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theories with application to emergent dark radiation and H0 tension

W. E. V. Barker ,1,2,* A. N. Lasenby ,1,2,† M. P. Hobson,1,‡ and W. J. Handley 1,2,§

1Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HA, United Kingdom
2Kavli Institute for Cosmology, Madingley Road, Cambridge CB3 0HA, United Kingdom

(Received 4 May 2020; accepted 22 June 2020; published 16 July 2020)

We propose a one-parameter extension to ΛCDM, expected to strongly affect cosmological tensions.
An effective dark radiation component in the early Universe redshifts away as hot dark matter, then
quintessence, tracking the dominant equation-of-state parameter and leaving a falsifiable torsion field in the
current epoch. This picture results from a new Poincaré gauge theory (PGT), one of the most promising
among the latest batch of 58 PGTs found to be both power-counting renormalizable and free from ghosts
and tachyons. We systematically categorize the cosmologies of 33 of these PGTs, as special cases of the
most general parity-preserving, Ostrogradsky-stable PGT with a purely Yang-Mills action. The theory we
consider contains two propagating massless gravitons, which may be JP ¼ 2þ (long-range gravitation
and gravitational waves). A conspiracy among the coupling constants eliminates the spatial curvature
k ∈ f�1; 0g from the field equations. We show that this “k-screening” is not restricted to conformal gravity
theories. The flat Friedmann equations are then emergent, with potentially tension-resolving freedom at the
early scale-invariant epoch that reliably gives way to an attractorlike state of modern ΛCDM evolution.
We compare with related theories and promising special cases, such as k-screened theories with negative-
definite effective k, and more traditional theories with effective Λ and a JP ¼ 0− massive graviton (dark
matter candidate). As a bonus, we analyze similarly constrained actions in the new extended Weyl gauge
theory (eWGT). We show that in cosmology, PGT and eWGT span exactly the same classical
phenomenology up to a linear map between their coupling constants, hinting at a deeper relationship
between the two.
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I. INTRODUCTION

Once constrained by the strong cosmological principle,
the geometry of the Universe is free to vary in two ways
according to the Friedmann-Robertson-Walker metric:

ds2 ¼ dt2 −
R2dr2

1 − kr2
− R2r2ðdϑ2 þ sin2 ϑdφ2Þ: ð1Þ

On the one hand space, defined by Cauchy surfaces
containing material fluids at rest and spanned by dimen-
sionless r, ϑ and φ, has curvature constant k equal to 1, 0 or
−1. On the other time, here the dimensionful cosmic time t
distinguishes those same surfaces and parametrizes the
evolution of the dimensionful scale factor R along with
derivative quantities such as the Hubble number H and
deceleration parameter q:

H ¼ ∂tR=R; q ¼ −R∂2
t R=ð∂tRÞ2: ð2Þ

Einstein’s general relativity (GR) predicts the geodesic
trajectory of light, according to which recent measurements
have been used to establish that at the present epoch the
Universe is expanding, accelerating and either spatially flat
or very large

H0 > 0; q0 < 0; jkj=H2
0R

2
0 ≪ 1: ð3Þ

The cosmic concordance, or ΛCDM model [1], aims to
reconcile these observations with the rest of GR, whose
contemporary Friedmann equations can be written as

h2 ¼ ωr þ ωm þ ωΛ þ ωk; ð4aÞ

q0h2 ¼ ωr þ
1

2
ωm − ωΛ: ð4bÞ

In these equations the Hubble number (or today’s Hubble
constant) is normalized to h:

h ¼ H0=H; H ¼ 100 km s−1 Mpc−1; ð5Þ
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while a material (nongravitational) density ρi gives rise to a
contemporary dimensionless density according to

Ωi;0 ¼ κρi;0=3H2
0; ωi ¼ Ωi;0h2: ð6Þ

In particular, radiation is only partly accounted for by the
photons of the CMB,

ωr ¼
�
1þ 7

8

�
4

11

�
4=3

Neff

�
ωγ; ð7Þ

with neutrinos making up the remaining relativistic degrees
of freedom Neff ¼ Nν;eff . Matter, or pressureless dust, can
be partitioned into its baryonic and cold dark matter (CDM)
fractions

ωm ¼ ωb þ ωc; ð8Þ

and dark energy is assumed to emerge from a cosmological
constant Λ. The deceleration equation (4b) may be
obtained from (4) so long as the dependence of the various
material energy densities on R—their equations of state
wi ¼ pi=ρi—are known. In particular, these are

wr ¼ 1=3; wm ¼ 0; wk ¼−1=3; wΛ ¼−1: ð9Þ

It is worth noting that the energy balance equation (4a) may
be understood heuristically as a dimensionless statement of
zero net energy density, in the sense that the Einstein tensor
provides a formal and covariant notion of gravitational
energy in GR, although such a picture remains deeply
dissatisfying (see [2] and references therein). Accordingly,
we may write

ωr þ ωm þ ωΛ þ ωH þ ωk ¼ 0; ð10Þ

where the final two dimensionless densities are strictly
gravitational in origin: the accepted quantity

ωk ¼ −k=R2
0H

2 ð11Þ

conveys the energy stored in curled-up Cauchy surfaces,
while we define

ωH ¼ −h2; ð12Þ

which might be thought of as the kinetic energy density
of such surfaces as they expand or contract. Overall, (10)
encodes a central tenet of modern cosmology: that
R-evolution is fundamentally dependent on k.
Since its inception, many authors [3] have expressed

concern with the ΛCDM model. In particular the required
substances known as dark matter and dark energy remain
unaccounted for, while the comparability of their densities
at the present epoch is deemed so unlikely that it has

become known as the cosmic coincidence problem [4].
Similarly, the flatness problem must be resolved by bolting
on a nongravitational inflationary mechanism at early times
[5]. While such long-standing objections stem from natu-
ralness and Occam’s razor, in recent years the prospect of
observational inconsistencies with ΛCDM has become a
reality. These possible inconsistencies appear at homo-
geneous scales in the form of the Hubble tension [6] and
curvature tension [7,8], and affect structure formation
through the small scale crisis [9]. The first of these is
probably the most severe. At the far end of the cosmic
distance ladder, major observational endeavors such as
WMAP [10] and most recently Planck [11] have caused a
low value of H0 or h to be inferred from the CMB. More
local measurements using Cepheid-calibrated supernovae
data (SH0ES) [12], the tip of the red giant branch (TRGB)
[13,14], combined electromagnetic and gravitational obser-
vation of neutron star mergers [15], or multiply lensed
quasar systems (H0LiCOW) [16] indicate a somewhat
higher value. Moreover, the situation has been exacerbated
by each generation of experiments [17]. By one current
estimate [18], the H0 discrepancy has placed ΛCDM in
jeopardy to the tune of 4.4σ.
In the present work, we will motivate a modified gravity

theory, the effect of which on the background cosmology
can be packaged into an augmentation ofΛCDM, involving
the addition of a small extra component ωeff . The equation
of state parameter weff of this extra component “tracks” the
dominant cosmic fluid in (9), such that

wr;eff ¼ 1=3; wm;eff ¼ ð1 − 1=
ffiffiffi
3

p
Þ=2;

wΛ;eff ¼ −1=
ffiffiffi
3

p
: ð13Þ

Since wr;eff ¼ wr, while wm;eff > wm and wΛ;eff > wΛ, the
extra component manifests an injection of dark radiation in
the early Universe which redshifts away nontrivially at later
times. In this sense, it can be cast as an extra relativistic
species Neff ¼ Nν;eff þ ΔNdr;eff . Similar models have
recently become very popular [19–22] as a means to
alleviate the H0 tension. Some of these are in conflict
with the observational constraints from big bang nucleo-
synthesis (BBN) or even from the CMB itself (see e.g.,
[21,23–27]). Of greater concern is the reliance of many of
these models on ad hoc physics.
In our case, the extra component picture is effective,

since it emerges from a motivated modified gravity theory.
Such alternatives to GR are themselves very popular, and
may variously seek to cast early and late-time inflation as
emergent gravitational phenomena, or conveniently resolve
other tensions and crises in ΛCDM. A deeper motivation to
modified gravity is the incompatibility of GR with quantum
mechanics, and this provides further constraints on the
theory. In particular GR is not perturbatively renormaliz-
able, and modifications which fix this tend to do so at the
expense of unitarity [28].
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Amongst themodified gravity theories, thegaugegravities
have a heritage dating back to before the golden age of GR
[29], and are presently undergoing a renaissance due in part
to the advent of computer algebra [30–34]. Rather than the
internal SUð3Þ × SUð2Þ × Uð1Þ group of the standard
model, these theories gauge the assumed external symmetry
groupof spacetime,where the specific gaugegravity depends
on the group of choice. The diffeomorphism invariance of
GR already encodes the gauged translational symmetry
group R1;3 [35]. The least controversial extension ought to
be such translations in combination with proper, orthochro-
nous Lorentz rotationsR1;3⋊SOþð1; 3Þ, which constitute the
Poincaré group Pð1; 3Þ. This results in the Poincaré gauge
theory (PGT), e.g., of Kibble [36], Utiyama [37] and Sciama
[38]. Typical formulations of PGT split the metric into the
square of a translational gauge field and introduce a rotational
gauge field into the affine connection. This process intro-
duces a geometric quality on the spacetime known as torsion,
which is distinct from curvature. The spacetime is then said
to be of Riemann-Cartan type. A special case of PGT known
as teleparallelism, in some sense antipodal to diffeomor-
phism gauge theories such as GR or fðRÞ gravity, is reached
by replacing curvature with torsion altogether—in this case
the flat but twisted spacetime is of Weitzenböck type [39].
An expanded choice of symmetry group is that of Weyl

Wð1; 3Þ. In this case, spacetime is symmetric under all
elements of the extended conformal group excluding
special conformal transformations. As an extension to
PGT this adds Weyl rescalings to the list of symmetries
which need to be gauged, and results in Weyl gauge theory
(WGT) on Weyl-Cartan spacetime [40]. It is not entirely
clear how the rotational gauge field should respond to Weyl
rescalings, and WGT was recently extended (eWGT) [41]
by promoting this freedom to an internal gauge symmetry
(the so-called torsion-scale gauge). The relationship
between PGT, WGT and eWGT is explained in detail in
[41]. In a world with discrete mass spectra, it is accepted
that the scale gauge symmetry, if present, must be broken.
In WGT this is usually done explicitly (e.g., by fixing to the
Einstein—sometimes called “unitary” [42]—gauge), but it
is possible to recast the equations of both WGT and eWGT
in terms of scale-invariant variables which eliminate the
scale gauge freedom and the need for explicit symmetry
breaking. It is not yet clear that either method is preferable,
or if they differ in a physical or merely philosophical sense.
A similar question surrounds the role of geometry in

these gauge gravities: it is perfectly feasible to eliminate
any combination of curvature, torsion and scale as geo-
metric qualities of the spacetime in favor of field strengths
on a spacetime without these qualities, finally arriving at
gauge gravity on Minkowski spacetime. This raises serious
questions only when topology is considered important.1

For our purposes, we find the Minkowski interpretation to
be the simplest basis for comparison between competing
gauge gravities.
As with diffeomorphism gauge theory, gauge gravities in

general enjoy a large freedom in their Lagrangian structure.
Each gauged spacetime symmetry introduces a new field
strength, but may impose restrictions on the field strength
invariants appearing in the Lagrangian. Stable PGTs may
be powered by a gravitational sector constructed from
invariants of two gauge field strengths, the curvature tensor
Rabcd and torsion tensor T abc. Since the rather well
accepted standard model which began this discussion
relies exclusively on Yang-Mills gauge theories of internal
symmetry groups, it is extremely tempting to consider
quadratic invariants of these tensors. Within gauge
gravities, the dependence of Rabcd and T abc on the nth
derivatives of the gravitational gauge fields is not as clean-
cut as in the standard model, and so it is also considered
acceptable to include linear invariants. The only linear
invariant within PGT is the Ricci scalar R which alone
constitutes the minimal gauge gravity extension to GR
known as Einstein-Cartan theory (ECT). We refer to PGTs
and eWGTs including all possible quadratic and linear
invariants as PGTq and eWGTq. Within PGTq it is possible
to roughly halve the dimensionality of the parameter
space by imposing parity invariance on the gravitational
sector, resulting in PGTqþ and, analogously, eWGTqþ. This
approach is commonly used in the literature, and constrains
the theory in a natural manner. It must however be noted
that a subset of authors (see e.g., [43]) reject it on the
grounds of poor physical motivation.
Applications of gauge gravity to cosmology began in the

early 1970s and now constitute a large and established
literature, with many authors progressing well beyond
formalism to obtain analytical and numerical results. The
earliest attempts narrowly focus on ECT, with the opening
move being made by Kopczyński [44] who showed that the
algebraic spin-torsion interaction could remove the singu-
larity at the big bang. The modern notion of cosmological
torsion in general, which we discuss in Sec. IV B, was
established by Tsamparlis [45] before the end of the
decade. Full PGTqþ was incorporated by Minkevich in
1980 [46], who identified a set of generalized cosmological
Friedmann equations (GCFEs) which result from a single
parameter constraint on the PGTqþ action. Minkevich
remains singularly prolific in this field, and the GCFEs
have since been intensively studied in the context of
singularity removal [47,48], inflation [49] and dark energy
[50,51], see also [52]. The GCFEs have also been analyzed
in the context of metric-affine gauge theory (MAGT) [53].
The first thorough (and widely cited) exposition on the
cosmology of PGTqþ was undertaken four years later by
Goenner and Müller-Hoissen [54], although their exami-
nation of the parameter space was by no means exhaustive.
For a comprehensive review of the literature prior to 2004,

1For example a wormhole is difficult to cast in the Minkowski
interpretation, as is the entire apparatus of Penrose diagrams.
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see [55]. In 2005 some of us were involved in an isolated
study of pure Riemann-squared theory (RST) [56]. Within
PGTqþ, RST is a minimal quadratic alternative to ECT
known to accommodate at least a Schwarzschild–de Sitter
vacuum solution, and although the cosmological model
suffers from scale invariance (more specifically normal
scale invariance, NSI), it admits emergent inflationary
behavior.
Superficially, these early classical endeavors may convey

the impression that all emergent gravitational phenomena
are available for free: questions raised by ΛCDM are
simply absorbed into the fine-tuning of the ten PGT
Lagrangian parameters. In 2008 quantum feasability
entered in a seminal paper [57] by Shie, Nester and Yo
(SNY), who observed that the 0þ and 0− torsional modes of
PGT are naturally suited to cosmological investigation.
Their PGTqþ Lagrangian was constructed to target the 0þ
mode, and as such their quadratic Riemann sector contains
only R2. In the same year Li, Sun and Xi performed a
numerical study of the system [58]. Chen, Ho, Nester,
Wang and Yo later augmented their Lagrangian with
the square pseudoscalar Riemann term in order to include
the 0− mode [59]. Significant advances to the SNY
Lagrangian were made in 2011 when Baekler, Hehl and
Nester (BHN) included the parity-violating terms of PGTq

[43]. The cosmological implications of all parity-violating
shadow world terms and parity-preserving world terms
were distilled by means of cosmologically harmless
parameter constraints into their representative BHN
Lagrangian. This work was still being explored by the
same authors in 2015, see [60–63]. Further work on the
parity-preserving SNY Lagrangian was performed by Ao
and Li in 2012 [62]. Most recently, Zhang and Xu (ZX) in
[64,65] have proposed a parameter constraint similar to that
of Minkevich on PGTqþ which suggests a pleasing infla-
tionary formalism. We note that the apparent trend toward
quadratic Lagrangia is not universal, as ECT remains
popular to this day [66,67] as a simple way to import
torsion, albeit algebraically bound to spin. Moreover, other
authors have considered cosmological models with torsion
which do not quite fit into the PGTq category, such as fðRÞ
and Rn PGTs, see for example [65].
The theoretical development of eWGT was first intro-

duced to the community in 2016, and from the outset it has
been clear that structure of eWGT has more in common
with PGT than WGT (for a recent incorporation of
scale invariance to PGTqþ, see [42]). Indeed PGTqþ and
eWGTqþ both sport ten Lagrangian parameters.2 In the
present work, which represents the first application of
eWGT to cosmology, we aim to show that PGTqþ and
eWGTqþ are cosmologically equivalent.
The remainder of this paper is structured as follows.

