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Detection of primordial gravitational-wave backgrounds generated during the early Universe phase
transitions is a key science goal for future ground-based detectors. The rate of compact binary mergers is so
large that their cosmological population produces a confusion background that could masquerade the
detection of potential primordial stochastic backgrounds. In this paper, we study the ability of current and
future detectors to resolve the confusion background to reveal interesting primordial backgrounds. The
current detector network of LIGO and Virgo and the upcoming KAGRA and LIGO-India will not be able to
resolve the cosmological compact binary source population, and its sensitivity to stochastic background
will be limited by the confusion background of these sources. We find that a network of three (and five)
third generation (3G) detectors of Cosmic Explorer and Einstein Telescope will resolve the confusion
background produced by binary black holes leaving only about 1.3% (respectively, 0.075%) unresolved; in
contrast, as many as 25% (respectively, 7.7%) of binary neutron star sources remain unresolved.
Consequently, the binary black hole population will likely not limit observation of primordial backgrounds,
but the binary neutron star population will limit the sensitivity of 3G detectors to ΩGW ∼ 10−11 at 10 Hz
(respectively, ΩGW ∼ 3 × 10−12).
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I. INTRODUCTION

With the continued detections of gravitational waves from
binary black hole mergers [1–6] and binary neutron star
inspirals [7,8], the LIGOScientific andVirgo Collaborations
have kept up to their promise of taking us into an era of
gravitational-wave astronomy. In addition to these loud
and nearby sources that are seen as isolated transient events,
there is a population of weak, unresolved sources at higher
redshifts [9–13]. The superposition of these sources is
expected to be the main contributor to the astrophysical
stochastic background which may be detectable in the next
few years as the Advanced LIGO [14] and Virgo detectors
[15] reach their design sensitivity and accumulate more data
[16,17]. Assuming themost probable rate for compact binary

mergers at the time (103þ110
−63 Gpc−3 yr−1 [3] for binary black

hole (BBH) and 1540þ3200
−1220 Gpc−3 yr−1 [7] for binary neutron

star (BNS)), it has been shown that the total background
may be detectable with a signal-to-noise-ratio of 3 after
40 months of total observation time, based on the expected
timeline for Advanced LIGO and Virgo to reach their
design sensitivity [17]. The astrophysical background
potentially contains a wealth of information about the
history and evolution of a population of point sources, but it
is a confusion noise background that obscures the obser-
vation of the primordial gravitational-wave background
produced in the very early stages of the Universe. Proposed
theoretical cosmological models include the amplification
of vacuum fluctuations during inflation [18–20], pre-big-
bang models [21–23], cosmic (super) strings [24–27],
or phase transitions [28–30]. For a comprehensive dis-
cussion of cosmological gravitational-wave backgrounds,
we refer the reader to reviews by Maggiore [31] and
Binétruy et al. [32].
Detection of the primordial gravitational-wave back-

ground would create a unique window on the earliest
moments of the Universe, up to the limits of the Planck era,
and on the physical laws that apply at the highest energy
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scales. Needless to say that such a detection would have a
profound impact on our understanding of the evolution of
the Universe.
In addition to the astrophysical background from unre-

solved compact binary mergers, a contribution is expected
to result from the superposition of several other unresolved
sources [33], such as cosmic (super) strings [25], core
collapse supernovae to neutron stars or black holes
[34–37], rotating neutron stars [38,39] including magnetars
[40–43], phase transitions [44], or initial instabilities in
young neutron stars [45–47].
The current detector network of LIGO and Virgo and the

upcoming KAGRA and LIGO-India will not be able to
resolve the cosmological compact binary source population,
and its sensitivity to stochastic backgroundwill be limited by
the confusion background of these sources [48]. With the
increased sensitivity of the third generation gravitational-
wave detectors, such as the Einstein Telescope (ET) [49] and
the Cosmic Explorer (CE) [50], it will be possible to detect
and resolve almost all of the binary black hole mergers, even
the ones at high redshifts. In this work, we explore the
possibility of probing the cosmological gravitational-wave
background with the third generation detectors, after remov-
ing the astrophysical background from compact binary
mergers from the data. This work is an extension to [48],
where the authors have shown the level at which we can
expect amplitude of background fromunresolved, subthresh-
old signals from compact binary coalescences (CBC) using
different detector networks. We extend the previous study
to also provide an estimate of errors we introduce while
subtracting the signals above threshold for the most opti-
mistic network of detectors considered by [48]. The idea of
subtracting foreground signals to extract stochastic back-
grounds was already explored [51] in the context of the big
bang observer [52], including a noise projection method that
could reduce errors due to imperfect subtraction [53].
Data from gravitational-wave detectors are dominated

