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In this new era of gravitational wave astrophysics, observations indicate the likely existence of black
holes with significant spin. In order to better understand the potential imprint orbital dynamics have on the
multimessenger data, we include rotation of the primary mass to leading order in the analysis of the stability
boundary pertaining to the triangular equilibrium points, L4 and L5, in the relativistic, restricted, circular,
three-body problem. For Lagrange point stability, these rotation effects are of the same order as the leading
order relativistic corrections ignoring rotation, and they make both L4 and L5 more stable for retrograde
orbital motion.

DOI: 10.1103/PhysRevD.102.024052

I. INTRODUCTION

The recent advent of gravitational wave astronomy and a
maturing multimessenger methodology have contributed
some urgency for a more thorough understanding of multi-
center relativistic orbital systems. One important difference
relativity introduces into the Newtonian class of problems is
that the causal structure and therefore dynamics depend on
the spin of objects, not just their masses. Incorporating the
effects of a gravitating mass’s angular momentum into
spacetime structure and computing the orbital consequences
on a test mass is well understood theoretically [1,2].
Furthermore, recent gravitational wave events [3] have also
provided experimental signatures consistent with the coa-
lescence and formation of rapidly spinning compact objects,
which appear to be near the upper limits predicted by
relativity. The planar relativistic two-body problem has also
been extensively studied theoretically [4–7], and its numeri-
cal applications, including gravitational radiation, play key
roles in interpreting experimental gravitational wave data.
Studying the classical restricted (planar, third mass is a

test mass) three-body problem [8] is valuable for extending
one’s intuition, particularly for insight into the (leading
order) general relativistic context [9–17]. Our goal here is
to elucidate how angular spin momentum J of the “host”
mass M influences the stability of the equilateral Lagrange
points, L4 and L5, in the circular relativistic restricted three-
body system. Understanding this case is of interest, as
declared at the conclusion of the recent paper [16],
“Coupled with the nondegenerate orbital frequencies of
test particles in a Kerr background, the inclusion of

spinning BHs would introduce many new degrees of
freedom that may affect the stability of L4 and L5.”
This article summarizes an approach and findings

regarding this question. The main conclusion, limited to
a binary system where the primary’s (the larger mass’s)
spin axis is orthogonal to the orbital plane, is that L4 and
L5’s stability is degraded by prograde orbital motion but
enhanced in the case of retrograde. Beyond being a new
observation of potential relevance pertaining to accretion
signals originating from compact binary systems, we suggest
that the effect of rotation of the masses on the orbital stability
of these admittedly idealized systems (planar, near circular
orbits) fits into a larger narrative.
In Sec. II, we review relevant prior work regarding the

relativistic restricted three-body problem and describe how to
extend it to the case of a rotating primary. This leads to a pair
of nonlinear differential equationswhichwe integrate numeri-
cally and, specializing to the linear response theory about the
equilibrium points, organize and summarize their stability
criteria in Sec. III. Section IV concludes by providing a brief
analytical narrative that places this stability result, and others,
for the restricted two-body relativistic case in context.

II. ANALYTICAL DESCRIPTION

In order to investigate the stability of the Lagrange points
in the relativistic, restricted, three-body problem, we begin
with the approximate (to leading order, e.g., neglecting
gravitational radiation) two-body relativistic system. The
existing literature has several formulations of this system
[4–7,9–13], although the vast majority do not include the
effects of host mass rotation. We work to the leading order
of small mass ratio,m=M ≪ 1, by modifying the equations*mdstrong.astrphys@gmail.com
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of motion (EOM) of Huang and Wu [11] to include the
angular momentum J of M. In this limit, and for small
a ¼ J=ðMcÞ, the inclusion of host mass rotation changes
the binary’s orbital period. Furthermore, for a test mass
located at L4 and L5, we find additional a-dependent terms
to be included in the EOM of [11]. These terms change the
location and stability criteria for the Lagrange points. In
preceding literature, the orbital equations are rendered in a
rotating (about the center of momentum) Cartesian coor-
dinate the frame with rate

Ω� ¼ ω0 þ ω1=c2 � jajω2
0; ð1Þ

where, hereafter, the upper and lower signs correspond to
prograde and retrograde orbital motion, respectively.
We also define the dimensionless quantities μ1 ¼ M