In Sec. II we briefly explain the Minkowski interpretation

of the two gauge gravities under consideration, PGTqþ and
eWGTqþ, as in [41]. In Sec. III we review the “cutting
edge” of PGTqþ quantum feasibility, as contained within
our major references [30,31]. In Sec. IV we adapt the
minisuperspace formalism to PGTqþ and eWGTqþ cos-
mology and set out a cosmological correspondence
between the actions of the two theories.
Our central results are confined to Sec. V. The gener-

alized Friedmann equations, which are common to
eWGTqþ and PGTqþ, are dissected in the context of
quantum feasibility in Sec. V B, and the consequent
k-screening in Sec. V C. The new cosmology behind (13)
is then developed in Sec. V E. Before concluding in Sec. VII,
we briefly discuss the application of Clifford algebra to
general quadratic invariants in Sec. VI. There follows a list of
the spin projection operators (SPOs) used for [30,31] in the
Appendix A, a comparison to part of the literature mentioned
above in Appendix B, and certain cumbersome functions
in Appendix C.
We provide a list of potentially nonstandard abbrevia-

tions in Table I. As far as possible we will adhere to the
notation of [41]. This entails the use of natural units,
c ¼ ℏ ¼ 1, in which energy has units eV and the Einstein
constant, κ, is used to account for dimensionality where
necessary, though occasionally we revert to the reduced
Planck mass, MP ¼ κ−1=2. The signature is ðþ;−;−;−Þ.

II. GAUGE THEORIES

A. Symmetries, transformation laws
and field strengths

Gauge gravities may be cast (almost) without loss of
generality in a manifold M with Minkowskian geometry.
This Minkowski interpretation was pioneered by Kibble
[36] and later Lasenby et al. [68] and Blagojević [39], and
used extensively in the initial proposal for eWGT [41].
There is a potentially curvilinear coordinate system fxμg in
this spacetime, with coordinates considered to be functions

TABLE I. Potentially nonstandard abbreviations.

PGT Poincaré gauge theory
MAGT Metric-affine gauge theory
WGT Weyl gauge theory
eWGT Extended Weyl gauge theory
PGTq, eWGTq General PGTs and eWGTs with Lagrangia

at most quadratic in field strengths
PGTqþ, eWGTqþ General PGTqs and eWGTqs with

parity-preserving Lagrangia
ECT Einstein-Cartan theory
RST Riemann-squared theory
GTG Gauge theory gravity
STA Spacetime algebra
SPO Spin-projection operator
PCR Power-counting renormalizable
NSI Normally scale invariant

2For this reason, we will not attend to WGT cosmology.
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of the points of the manifold, and all fields written as
functions of the coordinates. From the fxμg there is defined
a basis of tangent vectors feμg and cotangent vectors
feμg in the usual manner. The necessarily flat metric
on M, which is not a gravitational gauge field, is then
eμ · eν ¼ γμν. The first gauge symmetry to consider is that
of diffeomorphisms, though these are interpreted as passive
general coordinate transformations (GCTs). Particularly,
physical quantities should have zero total (as supposed to
form) variations under GCTs. Taking new coordinates,
fx0μg, the covariance of a scalar matter field3 is expressed as

φ0ðx0Þ ¼ φðxÞ; ð14Þ

with the expected transformation of other quantities

e0μ ¼ ∂x0μ
∂xν e

ν; e0μ ¼
∂xν
∂x0μ eν; ∂ 0

μ ¼
∂xν
∂x0μ ∂ν: ð15Þ

Independently of the coordinate basis, there exists an
orthonormal Lorentz basis fêag and dual basis fêag, such
that êa · êb ¼ ηab. While Greek indices transform under the
Jacobian matrices of GCTs, Roman indices transform
under local Lorentz rotations Λa

b. Indices are converted
by means of the translational gauge fields (analogous to the
tetrads of the geometrical interpretation) haμ and baμ,
which themselves transform according to their indices,4

and which satisfy

haμbaν ¼ δμν ; haμbcμ ¼ δca: ð16Þ

The matter field should of course be generalized to some
higher-spin representation of the Lorentz group. A space-
time derivative, covariantized with respect to both gauge
freedoms, can then be defined as

Daφ ¼ haμ
�
∂μ þ

1

2
Acd

μΣcd

�
φ; ð17Þ

where Acd
μ is the spin connection and the Σab are the

Lorentz group generators of the spin-specific representation
of φ. Note that in this general representation the associated
indices are suppressed. By convention, calligraphic script is
used to highlight components of tensors defined purely
with respect to the Lorentz frames, while normal script is
used for mixed or purely coordinate frame definitions.5

Thus, we note the required transformation properties of the
spin connection under a pure Lorentz rotation,

A0ab
c ¼ Λd

cðΛa
eΛb

fA
ef

d − Λbehdν∂νΛa
eÞ: ð18Þ

The field strength tensors of PGT are then defined in the
Yang-Mills sense,

2D½cDd�φ ¼
�
1

2
Rab

cdΣab − T a
cdDa

�
φ; ð19Þ

where the Riemann (rotational) field strength tensor is

Rab
cd ¼ hcμhdνð∂ ½μAab

ν� þ Aa
e½μAeb

ν�Þ; ð20Þ

and the torsion (translational) field strength tensor is

T a
bc ¼ −2baμD½bhc�μ: ð21Þ

Under local Weyl transformations, the various PGT quan-
tities are expected to transform as

φ0 ¼ ewρφ; h0aμ ¼ e−ρhaμ; A0ab
μ ¼ Aab

μ; ð22Þ

where w is the Weyl weight of the matter field. To arrive
at WGT, the covariant derivative (17) must then be
augmented with an extra Weyl gauge field. In eWGT,
the spin connection obeys a more general transforma-
tion law:

A0ab
μ ¼ Aab

μ − 2θηc½abb�μhcν∂νρ: ð23Þ

The dimensionless parameter6 θ ∈ ½0; 1� is introduced
to extend the normal transformation law of (22) to the
special alternative, including admixtures between the two
in its range.7 The induced transformation of the PGT
torsion contraction, T a ¼ T b

ab, combined with another
θ-dependent transformation law for the Weyl gauge field

T 0
μ ¼ Tμ þ 3ð1 − θÞ∂μρ; V 0

μ ¼ Vμ þ θ∂μρ; ð24Þ

allows a suitable eWGT covariant derivative to then be
constructed:

D†
aφ ¼ haμ

�
∂μ þ

1

2
A†cd

μΣcd − wVμ −
1

3
wTμ

�
φ: ð25Þ

In general, eWGT quantities are distinguished from PGT
counterparts by an obelisk superscript: the eWGT spin
connection is

A†ab
c ¼ Aab

c þ 2V ½aδb�c : ð26Þ3The generic matter field φ should not be confused with the
azimuthal angle φ.

4The gauge field haμ and in particular its determinant h should
not be confused with the normalized Hubble constant, h ¼ H0=H.

5This is especially useful in the present work, as we can always
refer toRabcd instead of Rαβμν, and thus avoid confusion with the
dimensionful scale factor, R.

6The parameter θ should not be confused with the polar angle ϑ.
7Note that although the special transformation is defined as

θ ¼ 1, the apparatus of eWGT also functions outside the range
θ ∈ ½0; 1�.
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By generalizing (17) to (25), the translational and rotational
gauge field strengths are themselves redefined, and the
extra gauge symmetry introduces its own field strength
tensor:

2D†
½cD

†
d�φ¼

�
1

2
R†ab

cdΣab−wH†
cd−T †a

cdDa

�
φ: ð27Þ

In particular the eWGT Riemann tensor differs from (20)
according to

R†ab
cd ¼ Rab

cd þ 2δ½bd ðDc þ VcÞVa�

− 2δ½bc ðDd þ VdÞVa� − 2VeVeδ
½a
c δ

b�
d

þ 2V ½aT b�
cd; ð28Þ

while the eWGT torsion differs from (21) according to

T †a
bc ¼ T a

bc þ
2

3
δa½bT c�; ð29Þ

and has the property that all of its contractions vanish. We
will not give the precise form of the field strength H†

ab
associated with Weyl rescalings, since it is not used in the
eWGTqþ actions which follow on the grounds of potential
instability.

B. Restricted actions

The PGTqþ Lagrangian density should be linear in
gauge-invariant quantities with dimensions of energy
density, eV4. Displacement gauge invariance naturally
demands that these quantities be tensor densities of rank
zero, while parity invariance further eliminates pseudosca-
lar densities. We are therefore interested in scalars, which
we can always convert to densities by combination with the
factor h−1 ¼ 1= detðhaμÞ. Within the gravitational sector,
we are free to use invariants of the field strengths up to
second order. The only such first order term is that of
Einstein and Hilbert, which we write as8

LR ¼ −
1

2
α0R; ð30Þ

where α0 is a dimensionless parameter of the theory.
Likewise, there are six such parameters in the quadratic
Riemann sector

LR2 ¼ α1R2 þ α2RabRab þ α3RabRba

þ α4RabcdRabcd þ α5RabcdRacbd

þ α6RabcdRcdab; ð31Þ

and three more in the quadratic torsion sector

LT 2 ¼ β1T abcT abc þ β2T abcT bac þ β3T aT a: ð32Þ

We also reserve the freedom at this stage to introduce
an ad hoc cosmological constant, Λ ∼ eV2. Anticipating
various mechanisms which may give rise to an effective
cosmological constant through the introduction of new
dynamical fields, Λ will not be recast as a dimensionless
theory parameter, and will enter into the Lagrangian as

LΛ ¼ −Λ: ð33Þ

Finally, the various matter fields will couple to the
gravitational gauge fields within their own Lagrangian
densities: we will denote the resulting scalar simply as
Lm. The general PGTqþ action thus has ten dimensionless
parameters, and by introducing Einstein’s constant to
compensate for dimensionality we may write it as

ST ¼
Z

d4xh−1½LR2 þ κ−1ðLT 2 þLRþLΛÞþLm�: ð34Þ

The situation for eWGTqþ differs through the structure of
the eWGT torsion tensor and the imposition of Weyl gauge
invariance. The forms of LR† and LR†2 are identical to those
of LR and LR2 : one needs simply to replace the PGT
Riemann tensor with its eWGT counterpart,

LR† ¼ −
1

2
α0R†; ð35Þ

and likewise for the quadratic Riemann sector. The quad-
ratic torsion sector in eWGTqþ contains only 2 degrees of
freedom, because the eWGT torsion has identically vanish-
ing contraction,

LT †2 ¼ β1T †
abcT †abc þ β2T †

abcT †bac: ð36Þ

The quadratic torsion and linear Riemann sectors cannot be
directly admitted to the Lagrangian because their Weyl
weight is too low. This can be fixed by multiplication with a
compensator field of dimension eV and weight w ¼ 1:

ϕ0 ¼ eρϕ: ð37Þ

The generally dynamical nature of the compensator field
demands the addition of an extra Lagrangian contribution,
which we write as a sum of kinetic and potential terms:

Lϕ ¼ 1

2
νD†

aϕD†aϕ − λϕ4: ð38Þ

The constraint on the Weyl weight of Lagrangian densities
means that the second term in (38) already functions as a
suitably general cosmological constant, therefore ν is the

8Note that in [41] the notation α0 ¼ a is used, which we will
require for the dimensionless scale factor, a ¼ R=R0.
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only new dimensionless theory parameter. A final possibil-
ity is a term quadratic in the Weyl gauge field strength,

LH†2 ¼ 1

2
ξH†

abH†ab; ð39Þ

though in the present work we will take ξ ¼ 0 as the field
strength is incompatible with the strong cosmological
principle. Moreover, H†

ab has the unusual property of
containing second derivatives of the haμ gauge field: such
a structure might be expected to introduce an Ostrogradsky
instability to the equations of motion.9 This may be
compared to candidate terms in the PGT Lagrangian,
quadratic in the first derivatives of the PGT torsion: these
are traditionally excluded on similar grounds. The matter
coupling will in general differ between eWGT and PGT, so
we denote the matter Lagrangian by L†

m and write the total
action as

ST ¼
Z

d4xh−1½LR†2 þϕ2ðLT †2 þLR†ÞþLϕþL†
m�: ð40Þ

Note that while eWGT incorporates scale invariance by
guaranteeing homogeneous transformation of the covariant
derivative D†

a, some choices of PGT action are naturally
scale invariant despite the inhomogeneous transformation
of Da. In the context of PGTqþ, this holds for normally
scale invariant Lm in combination with

LR ¼ LT 2 ¼ 0; ð41Þ

or the theory parameter constraint

α0 ¼ β1 ¼ β2 ¼ β3 ¼ 0: ð42Þ

This imposes severe restrictions on both the gravitational
sector, which is confined to the quadratic Riemann sector,
and the matter content, which is confined to radiation. We
refer to such PGTqþ s as normally scale invariant (NSI).
In [41] it is noted that more general NSI versions of

PGTqþ can be formed by allowing for the compensator ϕ
field in PGT to make up for weights in both gravitational
and matter sectors, as with eWGT. So long as no term
proportional to DaϕDaϕ is added to the matter sector, the
constraints (42) on the gravitational sector can then be
relaxed because the only remaining concern is the inho-
mogeneous transformation of T a

bc. This can be eliminated
(up to a total derivative) by a specific restriction on the fβig:

2β1 þ β2 þ 3β3 ¼ 0: ð43Þ

In what follows, as a matter of convenience, we will confine
the ϕ field to eWGT.
We see therefore that the PGTqþ and eWGTqþ both

contain ten freedoms at the level of the theory, and possibly
an eleventh freedom in the form of the cosmological
constant. There is some subtlety regarding the true freedom
of the quadratic Riemann sector in both cases, because of
the Gauss-Bonnet identity, which states that the quantity

G ¼ R2 − 4RabRba þRabcdRcdab ð44Þ

is a total derivative in n ≤ 4 dimensions, as is the analogous
quantity in eWGT. This allows us to set one of α1, α3 or α6
to zero without loss of generality. Since the invariance of
physical results under a Gauss-Bonnet variation is a useful
test, we will not make any such reduction for the purpose of
simplifying calculations and instead maintain all six quad-
ratic Riemann parameters as far as possible.
Of greater relevance to the present work is the repar-

ametrization freedom under linear combinations: the fαig,
fβig and ν are conveniently chosen to agree with the
canonical form of tensor components. Unfortunately, this
formulation does little to convey the effects of symmetry
properties of the field strength tensors on the quadratic
invariants. The symmetries of the Riemann tensor are of
fundamental importance when comparing these torsionful
theories to more traditional metrical alternatives, and
with this in mind we will work with the following
reparametrization:

α̌0 ¼ α0; α̌1 ¼ α1; α̌2 ¼ α2; α̌3 ¼ α3;

α̌4 ¼ 2α4 þ α5; α̌5 ¼ α5; α̌6 ¼ 2α6;

β̌1 ¼ −2β1 − β2; β̌2 ¼ β2; β̌3 ¼ β3: ð45Þ

These parameters drop out of a new scheme for expressing
quadratic invariants, which we set out in Sec. VI. Note that
as with β3, the term parametrized by β̌3 vanishes identically
in eWGTqþ.