by environmental and instrumental backgrounds.
Consequently, it is not possible to identify even determin-
istic signals without sophisticated data processing such as
matched filtering [54]. Stochastic backgrounds cannot be
reliably detected in a single detector—they are found by
cross-correlating the data from a pair of detectors. Indeed,
the stochastic background present in one of the detectors
acts as a matched filter for the data in the other detector
[55–57]. Unfortunately, this means that any common noise
in a pair of detectors could masquerade as stochastic
background [58]. If detectors are geographically well
separated, then the risk of common noise of terrestrial
origin is greatly reduced. Additionally, certain backgrounds
of terrestrial origin could be measured and subtracted [59].
Even in the absence of any terrestrial background, a pair of
detectors would see the same astrophysical background,
which would show up as correlated “noise,” although
detectors might be geographically well separated. As a

result, the only possible way to improve the sensitivity of a
detector network to primordial backgrounds is to subtract
foreground astrophysical signals.
The rest of the paper is organized as follows. In Sec. II,

we describe the basic method that we use to calculate the
gravitational-wave spectrum from the error introduced by
imperfect subtraction of CBC signals. In Sec. III, we
describe the framework used to estimate the deviations
of the estimated parameters of the CBC sources from their
true values. We discuss the simulation of a population
of binaries in Sec. IV, discuss the result of the imperfect
subtraction of such signals in Sec. V, and we discuss our
results in Sec. VI.

II. METHOD

The energy-density spectrum in gravitational waves is
described by the dimensionless quantity [57],

ΩGWðfÞ ¼
f
ρc

dρGW
df

; ð1Þ

where dρGW is the energy density in the frequency
interval f to f þ df, ρc ¼ 3H2

0c
2=8πG is the closure

energy density, and H0 is the Hubble constant equal to
67.8� 0.9 km=c=Mpc [60].
The gravitational-wave energy spectrum density can be

written as a sum of contribution from the astrophysical and
cosmological energy densities,

ΩGW ¼ Ωastro þ Ωcosmo: ð2Þ
Taking the contribution of the compact binary coalescences
out of the astrophysical background, and writing it explic-
itly, we have

ΩGW ¼ Ωastro; r þ Ωcosmo þ Ωcbc: ð3Þ
Here Ωastro; r is the remaining astrophysical background
after taking out the contribution from the CBC sources.
When estimating the parameters of a binary source,

by using Monte Carlo methods, or nested sampling, we
invariably end up with parameters that deviate from the true
values because of the noise in the detector. Therefore, when
we subtract the recovered CBC signals from the data, we
introduce an additional background due to the error in
subtraction, Ωerror,

ΩGW ¼ Ωcbc; rec þ Ωerror þ Ωcbc; unres þΩcosmo þΩastro; r;

ð4Þ
where Ωcbc; rec is the background from the recovered CBC
sources that we can subtract from our data, Ωerror is the
background because of the error introduced from such a
subtraction, Ωcbc; unres is the background from the unre-
solved CBC sources which are not detected as foreground
events. Let us assume that we have an experiment where we
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have detected a list of CBC sources and subtracted them
from the data. Now, we are left with the gravitational-wave
backgrounds, Ωerror, Ωcbc; unres, on top of the cosmological
and astrophysical (from sources other than the CBCs)
backgrounds. We want to answer the question of whether
the cosmological or astrophysical backgrounds from
sources other than CBCs can stand above the residual
background after removal of the CBC sources. That is,

Ωerror þ Ωcbc; unres ≶
?

Ωcosmo ≶
?