Mþm
and μ2 ¼ m

Mþm and scale G such that the Keplerian rate
for the binary is ω2

0 ¼ 1=R3, while the leading relativistic
correction with a ¼ 0 is ω1 ¼ ðμ1μ2 − 3Þ=ð2RÞ (see [11]).
Our starting point is Eqs. (13)–(16) from Huang and Wu

[11], which are consistent with the First post-Newtonian

approximation (1PN) equations in [18,9]. To orient the
reader, these equations do not include rotation (i.e., a ¼ 0)
of the host body, no effects from gravitational radiation or
frictional forces, nor any other perturbations. Furthermore,
the binary is assumed to occupy a circular orbit. In the
rotating Cartesian center-of-momentum coordinates, the
host mass and secondary are located at ðX1; 0Þ and (X2; 0),
respectively, with separation R ¼ jX1 − X2j. For complete-
ness, we reproduce here the equation set [Eqs. (12)–(16)] of
[11] for an infinitesimal third test mass

Ẍ−2Ω _Y−Ω2X¼2ω2
0ω1=c2X−A0;3XþA1;3þP=c2; ð2Þ

Ÿþ2Ω _X−Ω2Y¼−2ω2
0ω1=c2Y−A0;3YþQ=c2; ð3Þ

where we have implemented the set of constants An;m ¼
μ1Xn

1

dm
1

þ μ2Xn
2

dm
2

with d1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX − X1;2Þ2 þ Y2

q
. The remaining

post-Newtonian corrections in P and Q to this order
[Eqs. (15) and (16)] from [11] are

P ¼ 6ω0A0;1

�
_Y þ ω0

2
X
�
þ μ1μ2

R

�
X − X1

d31
þ X − X2

d32

�
þ ω0

�
4 _Y þ 7ω0

2
X
�
ðA1;3X − A2;3Þ −

7ω2
0

2
A1;1

þ ð4A0;1 − ðU2 þ 2Aω0 þR2ω2
0Þ þ 4 _X2 − 5ω0

_XY þ ω2Y2ÞðA0;3X − A1;3Þ − 3ω0A0;1ð2 _Y þ ω0XÞ

þ A0;3ð4 _Y þ ω0XÞð _X − ω0YÞY −
3ω2

0

2
ðA2;3X − A3;3Þ þ

3ω2
0

2
Y2ðA2;5X − A3;5Þ; ð4Þ

Q ¼ −A1;3

�
3 _X _Yþ7ω0X

�
_X −

ω0

2
Y
��

þ ω0A2;3

�
4 _X −

5ω0

2
Y
�
þ μ1μ2

R
Y
�
1

d31
þ 1

d32

�

− ð _Y − ω0XÞðω0Y − _XÞðA0;3X − A1;3Þ þ A2;5
3ω2

0

2
Y3

þ A0;3½Yð4A0;1 − ðU2 þ 2Aω0 þR2ω2
0Þ þ ð _Y þ ω0XÞ2Þ þ 3ð _Y þ ω0XÞðX _X þ Y _YÞ� ð5Þ

where, as per [11], U2 ¼ _X2 þ _Y2, A ¼ _YX − _XY and
R2 ¼ X2 þ Y2.
Integrating theweak field equations for the metric outside

of a finite spinning massM, of angular momentum J, leads
to the weak field limit of the exterior Kerr solution in the
usual inertial frame spherical coordinates (t; r; θ;ϕ) [19],

gμν ¼

2

6664

1 − rs=r 0 0 ars=r

0 −1=ð1 − rs=rÞ 0 0

0 0 −r2 0

ars=r 0 0 −r2sin2θ

3

7775
ð6Þ

where rs ¼ 2GM=c2 and a ¼ J=ðMcÞ as before. Next, we
consider orbits of a much smaller mass (m ≪ M) in this
spacetime.By symmetry, a planar circular orbit has a constant
4-velocity dxα

ds ¼ uα ¼ ðu0; 0; 0; u3Þ that solves the equations

of motion. The components can be recast into two constants,
akin to the energy Ẽ and the angularmomentum L̃ as ascribed
to the mass m by an asymptotic observer,

