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In flat spacetime, the vacuum neutrino flavor oscillations are known to be sensitive only to the difference
between the squared masses, and not to the individual masses, of neutrinos. In this work, we show that the
lensing of neutrinos induced by a gravitational source substantially modifies this standard picture and it
gives rise to a novel contribution through which the oscillation probabilities also depend on the individual
neutrino masses. A gravitating mass located between a source and a detector deflects the neutrinos in their
journey, and at a detection point, neutrinos arriving through different paths can lead to the phenomenon of
interference. The flavor transition probabilities computed in the presence of such interference depend on
the individual masses of neutrinos whenever there is a nonzero path difference between the interfering
neutrinos. We demonstrate this explicitly by considering an example of weak lensing induced by a
Schwarzschild mass. Through the simplest two flavor case, we show that the oscillation probability in the
presence of lensing is sensitive to the sign of Δm2 ¼ m2

2 −m2
1, for nonmaximal mixing between two

neutrinos, unlike in the case of standard vacuum oscillation in flat spacetime. Further, the probability itself
oscillates with respect to the path difference and the frequency of such oscillations depends on the absolute
mass scale m1 or m2. We also give results for realistic three flavor case and discuss various implications of
gravitationally modified neutrino oscillations and means of observing them.
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I. INTRODUCTION

Neutrino oscillation phenomena has provided the most
useful platform to study the fundamental properties of
neutrinos. The analysis of neutrino oscillation data col-
lected from the solar, atmospheric, and reactor neutrinos
(see for example [1–3]) have established that (a) there exist
at least three flavors of weakly interacting neutrinos,
(b) neutrinos are massive, and (c) their mass eigenstates
are different from their flavor eigenstates. However, in this
process, we also learn that the neutrino oscillation prob-
abilities depend only on the difference of the square of
neutrino masses and not on their individual masses.
Therefore, one cannot infer the absolute neutrino mass
scale from the oscillation experiments. Further, the current
experiments [4] based on oscillations have measured Δm2

21

(where Δm2
ij ≡m2

i −m2
j ) and jΔm2

31j which leaves two
possibilities: either m1 < m2 < m3 or m3 < m1 < m2

known as normal or inverted ordering, respectively, where
m1; m2; m3 denote masses corresponding to the neutrino
mass eigenstates.
The nonoscillation experiments, like measuring endpoint

energy of electron in the nuclear beta decay [5] or
measuring the rate of neutrinoless double beta decay (only
if neutrinos are Majorana fermions) [6], can provide direct
evidence for the neutrino mass scale. Moreover, the
cosmological observations provide a constraint on the
sum of all three neutrino masses [7]. Currently, all these
experiments lead only to an upper bound on the mass of the
lightest neutrino. The strongest cosmological constraints
[8,9] imply the lightest neutrino mass ≲0.05 eV while the
latest results from beta-decay experiment [5] lead to a much
weaker limit, <1 eV.
Theoretical studies of neutrino oscillations are performed

and the corresponding experimental data are interpreted
mostly in the regime of flat spacetime. The gravitational
effects on neutrino propagation have been explored theo-
retically in somewhat details [10–16]. The phenomenologi-
cal implications of gravitational potential on the neutrino
propagation along geodesics are discussed in [17,18]. It was
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shown that the gravitational redshift increases the effective
oscillation length of neutrinos. Effects like spin-flip or
helicity transitions [19,20], flavor oscillations in case of
two and three flavors [21] and possible violation of equiv-
alence principle [22,23] have also been investigated. One of
the interesting effects is the lensing of neutrino oscillation
probabilities due to gravity. In this case, different trajectories
of neutrinos around amassive astrophysical body are focused
on a common point where neutrino flavor oscillation
probability is computed. This is first studied in the context
of Schwarzschild geometry in [18] and further details are
explored in [24–26].
We explore gravitational lensing of neutrinos for its

potential to reveal the absolute neutrino mass scale. The
lensing is studied in the context of Schwarzschild geometry
in which neutrinos in their travel to the point of observation
from a source adopt different trajectories around a gravi-
tating source and get lensed at a common point arriving
with different path lengths and hence different phases. The
resulting path difference between the accumulating neu-
trinos results in interference of oscillation probabilities at
the point of observation, and it depends not only on the
difference of the squared masses but also on the absolute
masses of the neutrinos, in general. The qualitative and
quantitative aspects of these interference effects are studied
in the context of simplified two flavor oscillation case. We
show that the effects of this path dependency seeps into the
normalization of the wave function as well and hence the
overall probability not only cares about the individual
masses but the path information as well. We develop the
observables which reflect these dependencies and discuss
the methodology for obtaining individual mass information
from them. We also give results for the three flavor case.
The outline of the paper is as the following. We briefly

review the neutrino oscillations in flat and curved space-
time in Sec. II. The gravitational lensing effects on neutrino
oscillations are discussed in Sec. III. In Sec. IV, we discuss
explicitly two flavor oscillation case and its qualitative and
quantitative features. The results for three flavor case are
discussed in Sec. V. The study is concluded in Sec. VI with
a discussion.

