of
the sphere. On the other hand, the variations of the pressure
must satisfy the condition pðRÞ ¼ 0 at the surface of the
configuration. Therefore, we have

ζ

r3
is finite; or zero; as r → 0; ð54Þ

�
γp0eΦ

r2

�
ζ0 → 0 as r → R: ð55Þ

The Sturm-Liouville equation (50), together with the
boundary conditions Eqs. (54) and (55), determines the
eigenvalues ωi (frequencies) and the pulsation eigenfunc-
tions ζiðrÞ which satisfy

Z
R

0

eΦ0þ3Ψ0ðϵ0 þ p0Þζiζjr2 dr ¼ 0; i ≠ j: ð56Þ
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The Sturm-Liouville eigenvalue problem can be written in
the variational form, as described in [41], because the
extremal values of

ω2 ¼
R
R
0 ðPζ02 −Qζ2Þ drR

R
0 Wζ2 dr

ð57Þ

determine the eigenfrequencies ωi. The absolute minimum
value of Eq. (57) corresponds to the squared frequency of
the fundamental mode of the radial pulsations. If ω2 is
positive (negative), the configuration is stable (unstable)
against radial oscillations. Moreover, if the fundamental
mode is stable (ω2

0 > 0), all higher radial modes will also be
stable. For this reason, a sufficient condition for the
dynamical instability is the vanishing of the right-hand
side of Eq. (57) for certain trial function satisfying the
boundary conditions.
The Sturm-Liouville pulsation equation can be used to

determine the dynamical stability of spherical configurations
of perfect fluid. Given certain EOS, the critical adiabatic
index γcr, given by the marginally stable condition ω2 ¼ 0,
can be determined by integration of the Sturm-Liouville
equation. Using Eq. (57), we can deduce a general formula
to find the critical adiabatic index, which reads

γcr ¼
R
R
0 QðrÞζ2 drR

R
0

p0

r2 e
3Φ0þΨ0ðζ0Þ2 dr : ð58Þ

Thus, for γ < γcr, dynamical instability will ensue and the
configuration will collapse. For the case of a homogeneous
star in the presence of a cosmological constant, Böhmer and
Harko [37] showed that the condition for radial stability
reads

γ > γcr ¼
4
3
− l

1 − 3l
þ 19

42

�
1 −

21

19
l

��
rg
R

�
þO

�
rg
R

�
2

; ð59Þ

where l ¼ Λ=ð12πGρcÞ, rg is the gravitational radius, and R
indicates the radius of the star. When Λ ¼ 0, Eq. (59)
reduces to the value found by Chandrasekhar [32].

A. Sturm-Liouville equation for polytropic spheres
with a cosmological constant

Using the relevant expressions discussed in Sec. II,
together with the variational form Eq. (57), we arrive to
the Sturm-Liouville eigenvalue equation for the dynamical
stability of relativistic polytropic spheres in the presence of
a cosmological constant,

ω2L2

Z
x1

0

θnð1þ σθÞ
�
ζ

x

�
2

eΦþ3Ψ dx

¼ σ

Z
x1

0

γθnþ1

x2

�∂ζ
∂x

�
2

e3ΦþΨ dx

− ðnþ 1Þ
Z

x1

0

θne3ΦþΨ

x2

��∂θ
∂x

�
4

x

�
σðnþ 1Þx
4ð1þ σθÞ

�∂θ
∂x

�
− 1

�

− 2ð1þ σθÞðσθnþ1 − λÞe2Ψ
�
ζ2 dx; ð60Þ

which constitutes a characteristic eigenvalue problem for
the frequency ω2 and the amplitude ζðxÞ (we have sup-
pressed the subscript zero as no longer needed). For the
polytropic spheres considered in Sec. II, the adiabatic index
γ is given by

