
 

Analytical and numerical treatment of perturbed black holes in
horizon-penetrating coordinates

Maitraya K. Bhattacharyya ,1,2,* David Hilditch ,3 K. Rajesh Nayak ,1,2 Hannes R. Rüter ,4,5 and Bernd Brügmann 4

1Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
2Center of Excellence in Space Sciences India, Mohanpur 741246, India

3Centro de Astrofísica e Gravitação—CENTRA, Departamento de Física, Instituto Superior Técnico—IST,
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The deviations of nonlinear perturbations of black holes from the linear case are important in the context
of ringdown signals with large signal-to-noise ratio. To facilitate a comparison between the two we derive
several results of linear perturbation theory in coordinates which may be adopted in numerical work.
Specifically, our results are derived in Kerr-Schild coordinates adjusted by a general height function. In the
first part of the paper we address the questions: for an initial configuration of a massless scalar field, what is
the amplitude of the excited quasinormal mode (QNM) for any observer outside the event horizon, and
furthermore what is the resulting tail contribution? This is done by constructing the full Green’s function for
the problem with exact solutions of the confluent Heun equation satisfying appropriate boundary
conditions. In the second part of the paper, we detail new developments to our pseudospectral numerical
relativity code BAMPS to handle scalar fields. In the linear regime we employ precisely the Kerr-Schild
coordinates treated by our previous analysis. In particular, we evolve pure QNM type initial data along with
several other types of initial data and report on the presence of overtone modes in the signal.
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I. INTRODUCTION

Black hole perturbation theory [1–7] is an important tool
to study fundamental problems in black hole physics and
astrophysics. With the advent of gravitational wave detec-
tors and direct detection of gravitational waves from
compact binaries [8–13], results from perturbation theory
have become increasingly useful in modeling waveforms
for these compact objects. More specifically, the post-
merger part of a binary black hole waveform is dominated
by a linear combination of damped sinusoids with frequen-
cies characteristic of the mass and spin of the final black
hole after merger. These parameters, called quasinormal
mode (QNM) frequencies, have been used for testing
general relativity (GR) [14–18] and other alternative
theories of gravity. It is convenient to use frequencies
derived from the linear theory for these tests. With the
increase in detector sensitivity and the advent of space
based detectors, black hole spectroscopy is poised to
become a vital tool for probing possible deviations from
GR in the nonlinear regime and testing the validity of the
no-hair conjecture [19,20]. The use of overtone modes have

been successful in testing the no-hair conjecture with
present gravitational wave detectors [21]. Stronger tests
could be performed with increase in detector sensitivity and
the advent of space based detectors like LISA.
Several studies have extended the results of the linear

theory to higher orders [22–26] and to full numerical
relativity (NR) [27–30]. However, to the best of our
knowledge, a comprehensive study connecting the results
from the linear and the nonlinear theory in the presence of
“large” perturbations is still absent. Several factors, such as
second-order QNMs [31] and the dependence of tail decay
rates on the number of dimensions [32], suggest that a full
nonlinear study may reveal new physics. It is toward
fulfilling this gap that we have recently been further
developing our pseudospectral numerical relativity (NR)
code BAMPS [33–39], our aim being to build a complete
numerical laboratory for perturbation theory experiments.
This challenge requires developing new numerical tech-
niques, notably a more robust way to handle black hole
excision, the ability to extract waves at null infinity, and
data analysis tools to compare linear and nonlinear data.
Motivated by observational and theoretical considera-

tions, we would thus like a systematic, quantitative com-
parison between linear, higher-order perturbative and fully
nonlinear solutions with all of these elements computed in
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the most compatible manner. To facilitate the desired
comparison a natural first wish would be to ascertain the
direct, dynamical QNM, and backscattering contributions to
the signal emanating from sufficiently small, but otherwise
generic initial data in both the linear and nonlinear contexts.
While searching for an answer to this problem, we found that
with few important notable exceptions, such as [40–42],
most existing calculations have been performed in either
Regge-Wheeler or Schwarzschild coordinates [43–51] and
therefore are not ideal for comparison with full NR results,
where simulations are generally performed in horizon-
penetrating coordinates, which may also be hyperboloidal
in nature.
In this paper we therefore restrict our attention to the