II. NEUTRINO OSCILLATIONS IN FLAT
AND CURVED SPACETIME

In weak interactions, neutrinos are produced and
detected in flavor eigenstates denoted by jναi, where
α ¼ e, μ, τ. The flavor and mass eigenstates jνii, with
i ¼ 1, 2, 3, are related by

jναi ¼
X
i

U�
αijνii; ð1Þ

where U is 3 × 3 unitary matrix. In diagonal basis of the
charged leptons, U is identified with the leptonic mixing
matrix [3]. Assuming neutrino wave-function as a plane

wave, its propagation from source S to detector D, located
at spacetime coordinates ðtS;xSÞ and ðtD;xDÞ respectively,
is described by

jνiðtD;xDÞi ¼ expð−iΦiÞjνiðtS;xSÞi: ð2Þ

If neutrinos are produced initially in the flavor eigenstate
jναi at S, then after traveling to D the probability of the
change in neutrino flavor from να → νβ at the detection
point is given by

Pαβ ≡ jhνβjναðtD;xDÞij2
¼

X
i;j

UβiU�
βjUαjU�

αi expð−iðΦi −ΦjÞÞ: ð3Þ

The change in flavor can occur ifΦi ≠ Φj. Different neutrino
mass eigenstates develop different phases Φi because of
differences in their mass and energy/momentum which
ultimately gives rise to neutrino oscillation phenomena [27].
In flat spacetime, the phase is given by

Φi ¼ EiðtD − tSÞ − pi · ðxD − xSÞ: ð4Þ

It is typically assumed that all the mass eigenstates in a
flavor eigenstate initially produced at the source have equal
momentum or energy [27,28]. Either of these assumptions
together with ðtD − tSÞ ≃ jxD − xSj for relativistic neutri-
nos (Ei ≫ mi) leads to

ΔΦij ≡Φi −Φj ≃
Δm2

ij

2E0

jxD − xSj; ð5Þ

where Δm2
ij ≡m2

i −m2
j . E0 is the average energy of the

relativistic neutrinos produced at S. The oscillation prob-
ability Pαβ therefore depends on the difference of squared
masses and not on the absolute masses of the neutrinos in
this case. In other words, a universal shift in the squared
masses by a constant, i.e., m2

i → m2
i þ C, leaves the

expression of Pαβ unchanged. Substitution of Eq. (5) in
Eq. (3) and further simplification considering only two
flavors of neutrinos lead to the following well-known
oscillation formula:

Peμ ¼ sin22αsin2
�
Δm2

12L
4E0

�
ð6Þ

where L ¼ jxD − xSj. The angle α parametrizes the 2 × 2
matrix

U ≡
�

cos α sin α

− sin α cos α

�
; ð7Þ

relating the flavor and mass eigenbases for this case.
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Modification in neutrino propagation caused by curva-
ture of spacetime has been discussed in [17]. In a curved
spacetime, the expression of phase in Eq. (4) can be
replaced by its covariant form

Φi ¼
Z

D

S
pðiÞ
μ dxμ; ð8Þ

where pðiÞ
μ is the canonical conjugate momentum to the

coordinate xμ for the ith neutrino mass eigenstate and it is
given by

pðiÞ
μ ¼ migμν

dxμ

ds
: ð9Þ

Here, gμν is the metric tensor and ds is the line element
along the neutrino trajectory. Neutrino oscillation proba-
bility can be obtained by evaluating the phase Φi for given
gravitational field and neutrino trajectories and substituting
it in Eq. (3). For example, such studies have been performed
in case of a gravitational field of a static spherically
symmetric object described by the Schwarzschild metric
[17,18]. The line element in this case is given by

ds2 ¼ BðrÞdt2 − 1

BðrÞ dr
2 − r2dθ2 − r2sin2θdϕ2; ð10Þ

where BðrÞ ¼ 1–2GM=r≡ 1 − Rs=r, and G and M are
Newtonian constant and mass of the gravitating object,
respectively and Rs its Schwarzschild radius.
For simplicity, the motion of neutrinos can be chosen to

be confined on θ ¼ π=2 plane as the gravitational field in
this case is isotropic. Then the oscillation phase developed
by jth neutrino mass eigenstate, νj, while traveling from
the source SðtS; rS;ϕSÞ to detector DðtD; rD;ϕDÞ, can be
estimated using

Φj ¼
Z

D

S
ðEjðrÞdt − pjðrÞdr − JjðrÞdϕÞ; ð11Þ

where EjðrÞ≡ pðjÞ
t , pjðrÞ≡ −pðjÞ

r and JjðrÞ≡ −pðjÞ
ϕ .

In this calculation of phase, the classical trajectory from
the source to the detector is employed. Being a quantum
analysis such usage of “classical” trajectories seems unjus-
tified and there has been a debate about it [17,29] in the
literature. However, as we show in Appendix A, this
approximation can be justified for a relativistic quantum
particle in the regime of sufficiently weak gravitational
field. This also goes on to suggest that standard treatment of
neutrino flavor oscillations cannot be applied for strong
lensing scenarios, where most of the interesting physics
happens around the photon sphere (Rph ¼ 3Rs=2). Further,
being massive, neutrinos do not really travel along the null
rays and if one correctly employs the mass effects, we get
an extra factor of 2 in the oscillation phase (as also reported

in [23,30]).1 In order to keep tune with bulk of the existing
literature on neutrino oscillation, we will employ the
quantum mechanical treatment for weak lensing study with
null ray approximation. However, the effects of lensing that
we are going to discuss in this work remain qualitatively
unchanged if one adopts massive trajectories.
The phase Φj is explicitly computed for neutrinos

traveling along the light-ray trajectory in [18]. For radial
propagation, one obtains