γ ¼
�
1þ 1

n

�
ð1þ σθÞ; ð61Þ

which, in general, is a function of the radial coordinate. In
his study of the dynamical stability of relativistic poly-
tropes, Chandrasekhar [32] assumed γ to be a constant.
Thus, under this assumption, γ can be taken out of the
integral in Eq. (60) and one can integrate given certain trial
function. In a more general approach, for any equilibrium
configuration, one can consider γ in Eq. (60) as an effective
adiabatic index [42],

hγi ¼
R x1
0

γθnþ1

x2 ð∂ζ∂xÞ2e3ΦþΨdxR x1
0

θnþ1

x2 ð∂ζ∂xÞ2e3ΦþΨdx
: ð62Þ

Thus, the condition for stability can be established as

hγi > γcr: ð63Þ

The mass relation Eq. (13) for the gradients of p and Φ is
transferred into the form

∂Φ
∂x ¼ −

σðnþ 1Þ
1þ σθ

∂θ
∂x : ð64Þ

In terms of the variables introduced in Eqs. (4)–(6), the
Sturm-Liouville equation (50) takes the form

d
dx

�
PðxÞ dζ

dx

�
þ L2½QðxÞ þ ω2WðxÞ�ζðxÞ ¼ 0; ð65Þ

where the functions P, Q, and W given by Eqs. (51)–(53)
are now

PðxÞ ¼ hγiσρcθnþ1

L2x2
e3ΦþΨ; ð66Þ
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QðxÞ ¼ σρcðnþ 1Þθne3ΦþΨ

L4x2

�
σðnþ 1Þ
ð1þ σθÞ

�
dθ
dx

�
2

−
4

x

�
dθ
dx

�

− 2ð1þ σθÞðσθnþ1 − λÞe2Ψ
�
; ð67Þ

WðxÞ ¼ ρcθ
nð1þ σθÞ
L2x2

eΦþ3Ψ: ð68Þ

In the next section, we will discuss the methods we used to
solve the eigenvalue problem Eq. (65), subject to the
boundary conditions Eqs. (54) and (55), in order to study

the radial stability of polytropic spheres in the presence of a
cosmological constant.

V. RADIAL STABILITY OF RELATIVISTIC
POLYTROPES IN THE PRESENCE A

COSMOLOGICAL CONSTANT

A. Numerical methods

Clearly, for general polytropes, the critical value of the
adiabatic index related to the dynamical stability can be
determined by numerical integration only. Several methods
to solve the eigenvalue problem Eq. (60) have been
described in the literature (see, e.g., [43] and references

FIG. 1. Profiles of the dimensionless radius x1 for relativistic polytropic spheres in dependence of the parameters: n ∈ ½0.5; 3�,
σ ∈ ½0; n=ðnþ 1Þ�, and λ ∈ ½10−9; 10−1�. The dashed lines indicate the corresponding polytropic configuration (in same color) for λ ¼ 0.
Note that for certain combinations of the indexes ðn; λ ≠ 0Þ, the structure equations do not yield finite configurations for
σ ∈ ½0; n=ðnþ 1Þ�.
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therein). Following [32], we computed the critical values of
the adiabatic index γcr, for the onset of instability, by
integrating numerically Eq. (65) in the case ω2 ¼ 0. For
that purpose, we followed two different methods: the
shooting method and trial functions.
In the shooting method [44], one integrates Eq. (65) from

the center up to the surface of the configuration with some
trial value of γ. The value for which the solution satisfies
(within a prescribed error) the boundary conditions,
Eqs. (54) and (55), correspond to the critical adiabatic
index γcr.
In order to apply the shooting method to Eq. (65), it is

convenient to transform it to a set of two ordinary differ-
ential equations. We follow the convention used in [45]
where Eq. (65) can be split in the following form:

dζ
dx

¼ η

PðxÞ ; ð69Þ

dη
dx

¼ −L2½ω2WðxÞ þQðxÞ�ζ; ð70Þ

which satisfy the following behavior near the origin:

ζðxÞ ¼ η0
3Pð0Þ x

3 þOðx5Þ; ð71Þ

ηðrÞ ¼ η0; ð72Þ

where η0 is an arbitrary constant, which we choose to be
the unity.
The second method is based on using trial functions

to integrate Eq. (60). Following [32,37], we chose the
following functions:

ξ1 ¼ xeΦ=2; ξ2 ¼ x; ð73Þ

yielding

ζ1 ¼ x3e−Φ=2; ζ2 ¼ x3e−Φ: ð74Þ

We perform a detailed study of the stability for the whole
range of the polytropes subject to the condition of causality
due to the restriction on the parameter σ [31],

σ < σcausal ≡ n
nþ 1

: ð75Þ

FIG. 2. Critical adiabatic index γcr, for the onset of instability, for polytropic spheres in the range 0.5 ≤ n ≤ 3, for the index
λ ∈ ½10−4; 10−1�. The dashed lines (in same color) indicate the corresponding values of γcr with λ ¼ 0. Note that the critical adiabatic
index increases from its corresponding value with λ ¼ 0.
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However, we will see that for certain combinations of the
parameters ðn; λÞ the range of σ is also limited by the
condition of having finite size configurations. The limits on
the existence of relativistic polytropic spheres were dis-
cussed in [18], in dependence of the polytropic index n and
the parameter σ. Condition (75) is obtained from the
relation

vsc ¼ c
�
σðnþ 1Þ

n

�
1=2

; ð76Þ

which corresponds to the speed of sound at the center of the
sphere.Thus, itmight seemthatEq. (76) implies the restriction
given byEq. (75). However, note that Eq. (76) gives the phase
velocitywhich is not the same as thegroupvelocity; therefore,
the condition (75) might not be definitive.
Applying the methods described above, we have com-

puted critical values of the adiabatic index γcr for poly-
tropes with characteristic values of the index n, for several
values of the cosmological parameter λ. Using these results
for γcr, we also determined constraints on the parameter σ in
order to construct stable configurations. We present our
results in the next section.

B. Results obtained via Chandrasekhar’s
pulsation equation

As a first step in our analysis, we solved numerically the
equations of structure Eqs. (23) and (24) for relativistic
polytropes in the presence of a cosmological constant. The
integrations were carried out using the adaptive Runge-
Kutta-Fehlberg method [44]. We provide some profiles of
the dimensionless radius x1, as a function of σ, for several
values of the vacuum constant index λ. We studied a whole
family of polytropic spheres with index n ≤ 3, and we
restrict the values of σ by the causality limit Eq. (75). For
comparison, we have included in the same plot (dashed
lines) the profiles with λ ¼ 0.
In Fig. 1, we present our results which are in very good

agreement with those reported in [18]. Note that for certain
combinations of the parameters ðn; σÞ, the extension of the
configuration increases as compared to its corresponding
value in the case λ ¼ 0. This is expected as a consequence
of the repulsive effect of a positive cosmological constant.
Moreover, the presence of λ sets strong constraints on the
existence of polytropic configurations. For instance, for the
case λ ¼ 10−2, polytropic configurations with n > 2.4 do

FIG. 3. Differences of the critical adiabatic index γcr, for the polytropes n ¼ f1.0; 1.5; 2.0; 2.5g, of the values for λ ∈ ½10−6; 10−3� from
their corresponding values with λ ¼ 0. We have normalized the differences by dividing by the corresponding value of λ.
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not exist. For the case λ ¼ 10−1, existing polytropes are
restricted to n < 1.
We also found that the vacuum constant index λ

constraints the allowed values of the parameter σ for
certain configurations. For instance, for the combination
ðn ¼ 2; λ ¼ 10−2Þ, the maximum allowed value of the
parameter σ we found was σmax ≃ 0.3563. Note that this

value is lower than the value restricted by causality given by
Eq. (75). In Fig. 1, we show the results for various
combinations of the parameters ðn; σÞ. For the case of
λ ¼ 10−9, deviations from the λ ¼ 0 case are negligible.
As a second step in our analysis, we determined the

critical adiabatic index γcr for the onset of instability, as a
function of σ, for several values of the indexes ðn; λÞ.