linear regime and construct a Green’s function in horizon-
penetrating Kerr-Schild coordinates, alternatively named in
this context Eddington-Finkelstein coordinates, offset by an
arbitrary height function. The latter can be used to render
the slices hyperboloidal, which will be important for future
numerics. Plain Kerr-Schild coordinates are already needed
for comparison with BAMPS. A simplification of the
massless Klein-Gordon equation to the confluent Heun
equation (CHE) [52–54] is hence provided at the beginning
of Sec. II. We then give a brief overview of the CHE, its
exact solutions and asymptotic solutions at large radii in
Sec. II A. A description of QNM boundary conditions in
several coordinate systems along with an overview of the
analytic continuation method used to construct them is
provided in Sec. II B. The exact Green’s function for the
problem is constructed using these solutions in Sec. II C.
This is then used to compute the quasinormal mode
excitation factors (QNEFs) in Sec. II D. Separate approx-
imations for the tail at low, medium and high frequencies
are discussed in Sec. II E. The contribution from the direct
part of the signal is discussed in Sec. II F.
It has been recently suggested that overtone modes may

play an important role in modeling the QNM part of the
signal [21,55,56]. Our analytic calculations and our Green’s
function results are valid for arbitrary initial data in an
arbitrary time coordinate related to the Kerr-Schild time by
a height function hðrÞ. In the second part of the paper, for
simplicity we work in the special case of spherical
symmetry and evolve various configurations of a massless
scalar field on the Schwarzschild background in Kerr-
Schild coordinates. This presupposed spherical symmetry
ensures that l ≥ 1 modes are not excited and QNM ringing
is comprised of the principal frequency and overtone
frequencies of the l ¼ 0 mode. After a description of the
numerical setup, the SCALARFIELD project and the initial
data within BAMPS in Secs. III A and III B, we perform tests
of the tail results and determine the number of terms that are
needed in a data analysis model to accurately model the
numerical results in Sec. III C. One goal of the work is to
investigate the effect of specialized initial data. This is
pursued in Sec. III D, where we employ a method to evolve
a pure QNM solution to obtain an arbitrarily long ringing

time near the horizon. This allows us to evolve and detect
overtones or a linear superposition of them. We then
discuss the possibility of detecting overtone modes from
generic initial data and discuss the restricted circumstances
under which this is possible. Finally, we devise a strategy to
prepare specialized initial data with sine-Gaussians which
can be used to obtain long ring-down signals, which
improves our ability to detect the first overtone substan-
tially, at least for observers far from the horizon. We also
demonstrate that irrespective of the initial data the effect of
the branch cut present in the Green’s function construction
becomes important during intermediate and late time
ringing. We then present a brief comparison between the
results of our approximate Green’s function (for the direct
part of the signal) and the numerics in Sec. II F. Finally in
Sec. IV, we propose a model for QNM ringing which also
incorporates the effect of backscattering, and conclude,
discussing the shortcomings of the present approach.

II. THE WAVE EQUATION IN HORIZON-
PENETRATING COORDINATES

The realistic problem of interest is to evolve an arbitrary
configuration of a massless scalar field in the
Schwarzschild spacetime and study the response of the
black hole to it. For sufficiently weak matter content, we
can perform our simulations in the Cowling approximation,
in which the backreaction from the scalar field on the
metric is considered negligible. This simplified problem,
which we henceforth refer to as the “linear problem” is
amenable to a Green’s function analysis which reveal
several interesting physical phenomena whose analogues
are observed in the nonlinear problem. Our ultimate
strategy will be to take approximations of the individual
contributions to the Green’s function in the linear problem
and compare them with numerical simulations performed in
the nonlinear regime to quantify the deviations. This paper
deals with the linear problem in horizon-penetrating coor-
dinates compatible with NR.
A scalar field signal, as seen by an observer outside the