Φj ≃
m2

j

2E0

jrD − rSj ð12Þ

where jrD − rSj is coordinate difference and it is different
from the physical distance in nonflat spacetime. To evaluate
the phase for general light-ray trajectory, it is convenient to
write the angular momentum Jj in terms of the energy Ej,
asymptotic velocity vj of the corresponding neutrino and
the impact parameter b (the shortest distance of the
undeflected trajectory). Assuming GM ≪ r (weak gravity
limit) and b ≪ rS;D, one finds [18]

Φj ≃
m2

j

2E0

ðrS þ rDÞ
�
1 −

b2

2rSrD
þ 2GM
rS þ rD

�
: ð13Þ

It is easy to see that the phase difference ΔΦjk obtained
from Eq. (12) or (13) depends on Δm2

jk. Therefore, the
oscillation probability even in curved spacetime is also
invariant under the shift m2

i → m2
i þ C, similar to the case

in flat spacetime discussed earlier. However, as we dis-
cussed previously, in curved spacetime, there is a possibil-
ity of gravitational lensing as well, which brings in path
difference too into play, which leads to breaking of this shift
symmetry, as we see in the next section.

III. GRAVITATIONAL LENSING OF NEUTRINOS
IN SCHWARZSCHILD SPACETIME

For neutrinos propagating nonradially around the gravi-
tating source, the dependence of the phase on the impact
parameter b gives rise to novel effects when the lensing
occurs. Let us consider a Schwarzschild black hole as
gravitational lens situated between the neutrino source and
detector as depicted in Fig. 1. In curved spacetime,
neutrinos of a given mass eigenstate νi may travel through
different classical paths and meet at the common detection
point D. The neutrino flavor eigenstate, propagated from
the source to detector through different paths denoted by p,
is given by

jναðtD;xDÞi ¼ N
X
i

U�
αi

X
p

expð−iΦp
i ÞjνiðtS;xSÞi; ð14Þ

1This remains true in the flat spacetime too.
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where Φp
j denotes the same phase as given in Eq. (13) but

contains the path dependent parameter bp. If the neutrino is
produced in α flavor eigenstate at the source S then the
probability of it being detected in β flavor at the detector
location, is given by

Plens
αβ ¼ jhνβjναðtD;xDÞij2

¼ jNj2
X
i;j

UβiU�
βjUαjU�

αi

X
p;q

exp ð−iΔΦpq
ij Þ; ð15Þ

where,

jNj2 ¼
�X

i

jUαij2
X
p;q

exp ð−iΔΦpq
ii Þ

�
−1
: ð16Þ

The phase difference can be conveniently parametrized,
using Eq. (13) in two parts which depend on either the mass
difference Δm2

ij or the path difference Δb2pq, as

ΔΦpq
ij ¼ Φp

i −Φq
j ¼ Δm2

ijApq þ Δb2pqBij; ð17Þ

where

Apq ¼
ðrS þ rDÞ

2E0

�
1þ 2GM

rS þ rD
−
P

b2pq
4rSrD

�
;

Bij ¼ −
P

m2
ij

8E0

�
1

rS
þ 1

rD

�
: ð18Þ

Here,
P

b2pq ¼ b2p þ b2q and
P

m2
ij ¼ m2

i þm2
j . Clearly,

by construction, the parameters Apq and Bij are symmetric
under the interchange of their respective indices Apq ¼
Aqp;Bij ¼ Bji. Further, the definition implies ΔΦpq

ii ¼
Δb2pqBii, ΔΦ

pp
ij ¼Δm2

ijApp and ΔΦpq
ij ¼ −ΔΦqp

ji .
It can be seen from Eq. (17) that the oscillation

probability expression (given in Eq. (15) as well) depends
on

P
m2

ij through path difference Δb2pq. Therefore, it is
evident that for a choice of location of detector, for which
Δb2pq vanishes, the oscillation probability Plens

αβ is invariant
under the shift m2

i → m2
i þ C. The locations, for which

Δb2pq ≠ 0, break this invariance, and the shift implies Bij →
Bij þ 2C in these cases. A generic noncollinear configu-
ration of the source, the Schwarzschild mass (lens) and the
point of detection, is therefore, expected to retain the
information of

P
m2

ij as well. Therefore, we evaluate this
dependence of the oscillation probability at a generic point
in the source-lens-detector plane, in the weak field limit and
obtain observable aspects of it. Substitution of Eq. (17) into
(15) leads to

Plens
αβ ¼

P
i;jUβiU�

βjUαjU�
αið

P
p exp ð−iΔm2

ijAppÞ þ 2
P

p>q cosðΔb2pqBijÞ exp ð−iΔm2
ijApqÞÞ

Npath þ
P

ijUαij2
P

q>p2 cosðΔb2pqBiiÞ
: ð19Þ

FIG. 1. Diagrammatic representation of weak lensing of neutrinos.
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The above expression leads to conservation of total
probability, i.e.,

P
β P

lens
αβ ¼ 1. For simplicity, we consider

neutrino propagation in θ ¼ π=2 plane. In this case,
Npath ¼ 2 and the general expression of Plens

αβ for N flavor
reduces to

Plens
αβ ¼jNj2

�
2
X
i

jUβij2jUαij2ð1þcosðΔb2BiiÞÞ

þ
X
i;j≠i

UβiU�
βjUαjU�

αiðexpð−iΔm2
ijA11Þ

þexpð−iΔm2
ijA22Þþ2cosðΔb2BijÞexpð−iΔm2

ijA12ÞÞ
�
;

