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We explore different gauge choices in the moving puncture formulation in order to improve the accuracy
of a linear momentum measure evaluated on the horizon of the remnant black hole produced by the merger
of a binary. In particular, motivated by the study of gauges in whichmη takes on a constant value, we design
a gauge via a variable shift parameter mηðr⃗ðtÞÞ. This new parameter takes a low value asymptotically, as
well as at the locations of the orbiting punctures, and then takes on a value of approximately 2 at the final
hole horizon. This choice then follows the remnant black hole as it moves due to its net recoil velocity. We
find that this choice keeps the accuracy of the binary evolution. Furthermore, if the asymptotic value of the
parametermη is chosen about or below 1.0, it produces more accurate results for the recoil velocity than the
corresponding evaluation of the radiated linear momentum at infinity, for typical numerical resolutions.
Detailed studies of an unequal mass q ¼ m1=m2 ¼ 1=3 nonspinning binary are provided and then verified
for other mass ratios ðq ¼ 1=2; 1=5Þ and spinning (q ¼ 1) binary black hole mergers.
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I. INTRODUCTION

The discovery by numerical relativity computations [1–3]
that binary black hole mergers may impart thousand of
kilometers per second speeds to the final black hole remnant
had an immediate impact on the interest of observational
astrophysics to search for signatures of such recoil for
supermassive black holes in merged galaxies (see [4] for
an early review). The interest in searching for observational
effects extends to nowadays [5–7], including its incidence in
statistical distributions [8–10] and binary formation channels
as well as cosmological consequences [11].
More recently theoretical explorations evaluate the

possibility to directly detect the effects of recoil on the
gravitational waves observed by LIGO [12] and LISA
[13,14]. The use of numerical relativity waveforms to
directly compare with the observation of gravitational
waves require accurate modeling and good coverage of
the parameter space [15]. There are already successful
descriptions for the GW150914 [16,17] and GW170104
[18] events and the analysis of the rest of the O1/O2 events
[19] is well underway [20].
The accurate modeling of the final remnant of the merger

of binary black holes is also of high interest for applications
to gravitational waves modeling and tests of gravity as
a consistency check [21,22]. The computation of the
final remnant mass and spin can be performed in three
independent ways, a fit to the quasinormal modes of the
final remnant Kerr black hole [23–25], a computation of
the energy and angular momentum carried away by the
gravitational radiation to evaluate the deficit from the initial

to final mass and spins, and a quasilocal computation of the
horizon mass and spin using the isolated horizon formulas
[26]. Comparison of the three methods has been carried out
in [12,27], concluding that at the typical resolutions used in
production numerical relativity simulations the horizon
quasilocal measures are an order of magnitude more
accurate than the radiation or quasinormal modes fittings.
This leads to very accurate modeling of the final mass

and spins from their initial binary parameters. In particular
for nonprecessing binaries, the modeling [28] warrants
errors typically 0.03% for the mass and 0.16% for the spin.
Meanwhile, the modeling of the final recoils leads to errors
of the order of 5% since radiation of linear momentum is
used to evaluate them. A similar accurate modeling of the
recoil could be attempted by the use of a horizon quasilocal
measure.
In Ref. [29], a quasilocal formula for the linear momen-

tum of black-hole horizons was proposed, inspired by the
formalism of quasilocal horizons. This formula was tested
using two complementary configurations: (i) by calculating
the large orbital linear momentum of the two black holes in
an orbiting, unequal-mass, zero-spin, quasicircular binary
and (ii) by calculating the very small recoil momentum
imparted to the remnant of the head-on collision of an
equal-mass, antialigned-spin binary. The results obtained
were consistent with the horizon trajectory in the orbiting
case and consistent with the radiated linear momentum for
the much smaller head-on recoil velocity. A key observa-
tion we will explore in this paper is the dependence of the
accuracy on a gauge parameter used in our simulations.
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This paper is organized as follows. In Sec. II, we study in
detail the effects of choosing different (constant) values of
η, the damping parameter in the shift evolution equation on
the accuracy of the quasilocal measure of the horizon linear
momentum proposed in [29]. We discuss in detail a
prototype case of a nonspinning q ¼ 1=3 binary. Other
unequal mass cases and one spinning case are verified as
well. In Sec. III, we perform additional studies of the shift
evolution equation for the alternative ∂0 gauge, variable η,
and apply what we learned in the previous section to
develop a variable shift parameter η and to more extreme
unequal mass binary black hole mergers. In Sec. IV, we
discuss the benefits of the using of different values of η
from our standard η ¼ 2 (see also [30]) for generic
simulations, in particular for those that involve an accurate
computation of the remnant recoil and we also conclude by
noting the advantage of keeping the ∂t gauge for evolutions
over the ∂0 gauge.

II. NUMERICAL TECHNIQUES

Since the 2005 breakthrough work [31], we obtain
accurate, convergent waveforms and horizon parameters
by evolving the BSSNOK [32–34] system in conjunction
with a modified 1þ log lapse and a modified gamma-driver
shift condition [31,35]

∂0α ¼ ð∂t − βi∂iÞα ¼ −2αK; ð1Þ

∂tβ
a ¼ 3

4
Γ̃a − ηðxk; tÞβa ð2Þ

with an initial vanishing shift and lapse αðt ¼ 0Þ ¼
2=ð1þ ψ4

BLÞ. Here, and for the remainder of the paper,
Latin indices cover the spatial range a; i; k ¼ 1;…; 3.
An alternative moving puncture evolution can be

achieved [36] by choosing [30]

∂0α ¼ ð∂t − βi∂iÞα ¼ −2αK; ð3Þ

∂0β
a ¼ ð∂t − βi∂iÞβa ¼

3

4
Γ̃a − ηðxk; tÞβa: ð4Þ

In the subsequent sections, we will refer to this first order
equations for the shift (2) as the ∂t gauge and to (4) as the
∂0 gauge. Unless otherwise stated, all binary black hole
simulations in this paper use the ∂t gauge.
The parameter η (with dimension of one-over-mass:

1=m) in the shift equation regulates the damping of the
gauge oscillations and is commonly chosen to be of order
unity (we use η ¼ 2=m) as a compromise between the
accuracy and stability of binary black hole evolutions. We
have found in [37] that coordinate dependent measure-
ments, such as spin and linear momentum direction,
become more accurate as η is reduced (and resolution
h → 0). However, if η is too small ðη ≪ 1=mÞ, the runs may

become unstable. Similarly, if η is too large ðη ≫ 10=mÞ,
then grid stretching effects can cause the remnant horizon
to continuously grow, eventually leading to an unaccept-
able loss in accuracy at late times.
We use the TwoPunctures [38] thorn to compute initial

data. We evolve these black-hole-binary data sets using the
LazEv [39] implementation of the moving puncture formal-
ism [31]. We use the Carpet [40,41] mesh refinement
driver to provide a “moving boxes” style mesh refinement,
and we use AHFinderDirect [42] to locate apparent horizons.
We compute the magnitude of the horizon spin using
the isolated horizon algorithm detailed in Ref. [43] (as
implemented in Ref. [44]). Once we have the horizon spin,
we can calculate the horizon mass via the Christodoulou
formulamH¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

irrþS2H=ð4m2
irrÞ

p
, wheremirr¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð16πÞp

and A is the surface area of the horizon. We measure
radiated energy, linear momentum, and angular momen-
tum, in terms of ψ4, using the formulas provided in
Refs. [45,46] and extrapolation to Iþ is performed with
the formulas given in Ref. [47].
Convergence studies of our simulations have been

performed in Appendix A of Ref. [48], in Appendix B
of Ref. [49], and for nonspinning binaries are reported
in Ref. [50]. For very highly spinning black holes
(s=m2 ¼ 0.99), convergence of evolutions was studied in
Ref. [51], for precessing s=m2 ¼ 0.97 in Ref. [12], and for
(s=m2 ¼ 0.95) in Ref. [52] for unequal mass binaries.
These studies allow us to assess that the simulations
presented below, with similar grid structures, are well
resolved by the adopted resolutions and are in a conver-
gence regime.
In Ref. [29], we introduced an alternative quasilocal

measurement of the linear momentum of the individual
(and final) black holes in the binary that is based on the
coordinate rotation and translation vectors,

P½i� ¼
1

8π

I
AH

ξa½i�R
bðKab − KγabÞd2V; ð5Þ

where Kab is the extrinsic curvature of the three-
dimensional (3D) slice, d2V is the natural volume
element intrinsic to the horizon, Ra is the outward pointing
unit vector normal to the horizon on the 3D slice,
and ξi½l� ¼ δil.
We tested this formula using two complementary con-

figurations: (i) by calculating the large orbital linear
momentum of the two unequal-mass ðq ¼ 1=3Þ, nonspin-
ning, black holes in a quasicircular orbit and (ii) by
calculating the very small recoil momentum imparted to
the remnant of the head-on collision of an equal-mass,
antialigned-spin binary. When we reduce the gauge param-
eter mη from 2 to 1 in the orbiting case, we obtain results
consistent with the horizon trajectory. Similarly, for the
head-on case, we find results consistent with the net
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radiated linear momentum; however, the remainder of the
paper will focus on only the orbiting case.
Here we explore this initial results in much more detail,

allowing for even smaller values of η and assessing
convergence of the results with both numerical resolution
and values of η → 0. This will allow us to assess when the
quasilocal measure of linear momentum (5) can be con-
sidered more accurate than the measure of radiated linear
momentum at Iþ.
In our simulations, we normalize data such that the sum

of the horizon masses, after spurious radiation of initial
data, is set to unity, i.e., mH1 þmH2 ¼ 1. In the tables
below, we also introduce the difference of the ADM mass
and angular momentum minus the final black hole mass
and spins, as Δm ¼ MADM −mf and ΔJ ¼ JADM − αf.

A. Results for a q= 1=3 nonspinning binary

As a prototypical case of study, we will consider a binary
with mass ratio q ¼ m1=m2 ¼ 1=3 and spinless black holes
starting at an initial coordinate separation D ¼ 9m, with
m ¼ m1 þm2 the total mass of the system. From this
separation, the binary performs about six orbits before the
merger into a single final black hole at around t ¼ 725m.

The final mass and final spin are measured very accurately
by the horizon quasilocal formulas [26,44]; Fig. 1 provides
a visualization of their respective values after merger into
the final settling black hole remnant. It displays smaller
variations versus time with increasing resolutions.
In Fig. 2, the convergence of the Hamiltonian constraint

(momentum constraints show a very similar convergent

FIG. 1. The horizon measure of the mass and spin after merger
of a q ¼ 1=3 nonspinning binary versus time for mη ¼ 2 at
resolutions n100, n120, and n140.

FIG. 2. The Hamiltonian constraint behavior versus time for
mη ¼ 2 at resolutions n100, n120, n140 in the top panel, and in
the bottom panels, the (2,2) waveform as seen by an observer at
R ¼ 113m for the q ¼ 1=3 nonspinning binary from an initial
separation D ¼ 9m, the amplitude difference between resolu-
tions, ΔA=A, and the phase difference (in radians), Δφ, with
respect to the infinite resolution extrapolation ðn∞Þ.
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behavior) and the merger gravitational waveforms ðl; mÞ ¼
ð2; 2Þ mode are displayed. Both show highly convergent
behavior; therefore, they resolve the binary system
accurately.
As shown in Tables I and II, the computed final mass and

spin of the remnant black hole are well in the convergence
regime at typical computation resolutions [17,53].
Table I displays the difference between the initial total

ADM mass and final horizon mass, and Table II displays
the loss of ADM angular momentum from its initial value
to the final horizon spin for different resolutions and
different (η values) gauges. The computations give con-
sistent values to five-decimal places for each resolution,
showing we are deep in the convergence regime and also
versus η, showing (as expected) that those computations are
gauge invariant.
To evaluate the convergence rate with three resolutions

hi with i ¼ 1, 2, 3, we model the errors of a measured
quantity Mi ¼ MðhiÞ as Ai:hni in such a way that the
extrapolated to infinite resolution quantityM∞ ¼ Mð0Þ can
be written asM∞ ¼ Mi þ hAihni , where hAi is an averaged
value of Ai. Thus, for the three resolutions, we have a
system of three equations for the three unknowns, M∞, n,

and hAi. n representing the convergence rate and M∞
the extrapolation to infinite resolution given in the
tables below.
The corresponding computation of radiated energy and

angular momentum from the waveforms extrapolated to an
observer at infinity (from an extraction at R ¼ 113m) and
summed over all ðl; mÞmodes up to l ¼ 6 are displayed in
Tables III and IV, showing consistent approximate third
order convergence for the three resolutions n100, n120, and
n140. When using the extrapolated to infinite resolution
horizon values as exact, the convergence order increases,
and is over fourth order for the radiated angular momen-
tum. In all cases, the computations are consistent in the first
three digits. While taking as the exact reference the
extrapolated to infinite resolution horizon values, the
convergence is over fourth order. Consistent first four
digits are computed in all cases. Note that in all radiative
computations we do not remove the initial data (spurious)
radiation content to allow direct comparison with the
corresponding horizon quantities.
In particular, very weak dependence on η is found, again

as expected on the ground of gauge invariance of the
gravitational waveform extrapolated to an observer at
infinite location.