III. GHOSTS, TACHYONS AND LOOPS

The perturbative QFT of PGTqþ begins with the lineari-
zation

haμ ¼ δμa þ faμ; baμ ¼ δaμ − faμ þOðf2Þ;
Aab

μ ¼ OðfÞ: ð46Þ

The perturbative gravitational gauge fields with which we
work are then

sab ¼ fðaμηbÞμ; aab ¼ f½aμηb�μ; Aabc¼ δμcAabμ; ð47Þ

i.e., two four-tensor fields of rank two and one of rank
three. Upon canonical quantization, in composition with

9We note however that there is some reason to believe [41] that
such problems, when caused by (39), may be self-resolving in
practice.
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states of definite momentum or position, the four-tensor
content of these fields will be distributed amongst states of
definite spin-parity JP. The JP spectrum of any field is
generally set by the rank n of the four-tensor, which is a
tensor product of n four-vectors. Under a spacetime
rotation Λa

b confined to a spatial rotation orthogonal
to some timelike vector ka the timelike part of the four-
vector transforms as a 0þ state and the spacelike part as a 1−

state. A rank-two four-tensor such as fab thus transforms
as a state under the following equivalent representations
of SO(3):

ðDð0þÞ ⊕ Dð1−ÞÞ ⊗ ðDð0þÞ ⊕ Dð1−ÞÞ
≃ ðDð0þÞ ⊗ Dð0þÞÞ ⊕ ðDð0þÞ ⊗ Dð1−ÞÞ

⊕ ðDð1−Þ ⊗ Dð0þÞÞ ⊕ ðDð1−Þ ⊗ Dð1−ÞÞ
≃Dð0þÞ ⊕ Dð0þÞ ⊕ Dð1−Þ ⊕ Dð1−Þ

⊕ Dð1þÞ ⊕ Dð2þÞ; ð48Þ

indicating that the tensor is a direct sum of two 0þ, two 1−,
one 1þ and one 2þ states. An analogous calculation reveals
that a general rank-three four-tensor is a direct sum of
four 0þ, one 0−, three 1þ, six 1−, three 2þ, one 2− and
one 3þ states. By adding the multiplicities of the states
2J þ 1 for either field one recovers the 42 or 43 tensor
degrees of freedom, illustrating the completeness of the JP

decomposition.
In practice, the fields defined in (47) contain a priori

symmetries which reduce their JP content. Thus the 21 JP

sectors of fab are neatly partitioned among the symmetric
and antisymmetric parts sab and aab. This procedure was
historically applied to the symmetric perturbation of
metrical gravity in order to classify JP graviton states. In
PGT, the antisymmetric part of fab introduces a 1− and
additional 1þ sector to the theory, though both sab and aab
excitations are always considered gravitons. The assumed
antisymmetry of the spin connection A½ab�c ¼ Aabc elim-
inates three 0þ, one 1þ, four 1− and two 2þ sectors along
with the curious 3þ sector—excitations of the Aa

bc field
are sometimes called tordions. In general therefore, the
gravitational particles of PGT remain maximally spin-2.
It is worth noting that the distinction between symmetric

and antisymmetric gravitons is rather artificial, as is the
distinction between gravitons and tordions. This is because
in many cases the various fields are related by gauge
transformations or the excitations are coupled. The various
JP components of all fields may be extracted by means of
well-established spin projection operators (SPOs). In the
case of the field Aabc, these generically take the form
PijðJPÞ, where the three Roman indices are suppressed and
i and j label independent sectors with the same JP. In
particular, the diagonal elements i ¼ j form a complete set
over all JP sectors inAabc, and i ≠ j is only possible within
the 1− and 1þ sectors, since the direct sum contains two

independent representations of these JP. In the remainder
of this work, we will be working at the level of the torsion
rather than the spin connection. Within the linearized
regime set out above, T a

bc and Aab
c are two sides of

the same coin and related by the contortion

T abc ¼ N abc
ijkAijk; N abc

ijk ¼ 2δjaδi½cδ
k
b�: ð49Þ

Thus all freedoms in the spin connection are inherited by
the torsion. It is natural that the JP sectors of one field map
onto the other, indeed generally we find

N abc
ijkPnnðJPÞijkdefAdef ¼ PnnðJPÞabcijkT kji: ð50Þ

Some nuance is however required in the case of the
pseudovector tordion triplet, since N does not commute
with Pijð1þÞ. The correct mixing in this case is given by
the off-diagonal SPOs

N abc
ijkP11ð1þÞijkdefAdef

¼
�
P22ð1þÞabcijk −

1ffiffiffi
2

p P12ð1þÞabcijk
�
T kji;

N abc
ijkP22ð1þÞijkdefAdef

¼
�
P11ð1þÞabcijk þ

1ffiffiffi
2

p P12ð1þÞabcijk
�
T kji: ð51Þ

With (50) and (51) inmind, it is therefore possible to consider
JP tordions as well-defined excitations of the torsion and/or
the spin connection, though the latter is more conventional
from the perspective of quantization. A full list of the
diagonal SPOs of the Aabc field is given in Appendix A.
The theory parameters employed in [30,31] differ from

those in [41] chiefly through mixing of the linear Riemann
and quadratic torsion sectors10

r1 ¼ α̌4 −
1

2
α̌5; r2 ¼ α̌4 − 2α̌5;

r3 ¼
1

2
α̌4 −

1

2
α̌5 −

1

2
α̌6;

r4 ¼
1

2
α̌2 þ

1

2
α̌3; r5 ¼

1

2
α̌2 −

1

2
α̌3; r6 ¼ α̌1;

κt1 ¼ −β̌1 −
1

2
α̌0; κt2 ¼ −2β̌1 − 6β̌2 þ

1

2
α̌0;

κt3 ¼ −
1

2
β̌1 þ

3

2
β̌3 þ

1

2
α̌0; κl ¼ 1

2
α̌0: ð52Þ

In terms of these parameters, [30,31] analyze the viability
of the free-field theory from the perspective of the physical

10Note that in [30] the Gauss-Bonnet identity is used to
eliminate α̌1, which we resurrect through r6, and the notation
l ¼ λ is used, which we will require for the effective cosmological
constant in eWGT, κ−1Λ ¼ λϕ4

0.
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propagator. Also known as the saturated propagator, this
quantity can be obtained when the SPO decomposition of
the free-field action is expressible in terms of invertible
matrices which quadratically combine the sab, aab and
Aabc fields within each JP sector. As might be expected,
there exist certain critical cases for which some of these
matrices become singular. Each such case is defined by
certain equations which are linear in the parameters of (52),
and represents one or more emergent gauge symmetry in
the linearized theory that must be eliminated before
proceeding. Beyond such gauge symmetries, further critical
cases alter the factorized form of the matrix determinants,
which encode the bare mass spectrum of each JP sector. In
[30], the 1918 such critical cases of PGTqþ were exhaus-
tively determined. A systematic survey of these theories
identified the 450 for which unitarity can be achieved
through additional inequality constraints on the parameters
of (52). This requires the elimination of ghost modes by
fixing a positive propagator residue about the relevant pole,
and tachyonic particles by fixing a positive square of the
relevant bare mass. Any of these critical cases can be
discarded if a power counting shows that the superficial
degree of divergence in a diagram scales with the number of
loops. In [30], such an analysis was restricted to cases in
which the propagator was diagonal not only in the JP

sectors, but also in the fields themselves. This yielded ten
cases which were power-counting renormalizable (PCR).
Although the PCR condition is thought to be necessary

for full renormalizability, it raises ambiguities when applied
to PGTqþ. First, there may be two or three gauge choices
which eliminate the symmetries of a critical case, of which
not all are PCR. Second, a mode with unsatisfactory high-
energy behavior may yet be nonpropagating, and thus
inconsequential. Such modes tend to arise precisely when
the propagator is nondiagonal in the fields, in particular
when the 1þ and 1− sectors of Aabc are mixed. Of the 450
unitary cases, a further 48 were found in [31] which can be
considered PCR according to these extended criteria. In the
present work, we exclude from all 58 theories only those
for which the divergence of nonpropagating modes is most
egregious,11 going as k2 rather than k−2. This leaves us with
33 critical cases, which include all of the original ten in
[30]. These are listed in Table II. Note that while the
methods in [30,31] can identify the definite JP sectors of
propagating massive modes, it can only identify the
possible JP sectors of propagating massless modes, and
their definite degrees of freedom. In the present work, we
will adhere to the numbering of critical cases used in [31],
in which the select 33 cases we consider range from case 1
to case 41. We also use the convention of [31] in which
cases previously discovered in [30] are listed with their
original numbering in a superscript, such as case �19,

case �310, case �411 and case �213, which are the only
four cases with gauge-invariant PCR.

IV. THE COSMOLOGICAL ANSATZ

A. Lessons out of superspace

The equations of motion of a field theory are usually
obtained using the Lagrangian, or less commonly
Hamiltonian, formalism. In the theories of (potentially)
high-spin fields such as those of gravity considered here,
this process is typically lengthy and necessarily results in
tensor equations. Once the gravitational field equations are
to hand, it is most convenient either to solve the fields for a
desirable source, or vice versa. In cases where the solutions
are known to be highly symmetric, a suitable ansatz for
both sources and fields may be substituted and these solved
simultaneously: this is often done in cases where the strong
cosmological principle applies. It is worth noting that an
alternative “intrinsic” method of solution has been devel-
oped for the special formulation of ECT known simply as
gauge theory gravity (GTG) [68]. Whilst the bulk of what
follows was first obtained using similar formulations of
PGTqþ and eWGTqþ, we do not use the intrinsic method
and include only a sample of the relevant Clifford algebra in
Sec. VI. Our main results are translated back into the
passive tensor formulation set out above.
In obtaining the field equations, we take a shortcut by

substituting the source and field ansatz into the action
directly, and taking variations with respect to the remaining
free parameters. It should be stressed that this method is not
always justifiable, as variable reduction and variational
differentiation are generally noncommuting operations.
Nor is it entirely without precedent. In the quantum
cosmology of GR, similar methods are frequently
employed as part of the minisuperspace approximation
[69]. Moreover, the approach has been shown to hold true
in GR for all Bianchi A class cosmological models [70] and
similar methods are even employed for PGTqþ in [59].
Special care must be taken, so that the field ansatz preserves
some notion of the ADM lapse and shift freedoms, and that
the source ansatz comes prepackaged with the expected
conservation laws [71,72]. In this way, we can avoid
intermediate tensor expressions, arriving at an unorthodox
but useful statement of the general cosmological equations.
These are given in Eqs. (86a)–(86d).

B. Gravitational fields

The first task is to find the most general ansatz for each of
the four gauge fields haμ, baμ, Aab

μ and Vμ consistent with
the strong cosmological constraints of spatial homogeneity
and isotropy. These constraints do not apply directly to the
gauge fields, but to the observable quantities derived from
them. It is convenient to adopt spherical polar coordinates
fxμg ¼ ft; r;ϑ;φg where the only dimensionful coordinate

11While this is probably a conservative move, it is foremost a
matter of convenience.
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is t. This fixes the diffeomorphism gauge via the basis
vectors feμg and covectors feμg.
By orthogonality, the normalized counterparts of these

eight quantities provide a natural choice of Lorentz rotation
gauge, fêag and fêag, should we choose to fix it. An
interval which suitably generalizes (1) is then

ds2 ¼ S2
�
dt2 −

R2dr2

1 − kr2
− R2r2ðdϑ2 þ sin2 ϑdφ2Þ

�
; ð53Þ

where S ¼ SðtÞ is a dimensionless conformal factor which
establishes the length scale of the theory, R ¼ RðtÞ is the

TABLE II. The select 33 of the unitary, PCR critical cases of PGTqþ, according to parameter constraints and particle content. The given
numbers are as in [31], with the original numbers in [30] denoted by an asterisk where applicable. The criticality equalities include an
implicit r6 ¼ 0. The particle content of each JP sector is as follows. Possiblemassless excitations ofAabc, sab and aab are respectively blue
open circles, green open circles, and red open circles. Definite massive excitations are blue filled circles, green filled circles, and red filled
circles. Possible massless excitations may have a different field character in a different gauge, e.g., blue open circle with superscript green
open circle, or be of uncertain field character in one or more such gauge, e.g., blue open circle with superscript blue and red open circle.
While the JP character of propagating massless excitations remains ambiguous, there are always two, if any, massless degrees of freedom.
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dimensionful relative scale factor while the constant k ∈
f0;�1g dictates the curvature of Cauchy surfaces. Note
that setting S ¼ 1 corresponds to the Friedmann diffeo-
morphism gauge, in which R becomes the usual scale factor
of the Universe. The interval (53) determines the compo-
nents baμ only up to the rotation gauge, which we leave
arbitrary. The diffeomorphism gauge fields are then fixed to

bat ¼ SðêtÞa; bar ¼
SRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ðêrÞa;

baϑ ¼ rSRðêϑÞa; baφ ¼ rSRðêφÞa; ð54Þ

up to a choice of sign. In practice, we will work exclusively
with the inverse fields, which we define by haμ ¼ ηabgμνbbν.
Whilst haμ has thus been determined by a cosmological

gμν, Aab
μ must be determined by a cosmological T a

bc. The
unique form adopted by the torsion tensor under the
restrictions of homogeneity and isotropy may be written
down immediately:

T a
bc ¼ ðêtÞd

�
2

3
Uδa½cηdb� −Qϵadbc

�
; ð55Þ

where the fields U ¼ UðtÞ and Q ¼ QðtÞ have units of eV
and are observable quantities which may be easily extracted
through the quadratic invariants,

T aT a ¼ U2; T abcT bac ¼ 1

3
U2 þ 6Q2;

T abcT abc ¼ 2

3
U2 − 6Q2: ð56Þ

This form was first rigorously identified by Tsamparlis
[45], and has been used by both Boehmer and Bronowski
[73] and Brechet, Hobson and Lasenby [74] in the study of
cosmologies filled with Weyssenhoff fluids. One may
arrive at (55) by noting that, under the strong cosmological
principle, the spacetime contains six global Killing vector
fields fKag, each tangent to the local Cauchy surface.
Furthermore, cosmic fluids share a global, normalized
velocity field ua, to which the Cauchy surfaces are
orthogonal uaKa ¼ 0. We can use this to define the
intrinsic metric on the Cauchy surfaces, which is also a
projection tensor with vanishing Lie derivative,

sab ¼ ηab − uaub; LKsab ¼ 0; ð57Þ

along with the projection of any tensor, F a1���ai
c1���cj , and its

projected covariant derivative

F̂ a1���ai
c1���cj ¼ sa1a0

1
� � � sc

0
j
cjF

a0
1
���a0i c0

1
���c0j ; ð58Þ

D̂eF a1���ai
c1���cj ¼ snes

a1
a0
1
� � � sc

0
j
cjDnF a0

1
���a0i c0

1
���c0j : ð59Þ

Our fundamental requirement is that LKT a
bc ¼ 0, but by

(57) we must have LKT̂
a
bc ¼ 0 also. Examining this,

we find

KdD̂dT̂
a
bc¼ T̂ d

bcD̂dKa−ðT̂ a
dcD̂bþ T̂ a

bdD̂cÞKd

¼ðseaT̂ d
bcþsebT̂

ad
cþsecT̂

a
b
dÞD̂½dKe�: ð60Þ

There is freedom in the choice of theKa to set to zero either
side of (60). Doing so on the rhs enforces spatial homo-
geneity, so that the components T a

bc are functions only of
the coordinate t. On the lhs, we enforce isotropy, so that

s½easn�rT̂
r
bc þ s½ebsn�rT̂ a

r
c þ s½ecsn�rT̂ ab

r ¼ 0: ð61Þ

From examination of (61) we then arrive at the following
pair of projected component constraints:

T̂ a
ba ¼ 0; T̂ abc ¼ T̂ ½abc�; ð62Þ

and by inspection we see that these admit only the form set
out in (55).
The fields U and Q are sometimes referred to as the

torsion contraction and torsion protraction respectively—
the reference to the protraction will be explained in Sec. VI.
Furthermore, it is easy to show that the strong cosmological
principle has done nothing more than pick the 0− and 0þ
sectors out of the general torsion tensor, since setting
ka ¼ ðetÞa, we find without loss of generality

P11ð0þÞbcaijkT k
ij ¼

2

3
ðêtÞdUδa½cηdb�;

P11ð0−ÞbcaijkT k
ij ¼ −ðêtÞdQϵadbc: ð63Þ

In this manner, the quantities U and Q then encode the
freedoms in the scalar and pseudoscalar tordion singlets.
From (56) we see right away that there is some degeneracy
among the dimensionless theory parameters fβig under
cosmological conditions. This behavior is to be expected,
and is even more pronounced in the quadratic Riemann
sector: we will make extensive use of it in Sec. V.
For the purposes of the ansatz, we take the torsion tensor

to have the form

T a
bc ¼

2

SR
ðêtÞd

��
X þ ∂tðSRÞ

S

�
δa½cηdb� −

Y
2
ϵadbc

�
: ð64Þ

The dimensionless fields X ¼ XðtÞ and Y ¼ YðtÞ now
inherit the 2 degrees of freedom in U and Q. The form
of the first term in (64) is designed to absorb those Ricci
rotation coefficients containing ∂tS and ∂tR, and the
rotational gauge fields which generate this torsion are
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Aab
r ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p ðêtÞcðêrÞdð2Xδa½dδbc� þ YϵabcdÞ;

Aab
ϑ ¼ 2ðêϑÞc

�
1

r

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p �
ðêrÞd þ XðêtÞd

�
δa½cδ

b
d�

þ YðêtÞcðêϑÞdϵabcd;

Aab
φ ¼ 2ðêφÞc

�
1

r

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p �
ðêrÞd þ XðêtÞd

�
δa½cδ

b
d�

þ YðêtÞcðêφÞdϵabcd: ð65Þ
The equations of motion are therefore to be obtained

through variation with respect to R, S, X and Y, yet the
cosmological equations are ideally expressed in terms of
observable quantities. Clearly S is not observable, because
after variation we would like to adopt the Friedmann gauge
by globally setting S ¼ 1. Having done this, we also note
that R is not generally a quantity with good physical
motivation, since when k ¼ 0 it may be chosen arbitrarily.
With this in mind, we prefer to substitute for R, X and Y in
terms of the Hubble number and deceleration parameter
defined in (2) and physical torsion fields once the
Friedmann gauge has been adopted:

U ¼ 3

R
ðX þ ∂tRÞ; Q ¼ Y

R
: ð66Þ

Having established the gravitational field ansatz in PGT,
the extension to eWGT is quite straightforward. The
compensator, ϕ, naturally satisfies the strong cosmological
principle as a scalar field, ϕ ¼ ϕðtÞ. The obvious choice
for the Weyl gauge field is then to define a dimensionless
V ¼ VðtÞ such that

Va ¼ V
SR

ðêtÞa: ð67Þ

C. Gravitational sources

From a mathematical perspective we will consider four
distinct sources in our models, though three of these may
correspond to a variety of physical matter fields. First, the
curvature constant k is deeply embedded in the gravitational
rather than matter sector of the action, yet as we discussed in
Sec. I, it has become acceptable to view it as a source term in
the cosmological equations. Dark energy, or vacuum energy
is included via the cosmological constant Λ in PGTqþ and
parameter λ in eWGTqþ, and is already a valid cosmological
source having both homogeneity and isotropy. Directly
observable baryonic matter and dark matter are modeled
by dust, while photons and neutrinos are modeled by
radiation. In making these approximations we forfeit any
effects arising from the spin content of the real sources, but
avoid the complexities of constructingWeyssenhoff fluids.12

In establishing the form of Lm and L†
m, we adopt the

techniques set out in [72,78], taking the Lagrangian
densities to be the negative on-shell energy densities of
the fluids,

Lm ¼ −ρm − ρr ¼ −κ−1
2
ϱm
S3R3

−
ϱr

S4R4
;

L†
m ¼ −κ1

2ϕρm − ρr ¼ −ϕ
ϱm
S3R3

−
ϱr

S4R4
; ð68Þ

where ρm ¼ ρmðtÞ and ρr ¼ ρrðtÞ have dimension eV4 and
ϱr and ϱm are dimensionless constants. As with the
gravitational variables, we will prefer to express the matter
content in the cosmological equations in terms of observ-
able quantities. The constants Λ and k along with the
densities ρm and ρr are already perfectly acceptable from
this perspective, but we will make use of the popular
dimensionless densities as they are defined in the
Friedmann gauge,

Ωk ¼ −
k

R2H2
; ΩΛ ¼ Λ

3H2
;

Ωm ¼ κρm
3H2

; Ωr ¼
κρr
3H2

: ð69Þ

These quantities are well suited to the analysis that follows
in Sec. V, but differ from the contemporary densities in
Sec. I, which are typically used in the field of cosmological
inference, through the normalization of H according to (6).

V. GENERAL COSMOLOGIES

A. A demonstration: Einstein-Cartan theory

The equations of motion are to be obtained by consid-
ering PGTqþ actions of the form

S̃T ¼
Z

dtL̃TðXðtÞ; YðtÞ; SðtÞ; RðtÞÞ; ð70Þ

and eWGTqþ actions of the form

S̃T ¼
Z

dtL̃TðXðtÞ; YðtÞ; SðtÞ; RðtÞ;ϕðtÞ; VðtÞÞ: ð71Þ

To check the efficacy of our approach, we will obtain the
Friedmann equations from the minimal gravitational gauge
theory in which the fα̌ig and fβ̌ig are all set to zero except
for α̌0: this is ECT. The action ST in (34) is the integral of
the dimensionless reduced action, S̃T, over the Cauchy
surface

S̃T ¼ −
Z

dt½3α̌0κ−1S2RðR∂tX þ Y2=4 − X2 − kÞ

þ κ−1ΛS4R3 þ κ−
1
2ϱmSþ ϱr=R�: ð72Þ

There are four dynamical fields: two for curvature, R and S,
and two for torsion, X and Y. It is with respect to these

12Note that if the Dirac Lagrangian is rendered scale invariant
by means of the compensator ϕ, the resulting matter stress-energy
tensor resembles that of a perfect fluid [75–77].
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quantities, rather than their physical counterparts, that we
must take variations. Once we set S ¼ 1, the equations of
motion for X and Y are

ðδL̃T=δXÞF ∝ Rð∂tRþ XÞ; ð73aÞ

ðδL̃T=δYÞF ∝ RY; ð73bÞ

which immediately confirms that cosmic torsion is pro-
hibited in an Einstein-Cartan universe filled with the
simplistic source fluids considered here, or U ¼ Q ¼ 0.
The curvature equations for R and S are

ðδL̃T=δRÞF ∝ 3α̌0R2ð2R∂tX − X2 þ Y2=4 − kÞ
þ 3R4Λ − κϱr; ð74aÞ

ðδL̃T=δSÞF ∝ 6α̌0RðR∂tX − X2 þ Y2=4 − kÞ
þ 4R3Λ − κ

1
2ϱm: ð74bÞ

The four Eqs. (73a), (73b), (74a) and (74b) may then be
rearranged in terms of the preferred variables to give the
cosmic equations of motion:

α̌0 ¼ Ωm þΩr þ ΩΛ þ Ωk;

α̌0q ¼ 1

2
Ωm þ Ωr −ΩΛ: ð75Þ

The Friedmann equations are recovered when we choose
α̌0 ¼ 1, thus making the connection to ECT.
The reduced action in eWGT naturally takes a very

similar form to (72)

S̃T ¼ −
Z

dt½3α̌0ϕ2S2RðR∂tðX þ VÞ þ Y2=4

− ðX þ VÞ2 − kÞ þ λϕ4S4R3

þ ϱmϕSþ ϱr=R�; ð76Þ

the important difference being the appearance of the ϕ
field, which always appears in the combination ϕS, and the
V field, which appears in the combination X þ V. These are
perfectly general features of cosmological eWGTqþ: the
extra gauge fields are degenerate with two of the original
four in PGTqþ:

ϕ ⇋ S; V ⇋ X: ð77Þ

The degeneracy (77) clearly indicates that we will have no
more independent equations of motion in eWGTqþ than in
PGTqþ, but the fixing of the Friedmann gauge in the former
case remains to be defined. In particular, V can be absorbed
directly into X since both fields are dimensionless. Finally,
if the fixing of S ¼ 1 is carried over to eWGTqþ, we find
the appropriate Einstein gauge ϕ ¼ ϕ0 ¼ κ−1=2 completes

the correspondence. Note that in this case, the freedom in Λ
is truly inherited by the dimensionless λ rather than ϕ.

B. The cosmic theory parameters

We would now like to consider the general actions of
PGTqþ and eWGTqþ, (34) and (40). The parameter
degeneracy among the torsion variables identified in (56)
extends throughout the gravitational sector, allowing us to
express the equations of motion minimally in terms of
parameter combinations which uniquely affect the cosmol-
ogy. It is expedient to use vector notation to discuss
theories, for example any PGTqþ may be written in terms
of its theory parameters as

x ¼
X6
i¼0

α̌iα̌i þ
X3
i¼1

β̌iβ̌i; ð78Þ

such that the vectors on the rhs form an orthonormal set,
and any theory parameter may be extracted by projecting
with the relevant vector, e.g., α̌1 ¼ α̌1 · x. The form of (44)
then suggests that (at the classical level) any theory is
unchanged under a transformation in the Gauss-Bonnet
sense:

x → xþ α̌GBL; L ¼ α̌1 − 4α̌3 þ 2α̌6: ð79Þ

The quadratic Riemann sector thus has a five-
dimensional parameter space in general. When we demand
homogeneity and isotropy as with cosmology, we might
reasonably expect this number to be reduced. To identify
the reduced degrees of freedom we should turn to the
equations of motion. Doing so, we find the cosmological
conditions eliminate a further 2 degrees of freedom from
the quadratic Riemann sector. Let us define two coordinates

χ1 ¼
3

2
α̌1 þ

1

4
α̌3 −

1

4
α̌6; χ2 ¼

3

2
α̌1 þ

1

2
α̌3 þ

1

4
α̌6; ð80Þ

which are oblivious to the Gauss-Bonnet content of the
theory:

χ 2 · L ¼ χ 1 · L ¼ 0: ð81Þ

The cosmologically meaningful coordinates of the quad-
ratic Riemann sector are then equally oblivious, as we
might expect, and are given by

σ1 ¼ χ1 þ
1

4
α̌2 þ

1

4
α̌5; σ2 ¼ χ2 þ

1

2
α̌2 þ

3

4
α̌4 − α̌5;

σ3 ¼ χ2 þ
1

2
α̌2 þ

1

4
α̌4: ð82Þ

We have already seen that the three fβ̌ig of PGTqþ must
reduce to two cosmic theory parameters for PGT torsion.
Denoting these by fυig we find
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υ1 ¼ β̌1 þ 3β̌2; υ2 ¼ 3β̌3 − β̌1: ð83Þ

In eWGTqþ there is no β̌3, but we find that its role is filled
by ν, so that

υ1 ¼ β̌1 þ 3β̌2; υ2 ¼ −ν=6: ð84Þ

We therefore find that the ten theory parameters of
PGTqþ and eWGTqþ reduce to five cosmic theory param-
eters. The freedoms of the quadratic Riemann sector are
reduced from six to three, and those of the torsion and
compensator sectors are reduced from three to two.

C. k-screening

Having defined the Lagrangian parameters relevant to
cosmology, we are now in a position to express the
equations of motion in a form valid simultaneously for
both gauge theories. As before, these constitute a coupled
system of four equations. For brevity, we write these in
terms of dimensionless conformal time,

dτ ¼ dt=R; ð85Þ

and the dynamical variables introduced above, with the
Friedmann gauge fixed:

ðδL̃T=δXÞF ∝ ðυ2 þ α̌0ÞRðRX þ ∂τRÞ − 8κσ3∂2
τX − 4κσ1Y∂τY − 4κXðσ2Y2 − 4σ3ðX2 þ kÞÞ; ð86aÞ

ðδL̃T=δYÞF ∝ ð4υ1 − α̌0ÞR2Y − 4κðσ3 − σ2Þ∂2
τY þ 16κσ1Y∂τX þ 4κYðσ3Y2 − 4κðσ2X2 þ σ3kÞÞ; ð86bÞ

ðδL̃T=δSÞF ∝ 12υ2∂2
τRþ 12ðυ2 þ α̌0ÞRð∂τX − X2Þ − 3ð4υ1 − α̌0ÞRY2 − 12α̌0kRþ 2κ

1
2ϱm þ 8ΛR3; ð86cÞ

ðδL̃T=δRÞF ∝ 12υ2ð2R∂2
τR − ð∂τRÞ2Þ þ 12ðυ2 þ α̌0ÞR2ð2∂τX − X2Þ − 3ð4υ1 − α̌0ÞR2Y2 − 12α̌0kR2

þ 6κσ3ð16X2ðX2 þ 2kÞ þ Y2ðY2 − 8kÞ þ 16k2 − 2ð∂τYÞ2 − 16ð∂τXÞ2Þ
þ 12κσ2ðð∂τYÞ2 − 2X2Y2Þ − 4κϱr þ 12ΛR4: ð86dÞ

A cursory examination of this system reveals a degree of
similarity between the torsion equations (86a) and (86b)
which we will mention again in Appendix B, along with the
parameters σ2 and σ3, and υ1 and υ2. The single linear
Riemann parameter, α̌0, has an entirely different effect to
the quadratic Riemann parameters σ1, σ2 and σ3, and while
it mostly combines with υ1 or υ2, it couples uniquely with k
in (86c). This gives us some insight into the cosmological
overlap between Einstein-Hilbert and Yang-Mills gravities:
the latter are not expected to conventionally interact with
the bulk curvature of space.
In fact, a pure Yang-Mills theory,

α̌0 ¼ 0; ð87Þ

may be “screened” from this curvature altogether, since the
single parameter constraint,

σ3 ¼ 0; ð88Þ

promptly eliminates k from the entire system. In the context
of our opening remarks regarding ωk in Sec. I, this is a
superficially disastrous choice of theory, in which the
global geometry of space is decoupled from the dynamics.
On the other hand, (88) is a tempting starting point for
the study of PGTqþ and eWGTqþ cosmologies, since it
eliminates many other unattractive derivative terms from

the system, and does so with a very high degree of
naturalness.