ð20Þ

with

jNj2 ¼
�
2þ 2

X
i
jUαij2 cosðΔb2BiiÞ

�
−1

ð21Þ

where Δb212 ≡ Δb2.
Many apparently similar versions of Eq. (20) are

available in literature [18,24,25], however with some subtle
differences. The role of normalization in Eq. (21) has been
neglected in [18,25] which is very important in under-
standing the neutrino oscillation interference effects as we
show in the following sections. From Eq. (20), it is easy to
verify that with the proper normalization, transition and
survival probabilities sum up to unity. Since the normali-
zation depends on Δb2, one expects it to be path dependent
in general. The normalization in Eq. (21) also depends on
the neutrino mixing parameters unlike the one obtained
earlier in [24]. The expression of Plens

αβ in Eq. (20) also
differs from that obtained in [24] where it is assumed to be
factorizable into two parts: one which depends only on the
neutrino path difference while the other depends solely on
the neutrino mass difference. We find that such a factori-
zation is not possible in general. Further, unlike in [25], the
expression in Eq. (20) also captures the oscillation profile
in the prelensing phase through its dependency on source
location rS. This is a crucial difference, since taking the
flat space limit M → 0 does not appropriately bring out the
dependence on the distance between the source and
detector in [25] and misses out the phase information
during its journey from the source to the lens part.
Therefore, we can proceed with Eq. (20) to study the
dependency of transition on the individual neutrino masses.

IV. ABSOLUTE NEUTRINO MASS DEPENDENT
EFFECTS IN LENSING: TWO FLAVOR CASE

We now discuss the simplest case of two neutrino flavors
in order to understand the qualitative difference that arise
through lensing effects. In this case, the probability for

νe → νμ transition obtained from the general expression
Eq. (20) is as the following.

Plens
eμ ¼ jNj2sin22α

�
sin2

�
Δm2

A11

2

�
þ sin2

�
Δm2

A22

2

�
:

− cosðΔb2B12Þ cosðΔm2A12Þ þ
1

2
cosðΔb2B11Þ

þ 1

2
cosðΔb2B22Þ

�
; ð22Þ

and

jNj2 ¼ 1

2ð1þ cos2α cosðΔb2B11Þ þ sin2α cosðΔb2B22ÞÞ
;

ð23Þ

where Δm2 ¼ Δm2
21. The parameters A11;22 and B11;22

can be written in terms of the independent parameters A12

and B12 as A11;22 ¼ A12 ∓ XΔb2 and B11;22 ¼ B12 ∓
XΔm2 (-sign for 11 and þ for 22 components). Here,
X ¼ rSþrD

8E0rSrD
. The noteworthy features of the derived lensing

probability are
(1) Plens

eμ does not change under the interchange of b1
and b2. It is therefore an even function of Δb2.

(2) Under the interchange of m1 and m2, the probability
does not remain the same unless Δb2 ¼ 0 or
α ¼ π=4, due to B11;22 terms. This is in contrast
to two flavor oscillation in the flat spacetime in
which interchange of m1, m2 implies the same
probability. Therefore, Eq. (22) is sensitive to the
neutrino mass ordering and leads to different results
for Δm2 > 0 and Δm2 < 0.2

(3) The lensing probability, Plens
eμ , is not only sensitive

to the mass ordering but it also explicitly depends on
the sum of squared neutrino masses through B12 in
general.

The above features become more clear when Eq. (22) is
expanded for small Δb2. Defining a dimensionless param-
eter ϵ≡ Δb2B12, and for ϵ ≪ 1 Eq. (22) can be approxi-
mated as

Plens
eμ ≈ sin22αsin2

�
Δm2

A12

2

��
1 −

ϵ2

2

Δm2P
m2

cos 2α

þ ϵ4

16

Δm2P
m2

�
Δm2P
m2

�
2 cos 4αþ csc2

�
Δm2

A12

2

��

−
2

3

�
1þ

�
Δm2P
m2

�
2
�
cos 2α

�
þOðϵ6Þ

�
; ð24Þ

2Note that this feature is not reflected in oscillation probability
obtained for the two flavor case in [18] as the expression derived
there does not include appropriate normalization factor.
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where
P

m2 ¼ m2
1 þm2

2. Thus, we see that the probability
of transition has a clear dependency on

P
m2 as well,

unless one adopts certain very special trajectories which
only depend on Δm2 (these are nongeodetic in nature
generically3). Furthermore, as mentioned earlier, Plens

eμ is
sensitive to the sign of Δm2 if the mixing angle is not
maximal, α ≠ π=4. For the maximal case (α ¼ π=4), the
oscillation probability Eq. (24) does not depend on theP

m2 at Oðϵ2Þ and the mass dependent lensing effects
arise through the higher order terms in ϵ. In fact, the
absence of signature dependency or order ϵ2 effects, for
maximal case can be attributed to the normalization
Eq. (21) which contributes also in ϵ2 order.
The role of normalization has also an observable effect,

as with the correct normalization, the total probability of
transition and survival of an initial flavor species will add to

unity. Generically, the ratio of survival and transition
probability, which depends on

P
m2 and keeps oscillating

over the trajectory, provides a natural measurement handle
for the masses of the neutrino. As an example, the flipping
points, specified by (rD;ϕe