TABLE I. The final black hole mass (mf=m) for different η and
resolutions (top table). Difference between final black hole and
ADM masses (bottom table). Values for mη → 0.0 and resolution
hi → 0 are extrapolated (the later by order n).

hi=m mη ¼ 2.0 mη ¼ 1.0 mη ¼ 0.5 mη → 0.0

1=100 0.97127 0.97127 0.97128 0.97127
1=120 0.97128 0.97129 0.97126 0.97128
1=140 0.97128 0.97128 0.97128 0.97128
→ 0 0.97131 0.97135 0.97135 0.97132
n 1.59 2.24 1.95 2.29

1=100 0.02046 0.02046 0.02047 0.02046
1=120 0.02046 0.02045 0.02045 0.02044
1=140 0.02045 0.02045 0.02045 0.02045

TABLE II. The final black hole spin (αf=m2) for different η and
resolutions (top table). Difference between final black hole
angular momentum αf and initial ADM angular momentum
JADM (bottom table). Values for mη ¼ 0.0 are extrapolated as
those for infinite resolution hi → 0 with order n.

hi=m mη ¼ 2.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.0

1=100 0.54060 0.54046 0.54060 0.54094
1=120 0.54059 0.54051 0.54060 0.54080
1=140 0.54059 0.54056 0.54059 0.54061
→ 0 0.54059 0.54110 0.54066 0.53857
n 1.58 0.85 2.24 0.93

1=100 −0.19185 −0.19187 −0.19183 −0.19186
1=120 −0.19184 −0.19185 −0.19184 −0.19185
1=140 −0.19183 −0.19184 −0.19184 −0.19184

TABLE III. Energy radiated away in gravitational waves up to
l ¼ 6 for the q ¼ 1=3 nonspinning binary. Values for mη ¼ 0.0
are extrapolated. Convergence order calculated from the three
resolutions, n, and using the two highest resolutions and assum-
ing the converged value is the value calculated on the horizon,
nðAHÞ.
hi=m mη ¼ 2.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.0

1=100 0.02017 0.02017 0.02017 0.02017
1=120 0.02030 0.02030 0.02029 0.02030
1=140 0.02036 0.02036 0.02036 0.02036
→ 0 0.02047 0.02045 0.02046 0.02046
n 3.03 3.23 3.08 3.10
nðAHÞ 3.31 3.23 3.18 …

TABLE IV. Angular momentum radiated away in gravitational
waves up to l ¼ 6 for the q ¼ 1=3 nonspinning binary. Values
for mη ¼ 0.0 are extrapolated. Convergence order calculated
from the three resolutions, n, and using the two highest
resolutions and assuming the converged value is the value
calculated on the horizon, nðAHÞ.
hi=m mη ¼ 2.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.0

1=100 −0.19075 −0.19073 −0.19070 −0.19076
1=120 −0.19128 −0.19130 −0.19125 −0.19128
1=140 −0.19157 −0.19157 −0.19154 −0.19157
→ 0 −0.19217 −0.19196 −0.19215 −0.19216
n 2.56 3.38 2.62 2.55
nðAHÞ 4.78 4.50 4.62 …
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Tables III and IValso show that both radiative quantities,
energy and angular momentum, show very small variations
with respect to the extrapolated η → 0 values, as expected
from gauge invariant quantities.
Since the formula (5) is not gauge invariant when applied

to the horizon of the final black hole, we expect to find
stronger variation with η when we use it to evaluate the
linear momentum of the remnant. We will pursue this
exploration in more detail next in order to assess what
values of η allow us to compute the recoil velocity of the
final black hole with a good accuracy. We are interested in
particular, for our typical numerical simulation resolutions,
what values of η can produce more accurate values of the
recoil from the horizon by use of (5) than from the
evaluation of the radiated linear momentum at infinity.
Our starting point is the gauge choices that we have been

using regularly in our systematic studies of binary black
hole mergers [mη ¼ 2 and Eq. (2)] and numerical reso-
lutions labeled by the resolution at the extraction level of
radiation as n100, n120, n140, corresponding to wave zone
resolutions of h ¼ 1=1.00m, 1=1.20m, 1=1.40m, respec-
tively [17,53]. We use ten levels of refinement with an outer
boundary at 400 m. For each of these three resolutions, we
add a set of simulations by decreasing η by factor of two,
i.e., η ¼ 1=m, 1=2m. The results of those nine simulations
are displayed in Fig. 3. For η ¼ 2=m, the curves are very
flat versus time after the merger with the highest resolution
run, n140, being notably so. However, their values for the
evaluation of the recoil fall short compared to the estimate
coming from the extrapolation of the radiative linear
momentum to infinite resolution, represented by the solid
black lines at about 177 km=s.
The progression toward smaller η shows closer agree-

ment with that extrapolated value. The time dependence

shows variations as we approach the smaller η but still
converging with resolution toward the expected 177 km=s
value and flatter for n140, but clearly the limit η → 0
requires much higher resolutions, as shown in Fig. 4. In our
regime, reaching η ¼ 1=m or η ¼ 0.5=m seems a good
compromise of accuracy versus cost of the simulation.
Figure 4 shows the progression of mη ¼ 2.0, 1.5, 1.0,

0.5, 0.25 for simulations with resolution n140. Notably,
they lie in a roughly linear convergence toward the
expected higher recoil velocity value 177 km=s, but as
we reach the smaller mη ¼ 0.25 value, it overshoots
slightly, an effect of the required higher resolution needed
to resolve accurately smaller values of η. In what follows,
we will restrict ourselves to values of mη ¼ 2.0, 1.0, 0.5 to
make sure we are in a convergence regime for our standard
resolutions n100, n120, and n140. Note that we have
verified that the simulation with n140 and η ¼ 0 does
not crash, but leads to inaccurate results.
The radiation of linear momentum in terms of the Weyl

scalar ψ4, as given by the formulas in [54], can be
computed in a similar fashion as we compute the energy
and angular momentum radiated. For this study, we do not
remove the initial burst of spurious radiation from the linear
momentum calculation since we are interested in compar-
ing to the final velocity of the merged black hole. The burst
will impart a (usually) small kick to the center of mass of
the system. This allows direct comparison with horizon
quantities in this paper. For astrophysical applications, the
removal of the initial burst of radiation is done in the
waveform time domain and can be applied to remove their
contributions to the final mass, spin and recoil velocity.
Table V shows that the radiation of linear momentum

converges with resolution (at an approximate 2.6–2.7th
order) at similar rates than the radiated energy and

FIG. 3. The horizon measure of the linear momentum (in km/s)
after merger of a q ¼ 1=3 nonspinning binary for the three
resolutions n100 (dotted), n120 (dashed), and n140 (solid) for
η ¼ 2=m (blue), 1=m (red), and 0.5=m (green). The reference
value of Vf (black solid line) is found by extrapolation to infinite
resolution of the radiated linear momentum.