D. Cosmological normal scale invariance

In our narrow ϕ-free definition of PGTqþ, the NSI
condition on the gravitational sector (42) clearly imposes

α̌0 ¼ υ1 ¼ υ2 ¼ 0: ð89Þ

The effect of (89) on Eqs. (86a) to (86d) is profound,
as it sets

Ωm ¼ ΩΛ ¼ 0; ð90Þ

in all relevant solutions. We use this to write such theories
off as cosmologically NSI. It should be noted that the
cosmological NSI condition (89) is slightly less restrictive
than (42). It is also interesting to note that if ϕ were
minimally included in PGTqþ (i.e., without any term
proportional to DaϕDaϕ), from (77), the condition (43)
would reduce to

υ2 ¼ 0; ð91Þ

without any such loss of generality.
The select 33 critical cases of PGTqþ listed in Table II

may now be categorized into 14 cosmic classes according
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to the effects of their defining parameter constraints on the
general PGTqþ cosmology. This is illustrated in Fig. 1.
Independent cosmic classes are labeled by letters, with a
superscript denoting the minimum number of constraints

that must be applied to the “root” PGTqþ Lagrangian (34)
to obtain them, e.g., class 2A, class 4L etc. Note that no
critical case is completely determined by its cosmic class,
in that there are always two or three noncosmological

FIG. 1. The select 33 unitary, PCR critical cases of PGTqþ identified in [30,31] and listed in Table II span 14 cosmic classes. Note that
the traditional Einstein-Hilbert term is the first to be excluded, α̌0 ¼ 0. Desirable critical cases admit the possibility of a massless 2þ

graviton, i.e., case 15, case 16, case 14, case 12, case �411 and case �310. We cannot exclude case 2 and case 1 on the basis of their
additional massive 0− gravitons. Superficially, cosmic classes are excluded by cosmological NSI, which arises when α̌0 ¼ υ1 ¼ υ2 ¼ 0.
By these criteria the only truly desirable cosmologies are clearly of class 2A, class 3C, class 3D, class 3E, class 4H or class 4J, and this
restricts us to two faces of the cube at the far left of the diagram. All such cosmologies are k-screened, with α̌0 ¼ σ3 ¼ 0.
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constraints in the critical case definition which do not
appear to affect Eqs. (86a)–(86d).

E. Motivated cosmologies

A glaring feature of Fig. 1 is that all critical cases
begin with the Yang-Mills constraint, (87). Beyond this,
the k-screening condition, (88), defines the most general
vertex, class 2A, of the cube containing all critical cases
with possible 2þ massless gravitons.

1. Class 3C: Einstein freezing

To gain some traction, we will not start with class 2A, but
enforce a third trivial constraint on the torsion

υ1 ¼ 0: ð92Þ

Class 3C is the most general cosmology defined by these
three constraints.
A useful property common to class 3C and some of its

children is that (86a) allows us to eliminate U from the
system immediately,

U ¼ 12κQððσ2 − σ1ÞQH − σ1∂tQÞ
4κσ2Q2 − υ2

: ð93Þ

An energy balance equation may then be constructed by
linear combination of (86c) and (86d),

Ωr þ Ωm þ ΩΛ þΩΨ þΩΦ ¼ 0; ð94Þ

differing from (10) in the dependence of modified gravi-
tational dimensionless energy densities ΩΨ and ΩΦ, on the
torsion. These are given in Appendix C, and are rational
functions13 of the form

ΩΦ ¼ ΩΦðκ1
2Qjσ1; σ2; υ2Þ; ð95aÞ

ΩΨ ¼ ΩΨðκ1
2∂tQH−1; κ

1
2Qjσ1; σ2; υ2Þ: ð95bÞ

This dependence may in principle be eliminated in favor of
H by means of the remaining torsion equation (86b) which
takes the form

f1
∂2
t Q
Q

þf2
ð∂tQÞ2
Q2

þf3
∂tQ
Q

Hþf4∂tHþf5H2¼0; ð96Þ

where the various coefficients are again confined to
Appendix C for the sake of brevity, and are also rational
functions of the form

fi ¼ fiðκ1
2Qjσ1; σ2; υ2Þ: ð97Þ

The coupled second order system of (94) and (96) is
generally challenging to solve, but despite the doubtful
nature of the constraints (87) and (88), we are not
disappointed if we look for the kind of curvature evolution
suggested by GR. Since class 3C is fundamentally k-
screened, it is logical to consider analogies with traditional
k ¼ 0 solutions—as discussed in Sec. I, these are in
contemporary focus anyway. The evolution of R in GR
is often broken down into regimes where a particular
cosmic fluid is dominant. For the material sources under
consideration, (4a) and (4b) demand that R then approach a
power law in t, depending on the dominant equation-of-
state parameter wi in (9)

Hm ¼ 2=3t; Hr ¼ 1=2t; HΛ ¼
ffiffiffiffiffiffiffiffiffi
Λ=3

p
: ð98Þ

Remarkably, class 3C can mimic this behavior. We require
only that the modified gravitational densities be constant
when a fluid of particular wi is dominant:

ΩΦ þ ΩΨ ¼ −1=gi; ð99Þ

at which point (94) will then coincide with (10) up to a
modified Einstein constant

κ̆ ¼ giκ: ð100Þ

Examination of (95a) and (95b) suggests that this can be
achieved by constant Q ¼ Qi, which in turn greatly
simplifies (96) to a form which, for H ¼ Hi as in (98),
remains consistent for as long as pure fluid dominance
holds. We may thus hypothesize that a universe of class 3C
will routinely “freeze out” into epochs of traditional flat GR
behavior. In this case the full complexity of the modified
cosmological equations is confined to turnover epochs, and
otherwise manifest in the specific value of the constant
torsion Qi and modified Einstein constant κ̆i during pure
fluid dominance.
The potential for this behavior is worth some general

investigation within class 3C, whose Lagrangian freedoms
are partially parametrized by the ratio

ς ¼ σ1=σ2: ð101Þ

Setting Q ¼ Qi under a dominant cosmic fluid with
equation of state parameter w ¼ wi, the remaining torsion
equation (96) may be naively solved for Qi by setting
Hi ¼ 2=3ð1þ wiÞt, which yields the following:

13Note also that there is considerable freedom between these
densities, if they are constrained only by (95a) and (95b), and that
the notation is designed with Sec. V E 3 and class 4H and class 4I
in mind.
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ð4σ2=υ2Þð12ς2wi − 4ς2 − 3wi þ 1ÞκQ2
i

¼ 6wiς
2 þ 2ς2 þ 6wiς − 6ς − 3wi þ 1

� 2½9ς4w2
i þ 6ς4wi − 18ς3w2

i þ ς4

− 12ς3wi þ 9ς2w2
i − 2ς3 þ 3ς2

þ 12ςwi − 4ς − 6wi þ 2�1=2: ð102Þ

The somewhat complementary branches of this root system
are illustrated in Fig. 2. Superficially, this suggests that
Einstein freezing can occur across many instances of
class 3C for a variety of source fluids. Note however that
radiation with wr ¼ 1=3 appears to occupy a special place
in class 3C.
Numerically, it proves easy to induce such emergent flat

GR behavior, and this is best demonstrated by means of a
series expansion out of the classical radiation-dominated
big bang. When propagating the cosmological equations of
motion, a convenient choice of dimensionless time similar
to (85) is given by normalizing with the contemporary
Hubble number

dτ̃ ¼ R0H0dt=R: ð103Þ

When combined with the dimensionless scale factor

a ¼ R=R0; ð104Þ

this has the advantage that the Friedmann equations of GR,
(4a) and (4b), in the flat case become

ð∂ τ̃aÞ2 ¼ Ωr;0 þ Ωm;0aþ ΩΛ;0a4; ð105aÞ

ð∂ τ̃aÞ2 − a∂2
τ̃a ¼ Ωr;0 þ

1

2
Ωm;0a −ΩΛ;0a4; ð105bÞ

i.e., a form where the contemporary dimensionless den-
sities are the only free parameters. It is then easy to obtain
the following power series for GR out of radiation
dominance:

a ¼ ffiffiffiffiffiffiffiffi
Ωr;0

p
τ̃ þΩm;0

4
τ̃2 þΩΛ;0

10
Ωr;0

3
2τ̃5 þOðτ̃6Þ: ð106Þ

Applying this approach to class 3C results in a power series
for a and separate series for Q and U. These are all rather
cumbersome, but can be used to integrate the modified
cosmological equations as follows. Assuming (93) remains
valid, we can propagate the coupled second-order system in
Q and R formed from the modified deceleration equation
[the linear combination of (86c) and (86d) orthogonal to
(94)], and (96), using (94) as a constraint. The resulting
evolution of the comoving Hubble horizon H0=aH is
plotted against the scale factor a in Fig. 3, over a range
of ς. Note that in Fig. 3, the initial conditions are tweaked to
agree with the flat GR model as far as possible. This
involves, for every instance of class 3C defined by ς,
adapting υ2 so that κ̆ ¼ κ. We see that for ς of order unity,
the radiation, matter and dark energy dominated regimes
familiar from flat GR are cleanly picked out. The freezing
of torsion by radiation, matter and dark energy is also
apparent for some values of ς in Fig. 3.

FIG. 2. Within class 3C, the root system (102) of constant torsion, Qi, frozen out by a dominant cosmic fluid with equation of state
parameter wi, depends on the ratio of cosmic theory parameters, σ1=σ2. Freezing at a real torsion value generally appears possible for
inflationary fluids ranging from dark energy, wΛ ¼ −1, through to curvature, wk ¼ −1=3 (although curvature cannot be reimagined as a
source in k-screened theories), and so on to matter, wm ¼ 0. Radiation, at wr ¼ 1=3, clearly occupies a privileged position in the overall
theory, while extension to “stiff matter” with ws ¼ 1 may be impossible over a range of ς ¼ σ1=σ2. Of particular interest is the case
ς ¼ 1, which corresponds to class 3C�, and for which κQ2

i ≡ κQ2
cor ¼ υ2=4σ1 across all fluids except for radiation, which requires special

treatment.
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2. Class 3C�: Dark radiation

From the analysis in Figs. 3 and 2 of the variable ςwhich
parametrizes class 3C, we see that an algebraically natural
choice of theory defined by the additional constraint

σ1 − σ2 ¼ 0; ð107Þ

or ς ¼ 1, is especially significant. We will refer to class 3C
in combination with (107) as class 3C�. Since it is not
defined by any critical case, class 3C� does not appear in the
map of cosmologies in Fig. 1—note however that class 3C�
and case 16 remain compatible.
To see the significance of (107), first note from Fig. 3 that

class 3C� is defined by precisely the value ς ¼ 1 that imitates
the expansion of flat GR cosmology, when propagated from
the same initial conditions. In this case the Qi and gi all
coincide at the same “correspondence values” across the
three wi of radiation, matter and dark energy,

κQ2
i ≡ κQ2

cor ¼ υ2=4σ1; gi ≡ gcor ¼ −4=3υ2; ð108Þ

and moreover do not deviate from these values during
turnover epochs.14 In order to recover the correct sign of
the modified Einstein constant, we will need

υ2 < 0; ð109Þ
and likewise for real torsion

σ1 ¼ σ2 < 0: ð110Þ
Confirmation of this behavior can be seen in Fig. 2, since
ς ¼ 1 is actually a contour in both branches of the frozen
torsion value, except at the intersection with wi ¼ 1=3.
Moreover, we see that ς ¼ 1 is one of the special cases of
class 3C for which frozen torsion cannot escape the vertical
radiation asymptote simply by switching branches. We refer
to the solution (108) to class 3C�, in which flat GR evolution
is naturally recovered, as the correspondence solution.
While very encouraging in itself, in the absence of any

measurement of Q0 today and pinning gcor ¼ 1 to recover
κ̆ ≡ κ, the correspondence solution introduces no new
parameters to cosmology: we thus seek to relax it. To do
so, we will turn back to the series expansion out of the
radiation-dominated big bang. It proves useful to define the
dimensionless deviation from the correspondence torsion as

ϖ ¼ Q=Qcor: ð111Þ
Guided by Fig. 2, closer examination of the intersection of
wi ¼ 1=3 with ς ¼ 1 reveals something interesting: the
spectrum of possible Qr or ϖr is in fact continuous here,
introducingafreeparameter. If therefore,wedonotneedtofix
ϖr ¼ 1 at the singularity, the general power series for the
scale factor in class 3C� is

FIG. 3. Main: The cosmological equations of class 3C are propagated from z ≈ 1.63 × 105 (12 e-folds) using the corresponding
primordial density parameters of flat GR (based on Ωr;0 ¼ 2.47 × 10−5, Ωm;0 ¼ 0.3089 −Ωr;0=2 and ΩΛ;0 ¼ 0.6911 −Ωr;0=2 with
neutrinos neglected), with the GR evolution also shown. At this initial radiation-dominated epoch, κ̆ ¼ κ is fixed with
υ2 ¼ 4σ1=ðσ2 − 4σ1Þ. Inset: The Q torsion remains finite for the whole evolution, and may be plotted up to the future conformal
boundary at τ∞. For general ς, each epoch of equality triggers a smooth transition to a new torsion value, the intermediate Qm plateau is
visible for ς < 1. Arbitrarily close agreement with GR is seen as ς ¼ σ1=σ2 → 1, which corresponds to class 3C�. In this case, the
correspondence solution keeps the torsion fixed throughout at Q≡Qcor, or ϖ ¼ Q=Qcor ≡ 1.