D) on the trajectory where the
two probabilities become equal, provide the information ofP

m2 (see Appendix B). For α ≠ π=4, we have

X
m2 ¼ 16nπE0rSrD

ZΔb2
þ16E0rSrD

ZΔb2
cot−1

�
tan

�
Δm2ZΔb2

16E0rSrD

�

×GðrS;rD;ϕe
D;α;Δm2;RsÞ

�
; ð25Þ

whereGðrS; rD;ϕe
D;α;Δm2; RsÞ can take two values Gþ or

G− with

G�ðrS; rD;ϕe
D; α;Δm2; RsÞ≡ 2 cos 2αcos2α − sin22α cos ζ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin42αcos2ζ þ sin22αcos22α

p
2 cos 2αcos2αþ sin22α cos ζ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin42αcos2ζ þ sin22αcos22α
p ; ð26Þ

where þ and − symbols appearing in the expression above
through � belong to Gþ and G− respectively. Further,
ζ≡Δm2ðrSþ rDþRs− ðrSþ rDÞ

P
b2=4rSrDÞ=2E0, Z ¼

rS þ rD and n ∈ Z. Whereas, for α ¼ π=4, we simply get

FIG. 2. Probability of νe → νμ conversion as function of azimuthal angle ϕ for the normal and inverted ordering of neutrino masses in
the two flavor case. Here, Rs ¼ 3 km, rD ¼ 108 km, rS ¼ 105rD and E0 ¼ 10 MeV. The lightest neutrino is assumed to be massless.

3It is easy to verify that Keplerian orbits rðϕÞ ¼ a=
ð1þ e cos ðϕ − ϕ0ÞÞ maintain the dependency on

P
m2. There-

fore, a detector (such as on Earth in its orbit around the Sun)
moving along its geodesic would be sensitive to the individual
masses of neutrino through neutrino oscillations.
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X
m2 ¼ ð2nþ 1Þ8E0rSrD

ZΔb2
π � Δm2: ð27Þ

Clearly, the right hand sides of the expressions Eq. (25), (27)
for

P
m2 depend completely on observationally determin-

istic quantities and hence the identification of flipping point,
therefore, gives its value off. Provided with Δm2 one thus
obtains the individual masses of both the species.
For a quantitative understanding of the mass dependent

effects in Eq. (22), it is useful to obtain the impact
parameter in terms of the geometrical parameters of the
system. A detailed description of lensing phenomena is
described in Fig. 1. Consider ðx0; y0Þ coordinate system
obtained by rotating original ðx; yÞ coordinates by angle φ

such that x0 ¼ x cosφþ y sinφ and y0 ¼ −x sinφþ
y cosφ. In the rotated frame, the angle of deflection of
neutrino from its original path with impact parameter b is
obtained as

δ ∼
y0D − b
x0D

¼ −
2Rs

b
; ð28Þ

where ðx0D; y0DÞ is location of the detector. In the second
equality we use the expression for δ in weak lensing
(jbj ≫ Rs) limit. Using the identity sinφ ¼ b=rS, we obtain

ð2RsxDþbyDÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−

b2

r2S

s
¼ b2

�
xD
rS

þ1

�
−
2RsbyD

rS
: ð29Þ

FIG. 3. Probability of νe → νμ conversion as function of azimuthal angle ϕ for different values of m1 and for Δm2 > 0. Here,
Rs ¼ 3 km, rD ¼ 108 km, rS=rD ¼ 105, and E0 ¼ 10 MeV.
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Solutions of the above equation give the impact parameters
in terms of the geometrical parameters such as rS, Rs and
the lensing location ðxD; yDÞ. In equatorial plane ðθ ¼ π=2Þ
and for yD ≪ xD, the solutions of the above equation imply

X
b2 ≈ 4RsxD

�
1þ y2D

4RsxD

�
;

Δb2 ≈ −yD
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8RsxD

p �
1þ y2D

16RsxD

�
: ð30Þ

We now analyze the two flavor case by evaluating the
oscillation probability given in Eq. (22) through solving
Eq. (29) numerically in the equatorial plane. The values of
geometrical parameters are chosen to simulate the Sun-
Earth system in which the Sun is taken as the gravitational
lens while the Earth represents the location of the detector.
We assume a circular trajectory for the Earth around
the Sun (with xD ¼ rD cosϕ, yD ¼ rD sinϕ) and take
rD ¼ 108 km, Rs ¼ 3 km. The source of neutrinos is
assumed to be located at rS ¼ 105rD on the opposite side
of the Sun and it emits relativistic neutrinos with common
E0 ¼ 10 MeV. In our analysis, we compute Plens

eμ only for
those values of b1;2 which justify the approximation,
Rs ≪ b1;2 ≪ rD, used while deriving Eq. (13) and
Eq. (29). The results are displayed in Figs. 2–4.4 In these
figures, we explore the neutrino flavor conversion over

azimuthal angle ϕ over the range of 0.002 radians, which
corresponds to roughly 3 hours into the trajectory of the
Earth around the Sun.
The dependence of conversion probability on the neu-

trino mass ordering for nonmaximal α is shown in Fig. 2.
Away from ϕ ¼ 0, the observer is not in the same line of the
source and gravitational object which give rise to different
probabilities for normal and inverted mass orderings. For
α < π=4, the inverted ordering always corresponds to
relatively increased conversion probability than that of
the normal ordering. This is due to the fact that B11 < B22

in Eq. (22) for inverted ordering enhances Plens
eμ for

α < π=4. This trend gets reversed if α > π=4 as Eq. (22)
is invariant under simultaneous transformations, m1;2 →
m2;1 and α → π=2 − α. It is clear that if the mixing angle is
different from π=4, one can infer the neutrino mass order-
ing from the lensing effects even in two flavor case in
contrast to the standard neutrino oscillations in vacuum
without lensing. On the paths independent of

P
m2, e.g.