Ωastro; r: ð5Þ

In order for us to be able to detect the gravitational-wave
background from cosmological sources or that from differ-
ent astrophysical sources, we would need Ωresidual ¼
Ωerror þΩcbc; unres to lie below these.
The gravitational-wave energy density from a population

of compact binary sources is given by [48]

Ωcbc ¼
1

ρcc
fFðfÞ; ð6Þ

where FðfÞ is the total flux, sum of individual contributions

FðfÞ ¼ T−1 πc
3

2G
f2

XN
k¼1

ðh̃2þ;kðfÞ þ h̃2×;kðfÞÞ; ð7Þ

where N is the number of sources in the Monte Carlo
sample, and T−1 assures that flux has the correct dimension,
T being the total time of the data sample. h̃þ;kðfÞ and
h̃×;kðfÞ are the Fourier domain waveforms for the two
polarizations, and the index k runs over all the sources. We
calculate Ωerror as

Ωerror ¼
1

ρcc
fFerrorðfÞ; ð8Þ

where

FerrorðfÞ ¼ T−1 πc
3

2G
f2

XN
k¼1

ððh̃trueþ;kðfÞ − h̃recoveredþ;k ðfÞÞ2

þ ðh̃true×;kðfÞ − h̃recovered×;k ðfÞÞ2Þ: ð9Þ

To get an estimate of Ωerror, we need to estimate the
quantities, h̃recoveredþ;k ðfÞ and h̃recovered×;k ðfÞ.

III. ESTIMATING THE DEVIATION FROM TRUE
VALUE OF THE MEASURED SOURCE

PARAMETERS

Ideally, we want the full Bayesian posteriors to estimate
the deviation from the true value of parameters. However,
at present, it is unfeasible to compute the full posterior
probability distribution functions of all 15 binary

parameters for the hundreds of thousands of sources that
we simulate up to a redshift of 10 in the following section.
The Fisher matrix provides a computationally inexpensive
method to estimate the errors in the case when the
posteriors are Gaussian, which is, unfortunately, not true
in general. Nevertheless, for the purpose of building a
proof-of-principle concept, the Fisher matrix method is
adequate and the only practical approach to obtain the
magnitude of errors in the estimation of parameters. To this
end, we follow the framework described in [61] and
calculate the errors in estimating the parameters of the
compact binary system using the Fisher matrix method.
According to the post-Newtonian expansion formalism

[62], the gravitational-wave strain from a compact binary
coalescence in frequency domain is given by

h̃ðfÞ ¼ Af−7=6eiΨðfÞ; ð10Þ

where A is the amplitude of the waveform, and ΨðfÞ is the
phase given by

ΨðfÞ ¼ 2πftc − ϕc −
π

4
þ 3

128ην5
XN
k¼0

αkν
k: ð11Þ

Here tc is the time of coalescence, ϕc is the coalescence
phase, ν ¼ ðπMfÞ1=3, M is the total mass (M ¼ m1 þm2),
η is the symmetric mass ratio (η ¼ m1m2=M2) of the
system, and the αk terms are known as the post-
Newtonian (PN) coefficients. In this work, we restrict
ourselves to 0-PN approximation (or the Newtonian
approximation, k ¼ 0), which will be justified below.
For the Fisher matrix study, we choose a set of independent
parameters θ⃗ for describing the gravitational waveform,

θ⃗ ¼ ðf0tc;ϕc; lnMÞ; ð12Þ
where f0 is a reference frequency needed to keep the
parameters for the Fisher matrix dimensionless. M is
the dimensionless chirp mass and is defined as M ¼
η3=5M=M⊙.
Writing the phase of the waveform in terms of these

parameters, we have

ΨðfÞ ¼ 2π
f
f0

ðf0tcÞ − ϕc −
π

4
þ 3

128
ðπMfÞ−5=3; ð13Þ

or equivalently,

Ψðf; θ⃗Þ ¼ 2π
f
f0

θ1 − θ2 −
π

4
þ 3

128

�
πeθ3fGM⊙

c3

�−5=3
:

ð14Þ

In going from Eq. (13) to Eq. (14), we have truncated the
expansion at α0 term, plugged in the value α0 ¼ 1, and we
have introduced the Newton’s constant G, the speed of
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light c, and solar mass M⊙, explicitly to keep all quantities
in the Eq. (13) dimensionless, and defined masses in solar
mass units.
The Fisher matrix elements are given by

Γij ¼ 2

Z
fH

fL

h̃�θiðf; θ⃗Þh̃θjðf; θ⃗Þ þ h̃θiðf; θ⃗Þh̃�θjðf; θ⃗Þ
SnðfÞ

df;