FIG. 4. The horizon measure of the linear momentum (in km/s)
after merger of a q ¼ 1=3 nonspinning binary lowering values of
η ¼ 2 → 0 at resolution n140. The reference value of Vf (black
solid line) is found by extrapolation to infinite resolution of the
radiated linear momentum.
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momentum (roughly third order) and still varies little
with η. This is expected on gauge invariance grounds.
The values extrapolated to infinite resolution lie in the

176–177 km=s range, consistently for all three values of
mη ¼ 2, 1, 0.5. Extrapolations of the recoil velocities to
η → 0 are very close to their values at mη ¼ 2, 1, 0.5 for all
three resolutions, again confirming the gauge independence
of the results. In addition, we display the angle (in degrees,
reversed sign) the net radiated momentum has with respect
to the x axis (line joining the black hole initially).
Table VI displays the crucial result of recoil velocities

very close to their desired values for low resolutions when
mη ¼ 0.5. They do not vary so much with resolution, as
expected for horizon quantities, when compared to the
variations with respect to the gauge choices. We observe
close to a linear dependence on η of the recoil values. Their
extrapolation to η → 0 overshoots the expected value by a
few percent, but the values at mη ¼ 0.5 are nearly within
1%. This provides an effective way to compute recoils,
since the corresponding radiative quantities are 3% away
for n140. The horizon evaluations lying closer to the
expected values by a factor 3 over the radiative ones holds

for all three resolutions. In addition, we display the angle
the recoil velocity subtends with respect to the x axis (line
joining the black holes initially) showing a notable agree-
ment of this sensitive quantity with the results in Table V.
The coordinate velocities do not benefit systematically

from the small η gauges, but still provide a good bulk value
as shown in Table VII. This shows the benefits of having a
quasilocal measure of the momentum of the hole over its
horizon compared to the local coordinate velocity of the
puncture.

B. Validation for other mass ratios ðq = 1=2;1=5Þ
In order to first validate our technique to extract the recoil

velocity of the remnant black hole from spinning binaries,
we have considered another unequal mass ðq ¼ 1=2Þ binary
with initial separationD ¼ 11m. The resulting recoil will be
along the orbital plane and due entirely to the asymmetry
produced by the unequal masses. The results are presented in
Table VIII. Assuming the extrapolation to infinite resolution
of the radiative linear momentum computations is the most
accurate, one leads to a recoil of 154.3� 0.1 km=s. Even for
the lowest computed resolution, n100, the horizon evaluation
formη ¼ 0.5 at 159.6 km=s is a better approximation to that
value than any radiative evolution at the same resolution
(145.9 km=s), with errors of the order of 3%. This is also
true for the other two resolutions n120 and n140. As we have
seen before, the improvement of those horizon values is
obtained by lowering the value of mη → 0, rather than by
higher resolution, as the horizon quasilocal measure has
essentially already converged at those resolutions.
Here we also provide the computation of the horizon

evaluations for the mass and spin of the remnant black hole

TABLE V. Total linear momentum radiated in gravitational
waves up to l ¼ 6 for the q ¼ 1=3 nonspinning binary in km/s.
Values for mη ¼ 0.0 are extrapolated. Convergence order n is
extrapolated to infinite resolution hi → 0. The bottom panel
shows the angle (in degrees) of the net momentum with respect to
the initial x axis.

hi=m mη ¼ 2.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.0

1=100 163.648 163.753 163.759 163.760
1=120 168.569 168.678 168.660 168.662
1=140 171.256 171.314 171.324 171.326
→ 0 176.750 176.422 176.708 176.702
n 2.582 2.699 2.608 2.611

1=100 375.01° 374.67° 373.61° …
1=120 374.93° 375.09° 374.54° …
1=140 375.50° 375.59° 375.78° …
→ 0 375.15° 375.12° … …
n 1.99 2.00 … …

TABLE VI. Horizon linear momentum measured at the interval t ¼ 950m − 1250m for q ¼ 1=3 nonspinning binary in km/s.
The bottom panel gives the angle (in degrees) this magnitude subtends with the initial x axis. The measured standard deviation is given
by � in relevant quantities. Convergence order and extrapolations are given for hi → 0 and η → 0.

hi=m mη ¼ 2.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.0 Order

1=100 137.515� 1.12 160.507� 1.14 171.977� 3.99 183.397 1.00
1=120 139.543� 0.86 161.615� 1.36 174.703� 2.80 193.765 0.75
1=140 139.194� 0.40 165.014� 1.55 174.948� 0.87 181.161 1.38

1=100 373.83°� 0.27° 370.26°� 0.29° 367.52°� 0.86° 358.475° 0.38
1=120 373.87°� 0.48° 371.83°� 0.27° 373.64°� 0.36° 372.909° 25.41
1=140 374.63°� 0.58° 371.98°� 0.09° 374.37°� 0.16° 373.389° 27.46
→ 0 374.11° 372.36° 375.81° 373.418°
n 2.00 6.07 6.11 18.53

TABLE VII. Coordinate trajectory velocity in km=s as mea-
sured at 575m after merger for the q ¼ 1=3 nonspinning binary.

hi=m mη ¼ 2.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.0

1=100 154.448 158.513 184.809 153.705
1=120 155.051 167.205 159.472 162.479
1=140 158.123 165.702 165.957 165.966
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in Table IX. Those tables display the excellent agreement
between the horizon and radiative computation of the
energy and angular momentum (with convergence rates
of the third to fourth order). It also displays the agreement
of those radiative computations for the η ¼ 2 and the η ¼
0.5 cases, as expected on the ground of gauge invariance at
the extrapolated infinite observer location. The table also
shows the robustness of the horizon computations at any of
the used resolutions (generally five digits) and an over-
convergence due to those small differences.

We complete our nonspinning studies by simulating a
smaller mass ratio ðq ¼ 1=5Þ binary with initial separation
D ¼ 10.75m. The recoil from radiation of linear momen-
tum extrapolates to about 139 km=s as shown in Table XI.
The horizon evaluation for mη ¼ 2 underevaluates this by
about 30%, while for mη ¼ 2 the horizon formula is about
5%, this value for the medium and high resolution runs.
Given the smaller mass ratio, the low resolution run is not
as accurate.
We also provide as a reference the computation of the

horizon evaluations for the mass and spin of the remnant
black hole in Table X. Those tables display the excellent
agreement between the horizon and radiative computation
of the energy and angular momentum (with high conver-
gence orders). We find excellent agreement of those
radiative computations for η ¼ 2 and η ¼ 0.5 cases, as
expected from the gauge invariance of the waveforms
extrapolated to an infinite observer location. The table
also shows the robustness of the horizon computations at
medium and high resolutions (generally three digits) and an
overconvergence due to those small differences.