along ϕ ¼ 0, the probabilities depend upon (and thus
reveal) the standard neutrino oscillation parameters (path
length, Δm2, energy). However, as discussed above, there
are other paths which carry imprint of absolute masses as
well as the signature of Δm2 depending upon the mixing
angle. Thus, overall observation of probabilities along
various directions in the plane of lensing is quite resource-
ful for neutrino physics.
The lensing of neutrinos is not only sensitive to the

neutrino mass ordering but it can also shed light on the
absolute mass scale of the neutrinos. As it is shown in
Fig. 3, for fixed α and Δm2, the probability itself oscillates
as one goes further from ϕ ¼ 0. The frequency of these
oscillations depend on the absolute mass scale of the

FIG. 4. Contours of νe → νμ conversion probability in the presence of gravitational lensing for Rs ¼ 3 km, rD ¼ 108 km, rS ¼ 105rD,
and E0 ¼ 10 MeV. Here, ðxD; yDÞ is the location of the observer in the equatorial plane.

4For prediction in a realistic settings, one will also need to
account for the matter interaction effects once the neutrino passes
through the Sun, since b < RSun. Such matter interaction inside
the Sun is already studied, see, e.g., [31]. For realizing pure
Schwarzschild solution discussed here, one needs to move
slightly farther on the x-axis, i.e., increase xD.
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FIG. 5. Probability of να → νβ conversion, for different α and β, as function of azimuthal angle ϕ in three flavor case. We take
Rs ¼ 3 km, rD ¼ 108 km, rS ¼ 105rD and E0 ¼ 10 MeV. The values of neutrino mass squared differences, mixing angle and the Dirac
CP phase are taken from the latest (NuFIT 4.1 (2019)) global fit [3].
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neutrino. We find that the probability oscillates slowly for
hierarchical neutrinos, i.e., m1 ≪

ffiffiffiffiffiffiffiffiffiffi
Δm2

p
, when compared

to the case when neutrinos are almost degenerate, i.e.,
m1 ≳

ffiffiffiffiffiffiffiffiffiffi
Δm2

p
. This qualitative feature is more or less

independent from the specific values of α and Δm2 as it
can be seen from Fig. 3. In the two flavor case, it is
therefore possible to infer the absolute neutrino masses by
measuring the neutrino transition or survival probabilities
with respect to the angle ϕ.
We also show the probability distribution as function of

ðxD; yDÞ in equatorial plane in Fig. 4. The values of yD and
xD are chosen such that they satisfy the weak lensing limit.
As it is expected, the maxima and minima of the probability
along yD ¼ 0 line do not depend on the absolute value of
neutrino masses. The lensing effect however give rises to
different frequencies of maxima and minima of oscillation
probabilities for different values of absolute neutrino mass
as one deviates from yD ¼ 0.

V. THREE FLAVOR CASE: NUMERICAL
RESULTS

In this section, we report results obtained for neutrino
lensing in the three flavor case. The geometrical setup and
the values of parameters used are same as in the two flavor
case discussed in the previous section. For neutrino masses
and mixing parameters, we use the values from the latest fit
(NuFIT 4.1 (2019)) of neutrino oscillation data [3]. These
are Δm2

21 ¼ 7.39 × 10−5 eV2, θ12 ¼ 33.82°, Δm2
31¼

2.523×10−3 eV2 (Δm2
32¼−2.510×10−3 eV2), θ23¼48.3°

(θ23 ¼ 48.8°), θ13 ¼ 8.61° (θ13 ¼ 8.64°), δCP ¼ 222°
(δCP ¼ 282°) for normal (inverted) ordering. The mixing
matrix U in three flavor case is evaluated using these
mixing parameters and used to obtain the oscillation
probabilities using Eq. (20) in equatorial plane. We
compute conversion probabilities for νe → νμ, νμ → ντ,
and νe → ντ for normal and inverted ordering and for two
values of the lightest neutrino masses in each case. The
results are shown in Fig. 5.
It can be noticed that the frequency of the oscillations of

probabilities increases as the lightest neutrino mass is
increased from 0 to 0.05 eV in both the cases of normal
and inverted ordering. This is qualitatively in agreement
with the two flavor case. Unlike in the two flavor case, one
obtains different values of transition probabilities for
normal and inverted ordering even for ϕ ¼ 0. Different
Pαβ then oscillate differently for nonzero ϕ as it can be seen
from Fig. 5. The mass of the lightest neutrino in both the
cases can be inferred by measuring the frequency of the
oscillation of transition probabilities.
Throughout this paper, the neutrino wave functions are

assumed plane waves. A more realistic treatment of the
neutrino oscillations would involvewave packet approach in
which neutrinos are produced and detected as wave packets
of finite sizes in the position space [27,28,32]. This can give

rise to decoherence of neutrinos when propagation over long
distances is involved which ultimately leads to wash-out of
the flavor oscillations. In flat spacetime and for the Gaussian
wave packets, the length over which neutrinos maintain
coherence is typically given by