FIG. 4. The stability domain as determined by comparison of the effective adiabatic index (green line) with the critical adiabatic index
(black line) for polytropic spheres. The values of γcr were computed via the shooting method. The red line separates the stable from the
unstable region given by the condition hγi > γcr. The intersection point indicates the maximum permitted value σcr for stability. Note the
role of the parameter λ on σcr.
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We show our results in Fig. 2, which were obtained via the
shooting method (see Sec. VA). For comparison, we also
plotted the values of γcr for each corresponding polytropic
configuration with λ ¼ 0. For large values of λ, for instance,
λ ¼ 10−2 and λ ¼ 10−1 we found that the values of γcr
increase with respect to their values with λ ¼ 0. These
results indicate that large values of λ tend to destabilize
the polytropic spheres. Of particular interest is the case

λ ¼ 10−1 which shows that in the Newtonian limit, when
σ → 0, the value of γcr deviates from the expected
value γN ¼ 4=3.
We will be interested in the differences of certain general

quantities q with λi ≠ 0, from its corresponding value with
λ ¼ 0,

Δq≡ qðλiÞ − qðλ0Þ; ð77Þ

FIG. 5. Profiles of the total mass (black line) and rest mass (green line), as a function of σ, for some polytropic spheres for different
values of the vacuum constant index λ. The maximum of the curve for the total mass determines the critical value of σ for stability; thus,
it separates the stable and unstable regions.
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where λi denotes λ ∈ f10−6; 10−4; 10−3; 10−2g, and λ0
indicates λ ¼ 0. In Fig. 3, we show our results for the
differences of γcr for λ ∈ ½10−6; 10−2�, for the polytropes
n ∈ f1.0; 1.5; 2.0; 2.5g. We have normalized the differences
by dividing by the corresponding value of λ. Note that the
curves of the differences show the same qualitative behavior.
The stability domain, given by the condition hγi > γcr,

in dependence on the parameter λ is shown in Fig. 4

for several representatives values of n. The effective hγi
was computed from Eq. (62) by using the results
obtained from the shooting method. We also determined
the critical values of σ by using the trial functions
given in Eq. (73). In this case, we computed γcr from
Eq. (58) and then we determined the effective adiabatic
index from Eq. (62). We summarize all of our results
in Fig. 6.

FIG. 6. Critical values of the relativity parameter σcr, as a function of the polytropic index n, for the vacuum constant index
λ ∈ ½10−4; 10−1�. The forbidden region (gray background) corresponds to the region where the TOV equations do not give physically
acceptable configurations for λ ≠ 0. Here we show the results obtained by using the CP method together with the results provided by
Chandrasekhar’s approach via the SM and the trial functions ξ1 and ξ2. The dashed lines (same color) indicate the corresponding values
of σcr with λ ¼ 0. Note that large values of λ, for instance, λ ¼ 10−2 and λ ¼ 10−1 lower the critical value σcr with respect to the
corresponding value with λ ¼ 0. Moreover, for these same values of λ, the critical point method and Chandrasekhar’s dynamical
approach predict different values of σcr. For values of λ < 10−4, its influence on the radial stability is practically negligible.
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C. Dynamical instability determined via
the critical point method

We follow the standard approach to examine the stability
of the polytropic spheres using the energy considerations,
or critical point method [31]. This analysis relies on the
properties of static solutions to Einstein’s equations. It is
worthwhile to mention that static methods to study the
stability of configurations might not be conclusive.
Instabilities arising due to thermal effects may not be
predicted by these methods, so one must turn to the full
dynamical approach studied in the last section.
Substituting Eqs. (4) and (6) in Eq. (28) for the total mass

M, we obtain

M ¼ ð4πÞ−1=2ðnþ 1Þ3=2G−3=2Kn=2ðσc2Þð3−nÞ=2vðx1Þ;
ð78Þ

where K and n are the parameters characterizing the
polytrope (see Sec. II). In our analysis, we are considering
configurations with K and n constants; therefore, the total
massM is proportional to σð3−nÞ=2vðx1Þ and the rest mass is
proportional to σð3−nÞ=2vðx1ÞðE0g=EÞ.