C. Spinning black holes

In order to further verify our technique to extract the
recoil velocity of the remnant black hole from spinning
binaries, we have considered an equal mass (q ¼ 1) binary
with spins ðα1;2 ¼ �0.8Þ (anti)aligned with the orbital
angular momentum. This system has an initial separation
of D ¼ 10m. The resulting recoil will be along the orbital
plane and due entirely to the asymmetry produced by the
opposing spins. The results are presented in Table XII,
showing that assuming the extrapolation to infinite reso-
lution of the radiative linear momentum computations is the
most accurate one, leading to a recoil of 403� 1 km=s,
even for the lowest computed resolution, n100, the horizon

TABLE VIII. Comparison of the computation of the recoil
velocity (in km/s) of the remnant of a q ¼ 1=2, nonspinning
binary by traditional radiation of linear momentum and the horizon
formula (5) averaged between t ¼ 1550m and t ¼ 1850m for the
traditional η ¼ 2 and η ¼ 0.5 cases. Extrapolation to infinite
resolution and convergence order is also given for the horizon
and radiative extraction. The bottom panel gives the angle (in
degrees) of the recoil velocity with respect to the x axis. Standard
deviations of horizon measurements are given as � for each
quantity. Convergence with numerical resolution is also given.

Radiation Horizon Radiation Horizon

hi=m mη ¼ 2.0 mη ¼ 2.0 mη ¼ 0.5 mη ¼ 0.5

1=100 145.45 127.80� 0.65 145.91 159.57� 1.05
1=120 149.45 121.02� 0.79 149.64 152.48� 0.31
1=140 151.38 118.77� 0.65 151.48 152.92� 0.41
→ 0 154.28 117.08 154.39 150.98
n 3.31 5.49 3.18 6.20

1=100 384.43° 379.73°� 1.35° 390.60° 388.57°� 0.55°
1=120 392.74° 387.84°� 1.48° 391.04° 388.75°� 0.24°
1=140 392.54° 388.54°� 1.41° 391.74° 389.80°� 0.11°
→ 0 394.75° 390.48° … …
n 6.17 6.14 … …

TABLE IX. Comparison of the computation of the horizon mass and spin of the remnant of a q ¼ 1=2,
nonspinning binary with the radiation of the energy and angular momentum for η ¼ 2 and η ¼ 0.5 cases.
Extrapolation to infinite resolution and convergence order is also given for the horizon computation and the radiative
extraction.

mη ¼ 2.0

hi=m Erad=m Jrad=m2 mf=m αf=m2 Δm=m −ΔJ=m2

1=100 0.02999 −0.30497 0.96126 0.62344 0.03029 −0.30617
1=120 0.03016 −0.30600 0.96125 0.62345 0.03030 −0.30617
1=140 0.03024 −0.30629 0.96125 0.62346 0.03030 −0.30617
→ 0 0.030337 −0.30646 0.96125 0.62346 … …
n 3.70 6.36 13.36 6.09 … …

mη ¼ 0.5
1=100 0.02998 −0.30516 0.96124 0.62343 0.03031 −0.30620
1=120 0.03014 −0.30583 0.96125 0.62345 0.03030 −0.30617
1=140 0.03022 −0.30615 0.96126 0.62345 0.03030 −0.30617
→ 0 0.03033 −0.30662 0.96126 0.62345 … …
n 3.42 3.39 7.20 8.62 … …
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evaluation for mη ¼ 0.5 at 420 km=s is as good to that
value than any radiative evolution at the same resolution
(388 km=s), with errors of the order of 4%. As we have
seen before, the improvement of those horizon values is
obtained by lowering the value of mη → 0, rather than by
higher resolution, as the horizon quasilocal measure has
essentially already converged at those resolutions.
For the sake of completeness, and to verify the accuracy

of the horizon evaluations for the mass and spin of the
remnant black hole, we provide their computation in
Table XIII. Those tables display the excellent agreement
between the horizon and radiative computation of the
energy and angular momentum (with convergence rates

of the third and fourth order). It also displays the agreement
of those radiative computations for η ¼ 2 and η ¼ 0.5
cases, as expected on the ground of gauge invariance at the
extrapolated infinite observer location. Further, the tables
show the robustness of the horizon computations at any of
the used resolutions (generally five digits).
A final note on the convergence studies carried out in this

section is that we observe a good convergence rate of third
to fourth order for radiative quantities while for horizon
quantities a more wider range of values, with sometimes
overconvergence. This is due to the fact that the horizon
evaluations (particularly for the mass and spin) lead to very
accurate values and hence small differences between the
three resolutions chosen for the simulations (n100, n120,
and n140). In order to seek very significant differences
between resolutions, factors larger than 1.2 should be
chosen (although requiring much larger computational
resources). Note that nevertheless we have been able to
prove that horizon quantities can be evaluated very accu-
rately at any of the resolutions quoted above.

III. OTHER GAUGES STUDIES

Right after the breakthrough that allowed evolving
binary black holes with the moving puncture formalism
[31,36], several papers analyzed extensions of the basic
gauges (2)–(4). In Refs. [55,30], several parametrizations
of the shift conditions are studied and displayed some
(slight) preference for the ∂0 gauge over the ∂t gauge (see
Table I of Ref. [55] and Fig. 10 of Ref. [30]).
The sensitivity of the computed recoil on the gauge give

us an opportunity to quantify the relative accuracy of the ∂0

gauge versus the ∂t gauge.
We will also exploit the possibility of using a variable

ηðxkðtÞÞ to obtain both, the benefits of accuracy around the

TABLE X. Comparison of the computation of the horizon mass and spin of the remnant of a q ¼ 1=5,
nonspinning binary with the radiation of energy and angular momentum for η ¼ 2 and η ¼ 0.5 cases. Extrapolation
to infinite resolution hi → 0 and convergence order n is also given for the horizon computation and the radiative
extraction.

mη ¼ 2.0

hi=m Erad=m Jrad=m2 mf=m αf=m2 Δm=m −ΔJ=m2

1=100 0.01237 −0.15454 0.98217 0.41667 0.01253 −0.14804
1=120 0.01225 −0.14872 0.98235 0.41667 0.01235 −0.14790
1=140 0.01226 −0.14803 0.98237 0.41660 0.01232 −0.14796
→ 0 0.01227 −0.14788 0.98238 0.41667 … …
n 11.59 11.41 10.78 −15.49 … …

mη ¼ 0.5
1=100 0.01310 −0.16762 0.98158 0.41572 0.01320 −0.14944
1=120 0.01241 −0.15479 0.98221 0.41670 0.01249 −0.14800
1=140 0.01227 −0.14859 0.98236 0.41663 0.01234 −0.14795
→ 0 0.01221 −0.13922 0.98242 0.41662 … …
n 8.12 3.30 7.59 14.39 … …

TABLE XI. Comparison of the computation of the recoil
velocity (in km/s) of the remnant of a q ¼ 1=5, nonspinning
binary by traditional radiation of linear momentum and the horizon
formula (5) averaged between t ¼ 2300m and t ¼ 2500m for the
traditional η ¼ 2 and η ¼ 0.5 cases. Extrapolation to infinite
resolution hi → 0 and convergence order n is also given for the
horizon and radiative extraction. The bottom panel gives the angle
(in degrees) of the recoil velocity with respect to the x axis.
Standard deviations of horizon measurements are given as � for
each quantity.