Lcoh ≃ 4
ffiffiffi
2

p
σxE2

0=jΔm2
ijj; ð31Þ

where, σ2x ≡ σ2xS þ σ2xD. Here, σxS represents the position
space width of the neutrino wave packet produced at the
source while σxD denotes the same for the neutrino at the
detector [32]. The same expression of coherence length
continues to hold in the case of Schwarzschild geometry but
with the flat spacetime distance Lcoh replaced by coordinate
distance [33].
Following these results we find that the coherence

condition, in the weak gravity limit, is given by

ðrS þ rDÞ
�
1 −

b2

2rSrD
þ 2GM
rS þ rD

�
<

4
ffiffiffi
2

p
σxE2

0

jΔm2
ijj

: ð32Þ

Further, the terms of Oð b2
rSrD

Þ and Oð GM
rSþrD

Þ in the above are
negligible for the weak lensing cases. Therefore, the
treatment of decoherence of neutrinos in the presence of
weak lensing is similar to that in flat spacetime. For the
typical values of parameters considered in the paper, i.e.,
rS þ rD ≃ 1013 km, E0 ≃ 10 MeV and jΔm2

ijj ≃ 10−3 eV2,
one obtains σx ≃ 1.8 cm. Using σxσp ∼ ℏ where σp is the
width of neutrino wave packet in the momentum space, the
above value of σx would imply neutrino wave packets with
σp=p≲Oð10−11Þ at the source and detector in order to
satisfy the coherence condition, Eq. (32). Therefore, this
would require very precise information about the energies
or momenta of particles involved in the production and
detection processes of neutrinos.

VI. CONCLUSIONS

Neutrino flavor oscillation in flat spacetime is known to
depend on the difference between the squaredmasses and not
on the individual masses of neutrinos. We show that weak
gravitational lensing of neutrinos modifies this standard
picture drastically. The oscillation probabilities evaluated
in the presence of lensing introduces novel effects which
depend on the absolute neutrino mass scale in general. We
demonstrate this explicitly considering a Schwarzschild
mass as a gravitational source for lensing, while the source
and detector for neutrinos are kept at finite distances from it.
In the presence of Schwarzschild mass, the neutrinos
produced at source take more than one classical path to
reach to the detector throughweak lensing, as justified by the
Eikonal approximation. Neutrinos traveling along different
trajectories develop different phases which give rise to
interference at the location of the detector. We show that
the phase difference not only depends on the difference of
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squared neutrino masses but also depends on the individual
neutrino masses in general. The dependency on the individ-
ual neutrino masses survives for wide class of trajectories of
the detector including the geodesic ones. Therefore, the
detectors situated on the Keplerian orbits around the
Schwarzschildmass will be capable of revealing the absolute
mass of neutrinos through measurements of flavor transition
probabilities.
We derive the general expression of interference of

oscillation probability, valid in the weak lensing limit,
for N neutrino flavors and arbitrary number of paths. We
study the interference pattern in detail considering the
equatorial plane for simplicity in which neutrinos are
confined to travel along two trajectories. For N ¼ 2, we
show that the lensing probability is sensitive to the sign of
Δm2 unlike in the case of standard neutrino oscillation in
vacuum. Further, it also depends on the individual masses
when source, gravitating object and detector are not
collinear. Flavor transition or survival probabilities oscillate
as a result of interference when the detector moves away
from the collinear axis. The frequency of these oscillations
of probabilities depend on the absolute mass scale of
neutrinos. We find that the hierarchical neutrinos, i.e.,
m1 ≪ m2, give rise to slower oscillations of probability in
comparison to the case when they are almost degenerate,
i.e., m1 ≃m2. We study these effects quantitatively con-
sidering the Sun-Earth like system in which the Sun plays
role of Schwarzschild mass for neutrinos coming from a
distant source. We also give numerical results for N ¼ 3
which also captures the qualitative effects of lensing
obtained in the case of two flavors. All these novel effects
are indeed gravitationally induced as they vanish in the flat
space (Rs → 0) limit. We, therefore conclude that the study
of effects of gravitation in the standard analysis of neutrino
oscillations can be very resourceful and informative.
Although our results reveal some very nontrivial aspects

of neutrino oscillation in the presence of gravitational
lensing, a more careful realistic treatment would be
required before they can be used for real experimental
tests. First, we have adopted the standard practice of using
quantum mechanical treatment for the neutrinos in the
present study. However, justifiably a quantum field theo-
retic treatment [34–36] would be more appropriate. Such a
treatment would take into account the mode propagation
and will take us out of the limitation of eikonal validity of
using classical trajectories. It may also provide insight to
novel phenomenon of gravitational particle creation and the
resulting mixing of flavor as well as energy modes due to
this particle creation [37–41], etc. A more realistic treat-
ment of neutrino oscillation with/without lensing should
consider the wave packet approach. This, however, relies
on the details of the exact mechanisms of neutrino
production and detection. As mentioned earlier, such a
treatment naturally accounts for the decoherence effects
and washing out of oscillation. A detailed study addressing

all the above aspects is beyond the scope of this paper and it
should be taken up elsewhere.

ACKNOWLEDGMENTS

The authors thank Subhendra Mohanty and T.
Padmanabhan for careful readings of the manuscript and
for useful comments. We also thank Pratibha Jangra for
helpful discussions. H. S. would like to thank Council of
Scientific & Industrial Research (CSIR), India for the
financial support through research fellowship Grant
No. 09/947(0081)/2017-EMR-1. The research of K. L. is
partially supported by the Department of Science and
Technology (DST) of the Government of India through a
research grant under INSPIRE Faculty Award (No. DST/
INSPIRE/04/2016/000571). K. M. P. is partially supported
by a research grant under INSPIRE Faculty Award
(No. DST/INSPIRE/04/2015/000508) from the DST,
Government of India. H. S. and K. L. are also grateful
toward the hospitality of Physical Research Laboratory,
Ahmedabad, where part of this work was carried out.