u0 ¼ rẼ
r − rs

−
arsL̃

r2ðr − rsÞ
u3 ¼ arsẼ

r2ðr − rsÞ
þ L̃
r2
: ð7Þ

Therefore, in the sign convention of Eq. (7), the
expression for the angular velocity with respect to asymp-
totic time for a single center system is

dϕ0

dt
¼ _ϕ0 ¼ L̃=r2 þ arsẼ=ðr2ðr − rsÞÞ

rẼ=ðr − rsÞ − aL̃rs=ðr2ðr − rsÞÞ
; ð8Þ

where ϕ0 ¼ ϕþ Ω is the angular coordinate in the lab
frame [the inertial frame of Eq. (7), as seen from the BH
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“center”], and Ω is the rotating frame rate. The Cartesian
coordinates in the rotating frame are thus given by X ¼
r cosðϕÞ þ X1 and Y ¼ r sinðϕÞ. For purpose of clarity,
it may be beneficial for the reader to think of the “velocity”
_ϕ as small, since for most of the orbits we expect _ϕ0 ∼Ω.
For this reason, in terms of the rotating frame angle
ϕ0 ¼ ϕþ Ωt,

_ϕ ¼ ðX − X1Þ _Y − Y _X
r2

; ð9Þ

where, again, X and Y are Cartesian coordinates as seen in
the frame rotating about the center of momentum (CM) at
angular frequency Ω. Note that r2 ¼ ðX − X1Þ2 þ Y2 is the
(parameter) distance to the black hole.
We now expand Eq. (8) out to leading order in a

(dropping’s for clarity),

_ϕ¼ðL=EÞr− rs
r3

þa

�
rs
r3
þðL=EÞ2 rsðr− rsÞ

r6

�
−Ω: ð10Þ

Since [11] has already developed the relativistic correc-
tions to leading order without rotation, we only need to
focus here on the new terms that arise when rotation is
included. Thus, we develop the radial equation of motion to
leading order in a,

̈r − rð _ϕ0Þ2 ¼ −
rs
2r2

þ ars
r2

_ϕ0: ð11Þ

As expected, rewriting Eqs. (11) and (10) in the X and Y
coordinates leads to the classical limit of Eqs. (13) and (14)
of Ref. [11], amended only by terms proportional to a. For
first and second derivatives, we have

r_r¼ðX−X1Þ _XþY _Y _ϕ0−Ω¼ðX−X1Þ _Y−Y _X
r2

; ð12Þ

and also

r3 ̈r ¼ r2ððX − X1ÞẌ þ YŸÞ þ Y2 _X2 þ ðX − X1Þ2 _Y2

− 2ðX − X1ÞY _X _Y ð13Þ

d
dt
ðr2ð _ϕ0 −ΩÞÞ ¼ ðX − X1ÞŸ − YẌ: ð14Þ

To further simplify this result, it is useful to define

the function that arises in Eq. (10); specifically, let fðrÞ≡
rs
r3 þ

ðL=EÞ2rsðr−rsÞ
r6

and denote f0 ¼ df
dr. With this nomencla-

ture, the time derivative of Eq. (10) becomes

ðX − X1ÞŸ − YẌ þ 2ΩððX − X1Þ _X þ Y _YÞ
¼ ðL=EÞrs _r=r2 þ a_rð2rf þ r2f0Þ þ � � � ; ð15Þ

where we are assuming that the secular evolution of the
ratio (L=E) in the full (restricted three-body) problem
leads to subdominant terms, since m=M is assumed small.
Furthermore, by using Eq. (14), the radial equation
Eq. (11), in these coordinates becomes

ðX−X1ÞẌþYŸ− r2Ω2−2ΩððX−X1Þ _Y−Y _XÞ
¼−

rs
2r

þars
r
ðΩþððX−X1Þ _Y−Y _XÞ=r2Þþ �� � ; ð16Þ

where, again, the “…” represents all the higher order
relativistic terms independent of a. Next, by forming linear
combinations of Eqs. (15) and (16), the equations of motion
are combined into a form closer to that of Eqs. (13) and (14)
of Ref. [11]. Additionally, transforming into the rotating
frame centered about ðX; YÞ ¼ ð0; 0Þ, one has