Radiation Horizon Radiation Horizon

hi=m mη ¼ 2.0 mη ¼ 2.0 mη ¼ 0.5 mη ¼ 0.5

1=100 129.40 98.67� 0.60 130.21 209.00� 2.16
1=120 133.91 102.53� 0.16 133.19 131.93� 1.22
1=140 135.94 101.62� 0.13 136.70 143.28� 0.17
→ 0 138.57 101.20 … 146.78
n 3.72 7.46 … 10.16

1=100 318.79° 317.09°� 0.91° 333.20° 366.32°� 0.56°
1=120 374.99° 376.95°� 0.33° 345.29° 293.68°� 0.04°
1=140 332.13° 329.04°� 0.33° 385.40° 384.90°� 0.11°
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black holes and a good coordinate behavior connecting the
horizon results with asymptotia.

A. ∂0 gauge

In Fig. 5, we draw a comparative analysis of the final
black hole horizon recoil as computed in ∂0 and ∂t gauges,
at our highest resolution n140. In all three cases, η ¼ 2, 1,
0.5, the computation in the ∂t gauge is notably and
systematically closer to the expected (Vf ∼ 177 km=s)
recoil velocity. This also provides a scale of the accuracy
of the evaluation of the recoil for our new preferred value,
η ¼ 0.5.
Convergence with resolution does not resolve these

discrepancies in favor of the ∂t gauge as displayed in

Fig. 6 for mη ¼ 2 in the ∂0 gauge at n100, n120, and n140
resolutions. The limit η → 0 being even harder to resolve
than in the ∂t-gauge case.
Those results for the evolutions in the ∂0 gauge are

summarized in Table XIV where we compare its results
with those in Tables IV and V in the ∂t gauge. While the
computation of the extracted radiation is comparable and
convergent to essentially the same values, i.e., a recoil
magnitude of about 177 km=s and an angle with the x axis
of 375°, the closeness to those values in the ∂t gauge is
apparent for all values of η. A second control case is studied
in Table XV, where we consider the spinning binary system
described in Sec. II C. We directly compare the ∂0-gauge
new simulations with the ∂t-gauge simulations reported in

TABLE XII. Comparison of the computation of the recoil velocity (in km/s) of the remnant of a q ¼ 1, αi ¼ �0.8 binary by traditional
radiation of linear momentum and the horizon formula (5) averaged between t ¼ 1050m and t ¼ 1350m for the traditional η ¼ 2 and
η ¼ 1 and 0.5 cases. Extrapolation to infinite resolution hi → 0 and convergence order n is also given for the radiative extraction. The
bottom panel gives the angle (in degrees) of the recoil velocity with respect to the x axis. Standard deviations of horizon measurements
are given as � for each quantity. In this case, mη ¼ 1 produces a better measure of recoil velocity than other choices of mη.

Radiation Horizon Radiation Horizon Radiation Horizon

hi=m mη ¼ 2.0 mη ¼ 2.0 mη ¼ 1.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.5

1=100 387.92 331.98� 1.50 … … 388.13 419.89� 0.30
1=120 394.16 331.84� 1.41 394.13 396.41� 0.22 394.16 421.02� 0.38
1=140 397.43 331.75� 1.49 … … 397.16 419.67� 0.86
→ 0 403.42 331.40 … … 402.00 …
n 2.82 1.46 … … 3.12 …

1=100 135.51° 135.81°� 0.93° … … 135.70° 137.25°� 0.27°
1=120 136.70° 135.72°� 0.92° 136.65° 135.51°� 0.27° 136.72° 136.65°� 0.14°
1=140 137.39° 135.80°� 0.94° … … 137.15° 136.61°� 0.13°
→ 0 139.07° 135.78° … … 137.60° 136.83°
n 2.23 4.26 … … 4.23 4.29

TABLE XIII. Comparison of the computation of the horizon mass and spin of the remnant of a q ¼ 1, αi ¼ �0.8
binary with the radiation of the energy and angular momentum for η ¼ 2 and η ¼ 0.5 cases. Extrapolation to infinite
resolution hi → 0 and convergence order n is also given for the radiative extraction.

mη ¼ 2.0

hi=m Erad=m Jrad=m2 mf=m αf=m2 Δm=m −ΔJ=m

1=100 0.03872 −0.34232 0.95071 0.68413 0.03936 −0.34403
1=120 0.03898 −0.34320 0.95071 0.68413 0.03936 −0.34403
1=140 0.03911 −0.34362 0.95071 0.68413 0.03936 −0.34404
→ 0 0.03930 −0.34421 0.95071 0.68413 … …
n 3.28 3.45 … … … …

mη ¼ 1.0
1=120 0.038979 −0.34318 0.95071 0.68413 0.03936 0.34404

mη ¼ 0.5
1=100 0.03872 −0.34232 0.95071 0.68413 0.03935 −0.34405
1=120 0.03898 −0.34318 0.95071 0.68413 0.03936 −0.34403
1=140 0.03911 −0.34358 0.95071 0.68413 0.03935 −0.34404
→ 0 0.03930 −0.34411 0.95071 0.68413 … …
n 3.30 3.58 … … … …
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Table XII. Based on those results, we expect recoil magni-
tudes in the 402–403 km=s and angles in the 138° − 139°
ranges. The results for η ¼ 2 confirm closer the expected
recoils in the ∂t gauge, and those of η ¼ 0.5 bracket it, with
preference for the ∂t gauge. We also observe again that the
horizon values are much more sensitive to the values of η
than to resolutions (at least for these 1.2 increase factors).
In conclusion, we observe the advantage of working in

the ∂t gauge over the ∂0 gauge regarding computation of
recoil velocities from the horizon formula (5). This agrees
with our generic experience for binary black holes simu-
lations being more accurate in our standard ∂t gauge at the
same resolutions and same values of η, but now we have

quantified it in the recoil computations example. As we
converge to higher resolutions, both gauges lead to con-
sistent and accurate solution in all studied quantities.