14It is important to note that the particular form of the
equations of motion (94), (96) and particularly (93) only allow
for this solution if a careful limit is taken.
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a ¼ gcor
ϖr

ffiffiffiffiffiffiffiffi
Ωr;0

p
τ̃ þΩm;0ð3ϖr

2 þ 1Þgcor2
16ϖr

2
τ̃2 þ 5Ωm;0

2gcor3ðϖr
2 − 1Þ

512ϖr
3

1ffiffiffiffiffiffiffiffi
Ωr;0

p τ̃3 þΩm;0
3ð27ϖr

2 − 121Þgcor4ðϖr
2 − 1Þ

49152ϖr
4Ωr;0

τ̃4

þ ð−441ϖr
4Ωm;0

4 þ 98304ϖr
2ΩΛ;0Ωr;0

3 þ 1421ϖr
2Ωm;0

4 þ 32768ΩΛ;0Ωr;0
3 − 980Ωm;0

4Þgcor5
1310720ϖr

5
Ωr;0

−3
2τ̃5

þOðτ̃6Þ; ð112Þ

and by comparing (106) to (112)we see that the two series can bemade to coincide by settingϖr ¼ 1. Doing so guarantees the
otherhalfof thecorrespondencesolution—theconstancyofϖ ≡ 1 throughout theevolution—whichcanbeseenbyexamining
the class 3C� power series for ϖ:

ϖ ¼ ϖr þ
3Ωm;0gcorðϖr

2 − 1Þ
16

1ffiffiffiffiffiffiffiffi
Ωr;0

p τ̃ þΩm;0
2gcor2ð18ϖr

2 þ 13Þðϖr
2 − 1Þ

512Ωr;0ϖr
τ̃2

þ Ωm;0
3gcor3ð324ϖr

4 þ 279ϖr
2 þ 299Þðϖr

2 − 1Þ
49152ϖr

2
Ωr;0

−3
2τ̃3

−
gcor4ð−1620Ωm;0

4ϖr
6 − 1620ϖr

4Ωm;0
4 − 1462ϖr

2Ωm;0
4 þ 98304ΩΛ;0Ωr;0

3 − 2327Ωm;0
4Þðϖr

2 − 1Þ
1310720Ωr;0

2ϖr
3

τ̃4

þOðτ̃5Þ: ð113Þ

This translates into precisely the relaxation of the
correspondence solution we had sought. Rather than
interpreting the effect of arbitrary Qr through a time-
varying renormalization of the Einstein constant κ̆, it is
useful to cast it as a gravitational extra component which
must be added to the bare (physical) matter in (4a) to
account for the actual curvature evolution. This we will
now do, and take the opportunity to combine the analysis
with a crude stability check of the correspondence solution
itself. To this end, we perturb the cosmological equations
around the correspondence solution of some pure bare
matter wi, taking the origin of τ̃ to be either the big bang as
exited to the right or future conformal boundary as
approached from the left:

sgnð3wi þ 1Þ ¼ sgnðτ̃Þ: ð114Þ

The perturbation of the correspondence curvature evolution
is supposedly generated by a perturbation from correspon-
dence torsion, or taking ε to be some small parameter,

ϖ ¼ 1þ εδϖ þOðε2Þ;

a ¼
�
3wi þ 1

2
τ̃

� 2
3wiþ1 þ εδaþOðε2Þ: ð115Þ

For the bare fluids anticipated here, we find that to first
perturbative order the deviation from correspondence
torsion typically decays away as a power law in normalized
conformal time τ̃ away from the big bang or towards the
future conformal boundary:

δϖ ¼

8>>><
>>>:

ðc1τ̃−1 þ c2Þ2 wi ¼ 1=3�
c1τ̃−

3þ ffiffi
3

p
2 þ c2τ̃−

3−
ffiffi
3

p
2

�
2

wi ¼ 0�
c1τ̃

3þ ffiffi
3

p
2 þ c2τ̃

3−
ffiffi
3

p
2

�
2

wi ¼ −1:

ð116Þ

We take this to confirm the stability of the correspondence
solution under pure fluid dominance. The obvious excep-
tion is the arbitrary constant torsion deviation under bare
radiation dominance. This was of course anticipated as part
of the relaxation procedure, and it need not be perturbative
at all. The solutions (116) and (115) can now be used to
account for the extra components to which they correspond:

ð∂ τ̃aÞ2 − a1−3wi ¼ εκa4δρ=3H2
0 þOðε2Þ; ð117Þ

which take the following forms15:

a4δρ ¼

8>><
>>:

c3 þ c4a−2 wi ¼ 1=3

c3a−
1þ ffiffi

3
p
2 þ c4a−

1−
ffiffi
3

p
2 wi ¼ 0

c3a1þ
ffiffi
3

p
þ c4a1−

ffiffi
3

p
wi ¼ −1:

ð118Þ

Note that (118) is consistent with (116) in that a decaying
deviation fromcorrespondence torsion ismanifest as a strictly
subdominant extra component. After a while, the extra
component may be approximated by the contribution from
the slowest-decaying torsion mode, and we see that it quietly

15The precise dependence of c3 and c4 onc1 andc2 is suppressed
for brevity.
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redshifts away under the dominant barematter in all cases but
bare radiation. For this reason, we anticipate an arbitrary
codominant dark radiation component to accompany bare
radiation until the epoch of equality, a small amount of hot
dark matter with wm;eff ≈ 0.211 to accompany bare matter
and, after the contemporary turnover, a miniscule amount of
nonphantomdark energywithwΛ;eff ≈ −0.577 to accompany
bare dark energy. These values, which we introduced in (13)
in Sec. I, can readily be obtained from (118).
Numerical investigation suggests that this version of

events is surprisingly robust, in that large positive or
negative dark radiation fractions in the early Universe
are typically eliminated by the first turnover they encounter.
The analytic predictions for the effective equation of state
parameter are borne out in Fig. 4. The ability of the theory
to recover ΛCDM evolution at late times over a wide range
of ϖr is especially striking in toy universes without bare
matter, as illustrated in Fig. 5: the correspondence solution
superficially resembles a damped harmonic attractor out of
initial dark radiation dominance.16

In the broadest terms, we can understand the arbitrary-ϖr

solution to class 3C� as a positive or negative dark radiation
component in the early Universe. A crude translation
into the nomenclature of ΛCDM mentioned in Sec. I is
simply to absorb this dark radiation into the effective post-
standard model relativistic degrees of freedom ΔNdr;eff as
follows:

ΔNdr;eff ¼ ðϖ−2
r − 1Þ

�
8

7

�
11

4

�
4=3

þ Nν;eff

�
: ð119Þ

This heuristic formula is the basis of the ΔNdr;eff values
referenced in Figs. 4 and 5, given the Planck 2018 estimate
of Nν;eff ¼ 2.99� 0.17 [11]. This estimate may fall foul of
circularity arguments due to the GR interpretation of the
Planck data, and direct [79] ΔNν;eff estimations based on
big bang nucleosynthesis (BBN) may be more appropriate.
Finally we emphasize that the dark radiation approximation
remains an approximation: since the general arbitrary-ϖr
solution predicts a complicated dark sector with a dynami-
cal equation of state.

FIG. 4. Within class 3C�, density parameters and effective equation of state parameter for a big bang with positive and negative dark
radiation fractions. The effective equation of state cleanly picks out the frozen regimes in (118), and consequently the dark sector
redshifts away more slowly than radiation after the first turnover. Note that dark radiation with positive energy has a tendency to advance
the epoch of equality.

16We will not attempt to prove that the critical solution is
actually an attractor state, but rather suffice with the stability
properties mentioned here.
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3. Other special cases of class 3C

We initially proposed that class 3C defined by Eqs. (87),
(88) and (92) be refined to class 3C� by the final constraint
(107) in order to satisfy correspondence with flat GR. It is
also worthwhile investigating alternative constraints appear-
ing in Fig. 1 which definitely alter the particle content of the
theory—ideally for the better.

Class 4H: k-screened dynamically open.—An additional
constraint

σ2 ¼ 0; ð120Þ
focuses class 3C onto class 4H. This is the cosmic class of
case 14whichmay admit massless 2þ gravitons as with case
16, and also of case 8, though the massless graviton in this
case is not expected to be 2þ. Furthermore, (120) appears to
have as profound a “taming” effect on class 3C as the
constraint (107) does. Since our analysis in (102) cannot be
recycled to show this without a certain amount of difficulty,
we will begin again from first principles. The cosmic
implications of the quadratic Riemann sector in class 4H
are characterized by the single parameter σ1, and those of the
quadratic torsion by υ2. The latter generally maintains the
broken cosmological NSI, allowing for matter as a cosmic
fluid. The cosmological equations of motion are signifi-
cantly simplified by defining two fields from the observable
torsion quantities, Φ and Ψ of dimension eV,

Ψ ¼ υ2U

4
ffiffiffi
3

p
σ1κQ2

−
ffiffiffi
3

p ∂tQ
Q

; Φ ¼ Ψ −
Uffiffiffi
3

p : ð121Þ

The density balance equation now adopts a formvery similar
to the first Friedmann equation, (4a) or (10):

Ωr þ Ωm þ ΩΛ þΩΦ þ ΩΨ ¼ 0; ð122Þ

where the dimensionless densities of the torsion fields are
entirely analogous to that of the cosmological constant, in
that ρΦ ¼ −κ−1Φ2 and ρΨ ¼ κ−1Ψ2 are incorporated as

ΩΦ ¼ υ2κρΦ
3H2

; ΩΨ ¼ υ2κρΨ
3H2

: ð123Þ

This relabeling becomes meaningful when we apply it to the
torsion equations (86a) and (86b), which, ifQ ≠ 0, become
respectively

Ψ ¼
ffiffiffi
3

p
H; ð124aÞ

∂tΦþHΦ ¼ 0: ð124bÞ

These immediately allow us to express (122) purely in terms
of R, H and various constants, thus encoding the curvature
evolution. Specifically, we have from (124b)

Φ ¼ χ=R; ð125Þ

where χ is a constant of integration, so that the density
equation reduces to

Ωr þ Ωm þΩΛ −
υ2χ

2

3H2R2
¼ −υ2: ð126Þ

FIG. 5. Reliable emergence of Einsteinian cosmology from class 3C�. Left: The correspondence solution attracts the torsion to the
valueQcor, here illustrated in the phase space ofQ for a toy model with no matter. Torsion is at rest at the big bang when the only sources
are dark energy and radiation as shown here—though if matter is present it begins to decay immediately, and propagates off a parabola in
phase space; right: compared to ΛCDM, initial dark radiation allows one-parameter tuning of the expansion rate during radiation
dominance. Compared to the equivalent plot in [19] we are allowed both increased and decreased early expansion because our extra
component is effective, furthermore the effect is heavily suppressed at modern times.
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Given the same inequality constraint (109) that was so vital
to the root theory when constrained by (107), and accepting
that for Φ be an observable quantity we must have χ2 ≥ 0,
we have again uncovered emergent GR evolution, but now
with a strictly negative effective k. This, in a theory that is
fundamentally k-screened, results in dynamically open but
geometrically arbitrary cosmology. It remains only to
examine the evolution of the observable torsion quantities
U and Q. We find

U ¼ 3H −
ffiffiffi
3

p
χ

R
; ð127aÞ

κQ2 ¼ υ2
4σ1

−
υ2χ

2
ffiffiffi
3

p
σ1R2

Z
dtR: ð127bÞ

Once more this is not entirely dissimilar to the torsion
evolution in classes class 3Cand class 3C�: on the approach to
the radiation dominated big bang the unobservable torsionU
diverges, while the observable Q converges.

Class 4I: Power-law inflation.—Yet another alternative
constraint to (107) is (91): this acts on the torsion rather
than curvature sector—eliminating the former entirely. This
constraint defines class 4I, of case �411which again contains
a propagating massless, potentially 2þ graviton and also
has gauge-invariant PCR. An undesirable and damning side
effect of (91) is of course the introduction of cosmological
NSI. Nonetheless, we repeat the procedure used for class 4H
by redefining (121) as

Ψ ¼ 1

σ2 − σ1

�
σ2Uffiffiffi

3
p þ σ1

ffiffiffi
3

p ∂tQ
Q

�
;

Φ ¼ σ2κ
1
2

σ2 − σ1

�
QUffiffiffi
3

p þ
ffiffiffi
3

p ∂tQ

�
: ð128Þ

This time, the Ψ-field does not appear in the density
balance equation, and the only possible source fluid is
naturally NSI radiation

Ωr þ ΩΦ ¼ 0: ð129Þ

The coupling constant is also redefined according to

ΩΦ ¼ ð4σ21 − σ22ÞκρΦ
3σ2H2

: ð130Þ

From class 4H we find (124a) remains valid, while (124b) is
slightly modified to

∂tΦþ 2HΦ ¼ 0: ð131Þ

This immediately translates to another effective radiation
component which renders (129) useless. The curvature

evolution is thus determined by the remaining torsion
equations, which may be solved to give the following:

U ¼ 0;
∂tQ
Q

¼ σ1 − σ2
ðσ1 þ σ2Þt

; H ¼ σ2
ðσ1 þ σ2Þt

; ð132Þ

implying a potentially inflationary expansion, according to
a power-law (see also [80]) which depends on the theory
parameters.

Class 5M.—The final combination of (120) with (91) results
in class 5M. While case �310 (unlike case �19) again may
contain a massless 2þ graviton and has the gauge-invariant
PCR property, the cosmology is even more impoverished
than class 4I, and we will not discuss it further. We will stop
short of generalizing the Φ −Ψ formalism in reverse to
class 3C or repeating the analysis of (102) with conformally
transformed ς so as to better accommodate class 4H. This
concludes the summary of the child theories of class 3C.

4. Class 3E: Cyclic cosmologies

In focusing on class 3E in Sec. V E 1 and its child
cosmologies in Secs. V E 2 and V E 3, we have neglected
the parent class 2A and siblings class 3E and class 3D. The
particle content of case 15 of class 3D is similar to that of
case 16 of class 3C, with a potential massless 2þ graviton.
Indeed, class 3C and its child class 4J are good candidates
for further investigation. In this section, we will very briefly
focus on class 3E, which instead has a similar particle
content to the parent cosmology, class 2A. Both classes are
richly populated by critical cases with massive 0− grav-
itons, though case 1 in class 3E may additionally contain a
massless 2þ graviton.
In particular, we will retain the fundamentals of a

k-screened Yang-Mills theory with (87) and (88), but
instead of (92) we will enforce (91). To highlight the
emergent inflationary effects we will set Λ ¼ 0, admitting
radiation and matter only. As a k-screened theory, the
formula (93) still allows us to solve forU in terms ofQ and
H. The usual energy balance equations are no longer
especially insightful, and so we work again at the level
of the dynamical variables. Curiously (86c) allows Q to be
expressed purely in terms of the matter content,

Q2 ¼ H2Ωm=2υ1: ð133Þ

By substituting (133) and (93) into (86d) we then obtain the
following solution:

a ¼ c1ðcoshðc2tÞ − 1Þ; ð134Þ

where the amplitude depends on the ratio of radiation to
matter, and the characteristic time on the cosmic theory
parameters
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c1 ¼ Ωr;0=Ωm;0; κc22 ¼ σ2υ1=ðσ22 − 4σ21Þ: ð135Þ
Thus, through a suitable choice of the theory parameters we
may obtain either cyclic universes in which the big crunch
and big bang are periodic, or perpetual exponential infla-
tion to the future conformal boundary.

5. Unitarity inequalities

Our analysis of each cosmic class relies only on the
equalities that define promising critical cases. We now wish
to combine this analysis with the accompanying unitarity
inequalities in Table II, so as to further constrain each
theory. Of greatest concern is class 3C. Naturally not all of
the inequalities are expressible purely in terms of the
cosmic theory parameters, and we find the relevant inequal-
ity constraint on case 16 reduces to

ð3r5 þ 2σ1 þ σ2Þð3r5 þ 8σ1 þ 4σ2Þð2σ1 þ σ2Þ < 0; ð136Þ
from which r5 cannot be eliminated in favor of σ1, σ2 or υ2.
Thismeans that the unitarity of case 16 does not constrain the
cosmological picture of class 3C discussed in Sec. V E 1, or
the cosmology of class 3C� discussed in Sec. V E 2.
Of the other child cosmologies of class 3C examined in

Sec. V E 3, we find that unitarity of case �411 of the
cosmologically NSI class 4I also requires (136). On the
other hand, the quite promising class 4H requires

σ1ð3r5 þ 2σ1Þð3r5 þ 8σ1Þ < 0; ð137Þ
for the unitarity of case 14—once more r5 cannot be
expressed in terms of σ1 or υ2. The other cosmologically
NSI class 5M also requires (137) for the unitarity of case
�310. Although not considered in the present work, we note
that the intriguing case 15 and case 12 respectively of class
3D and class 4J also require (137).
In fact, the unitarity inequalities only begin to impinge

on the cosmology when massive 0− gravitons are present.
In Sec. V E 4 we touched on class 3E. The relevant case 1
which may contain a 2þ graviton also requires (136), and
two additional inequalities:

σ2 < 0; υ1 < 0: ð138Þ
Although these explicitly affect the cosmic theory param-
eters remaining to class 3E, they do not fully constrain the
characteristic time (135) of the hyperbolic solution we
consider in (134). We will not examine case 27, case �730 or
case �935 of class 3E, since they do not contain massless
particles.