Ẍ¼2Ω _YþΩ2X−
rsðX−X1Þ

2r3
−
a
r2

�
Y _rð2rfþr2f0Þ

−
ðX−X1Þrs

r
ðΩþððX−X1Þ _Y−Y _XÞ=r2Þ

�
þ���; ð17Þ

with the other linear combination being

Ÿ ¼ −2Ω _X þ Ω2Y −
rsY
2r3

þ a
r2

�
ðX − X1Þ_rð2rf þ r2f0Þ

þ Yrs
r

ðΩþ ððX − X1Þ _Y − Y _XÞ=r2Þ
�
þ � � � : ð18Þ

Equations (17) and (18) now contain the leading
“a”-dependent terms rather than those from the change
in Ω due to the pair’s motion [see Eq. (1) a dependence].
The “…” indicate the leading order relativistic terms that
are already in P and Q of Eqs. (4) and (5), respectively.
Regarding the function f, as defined in the text above

Eq. (15), we note

_rð2rf þ r2f0Þ ¼ ððX − X1Þ _X þ Y _YÞ

×

�
−
rs
r3

− ðL=EÞ2 rsð3r − 4rsÞ
r6

�
: ð19Þ

Thus, during the integration of Eqs. (17) and (18), in which
the lhs of Eq. (19) appears, one must continually update the
(in the full system) quasiconstant L=E using Eq. (10). Since
the terms in Eqs. (17) and (18) involving f are already of
order a, for Eq. (19) it suffices to use

ðL=EÞ ¼ r3

ðr − rsÞ
ð _ϕþ ΩÞ

¼ r3

ðr − rsÞ
�
X _Y − Y _X

r2
þ Ω

�
; ð20Þ
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which we square and include in Eq. (19) before finally
using its lhs in Eqs. (17) and (18).
In addition to integrating the equations of motion in time,

it is straightforward to numerically determine the linear
stability of the system about the equilibrium positions in the
rotating frame. To motivate this approach, we start with the
familiar classical problem: a particle subject to a potential
Ṽðx⃗Þ, for which we are looking for solutions that are
static in some rotating frame, i.e., stable circular orbits. The
generic two-dimensional Lagrangian in inertial coordi-
nates, x̃, ỹ, is given by L ¼ 1

2
ð _̃x2 þ _̃y2Þ − Ṽðx̃; ỹÞ, which

in the rotating frame becomes L ¼ 1
2
ð_x2 þ _y2Þ þ

Ωð_xy − _yxÞ − Ṽðx; yÞ þ Ω2

2
ðx2 þ y2Þ. Thus, in terms of

the new potential V ¼ Ṽ − Ω2

2
r2, the EOM becomes

̈x⃗ − 2Ω⃗ × _x⃗þ∇V ¼ 0: ð21Þ

The full problem of concern here has the additional
complexity that the relativistic terms in the potential
Vðx⃗; _x⃗Þ are velocity dependent. For studying the stability
of Lagrange points in the rotating frame, it suffices to
expand the EOM about the points (x⃗�) for which
∇Vjx� ðx⃗; 0Þ ¼ 0. The velocities with respect to the rotating
frame are zero at x⃗� to this order. Expanding to leading
order as a linear system, we have

̈x⃗þ S _x⃗þHx⃗ ¼ 0; ð22Þ

where Hij ¼ ∂i∂jV is the Hessian of the potential in
the rotating frame, evaluated at the point x⃗� and Sij ¼
2Ωϵij þ ∂∂jV

∂ _xi .
Taking the ansatz x⃗ ¼ A⃗e−γt for some nonzero constant

vector A⃗ into Eq. (22) then leads to a quartic equation for γ,

γ4 − ðSxx þ SyyÞγ3 þ ðSxxSyy − SxySyx þHxx þHyyÞγ2
− ðHxxSyy þHyySxx −HxySyx −HyxSxyÞγ
þHxxHyy −HxyHyx ¼ 0: ð23Þ

Lastly, to find the stability boundary, one needs to only plot
the (appropriate) roots of the discriminant Eq. (23). Next,
we describe the numerical evaluation of the full EOM in
Eqs. (17) and (18) used to create the zero locus of the
discriminant of Eq. (23) and also used to compute the orbits
in this case.