event horizon, shows three generic features: a part from the
direct transmission of the initial data followed by QNM
ringing and then a tail which, at late times follows a power
law. These features arise from three different contributions
to the Green’s function: the high frequency arc, the poles
and the branch cut respectively. This is depicted schemati-
cally in Fig. 1. While calculating the QNM contribution to
the signal, we would like to obtain the dynamic excitation
amplitudes [45] as opposed to assigning constant excitation
strengths to each QNM. This sidesteps the “timing prob-
lem” which arises in the latter approach. The timing
problem essentially requires a choice of a starting time
for observation such that computed integrals do not diverge
after that time. This turns out to be problematic when the
initial data is not sharply localized because in that case the
starting time is ill-defined [46].
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The evolution of a massless scalar field is governed by
the Klein-Gordon equation,

1ffiffiffiffiffiffi−gp ∂
∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂Φ
∂xν

�
¼ 0; ð1Þ

where gμν, gμν, and g are the components of the metric,
those of the inverse metric and the determinant of the metric
respectively. While our calculations would work also for
complex scalar fields, we will evolve real scalar fields
presently. We consider two sets of coordinates, the Kerr-
Schild coordinates ft; r; θ;ϕg and generalized coordinates
fT; r; θ;ϕg with the two time coordinates related by

t ¼ T þ hðrÞ: ð2Þ

The height function h may be chosen arbitrarily but has a
radial asymptotic limit h ∼ r, h0 ∼ 1 near future-null infin-
ity for hyperboloidal slices, spacelike slices which termi-
nate at future null-infinity. In these coordinates, the line
element for the Schwarzschild metric can be written as

ds2 ¼ −
�
1 −

2M
r

�
dT2 þ

�
4M
r

þ 4Mh0

r
− 2h0

�
dTdr

þ
�
1þ 2M

r
þ 4Mh0

r
− h02 þ 2Mh02

r

�
dr2

þ r2ðdθ2 þ sin2 θdϕ2Þ: ð3Þ

The field is expanded in a basis of spherical harmonics
according to the ansatz,

ΦðT; r; θ;ϕÞ ¼
X
l;m

Kl;mðT; rÞYl;mðθ;ϕÞ: ð4Þ

The coefficients Kl;m are obtained using

Kl;mðT; rÞ ¼
Z

π

θ¼0

Z
2π

ϕ¼0

ΦðT; r; θ;ϕÞY�
l;mðθ;ϕÞ sin θdθdϕ;

ð5Þ

with � denoting the complex conjugate as usual. An initial
configuration of the scalar field is provided by specifying
Kl;mð0; rÞ and ∂TKl;mðT; rÞjT¼0 for every ðl; mÞ. The time
evolution of the scalar field can then be computed using the
retarded Green’s function

Kl;mðT; rÞ ¼
Z

GðT; r; r0Þ∂TKl;mðT; r0ÞjT¼0dr
0

þ
Z

∂TGðT; r; r0ÞKl;mð0; r0Þdr0: ð6Þ

Our main objective throughout the rest of the analysis is to
compute the different parts of the retarded Green’s function
for the QNMs, the tail and the direct transmission of the
initial data. To ensure that causality is respected, the above
convolution is only performed over the part of the initial
data which lies within the past light cone of the observer. To
determine this, the coordinate light-speeds of the left
moving and right moving solutions must be computed
from the roots of the quadratic equation for v ¼ dr=dT

�
1þ 2M

r
þ 4Mh0

r
− h02 þ 2Mh02

r

�
v2

þ
�
4M
r

þ 4Mh0

r
− 2h0

�
v −

�
1 −

2M
r

�
¼ 0: ð7Þ

In Kerr-Schild coordinates, that is with T ¼ t, and thus
h ¼ 0, the upper limit of the integration is r0 ¼ rþ T while
the lower limit is obtained by solving for r0 in

r0 þ 4M logðr0 − 2MÞ ¼ rþ 4M logðr − 2MÞ − T: ð8Þ

To reduce the wave equation into an ordinary differential
equation, we perform a Laplace transformation

Ĝðω; r; r0Þ ¼
Z

∞

0

GðT; r; r0ÞeiωTdT; ð9Þ

with the inverse transform defined as

GðT; r; r0Þ ¼ 1

2π

Z
∞þic

−∞þic
Ĝðω; r; r0Þe−iωTdω; ð10Þ

where c is some positive number.