VI. AN ALTERNATIVE FORMALISM

A. The spacetime algebra

Having completed the physical picture, we will apply
an alternative formulation of the relevant gravitational
gauge theories to the quadratic invariants. We refer to

the apparatus of geometric algebra used in gauge theory
gravity (GTG),17 which is to be contrasted with the
ubiquitous tensor formalism employed above—though
both depict gravitational gauge fields on an unobservable
Minkowskian background. As noted in Sec. I, this is
already a potential source of difficulty (if not controversy)
if one wishes to extend to aspects of GR such as worm-
holes. A superficial difference arises in the treatment of
diffeomorphisms, which are actively interpreted in GTG.
The defining feature however is the extensive use of
Clifford algebras, more specifically the spacetime algebra
(STA). A comprehensive introduction to the STA is
provided by Hestenes and Sobczyk [81], and also in
[82]. GTG itself is adequately explained in [68,82], and
we have also offered a brief introduction in [2]. We will not
recapitulate the gauge theory structure of Sec. II A here, but
follow [83,84] in applying the STA in a targeted manner to
the field strength tensors and their quadratic invariants.
The elements of the STA, known asmultivectors, may be

constructed from the Lorentz basis of vectors fêag and dual
basis, fêag. The geometric product is represented by a
simple juxtaposition of quantities; it is associative and
distributative over addition, but not commutative. A geo-
metric product between two vectors can be expanded into
symmetric (interior) and antisymmetric (exterior) products:

êaêb ¼ êa · êb þ êa ∧ êb: ð139Þ

The first term on the rhs of (139) is a scalar, and the basis
vectors are Lorentzian in the sense that

êa · êb ¼ ηab; êa · êb ¼ ηab; êa · êb ¼ δab: ð140Þ

The second term on the rhs of (139) is a bivector, and the
antisymmetry allows six such quantities to be defined from
the fêag. In the same manner, four trivectors can be
constructed, along with the unique pseudoscalar

I ¼ ê0 ∧ ê1 ∧ ê2 ∧ ê3: ð141Þ

Repeating the procedure with the fêag generates the same
quantities, modulo sign differences. This defines the five
grades of the spacetime algebra. The PGT curvature tensor
is represented by a bivector-valued linear function of its
bivector argument, with the usual components recovered as
scalars via the appropriate interior product,

Rabcd ¼ ðêa ∧ êbÞ ·Rðêd ∧ êcÞ: ð142Þ

Note the unfortunate reversal in the last two indices.
Equivalently, the PGT torsion is a bivector-valued linear
function of its vector argument,

17Note that the name GTG may be confusing, since it is locally
equivalent to ECT: the mathematical formulation of the theories
is however quite different.
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T a
bc ¼ ðêb ∧ êcÞ · T ðêaÞ: ð143Þ

A major advantage of the geometric algebra formulation is
that it renders such components unnecessary for formal
calculations, since the fêag and fêag may be replaced by
arbitrary constant vectors, denoted similarly by lower-case
Roman letters, e.g.18 a, b, c, and multivector derivatives
with respect to them, ∂a, ∂b, ∂c. These have the desired
properties in common with the usual basis and dual basis:

∂a · a ¼ 4; ∂a ∧ a ¼ 0: ð144Þ
Thus, in a notation which makes no reference to any
Lorentz basis, we can define the vector-valued Ricci tensor,
torsion contraction and Ricci scalar

RðaÞ ¼ ∂b ·Rðb ∧ aÞ; R ¼ ∂a ·RðaÞ;
T ¼ ∂a · T ðaÞ: ð145Þ

It should by this point be clear that the formalism is
advantageous for identifying tensor symmetries. In par-
ticular, the essential symmetries,

RðabÞcd ¼ RabðcdÞ ¼ T aðbcÞ ¼ 0; ð146Þ
follow immediately from (142) and (143). Less obvious are
those symmetries of the Riemann and Ricci tensors which
emerge in the metrical limit of vanishing torsion. To discuss
these, we define the adjoint functions,

ða ∧ bÞ ·Rðc ∧ dÞ ¼ R̄ða ∧ bÞ · ðc ∧ dÞ;
a ·RðbÞ ¼ R̄ðaÞ · b; ð147Þ

which are distinguishable from the functions themselves
only when torsion is present. Without torsion, the overbars
can be removed and by inserting the Lorentz basis we can
easily recover

Rabcd ¼ Rcdab; Rab ¼ Rba: ð148Þ
As was illustrated in Sec. II B, the eWGT counterparts of

the PGT field strength tensors have a very similar structure,
though the torsion contraction vanishes by construction,
∂a · T †ðaÞ ¼ 0. Although we will only apply this formal-
ism to the Lagrangian structure of the gauge theories, we
note that it has many other advantages. For example, once
the direction associated with cosmic time is known êt,
construction of the most general isotropic torsion bivector
equivalent to (55) follows straightforwardly:

T ðaÞ ¼
�
1

3
U þQI

�
ða ∧ êtÞ: ð149Þ

B. Quadratic invariants

A natural reshuffling of the gravitational action is
possible within the STA. The usual arrangement of quad-
ratic invariants such as (31) and (32) are obtained by asking
for all unique contraction permutations between squared
tensors. Alternatively, we can ask for all unique geometric
quantities formed from the same tensor, and square them.
Applied to the quadratic Riemann sector, most of the

terms in either decomposition are identical, for example

RabcdRabcd ¼ 2Rðc ∧ dÞ ·Rð∂d ∧ ∂cÞ;
RabcdRcdab ¼ 2R̄ðc ∧ dÞ ·Rð∂d ∧ ∂cÞ; ð150Þ

with analogous formulas in the quadratic Ricci sector.
The only theory parameter that requires much thought in its
conversion is α5. Tellingly, this is the only quadratic
invariant that is not generated by a clean symmetry
operation on its Riemann tensor factors:

RabcdRacbd¼ððb · R̄ðd∧ cÞÞ · ð∂c ·Rð∂d ∧∂bÞÞ: ð151Þ

The rhs of (151) does not conform to the principle of the
new decomposition, but can itself be further decomposed
using

ð∂b ∧ Rðb ∧ dÞÞ · ðc ∧ Rð∂c ∧ ∂dÞÞ
¼ ðc ·Rðb ∧ dÞÞ · ð∂b ·Rð∂c ∧ ∂dÞÞ
−Rðd ∧ cÞ ·Rð∂c ∧ ∂dÞ: ð152Þ

This results in the following decomposition of the quadratic
Riemann sector,

LR2 ¼ α̌1R2 þ α̌2Rð∂bÞ ·RðbÞ þ α̌3R̄ð∂bÞ ·RðbÞ
þ α̌4Rð∂b ∧ ∂cÞ ·Rðc ∧ bÞ
þ α̌5ð∂b ∧ Rðb ∧ dÞÞ · ðc ∧ Rð∂c ∧ ∂dÞÞ
þ α̌6R̄ð∂b ∧ ∂cÞ ·Rðc ∧ bÞ; ð153Þ

while the same methodology decomposes the quadratic
torsion sector as follows:

LT 2 ¼ β̌1T ð∂bÞ · T ðbÞ
þ β̌2ð∂a ∧ T ðaÞÞ · ð∂b ∧ T ðbÞÞ þ β̌3T 2: ð154Þ

The decompositions in (153) and (154) are the origin of the
theory parameters, (45). Note that the first term on the rhs
of (152) and the second term on the rhs of (154) are
the squares of the Riemann and torsion protractions which
were mentioned in Sec. IV B.

18Note that this notation, which unavoidably clashes with the
dimensionless scale factor, is confined to Sec. VI.
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C. Conformal gravity vs k-screened gravity

The Weyl tensor is defined as

Wða ∧ bÞ ¼ Rða ∧ bÞ − SðaÞ�∧ b; ð155Þ

where the Schouten tensor is defined in terms of the Ricci
tensor and scalar as

SðaÞ ¼ 1

2

�
RðaÞ − 1

6
Ra

�
; ð156Þ

and in geometric algebra the Kulkarni-Nomizu product of
two tensors (as usual represented by linear functions on
vectors) is

AðaÞ�∧BðbÞ ¼ AðaÞ ∧ BðbÞ − BðaÞ ∧ AðbÞ: ð157Þ

This allows us to translate the Weyl tensor directly into the
Riemann and Ricci as follows19:

Wða ∧ bÞ ¼ Rða ∧ bÞ − 1

2
ðRðaÞ ∧ bþ a ∧ RðbÞÞ

þ 1

6
a ∧ bR: ð158Þ

It is also easy to find the adjoint Weyl tensor in the presence
of torsion:

W̄ða ∧ bÞ ¼ R̄ða ∧ bÞ − 1

2
ðR̄ðaÞ ∧ bþ a ∧ R̄ðbÞÞ

þ 1

6
a ∧ bR: ð159Þ

While is not possible, by invoking torsion, to resurrect the
contractions of the Weyl tensor or its adjoint

∂a ·Wða ∧ bÞ ¼ ∂a · W̄ða ∧ bÞ ¼ 0; ð160Þ

we do find that the Weyl protraction no longer vanishes in
general:

∂a ∧ Wða ∧ bÞ ¼ ∂a ∧ Rða ∧ bÞ

−
1

2
∂a ∧ RðaÞ ∧ b: ð161Þ

By combining these results and by analogy with the six
quadratic curvature invariants, we find three obvious
candidates for the quadratic invariants of the Weyl:

Wð∂b∧∂aÞ ·Wða∧bÞ

¼Rð∂b∧∂aÞ ·Rða∧bÞ−Rð∂aÞ ·RðaÞþ1

6
R2; ð162aÞ

W̄ð∂b∧∂aÞ ·Wða∧bÞ

¼R̄ð∂b∧∂aÞ ·Rða∧bÞ−R̄ð∂aÞ ·RðaÞþ1

6
R2; ð162bÞ

ð∂a ∧ Wða ∧ bÞÞ · ðc ∧ Wð∂c ∧ ∂bÞÞ
¼ ð∂a ∧ Rða ∧ bÞÞ · ðc ∧ Rð∂c ∧ ∂bÞÞ

þ 1

2
ðRð∂aÞ ·RðaÞ − R̄ð∂aÞ ·RðaÞÞ: ð162cÞ

This motivates three further theory parameters for the
quadratic Weyl sector:

μ̌1 ¼
1

6
α̌1 − α̌2 þ α̌4; μ̌2 ¼

1

6
α̌1 − α̌3 þ α̌6;

μ̌3 ¼
1

2
α̌2 −

1

2
α̌3 þ α̌5: ð163Þ

It is then easy to see that the k-screening condition (88) is
indeed compatible with any generalization of conformal
gravity theory to nonzero torsion, since

μ̌1 · σ3 ¼ μ̌2 · σ3 ¼ μ̌3 · σ3 ¼ 0; ð164Þ

moreover we may relate some of the more specific
cosmologies [e.g., class 4H defined by (120)] mentioned
in Sec. V E to the quadratic Weyl sector as follows:

μ̌1 · σ1 ¼ μ̌2 · σ2 ¼ 0: ð165Þ

We finally note that the parameter space of the quadratic
Weyl sector is three dimensional, whilst that of the
quadratic Riemann sector is five dimensional as discussed
in Sec. V B. It should therefore be possible to construct a
fourth theory which is simultaneously k-screened and
independent of the quadratic Weyl sector.

VII. CONCLUSIONS

Had the standard model of particle physics predated
general relativity, we might be left wondering at the
classical successes of the Einstein-Hilbert action. In fact
the order was reversed, and the standard model of cosmol-
ogy has instead cemented it. In this final section we will
summarize the combined classical and quantum aspects of
the Yang-Mills actions considered here.
We should not lose sight of the gauge theories that

underlie these actions. In the short term, these results will
principally be of relevance to PGT, but the classical
equivalence of PGTqþ and eWGTqþ cosmologies should
save considerable time as the latter field develops.
Moreover, we are hopeful that it may be generalized to19Note this is a standard result in tensor notation also.
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other simple spacetimes, such as pp-waves, anisotropic
Bianchi models and axisymmetric sources.
The guiding results of [30,31] should themselves be

thought of as preliminary, as the analysis only considers the
linearized theory of PGTqþ. Moreover, we do not neces-
sarily expect them to extend to eWGTqþ at any level of
approximation. We note that work is now well underway
[85] to perform a similar systematic search for unitary PCR
instances of WGTqþ with the ultimate aim of a full
eWGTqþ survey. Next, the additional gauge symmetries
which define the various critical cases have not themselves
been studied, and there is no guarantee that they survive in
the nonlinear theory. Of greater concern is the question
of renormalizability, as the power-counting formalism
is very much a first step in its determination. The
need for a nonlinear quantum feasibility analysis is thus
obvious. One possible method is the Hamiltonian analysis
[32,33], which was used to eliminate certain of Sezgin and
Nieuwenhuizen’s theories [86] on the grounds of constraint
bifurcation and field activation.
Within PGTqþ, we grouped 33 of the 58 new critical

cases into 14 cosmic classes. Most of these classes are k-
screened, in the sense that the evolution of the Universe is
decoupled from the spatial curvature. We stress that this
does not equate to an assertion that k ¼ 0, but rather that
the flat, open or closed nature of the geometry does not
affect the expansion rate or torsion evolution. This includes
class 3C and its special case, class 4H, which contain the
very promising case 16 and case 14. Despite k-screening,
these classes can be understood to mimic the cosmology of
GR, powered “under the hood” by involved curvature-
torsion interactions. In class 3C, flat GR cosmology
emerges through “Einstein freezing,” when a pure fluid
with equation of state parameter wi becomes dominant, up
to a wi-specific renormalization of the Einstein constant
that depends on a parameter of the theory ς. Such a
renormalization is better understood in terms of an extra-
component model, in which context it could be exploited
for various purposes, such as dark energy enhancement—
this is of course objectionable on the grounds of fine-
tuning. To eliminate ς naturally we may either change the
quantum theory to the case 14 of class 4H, or pick an
instance of class 3C that appeals on classical and algebraic
grounds without contradicting case 16, such as class 3C�.
Class 4H requires ς → ∞ in our (short-sighted) choice of
notation, but remains a promising theory in that the
Friedmann equations emerge exactly along with an effec-
tive k ≤ 0. Class 3C� simply sets ς ¼ 1, but again a
“correspondence solution” can be found in which k ¼ 0.
In thus avoiding fine-tuning, we have in some sense

returned to flat GR on square one. Remarkably however,
the special significance of radiation in class 3C gives rise to
an extra torsion freedom at the radiation-dominated big
bang in class 3C�, and this allows the complexity of the
theory to shine through. In the extra-component picture,

this is manifest as a dark “tracker matter” fraction, whose
equation of state reflects that of the dominant cosmic fluid.
Post-equality, this matter is always subdominant, and its
principal effect is that of dark radiation in the early
Universe.
We have been driving at a popular proposal in the

resolution of the H0 discrepancy, which is worth some
explanation. Generally, the expansion history of the
Universe must be tweaked so as to revise the CMB-inferred
value of H0 and h upwards, towards less history-sensitive
measurements (e.g., the SH0ES program or HOLiCOW
project). The CMB data can be roughly characterized by
two quantities [21,22,87,88], the shift parameter ℛ and
multipole position la of the first CMB peak,