B. η-variable gauge

In addition to the changes in the (constant) values of η,
different functional dependences for ηðxk; tÞ have been
proposed in [39,56–60].
Here we use a modified form motivated by the results of

[29] and this paper that the recoil velocities (of a merged
binary) are more accurately computed when using the
quasilocal horizon measure of the momentum with smaller
η and that the generic evolution is more accurate and
convergent for larger values of η.
We hence propose a simple variant for comparable

masses binary

mηðxk; tÞ ¼ mη∞ − Ae−r
2=s2 ; ð6Þ

where m ¼ m1 þm2 and r ¼ jr⃗ − r⃗comj is the distance
from the (Newtonian) center of mass of the system (PN
corrections could be added if needed [61]),

r⃗com ¼ ðm1x⃗1 þm2x⃗2Þ=m; ð7Þ

where x⃗1ðtÞ and x⃗2ðtÞ are the punctures location, and s is a
width of the Gaussian that can be conveniently chosen, for
instance, s ¼ 2m. Typically, for our simulations, normali-
zation is chosen such that m ∼ 1 (and MADM < 1).
The choice to center the Gaussian correction to η∞ at the

center of mass is to provide a simple way of following the
final black hole after merger, even if acquired a large recoil
velocity. The motivation to set different values around the
black hole is to provide enough accuracy and convergence
in the strong field regime, while preserving the benefits of
the coordinates adapted to recoil measurements away from
the remnant hole.
In order to assess those statements, we have considered

two cases, labeled as N10 and N12, respectively, deter-
mined by e − and þ in

mηðxk; tÞ ¼ 1 ∓ e−r
2=ð2mÞ2 ; ð8Þ

with the same reference asymptotic value of 1 at infinity
and vanishing or taking the standard value of 2 at the (final)
hole location.
The simulations (in the standard ∂t gauge) make use of

this (8) dependence during the whole run, not only during
the postmerger phase, but the horizon of the final black hole
is only found and evaluated for linear momentum after the
merger occurs (about t ∼ 725m).
The results of the two cases are displayed in Fig. 7. Each

case has been studied at our standard n100, n120, n140
resolutions to convey an idea of the convergence. The upper
panel displays a very good agreement with the expected

FIG. 5. Comparative results of the ∂t gauge (solid) and ∂0

gauge (dashed) for the horizon measure of the linear momentum
(in km/s) after merger of a q ¼ 1=3 nonspinning binary for the
n140 resolution for η ¼ 2=m (blue), 1=m (green), and 0.5=m
(red). The reference value of Vf is found by extrapolation to
infinite resolution of the radiated linear momentum.

FIG. 6. The horizon measure of the linear momentum (in km/s)
after merger of a q ¼ 1=3 nonspinning binary for the three
resolutions labeled as n100, n120, and n140 in the ∂0 gauge for
η ¼ 2=m. The reference value of Vf is found by extrapolation to
infinite resolution of the radiated linear momentum in this
∂0 gauge.
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recoil, particularly for the medium and high resolutions.
The agreement is even better than the constant mη ¼ 1
case, displayed in the central panel of Fig. 3, which lies in
between the N12 and N10 cases. To confirm the improve-
ments reached by this variable-η gauge, the case N10,
where the asymptotic value is the same, equal to 1, but
where the η is reduced near the black hole, reduces notably
the accuracy necessary to compute the linear momentum of
the horizon and convergence is still more challenging than
in the previous N12 case.
Those results for the variable-η gauge, as in (8), are

summarized in Table XVI where we compare its results
with those in Tables IVand V in the η ¼ 1 gauge. While the
computation of the extracted radiation is comparable and

convergent to essentially the same values, i.e., a recoil
magnitude of about 176–177 km=s and an angle with the
x axis of 375°-376°, the closeness to those values in the N12
gauge is apparent followed by the mη ¼ 1 (the reference
value) and lagged by the N10 gauge, indicating that while
the same asymptotic mη ¼ 1 value is shared by the three
gauges, that withmη → 2 near the horizon of the black hole
produces the most accurate results for the recoil computed
via the horizon formula (5).
A second control case is studied in Table XVII, where we

consider the spinning binary system described in Sec. II C.
We directly compare the N12-N10-gauge new simulations
with each other using the radiation values as the more
accurate references, and we find again the confirmation that

TABLE XIV. Comparison of the computation of the recoil velocity (in km/s) of the remnant of a q ¼ 1=3,
αi ¼ �0 binary by traditional radiation of linear momentum and the horizon formula (5) measured 75m after
merger. Computation uses the ∂0-gauge η ¼ 2 case for resolutions n100, n120, and n140 and ∂0 gauge η ¼ 1, 0.5
cases for resolution n140. Extrapolation to infinite resolution hi → 0 and convergence order n is also given for the
radiative extraction for appropriate cases. The bottom panel gives the angle (in degrees) of the recoil velocity with
respect to the x axis. Standard deviations of horizon measurements are given as � for each quantity. Compare these
results with those of Tables V and VI.

Radiation Horizon Radiation Horizon Radiation Horizon

hi=m mη ¼ 2.0 mη ¼ 2.0 mη ¼ 1.0 mη ¼ 1.0 mη ¼ 0.5 mη ¼ 0.5

1=100 163.67 127.11� 0.87 … … … …
1=120 168.57 129.10� 0.98 … … … …
1=140 171.24 128.84� 0.57 171.30 152.11� 1.92 171.33 160.9� 1.55
→ 0 176.65 129.43 … … … …
n 2.60 6.12 … … … …

1=100 375.82° 369.58°� 0.29° … … … …
1=120 375.17° 368.99°� 0.53° … … … …
1=140 375.63° 369.14°� 0.63° 375.67° 371.55°� 0.09° 375.88° 373.93°� 0.10°
→ 0 … 369.24° … … … …
n … 4.14 … … … …

TABLE XV. The top panel shows the comparison of the computation of the recoil velocity (in km/s) of the
remnant of a q ¼ 1, αi ¼ �0.80 binary by traditional radiation of linear momentum and the horizon formula (5)
averaged from t=m ¼ 1050 to 1350 using the ∂0 gauge with η ¼ 2 and η ¼ 0.5 case at resolutions n100 and n120.
The bottom panel gives the angle (in degrees) of the recoil velocity with respect to the x axis. Both panels give
also the ∂t results from Table XII for comparison. Standard deviations of horizon measurements are given as � for
each quantity.

Gauge Radiation Horizon Radiation Horizon

hi=m ∂0; ∂t mη ¼ 2.0 mη ¼ 2.0 mη ¼ 0.5 mη ¼ 0.5

1=100 ∂0 387.94 294.93� 2.43 388.01 377.37� 1.56
1=100 ∂t 387.92 331.98� 1.50 388.13 419.89� 0.30
1=120 ∂0 394.18 294.82� 2.41 394.13 376.89� 0.94
1=120 ∂t 394.16 331.84� 1.41 394.16 421.02� 0.38

1=100 ∂0 135.53° 135.71°� 1.00° 135.78° 137.31°� 0.27°
1=100 ∂t 135.51° 135.81°� 0.93° 135.70° 137.25°� 0.27°
1=120 ∂0 136.71° 135.62°� 1.00° 136.69° 136.65°� 0.18°
1=120 ∂t 136.70° 135.72°� 0.92° 136.72° 136.65°� 0.14°
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the N12 results are much closer to the expected results than
the N10 ones.
In conclusion, a first exploration of an η variable leads to

immediate benefits and opens the possibilities for further
refinement of its parameters to have both, accuracy and
precision improved in the numerical simulations of merg-
ing binary black holes.