ð15Þ

where

h̃θiðf; θ⃗Þ ¼
∂h̃ðf; θ⃗Þ

∂θi ð16Þ

are the partial derivatives of the waveform with respect to
θi, the parameters of the waveforms, and SnðfÞ is the
single-sided power spectral density of the detector. The
partial derivatives of the waveform can be calculated
analytically,

h̃θ1ðf; θ⃗Þ ¼
2πfA
f0

f−7=6eiðΨðf;θ⃗Þþπ=2Þ; ð17Þ

h̃θ2ðf; θ⃗Þ ¼ Af−7=6eiðΨðf;θ⃗Þ−π=2Þ; ð18Þ

and

h̃θ3ðf; θ⃗Þ ¼ Af−7=6eiðΨðf;θ⃗Þ−π=2Þ
5

128

�
πeθ3fG

c3

�−5=3
: ð19Þ

The Fisher matrix is then calculated by performing the
integration in Eq. (15) numerically. For a network of
detectors, the Fisher matrix is the sum of Fisher matrices
for individual detectors,

Γnet
ij ¼

X
det

Γdet
ij : ð20Þ

The variance-covariance matrix, or simply the covariance
matrix, defined as the inverse of the Fisher information
matrix, is given by

Σij ¼ ðΓ−1Þij: ð21Þ

Once we have the covariance matrix, we use a multi-
variate normal random number generator to generate
observed values of the parameters, PO, based on the
multivariate distribution with the mean equal to the true
value of the parameters, PT, and covariance matrix as Σ.
The error in parameter estimation is then given by

R ¼ ½Δθ1;Δθ2;Δθ3� ¼ PO − PT; ð22Þ

where

Δtc ¼
Δθ1
f0

; Δϕc ¼ Δθ2; ΔM ¼ MΔθ3: ð23Þ

IV. POPULATION SYNTHESIS FOR MULTIPLE
DETECTORS

We simulate a population of binary black hole and binary
neutron star systems up to a redshift of 10, and then
calculate an estimate of Ωcbc; rec and Ωerror as outlined in
Secs. II and III. The list of compact binaries (neutron star
binaries or black hole binaries) is generated following a
Monte Carlo procedure described in [48,63–65] and using
the fiducial model of [17] for the distribution of the
parameters (masses, redshift, position on the sky, polari-
zation, and inclination angle of the binary). In particular,
we assume a redshift distribution which is derived from the
star formation rate (SFR) of [66] and accounts for a delay
between the formation of the progenitors and the merger.
We further consider the median rates estimated from the
first LIGO observation run.
(1) For BBHs, the intrinsic massesm1,m2 (in the source

frame) are selected from the power-law distribution
(Saltpeter initial mass function [67]) considered
in [3,68] of the primary (i.e., the larger mass)
companion pðm1Þ ∝ m−2.35

1 and from a uniform
distribution of the secondary companion. In addi-
tion, we require that the component masses take
values in the range 5–50 M⊙.
For BNSs, the intrinsic masses m1, m2 (in the

source frame) are both drawn from a Gaussian
distribution centered around 1.33 M⊙ with a stan-
dard deviation of 0.09 M⊙.

(2) The redshift z is drawn from a probability distribu-
tion pðzÞ given by

pðzÞ ¼ RzðzÞR
10
0 RzðzÞdz

; ð24Þ

obtained by normalizing the merger rate of binaries
in the observer frame, RzðzÞ per interval of redshift,
over the range z ∈ ½0; 10�. We choose to cut off the
redshift integral at zmax ¼ 10, since redshifts larger
than 5 contribute little to the background [17]. The
merger rate in the observer frame is1

RzðzÞ ¼
RmðzÞ
1þ z

dV
dz

ðzÞ; ð25Þ

where dV=dz is the comoving volume element and
RmðzÞ is the rate per comoving volume in the source
frame, given by

1There was an error in Eq. (2) in [48], which we have corrected
it here in Eq. (25).
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RmðzÞ¼
Z

tmax

tmin

Z
zf¼zðtm−tdÞ

RfðzfÞpðtdÞdzfdtd; ð26Þ

where RfðzfÞ is the binary formation rate as a
function of the redshift at formation time, zf ¼
zðtfÞ is the source redshift at formation, pðtdÞ is the
distribution of the time delay td between the for-
mation and merger of the binary, z ¼ zðtmÞ is the
source redshift at merger. The integration in Eq. (26)
over zf is performed for all the redshifts correspond-
ing to tf such that tm ¼ tf þ td.
We consider a time delay distribution pðtdÞ ∝