III. NUMERICAL SOLUTION

In general, the classical triangular equilibrium point
locations shift due to the relativistic correction terms.
Therefore, by rewriting Eqs. (17) and (18) into a system
of four, first order, nonlinear differential equations, the
resulting vector field’s zeroes were determined using GNU
Scientific Library’s (GSL’s) multidimensional root-finding

routine. The particular routine implemented a modified
version of the Powell hybrid algorithm, but replaced calls to
the Jacobian with finite difference approximations. As
expected, L4 and L5 shift together, maintaining mirror
symmetry across the line connecting the principal masses.
Furthermore, in the relativistic regime, the equilibrium
points move nearly parallel to the principal axis toward the
secondary mass. As prograde rotation increased, both L4
and L5 moved toward one another in the direction of the
principal axis; however, retrograde orbital motion shifted
the location of the points outwards (Fig. 1).
The second portion of the code solved the orbital

equations [Eqs. (17) and (18)] for the motion of the test
mass (Fig. 2). The host and secondary mass separation
remained constant at one unit, while the total mass of the
system was also fixed at one in gravitational units
(GN ¼ 1). Starting at locations near the equilibrium points,
a test particle’s trajectory was evolved using an explicit
Runge-Kutta Prince-Dormand (8, 9) integrator for 100,000
orbits. The errors produced in each step were held within an
absolute error bound of 1e-15.
The third part of the code numerically computes the

second derivatives of the orbital differential equation’s
vector field, in both position and velocity, the Sij and
Hij of Eq. (22), at the Lagrange points L4 and L5 found by
the first part of the code. These numerical derivatives are
taken in a symmetric way to control numerical systematics.
As a first check, both the orbital simulation, as described

above, and the linear stability analysis [numerical evalu-
ation of the discriminant of Eq. (23)] reproduce the stability

boundary for L4 and L5, namely, μ > μ�classical ¼ 1
2
−

ffiffiffiffi
69

p
18

∼
0.038521 in the classical limit 1=c2 → 0, the large distance
limit of the full relativistic problem. A second check is

FIG. 1. The equilibrium points shift due to the relativistic
correction terms. For μ ¼ 0.0385 the cross indicates the classical
(1=c2 ¼ 0) location of L4. The “Asterisk” is the Lagrange point
for c ¼ 30 but with a ¼ 0. The other points are with this same c
value but at the a=amax values indicated.

MARTIN D. STRONG and MICHAEL CRESCIMANNO PHYS. REV. D 102, 024052 (2020)

024052-4



provided by comparing the a ¼ 0 limit at nonzero 1=c2

from our code to the known analytical solution (Ref. [18]).
That comparison indicates not only that the stability
boundary at a ¼ 0 should be a line but that the slope of
the line should be −17

ffiffiffiffiffi
69

p
=486 ∼ −0.29056, which in the

numerical method described here is reproduced to the
leading six decimal places.
Using the method we have developed to study stability

near the classical limit, but at finite a ¼ J=ðMcÞ, we
summarize the entire leading order relativistic stability
boundary as (Fig. 3)

μ�ða; cÞ ¼ μ�classical −
17

ffiffiffiffiffi
69

p

972

rs
r
− 0.0355

a
r
þ � � � : ð24Þ

Note that although we have derived this in the small a limit,
since a < rs=2, we expect the rotation contribution to the
stability boundary to always be smaller in magnitude than
the leading relativistic term.

IV. DISCUSSION

The slip of the positions of L4 and L5 with respect to the
nominal classical locations has a consistent trend that
correlates with stability [20]. The energy level sets in
the rotating frame are tear-drop shaped around each
Lagrange point, with the steepest part of that potential at
the section nearest the smaller of the two principal masses.
Orbits near the Lagrange points in the stable regime explore
the tear-drop shaped region, and as one increases the mass
ratio to the stability boundary, the gradient of the potential
in the part of the tear-shaped region nearest the secondary
increases. The association of instability with the orbits

navigating a region with larger gradients holds in both the
post-Newtonian limit [11,13,18] and in the various dis-
sipative variants of the classical problem [16,17,21]. In the
post-Newtonian limit (with no rotation of the host mass),
the shift of the Lagrange points towards the secondary is, in
fact, a type of relativistic kinematical focusing.
Including the effects of rotation of the “host” mass M