To study the stability, in Fig. 5, we plot the total
gravitational mass M and the rest mass of baryons M0g
(preassembly mass), given by Eq. (34), against the
parameter σ. A necessary, but not sufficient, condition
for stability is

dMeq

dρc
> 0; ð79Þ

where Meq indicates the total mass at equilibrium. At the
critical point, where

dMeq

dρc
¼ 0; ð80Þ

there is a change in stability due to the change in the sign of
ω2 (see Sec. IV). Therefore, the critical point where the
total massM has a maximum indicates the critical value σcr
for stability.
In Fig. 5, we show some profiles of total (and rest)

mass, as a function of σ, for different polytropes in
the range 0.5 < n < 3 for several values of the index
λ ∈ ½10−4; 10−1�. In the plots, we have also indicated the
maximum of the curve M which provides the critical

FIG. 7. Differences of the critical parameter σcr, as a function of n, between the values for λ ∈ ½10−4; 10−1� and their corresponding
values for λ ¼ 0. Note that as λ increases the differences between the values predicted by the CP method and Chandrasekhar’s approach
also increase.
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parameter σcr, thus separating the stable from the unstable
region.
The main result of our analysis is displayed in Fig. 6

where we determine the stable and unstable regions in the
n − σ parameter space, for several values of the vacuum
constant index λ ∈ ½10−4; 10−1�. In the plot, we present the
results for the critical values of the parameter σcr as
obtained from the critical point (CP) method and those
obtained from Chandrasekhar’s method which were com-
puted numerically using the shooting method (SM) (see
Fig. 4) and the trial functions [see Eq. (73)]. For compari-
son, we have also included the σcr values for the corre-
sponding configurations with λ ¼ 0.
A first thing to notice is that for large values of the index

λ, in particular λ ¼ 10−2 and λ ¼ 10−1, the values of σcr
decrease relative to the case with vanishing λ. We show the
corresponding differences, as defined in Eq. (77), in Fig. 7
for λ ∈ ½10−4; 10−1�. Note that the differences are propor-
tional, in order of magnitude, to the corresponding value of
the index λ. These results are connected with those in Fig. 2
and the fact that large values of λ tend to destabilize the
polytropic spheres.
Remarkably, we found that for large values of λ the

values of σcr obtained by using the critical point method
differ from those determined via the Chandrasekhar’s

dynamical approach. In Fig. 8, we show the corresponding
differences between both methods, as a function of n, for
λ ∈ ½10−4; 10−1�. Note that for the cases λ ¼ 10−2 and
λ ¼ 10−1, the differences increase with n. On the other
hand, for lower values of λ, for instance, λ ¼ 10−4, the
bigger differences are found in the regime of small n and
tend to zero as n → 3. Note that these results are closely
similar to those depicted in our preceding paper [38]
[Fig. 8] for the case λ ¼ 0.

VI. DISCUSSION

In this paper, we have investigated the role of the cos-
mological constantΛ in the dynamical stability of relativistic
polytropes by using two different approaches, namely, the
energetic or critical point method and the infinitesimal radial
oscillations method. Using Chandrasekhar’s pulsation equa-
tion, we found that large values of λ rise the critical adiabatic
index γcr relative to their corresponding values for λ ¼ 0.
Thus, the cosmological constant tends to destabilize the
polytropes.
Our results clearly show that the critical point method

and the theory of radial oscillations predict different values
of the critical parameter σcr for nonzero λ. The nature of this
discrepancy might be attained to the different physical

FIG. 8. Differences δσcr of the critical parameter σcr, as a function of the family of parameters ðn; λÞ, as determined via the CPmethod
(σCPcr ) and Chandrasekhar’s radial oscillations approach (σChcr ) via the SM and the trial functions ξ1 and ξ2. Note that for large values of λ
the differences grow as n increases. For lower values of λ, the bigger differences are found in the low n regime and tend to zero as n → 3.
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approach adopted in each method. Energy considerations
are based on static solutions to Einstein’s equations.
Meanwhile, Chandrasekhar’s method considers a linearized
analysis of time-dependent perturbations on the given
equilibrium configuration. Our results show that large
values of the cosmological parameter λ enhance this
difference.
Finally, we would like to remark that the role of the

vacuum energy on the radial stability of polytropic spheres

becomes relevant for the parameter λ sufficiently large—it
is negligible for λ smaller than 10−4 and becomes signifi-
cant for λ comparable to 10−1.
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