1=td, for tmin < td < tmax. For BNS, we set tmin ¼
20 Myr [17,69], whereas for BBH, we set tmin ¼
50 Myr [16,17,70]. The maximum time delay tmax
is set to the Hubble time [70–77].
We assume that the binary formation rate RfðzfÞ

scales with the SFR. We follow the cosmic star
formation model of [66] which uses the Springer-
Hernquist functional form [78]

RfðzÞ ¼ ν
aebðz−zmÞ

a − bþ beðaðz−zmÞ
ð27Þ

to fit to the gamma-ray burst-based high-redshift
SFR data of [79] but normalized based on the
procedure described in [80,81]. This fit results in
ν ¼ 0.146 M⊙=yr=Mpc3, zm ¼ 1.72, a ¼ 2.80, and
b ¼ 2.46 [66]. The value of Rmðz ¼ 0Þ is chosen as
the local merger rate estimate from the LIGO-Virgo
observations. For the rate of BBH mergers, we use
the most recent published result associated with the
power-law mass distribution 56þ44

−27 Gpc−3 yr−1 [6].
For the BNS case, we set Rmðz ¼ 0Þ to
920þ2220

−790 Gpc−3 yr−1 also from [6]. Massive black
holes are formed preferentially in low-metallicity
environments [16,82]. For systems where at least
one black hole has a mass larger than 30 M⊙,
we reweight the star formation rate RfðzÞ by the
fraction of stars with metallicities less than half
the solar metallicity [17]. Following [16,17], we
use the mean metallicity-redshift relation of [83]
and scale it upward by a factor of 3 to account for
local observations [66,84].

(3) The location on the sky, the cosine of the inclination
angle, the polarization, and the coalescence phase
are drawn from uniform distributions.

A. Detector network

We consider two networks of third generation detectors:
one with three total detectors, out of which two have the
sensitivity of CE located at LIGO Hanford and LIGO
Livingston locations and one with the sensitivity of ET
located at the location of Virgo; and a five-detector network

with one detector with the sensitivity of ET at the location
of Virgo, and detectors with CE sensitivity at locations of
LIGO Hanford, LIGO Livingston, LIGO India, and
KAGRA. We choose these configurations for the detector
networks because it was shown in [48] that the astrophysical
“confusion” background from unresolved BBH sources is
decreased by orders of magnitude, reachingΩGWð10 HzÞ ¼
10−14–10−13 andΩGWð10 HzÞ ¼ 10−16–10−14, respectively.

V. SIMULATIONS

We simulate a population of BBH and BNS mergers
according to the procedure described in Sec. IV for a year
of data. There are 76,107 BBH and 1,438,835 BNS signals
in our simulation. For each source, we calculate the
expected network SNR assuming perfect template match,
given by

ρneti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
det

ðρdeti Þ2
r

; ð28Þ

where index i runs over all the sources, and ρdeti ,

ðρdeti Þ2 ¼ 4

Z
∞

0

df
jh̃deti ðfÞj2
Sdeth ðfÞ ; ð29Þ

is the SNR for each source and detector pair (i, det), and
h̃deti ðfÞ ¼ Fdetþ h̃i;þ þ Fdet

× h̃i;× is the Fourier domain wave-
form projected on the detector.
We considered a source as resolvable and a part of the

“foreground,” whenever ρneti ≥ ρthresh ¼ 12.0. We use the 0
order PN approximation for waveforms, since the results
from that and a full inspiral-merger-ringdown model agree
to a great extent below 100 Hz. It has been shown for
various detector combinations that frequencies below
100 Hz account for more than 99% of the SNR for the
stochastic search [64,69]. Therefore, for calculating Ωerror,
we only consider the 0th-PN model to compute the Fisher
matrix for each source in our simulation.
We calculate the Fisher matrices (and the variance-

covariance matrices) for all the sources in our simulation
and recover a set of parameters in order to calculate
Ωresidual;BNS and Ωresidual;BBH.
Our results are shown plotted in Fig. 1. For the three-