into the problem, we find, due to frame dragging, that a
prograde orbit tends to shift L4 and L5 towards the axis
between the bodies. Again, this increases the gradients of
the potential near L4 and L5, thus making the system less
stable. In a retrograde binary the opposite happens, leading
to a greater stability near L4, L5.
The result that the Lagrange points are less stable in a

prograde system than in a retrograde system appear
counterintuitive with respect to the single-body case.
Recall that for an isolated test mass revolving around a
spinning black hole, for a given fixed parameter distance r,
the prograde orbits have both higher frequency and smaller
innermost stable circular orbits (ISCO) [22,23] than retro-
grade orbits. Recall further, the ISCO is the boundary
between stable and unstable circular orbits for the relativ-
istic case. Quite separately, in a generic parametric oscil-
lator it is not unusual for (in the linearized picture) roots of
the characteristic equation to merge with one another at or
near zero frequency before the system becomes unstable
(i.e., admit solutions of decaying amplitude). Both ISCO
size and this eigenvalue flow thus indicate that the prograde
system should be more stable than the retrograde one.

FIG. 2. Typical results of numerically integrating the EOMwith
a ¼ 0. The center of mass of the system is located at the origin.
The host mass is located at (−μ2,0) and is much heavier than the
secondary mass at (μ1,0). The dark traces are representative of
unstable orbits (μ > μ�classical) starting near L4 and L5. The light
trace is similar, except for stable orbits (μ < μ�classical).

FIG. 3. Computed critical μ boundary versus 1=c2 ¼ rs=ð2rÞ
for different J=M values for the host black hole. Each line
corresponds to a particular critical binary; points above the lines
are binaries that do not support stable L4, L5 orbits, whereas
those corresponding to points below the line do have stable
L4; L5 orbits. The x-axis is the classical (Newtonian) limit.
The J=M ¼ 0 computed curve (middle) is a line with slope
−17

ffiffiffiffiffi
69

p
=486 ¼ −0.29056 as indicated in the literature [[18],

Eq. (11)]. The surrounding lines, at the a=amax values indicated,
show that retrograde (negative) J=M binaries have stable L4 and
L5 at larger mass ratios.

LAGRANGE POINT STABILITY FOR A ROTATING HOST MASS … PHYS. REV. D 102, 024052 (2020)

024052-5



We can relieve the tension between this qualitative
picture of stability and that of our findings for L4 and
L5 for a rotating host in a binary pair by comparing the
system’s bound state energy in the M ≫ m limit. Note that
the energy of the orbital system depends on the rotation
parameter a. A brief calculation indicates that the asymp-
totically accorded total system energy for a circular orbit
binary in the limit that the black hole massM is much larger
than the secondary (mass m) and in the limit of small a, is

E ¼ M þmð1 − 2M=R − 2Maω=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=R − 6aMω=R

p ; ð25Þ

whereω is the revolution rate, which in thisM ≫ m limit in
asymptotically inertial coordinates (R → ∞) is

ω ¼ ω0 � jajω2
0; ð26Þ

where ω2
0 ¼ GðM þmÞ=R3 and the � is for prograde or

retrograde orbital motion, respectively. Combining
Eqs. (25) and (26), we learn that the total energy of the
retrograde system is always smaller than that of the
prograde system in this limit (large R), all other factors
being the same. We conjecture that this difference persists
to all R. If so, the ISCO ordering (whereby the test mass is

captured by the black hole) and the finding here (whereby
the test mass at L4 or L5 is generically thrown out of the
system) are consistent since this indicates that the retro-
grade system is more strongly bound than the equivalent
prograde one.
Rather than always reducing the critical mass ratio for

stability (as cited in earlier literature in the case of no
rotation), relativistic effects due to the rotation of the host
mass can actually increase the critical mass ratio (Fig. 3). If
prograde orbital rotation is most likely astrophysical, then
the foregoing suggests that the critical ratio for Lagrange
point stability happens for even smaller mass ratios than
allowed classically. As known from earlier work, for a light
secondary paired with a rapidly spinning black hole host,
motions of masses at L4 and L5 stable at large distances
will become unstable as the binary shrinks and lead to
ejection from the system for any rotation of the host mass.
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