C. Small mass ratio

Because of technical similarities (although with com-
plementary mass ratio applications), here we briefly discuss
dealing with the small mass ratio binaries by the modeling
of the damping parameter η. The proposal for η in Eq. (6) is
meant to be used for comparable masses q > 1=10 when
we can still use a constant η for evolutions. For smaller
mass ratios, this η∞ can be replaced by ηðWÞ (the
conformal factor W ¼ ffiffiffi

χ
p ¼ expð−2ϕÞ suggested by

[62]) used in Ref. [60] or a modification of it given below
or yet other based on superposition of weighted Gaussians.
Note that the recoil for q < 1=10 is small. This question has
been already studied in [56,58,59,63,64].

FIG. 7. The horizon measure of the linear momentum after
merger of a q ¼ 1=3 nonspinning binary for the three resolutions
labeled as n100 (dotted), n120 (dashed), and n140 (solid) for η ¼
N12 (red) and N10 (blue), top to bottom, respectively. The
reference value of Vf is found by extrapolation to infinite
resolution of the radiated linear momentum.

TABLE XVI. Comparison of the computation of the recoil velocity (in km/s) of the remnant of a q ¼ 1=3, αi ¼ 0 binary by traditional
radiation of linear momentum and the horizon formula (5) measured 75m after merger for the modified N12 and N10 gauges. The
standard η ¼ 1 from Tables Vand VI is also provided for reference. Extrapolation to infinite resolution hi → 0 and convergence order n
is also given for the radiative extraction. The bottom panel gives the angle (in degrees) of the recoil velocity with respect to the x axis.
Standard deviations of horizon measurements are given as � for each quantity.

Radiation Horizon Radiation Horizon Radiation Horizon

hi=m N12 N12 N10 N10 mη ¼ 1 mη ¼ 1

1=100 163.65 169.88� 1.29 163.71 150.54� 1.18 163.75 160.51� 1.14
1=120 168.59 172.56� 0.75 168.61 153.52� 0.86 168.66 161.62� 1.36
1=140 171.20 177.64� 1.78 171.26 155.31� 1.75 171.31 165.01� 1.55
→ 0 176.09 … 176.52 160.14 176.42 …
n 2.78 … 2.64 2.04 2.70 …

1=100 373.01° 371.21°� 0.93° 374.39° 364.97°� 0.27° 374.67° 370.26°� 0.29°
1=120 374.02° 373.17°� 0.92° 374.85° 366.81°� 0.14° 375.09° 371.83°� 0.27°
1=140 374.72° 377.24°� 0.94° 375.57° 367.90°� 0.13° 375.59° 371.98°� 0.09°
→ 0 378.40° 377.24° … … 375.12° 372.36°
n 1.13 2.15 … … 2.00 6.07

TABLE XVII. Comparison of the computation of the recoil velocity (in km/s) of the remnant of a q ¼ 1, αi ¼ �0.80 binary by
traditional radiation of linear momentum and the horizon formula (5) measured from t=m ¼ 1050 to 1350 for the modified N12 and N10
gauges using η → 1 asymptotically, as well as mη ¼ 1.0 for comparison. The bottom panel gives the angle (in degrees) of the recoil
velocity with respect to the x axis. Standard deviations of horizon measurements are given as � for each horizon quantity.

Radiation Horizon Radiation Horizon Radiation Horizon

hi=m N12 N12 N10 N10 mη ¼ 1.0 mη ¼ 1.0

1=120 394.88 379.66� 0.80 393.87 335.74� 1.10 394.13 396.41� 0.22
1=120 137.44° 141.54°� 0.46° 136.38° 128.90°� 0.08° 136.65° 135.51°� 0.27°
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Here we simply bring back some of those ideas,
assuming we evaluate ηðr⃗1ðtÞ; r⃗2ðtÞÞ parametrized by the
black holes 1 and 2 punctures trajectories ðr⃗1ðtÞ; r⃗2ðtÞÞ.
The (initial) conformal factor evaluated at every time

step is

ψ0 ¼ 1þ m1

jr⃗ − r⃗1ðtÞj
þ m2

jr⃗ − r⃗2ðtÞj
: ð9Þ

And we can then define analogously to ηðWÞ,

mηψ ¼ Aþ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∇⃗rψ0j2

q

ð1 − ψ0
aÞb : ð10Þ

We plot an example in Fig. 8. At the puncture mη ¼ 2
and at the center of mass mη ¼ 2.04, but it goes through a
minimum mη ¼ 0 and at this point, as well as the
punctures, η is C0. Since the gauge condition Eq. (2)

involves an integration, this might still be fine for evolu-
tions (as well as at the punctures).
A second alternative smoother behavior is the super-

position of Gaussian (see also [64]),

ηG ¼ A
m
þ B
m1

e−jr⃗−r⃗1ðtÞj2=s12 þ C
m2

e−jr⃗−r⃗2ðtÞj2=s22 ; ð11Þ

which for the parameters of the previous example we
display in Fig. 9, behaving like 1.25 at the first puncture,
1.75 at the second, and is essentially 1 in between and far
away from the binary.
The explicit application and evaluations in actual sim-

ulations of small mass ratio binary black hole mergers is
left for an independent study [65].

IV. DISCUSSION

The purpose of this study was to assess what choices of η
lead to accurate measures of the linear momentum of the
horizon with the nongauge-independent formula (5), and we
found that for small values mη ≤ 0.5 this is a reliable
measure and can compete with the measurement at Iþ
of the radiated momentum carried by the gravitational
waves. As with the computations of the mass and angular
momentum of the remnant via the horizon measure and at
infinity, it is important to have two concurrent methods to
assess errors of those measures. Further accuracy could be
achieved by the use of a variable η [see Eq. (6)]. Our results
indicate that the choice ofmη ¼ 2 at the horizon, with lower
values at asymptotically far distances from the source(s),
produces the best results for evaluation of the recoil.
While these gauges were studied in detail for a non-

spinning q ¼ 1=3 binary and verified as control cases for
the q ¼ 1=2 and q ¼ 1=5 binaries as well as for a q ¼ 1
spinning case, we expect these conclusions to be general
and plan to apply the findings to simulations where the
computation of recoil is important, including precessing
binaries. The cross-checking with radiated linear momen-
tum will provide a control to its applicability and can be
carried out concurrently in each simulation.
Finally, we were able to assess the relative accuracy of

the two original moving puncture choices for the shift, the
∂t and ∂0 gauges regarding their accuracy to evaluate the
recoil and found that the ∂t gauge seems to be superior, at
the current typical numerical resolutions.
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