APPENDIX A: EIKONAL APPROXIMATION

The classical Hamilton Jacobi function Sðx; pÞ ¼R
pμdxμ satisfies ∂S=∂xμ ¼ pμ. Therefore, classically we

have,

pμpμ ¼ m2 ⇒ gμν
∂S
∂xμ

∂S
∂xν −m2 ¼ 0: ðA1Þ

On the other hand the squared Dirac equation satisfies,

½∂μ∂μ þm2�ψ ¼ 0: ðA2Þ

If the wave function is taken as ψ ¼ eiS=ℏ then�
gμν

∂S
∂xμ

∂S
∂xν − iℏgμν∂μ∂νS −m2

�
ψ ¼ 0: ðA3Þ

Therefore, as long as

ℏgμν∂μ∂νS

gμν∂μS∂νS
≪ 1;

the classical S is a good approximation for the phase of the
neutrino. For the massless case S is identically zero and
therefore one needs to evaluate the ratio in the limit of small
mass m. Since for a massive particle

S ¼ ΦðrÞ ¼ m2

2E

�
rS þ r −

b2ðrS þ rÞ
2rSr

þ 2GM

�
; ðA4Þ

a naive estimate suggests that the eikonal approximation
will be valid as long as at all the points (r) along the path,
the condition
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�
1 −

2GM
r

�
ℏ
2E

b2

r3
≪ 1; ðA5Þ

is satisfied. This becomes increasingly valid in weak
lensing limit.

APPENDIX B: OBSERVABLE SENSITIVE TO
THE INDIVIDUAL MASSES: ANGLE OF

FLAVOR FLIPPING

An interesting aspect of the transition probability is that in
the two flavor case Eq. (22), there exists a point where the
transition probability from speciesα to β becomes equal to its
survival probability α → α. In other words, one of these two
processes remain dominant over some portion of trajectories
(indicated by angle ϕ in the geodesic trajectory of the Earth
around the Sun in the Sun-Earth system) and then become
sub dominant for some other portion. In principle this
flipping over occurs multiple times in a trajectory.
Therefore, this angle of flipping over (an observable) also
carries an imprint of

P
m2 which we can utilize and find out

the absolute masses. Flipping occurs at point when proba-
bility transition and survival probability become equal. For
two flavor case, the survival probability is obtained as,

Pα→α ¼ 4N2

�
cos4αcos2

�
m2

1

ZΔb2

8E0rSrD

�

þ sin4αcos2
�
m2

2

ZΔb2

8E0rSrD

�

þ 2sin2αcos2α cos

�
m2

1

ZΔb2

8E0rSrD

�

× cos

�
m2

2

ZΔb2

8E0rSrD

�
cos ζ

�
; ðB1Þ

and the transition probability expression (22) can be cast as

Pα→β ¼ 4N2sin2αcos2α

�
cos2

�
m2

1

ZΔb2

8E0rSrD

�

þ cos2
�
m2

2

ZΔb2

8E0rSrD

�
− 2 cos

�
m2

1

ZΔb2

8E0rSrD

�

× cos

�
m2

2

ZΔb2

8E0rSrD

�
cos ζ

�
; ðB2Þ

where ζ≡Δm2

2E0
ðZþRs−

Z
P

b2

4rSrD
Þ and Z ¼ rS þ rD. Therefore,

the condition for flipping over is obtained as

cos 2αcos2α
cos ðm2

1
ZΔb2

8E0rSrD
Þ

cos ðm2
2

ZΔb2
8E0rSrD

Þ − cos 2αsin2α
cos ðm2

2
ZΔb2

8E0rSrD
Þ

cos ðm2
1

ZΔb2
8E0rSrD

Þ
þ sin22α cos ζ ¼ 0: ðB3Þ

For α ≠ π=4, the above equation can be inverted as

X
m2 ¼ 16nπE0rSrD

ZΔb2
þ16E0rSrD

ZΔb2
cot−1

�
tan

�
Δm2ZΔb2

16E0rSrD

�

×GðrS;rD;ϕ;α;Δm2;RsÞ
�
; ðB4Þ

where

GðrS; rD;ϕ; α;Δm2; RsÞ≡ 2 cos 2αcos2α − sin22α cos ζ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin42αcos2ζ þ sin22αcos22α

p
2 cos 2αcos2αþ sin22α cos ζ ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin42αcos2ζ þ sin22αcos22α
p : ðB5Þ

Similarly, for α ¼ π=4 we get

�
cos

�P
m2ZΔb2

8E0rSrD

�
þ cos

�
Δm2ZΔb2

8E0rSrD

��
cosζ¼ 0: ðB6Þ

Flipping point is given by above equation when either first
term or second term is zero, or both. If we find point where
first term if zero then, we have

X
m2 ¼ ð2nþ 1Þ8E0rSrD

ZΔb2
π � Δm2; ðB7Þ

since the cosine term is symmetric under Δm2 → −Δm2.
Therefore,

m2
1;2 ¼

�ð2nþ 1Þ8E0rSrD
ZΔb2

�
π

2
: ðB8Þ

For cos ζ ¼ 0, we cannot determine value of
P

m2 because
ζ only involves Δm2; E0 and other terms which involves
geometrical points and geometry. As can be seen, in
Eq. (B4) and Eq. (B7) all the direct observable quantities
are on the right-hand sides, while n ∈ Z. Thus, the
observation of flip angle ϕ for known rS; rD; α; E0; Rs,
and Δm2 will reveal

P
m2 (up to an ambiguity due to

undetermined value of n, which have to settled through
some independent observations such as [9]) which along
with information of Δm2 can give the absolute masses of
the neutrinos.
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