ℛ ¼ H
ffiffiffiffiffiffiffi
ωm

p
DAðzrecÞ; la ¼ π

DAðzrecÞ
rs

: ð166Þ

These quantities rely on the comoving angular diameter
distance to recombination (as a proxy for CMB decou-
pling), DA at zrec, and sound horizon rs at that same epoch
trec. Both length scales are highly model dependent.
Expressions for DA which hold for general k illustrate
its sensitivity to the expansion history,

DAðzrecÞ ¼ ð1þ zrecÞdAðzrecÞ

¼ sin ð ffiffiffiffiffiffiffiffiffiffiffiffi
−Ωk;0

p R zrec
0

H0dz
H Þ

H0

ffiffiffiffiffiffiffiffiffiffiffiffi
−Ωk;0

p

¼ sinh ð ffiffiffiffiffiffi
ωk

p R zrec
0

Hdz
H Þ

H
ffiffiffiffiffiffi
ωk

p ; ð167Þ

while rs depends on both the expansion history and photon-
baryon sound speed

rs ¼
Z

trec

0

csdt
a

; cs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ 3ωba=4ωrÞ
p : ð168Þ

If zrec is held constant, a general increase in H for z < zrec
consistent with local observations will reduce DA as
expressed in (167). In order to preserve la in (166), we
will therefore need a decrease in rs. This can in turn be
achieved by increasingH for zrec < z and thus reducing trec
by (168). This mechanism is traditionally favored because
it impinges on relatively few of ΛCDM’s moving parts. Of
these parts, perhaps the strongest constraints come from big
bang nucleosynthesis (BBN): if photons decouple at an
earlier time then neutrinos decouple at a higher temper-
ature. Fortunately, the implications for the ratios of light
nuclei are thought to be (just) consistent [21] with a
tension-resolving tweak to the early expansion rate. On
the other hand, recent work [23] combining BBN and BAO
constraints (which probes only the background evolution so
long as neutrino drag is neglected) indicates that dark
radiation may only reduce the tension to 2.6σ.
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A selective increase in the early expansion rate inde-
pendent of other density parameters is qualitatively implied
by our model: the relaxed or arbitrary-ϖr soluton to class
3C�. Many alternative methods have been employed in
recent years, most of which fall under the umbrellas of early
dark energy [21], dark-sector interactions [25,89,90] or
varying Λ models [22]. These tend to lie on a spectrum
between data-driven searches and theoretically motivated
proposals for an extra component. Such motivations arise,
for example, in particle physics [19] and string theory [91],
though they mostly bear fruit in the form of toy models.
Our proposal has the advantage that the effect emerges
from an independently motivated theory of gravity, and can
be compared to (e.g.) similar applications of the ghost-free
bimetric theory [21]. A more obvious approach is to simply
introduce additional ultrarelativistic species such as sterile
neutrinos and so to alter ΔNeff—we stress again that the
quantity ΔNdr;eff is introduced in Sec. V E 2 for conven-
ience only, and does not confer any such ad hoc species.
This is significant as some BBN-oriented studies [26]
specifically assume thermal particles in equilibrium with
the standard-model plasma, while the Rayleigh-Jeans tail of
the CMB can constrain some dark electromagnetism
models [24]. The term “dark radiation” is also something
of a misnomer, since our theory makes a clear prediction as
to the evolution and present intensity of the pseudoscalar
torsion mode, which ought to be nearly constant for
z ≪ zrec, and on the order of the Planck mass

Q0 ∼MP: ð169Þ

As we observed earlier, this is precisely the torsion mode
which is expected to interact with matter, introducing the
potential for detection and falsifiability. On the other hand
it must be noted that (169) relies on a somewhat naive
interpretation of PGTqþ in which the fαig and fβig along
with the fσig and fυig are assumed to be of order unity.
There is reason to believe [84] that in eWGTqþ any
experiment would only be able to determine the quantity
σ1Q2

0, and that σ1 need not be of order unity. It should also
be noted that attempts at measuring torsion are generally
specific to the theory, with most attention naturally granted
to ECT. The series [29,92] provides a current review of
spin-gravity interaction in theory and practice. Some quite
concrete proposals have been made [93] based on micro-
structured matter, but these require nonminimal couplings
of T a

bc and Ra
bcd to the matter fields φ, which are not

present in ten-parameter PGTqþ.
If the quantum considerations in [30,31] are preliminary,

our classical results are doubly so, since we have restricted
our attention to background cosmology. Compared to GR,
our gravity theory is not so much modified as completely
rewritten, and its effect on perturbations will eventually
require a dedicated study, indeed the authors of [23]
emphasize that extra perturbation ingredients are of interest

to the resolution of the H0 tension. In the near future, we
envisage only a small modification to a publicly available
Markov-chain Monte Carlo engine such as COSMOMC [94]
or CLASS [95], restricted to the extra-component model set
out in Sec. V E 2. This may be done with nothing more
sophisticated than a spline approximation of the equation of
state parameter set out in (13) in Sec. I. Depending on the
state of the perturbation theory, a more rigorous modifi-
cation may then be justified. The same basic questions
surround, for example, solar system tests. On this point
however there may be cause for optimism, as we believe
both class 3C and class 4H theories generically admit
Schwarzschild–de Sitter vacuum solutions, in common
with RST [56]. The extra torsion freedom admitted by
class 2A or class 3D may be extremely useful when
constructing spherically symmetric solutions. Although a
study of class 2A, class 3D and class 4J is beyond the scope
of the present work (see [96]), we reiterate that they remain
attractive.
Paradoxically, we have had nothing to say about the

“elephants in the cosmos” such as inflation, dark matter or
dark energy. We cannot dismiss the idea that k-screening
may be of some relevance to the flatness problem, or that
the general unpredictability of class 3C cosmology at
turnover epochs may help explain the cosmic coincidence.
At the classical level, class 3C� gravity only offers us a
concrete route out of the subtler problem of the H0 tension,
and in this sense it is economical. In particular, the absence
of a massive particle in case 16 remains in line with the
consensus that the origins of dark matter are not purely
gravitational, and that the origins of dark energy are not
classical.20 We have not yet attended to inflation, but rather
invoked a natural freedom on the boundary of the radiation-
dominated big bang, which is eliminated by dark energy at
the future conformal boundary. This raises questions of
compatability with the conformal cyclic cosmology of
Penrose [98], or its recent reinterpretation [99], and has
the advantage of extending ΛCDM by only one parameter.
The obvious zero parameter grail may be addressed in
future work: one would like to replace the classical
singularity with a torsion-driven inflationary epoch which
naturally exits to the correct dark radiation fraction.

ACKNOWLEDGMENTS

We are grateful to Antony Lewis for a helpful
discussion at the 30th Texas Symposium, Yun-Cherng
Lin for his assistance in incorporating the new critical
cases of PGTqþ, Steven Gratton for his insights into the
minisuperspace approximation and Marc Kamionkowski
for his useful comments on dark radiation at the KICC

20See for example a new semiclassical origin for Λ within GR
[97], we anticipate this “quantum bias” methodology can be
adapted to gauge gravity.

SYSTEMATIC STUDY OF BACKGROUND COSMOLOGY IN … PHYS. REV. D 102, 024048 (2020)

024048-27



10th Anniversary Symposium. W. E. V. B. is supported by
STFC under Grant No. ST/R504671/1, and W. J. H. by the
Gonville and Caius Research Fellowship.

APPENDIX A: SPIN PROJECTION OPERATORS

The building blocks of the SPOs are two ka-dependent
projections

Ωab ¼ kakb

k2
; Θab ¼ ηab −

kakb

k2
: ðA1Þ

For the Aabc-field, the diagonal SPOs then have the
following fundamental definitions:

P̀11ð0−Þijkabc ¼
2

3
ΘicΘjaΘkb þ

1

3
ΘjaΘjbΘkc;

P̀11ð0þÞijkabc ¼
2

3
ΘcbΘkjΩia;

P̀11ð1−Þijkabc ¼
2

3
ΘcbΘiaΘkj;

P̀22ð1−Þijkabc ¼ 2ΘiaΘcbΘkj;

P̀11ð1þÞijkabc ¼ ΘicΘkbΩja þ ΘiaΘkcΩjb;

P̀22ð1þÞijkabc ¼ ΘiaΘjbΩjb;

P̀11ð2−Þijkabc ¼
2

3
ΘicΘjbΩka þ

2

3
ΘiaΘjbΩkc

− ΘcbΘiaΩkj;

P̀11ð2þÞijkabc ¼ −
2

3
ΘcbΘkjΩia þ ΘicΘkaΩjb

þ ΘiaΘkcΩjb: ðA2Þ

Since the Aabc-field has two 1þ and 1− sectors, there is the
opportunity for internal mixing. In particular the following
off-diagonal SPOs are relevant for this work:

P̀12ð1þÞijkabc ¼ −
ffiffiffi
2

p
ΘjaΘkbΩic;

P̀21ð1þÞijkabc ¼ −
ffiffiffi
2

p
ΘbiΘkjΩic: ðA3Þ

The diagonal SPOs are complete, idempotent and orthogo-
nal across JP sectors. The correctly symmetrized forms of
all SPOs are given by

PijðJPÞijkabc ¼ P̀ijðJPÞ½ij�k½ab�c: ðA4Þ

For the complete list of SPOs, including the off-diagonal
SPOs of the 1− sector and the SPOs of the sab and aab
fields, see [30] and references therein.

APPENDIX B: COMPARISON WITH THE
LITERATURE

Given the popularity of ten-parameter PGTqþ cosmology
mentioned in Sec. I, it is appropriate to attempt some

comparison with the literature, although such an attempt
will naturally be inexhaustive. Particularly, we will not
consider extension to the odd-parity sector discussed
by [43,60–63].
The original paper by Minkevich [46] only admits U,

and not Q on the grounds of spacetime parity—an
examination of Eqs. (86a)–(86d) indicates that σ1 and σ2
do not arise in this case, and so k-screening cannot
meaningfully occur. Furthermore, [46] retains α̌0 in order
to force the correspondence principle. We note that this
situation is slightly complicated in [47,49,53] by the
extension to MAGT. In [50–52] it appears that both U
andQ are incorporated, but we find that the two constraints
imposed on (34) translate to (91), while α̌0 remains free.
In comparing the present work to [64,65], we make use

of the following identity:

ðϵabcdRabcdÞ2 ¼ 4Rabcdð4Racbd −Rabcd −RcdabÞ: ðB1Þ

Throughout [64,65] we again believe α̌0 to be retained,
while (91) to be imposed at certain points. Within [64] two
further constraints are applied which reduce to

σ1 − σ3 ¼ 0; ðB2aÞ

σ2 − σ3 ¼ 0: ðB2bÞ

Thus, while σ3 remains free, (B2a) and (B2b) together
imply the final constraint (107) which separates class 3C�

from class 3C.
Precisely Eqs. (B2a) and (B2b) are applied in [57], along

with the torsion constraint

4υ1 þ υ2 ¼ 0; ðB3Þ

to define the original SNY Lagrangian. We note that (B3)
itself features in Fig. 1 to distinguish class 4L from class 3F.
The SNY generalization studied in [59] replaces Eqs. (B2a)
and (B2b) with

σ2 þ 2σ1 − 3σ3; ðB4Þ

though we do not believe the quadratic torsion sector
to be constrained. Once again, (B4) features in Fig. 1 to
distinguish class 3G from class 2B.
Finally, we will consider [56], in which a mathematically

attractive solution to the cosmological equations of RST
was presented. Here we will show that the solution satisfies
a much broader class of cosmologically NSI theories.
Beginning from the original root theory, we restrict to
Yang-Mills gravity by applying (87), and then to cosmo-
logically NSI gravity by eliminating the torsion with (92)
and (91). The quadratic Riemann sector is then refined with
two new constraints
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σ1 ¼ 0; ðB5aÞ

σ2 − 3σ3 ¼ 0: ðB5bÞ

This cosmic class, to which RST belongs, is not populated
by any of the critical cases considered here, and as such it
does not appear in Fig. 1. Note however, that it can be
considered a grandchild of class 3G, which appears only to
contain critical cases with massive 0− gravitons. The
torsion equations (86a) and (86b) then take the form

ðδL̃T=δXÞF ∝ ∂2
τX þ 2Xð3Y2=4 − X2 − kÞ; ðB6aÞ

ðδL̃T=δYÞF ∝ −∂2
τY þ 2Yð3X2 − Y2=4þ kÞ; ðB6bÞ

in which their mutual symmetry—first noted in Sec. V C—
are brought into sharp relief. The methodology of [56]
exploits this directly, by encapsulating both equations
through the concept of complex torsion

Z ¼ X þ iY=2; ∂2
τZ − 2Z3 þ 2kZ ¼ 0: ðB7Þ

The single resulting equation can then be solved compactly
for Z in terms of the Weierstrass elliptic function, such that
the material source ϱr appears as a constant of integration.
This compact solution describes an interesting universe, if
one of limited utility, in which the Hubble number and
torsion may evolve chaotically. Our preferred formalism of
Sec. V E affords a more respectable picture however, if we
set U ¼ Q ¼ 0. The density equation analogous to (94) or
(122) then becomes

Ωrþ
8

3
σ2κðð∂tH=HÞ2þ2∂tH−H2ΩkðΩk−2ÞÞ¼0; ðB8Þ

and ∂tH can then be eliminated by the observable form
of (86a):

∂2
t H þ 4H∂tH þ 2H3Ωk ¼ 0: ðB9Þ

By writing the implied integration constant as a modified
cosmological constant, Λ̆ of dimension eV, this becomes

∂tH ¼ H2ðΩk − 2Þ þ 2

3
Λ̆: ðB10Þ

The final density equation then looks quite familiar:

9

8
κ−1Λ̆−1Ωr þ ΩΛ̆ þΩk ¼ 1; ðB11Þ

as an effective cosmological constant emerges up to a
renormalization of the radiation density.

APPENDIX C: COSMOLOGICAL EQUATIONS
OF CLASS 3C

The modified gravitational densities in (94) and the
coefficients to the auxiliary torsion equation (96) have the
following forms:

ΩΨ þ ΩΦ

¼ ðð16σ12 − 4σ2
2Þκ2Q2 þ κσ2υ2Þ∂tQ2

ð4Q2σ2κ − υ2ÞH2

þ 32
Qðκðσ12 − 1=4σ22ÞQ2 − 1=4υ2ðσ1 − σ2=4ÞÞκ∂tQ

ð4Q2σ2κ − υ2ÞH

þ 16
ðκðσ12 − 1=4σ22ÞQ2 − 1=2ðσ1 − 5=8σ2Þυ2ÞQ2κ

4Q2σ2κ − υ2
;

ðC1aÞ

f1 ¼ 2Qð4σ2κQ2 − υ2Þð16κQ2σ1
2 − 4κQ2σ2

2 þ σ2υ2Þ;
ðC1bÞ

f2 ¼ −32σ12υ2κQ3; ðC1cÞ

f3 ¼ 6Qð4σ2κQ2 − υ2Þð16κQ2σ1
2 − 4κQ2σ2

2 þ σ2υ2Þ;
ðC1dÞ

f4 ¼ 2Qð4σ2κQ2 − υ2Þ
× ð16κQ2σ1

2 − 4κQ2σ2
2 − 4υ2σ1 þ σ2υ2Þ; ðC1eÞ

f5 ¼ 256Qððσ2κ2σ12 − 1=4σ23κ2ÞQ4

− 1=8ðσ12 þ 3σ1σ2 − σ2
2Þυ2κQ2

þ 1=32ðσ1 þ σ2=2Þυ22Þ: ðC1fÞ
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