detector case, we find that 49% of the BNS sources are
unresolved (with a network SNR < 12), whereas only
1.3% of the BBH sources are unresolved. For the five-
detector case, we find that 25% of the BNS sources are
unresolved while only 0.075% of the BBH sources remain
unresolved. We show the results for network SNR thresh-
old of 12 in the first two rows of Fig. 1. The first row shows
the results for BBH (left: for a three-detector 3G network,
right: for a five-detector 3G network) and the second row
shows the results for the BNS (left: for a three-detector 3G
network, right: for a five-detector 3G network). We can
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FIG. 1. The confusion background created by the astrophysical population of merging binary black holes (top two panels) and binary
neutron stars (bottom four panels) is shown plotted (dot-dashed, orange lines) together with the background from unresolved sources
(dot-dot-dashed, red lines), the background that remains after imperfect subtraction of resolved sources (dashed, red lines) and the sum
of the latter two (solid, deep-red lines). The left panels are for a network of three 3G detectors, and the right panels are for a network of
five 3G detectors. We deem a source is resolved if the signal-to-noise it produces is ≥12 for the top four panels and ≥8 for the bottom
two panels.
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see that the Ωresidual ¼ Ωerror þΩcbc; unres depends on the
network SNR threshold. The higher the network SNR
threshold, the lower the Ωerror but higher the Ωcbc; unres.
Thus, the network SNR threshold can be varied to minimize
the Ωresidual.
For the BBH case, we have not tried to optimize the

Ωresidual;BBH, since it lies much below the Ωresidual;BNS. For
the BNS case, we can see from the second row of Fig. 1 that
we may be able to lower the residual background by
decreasing the network SNR threshold, since the residual is
dominated by the unresolved sources. We decided to lower
the network SNR threshold to 8 (the threshold at which we
should be able to resolve signals in case of Gaussian noise);
these results are shown in the last row of Fig. 1. With a
network SNR threshold of 8, the number of unresolved
BNS sources for a three (and five) network of 3G detectors
reduces to 25% from 49% (7.7% from 25%). We have
managed to lower the BNS residual background by low-
ering the detector network SNR threshold. The residual
background from the BNS sources still dominates over the
BBH background and is the limiting factor for the pri-
mordial backgrounds we can observe. An alternative would
be to follow the noise projection method described in
Ref. [51], which does not require the SNR optimization
procedure described here.

VI. DISCUSSION

Conclusions of our study are summarized in Fig. 2.
The figure plots the energy density in gravitational waves
ΩðfÞ from axion inflation [85], a network of cosmic
strings [24–27], a background produced during postinfla-
tion by oscillations of a fluid with an equation-of-state
stiffer than radiation [86], and from postinflation preheating
scenarios [87,88] aided by parametric resonance [23,89].
For reference, we show the strength of the stochastic
background from vacuum fluctuations during standard
inflation [18–20], although this will not be detectable by
any of the foreseen ground-based detector networks; others
are examples of primordial backgrounds that could be
potentially detected by 3G detectors. The strength of the
background in these examples depends on model param-
eters and it could be lower or higher than what is shown on
the plot.
The figure also shows the sensitivity of a network of

three (and five) 3G detectors to stochastic backgrounds
assuming a 1-year integration but in the absence of
confusion backgrounds from compact binaries or other
astrophysical populations. Ωerror curves shown in Fig. 1
have a minima at around 15 Hz which follows from the
sensitivity of the detector network. It is immediately
apparent from Fig. 2 that the residual background, after
(imperfect) subtraction of the foreground sources, from
binary neutron stars will limit the strength of primordial
backgrounds that could be detected by 3G detectors. With a
network of three (and five) 3G detectors, the sensitivity will

be limited to ΩGW ≥ 10−11 at 10 Hz (respectively, ΩGW ≥
3 × 10−12 at 15 Hz). The binary black hole population, on
the other hand, can be fully resolved and the residual from
that population has negligible effect on the raw sensitivity
to stochastic backgrounds. The rate of binary neutron
stars could be larger or smaller than the median rate of
Rmðz ¼ 0Þ ¼ 920þ2220

−790 Gpc−3 yr−1 assumed in this paper,
which would correspondingly increase or decrease the
confusion background of these sources. Finally, increasing
the number of 3G detectors from three to five improves the
sensitivity to stochastic backgrounds by about factor of 5.
This is accounted by the ability of the five-detector network
to detect and subtract a greater number of sources; the
volume reach for a five-detector network increases by a
factor ð5=3Þ3 ∼ 4.6 relative to a three-detector network.
Keeping in mind that the strengths of the primordial

backgrounds depend on the specific model parameters that
are not known, and the residual background could vary based
on the uncertainty in rate of compact binary mergers and the
their mass distribution, among other things, the figure shows
the most promising primordial background sources that this
subtraction scheme could reveal: cosmic strings, back-
ground from fluids with stiff EOS, and axion inflation.
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