FIG. 1. Singularities and branch cut of the Green’s function in
the ω plane. The crosses denote singularities corresponding to the
quasinormal mode frequencies while the magenta line indicates
the branch cut along the negative imaginary ω-axis. The contour
of integration is represented by the blue curve.
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The retarded Green’s function in the frequency domain
can then be constructed from two linearly independent
solutions to the ordinary differential equation,

rðr − 2MÞ d
2K̂l;m

dr2
þ 2ðr −M − 2iωMr

þ iωrðr − 2MÞh0Þ dK̂l;m

dr
þ ðrω2ðrþ 2MÞ − lðlþ 1Þ

− 2iωM þ iωrðr − 2MÞh00 − rω2ðr − 2MÞh02
þ 4Mrω2h0 þ 2iωðr −MÞh0ÞK̂l;m ¼ 0; ð11Þ

with each solution satisfying one of the boundary con-
ditions for the problem.
Introducing

K̂l;m ¼ e−iωðh�rÞHl;mðr=2MÞ; ð12Þ

and rescaling the coordinate according to x ¼ r=ð2MÞ, we
arrive at the confluent Heun equation (CHE) [52–54],

d2

dx2
Hl;mðxÞ þ

�
αþ β þ 1

x
þ γ þ 1

x − 1

�
d
dx

Hl;mðxÞ

þ
�
μ

x
þ ν

x − 1

�
Hl;mðxÞ ¼ 0; ð13Þ

with parameters independent of hðrÞ, giving

α ¼ −4iω̄; β ¼ 0; γ ¼ −4iω̄;

μ ¼ lðlþ 1Þ; ν ¼ −lðlþ 1Þ − 4iω̄; ð14Þ

for the choice of minus sign in Eq. (12). Here we have
defined ω̄ ¼ ωM. This is the form of the equation that we
will use for our calculations. An alternative form of the
CHE can be written for the plus sign in Eq. (12), with

α ¼ 4iω̄; β ¼ 0; γ ¼ −4iω̄;

μ ¼ lðlþ 1Þ þ 4iω̄; ν ¼ −lðlþ 1Þ þ 16ω̄2: ð15Þ

A. The confluent Heun equation

The Heun functions and its confluent forms have been
used to describe physical phenomenon in several disci-
plines of physics from quantum mechanics and atomic
physics to general relativity. A summary of several impor-
tant papers in physics is provided in [57]. In black hole
perturbation theory, some prominent applications of the
CHE include describing exact solutions of the Regge-
Wheeler equation [52,58], wave equation in Eddington-
Finkelstein and Painleve-Gullstrand coordinates [59], the
Teukolsky master equation for the Kerr-Neumann black
hole [53,60] and for describing the interior of black hole
spacetimes [61] among other things. The solutions of the

CHE has been expressed as a series solution of other special
functions in several interesting papers listed in the refer-
ences of [62].
In this section, we briefly summarize local solutions of

the CHE in the existing literature and then write down
asymptotic solutions in terms of special functions of the
confluent hypergeometric class. This will be done for
arbitrary parameters of the CHE and then for the parameters
pertaining to our problem, that is Eq. (14).
The CHE arises from the general Heun equation when

two of its regular singularities undergo a confluence to form
an irregular singularity. The CHE has five parameters and
three singularities—two regular singularities at x ¼ 0, 1
and one irregular singularity of rank 2 at x ¼ ∞ [63]. A
summary of the Frobenius and Thomé exponents are
represented by its generalized Riemann scheme (GRS)
[64] of our CHE given as

0
BBBBBBBBB@

1 1 2

0 1 ∞
0 0 μþν

α ; x

−β −γ β þ γ þ 2 − μþν
α

0

−α

1
CCCCCCCCCA
: ð16Þ

The GRS summarizes important information about the
singularities and the local solutions around those singular-
ities. The first row specifies the rank of the singularities and
the second row specifies their corresponding positions. The
remaining rows specify the Frobenius and Thomé expo-
nents of the local solutions around these singularities.
The canonical solution of the CHE is denoted by

HCðα; β; γ; δ; η; xÞ where [54]

μ ¼ 1

2
ðα − β − γ þ αβ − βγÞ − η;

ν ¼ 1

2
ðαþ β þ γ þ αγ þ βγÞ þ δþ η: ð17Þ

This solution is written as a convergent power series about
the origin,

Hð1Þ
0 ¼ HCðα; β; γ; δ; η; xÞ ¼

X∞
n¼0

anxn; jxj < 1; ð18Þ

with coefficients satisfying a three-term recurrence relation,

αnanþ1 þ βnan þ γnan−1 ¼ 0; ð19Þ

where a−1 ¼ 0; a0 ¼ 1 and
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αn ¼ −n2 − nðβ þ 2Þ − 1 − β;

βn ¼ n2 þ nð−αþ β þ γ þ 1Þ − μ;

γn ¼ nαþ ðμþ ν − αÞ: ð20Þ

The second solution can be written in terms of this
canonical solution as [59]

Hð2Þ
0 ¼ x−βHCðα;−β; γ; δ; η; xÞ: ð21Þ

Similarly, two local Frobenius solutions can be constructed
about x ¼ 1 which can be written in terms of the canonical
solution as

Hð1Þ
1 ¼ HCð−α; γ; β;−δ; ηþ δ; 1 − xÞ;

Hð2Þ
1 ¼ ðx − 1Þ−γHCð−α;−γ; β;−δ; ηþ δ; 1 − xÞ: ð22Þ

The first of this pair is of interest to us as this solution has
the desired behavior of a QNM near the horizon. However,
since this solution converges within a unit circle centered at
x ¼ 1, it must be analytically continued to cover the entire
positive x-axis. This shall be discussed in some detail in
Sec. II B.
Following [65], we can write down two asymptotic

solutions in the vicinity of the irregular singular point in a
power series of 1=x

Hð1Þ
∞ ≈ x−

μþν
α

X∞
n¼0

an
xn

;

Hð2Þ
∞ ≈ e−αxx−β−γ−2þðμþνÞ=αX∞

n¼0

an
xn

: ð23Þ

It must be noted here that these Thomé solutions may not
necessarily converge. The coefficients an can be calculated
using the recurrence relation

ðαþ2pÞnan¼ðn−q−β−γ−2Þðn−1−qÞan−1: ð24Þ

Here a0 and a1 are arbitrary and p, q are constructed from
the Thomé exponents with p ¼ 0;−α and q ¼
−ðμþ νÞ=α;−β − γ − 2þ ðμþ νÞ=α for the two solutions.
It is also possible to alternatively represent asymptotic

solutions of the CHE using special functions. First, the

CHE must be converted into the normal form which
removes the first derivative using the transformation

UðxÞ ¼ e
1
2
αxðx − 1Þ12ð1þγÞx1

2
ð1þβÞHðxÞ: ð25Þ

UðxÞ then satisfies the differential equation

d2U
dx2

þ RU ¼ 0; ð26Þ

with

R ¼ 1

2

�
β þ 1

x2
þ γ þ 1

ðx − 1Þ2
�
−
1

4

�
αþ β þ 1

x
þ γ þ 1

x − 1

�
2

þ μ

x
þ ν

x − 1
: ð27Þ

Expanding R in powers of 1=x, we can obtain several
asymptotic forms of the above equation depending on the
power of 1=x at which we truncate R. To begin with, we
neglect Oð1=x2Þ and higher order terms to arrive at

d2U
dx2

þ
�
−
α2

4
þ − αβ

2
− αγ

2
− αþ μþ ν

x

�
U ≈ 0; ð28Þ

which is a Whittaker equation and has the standard
Whittaker functionsMa;b,Wa;b as solutions, the definitions
of which are provided in [63]. Alternatively, the Tricomi
and Kummer confluent hypergeometric functions can also
be used as solutions, using their relations with the
Whittaker functions. In terms of Ma;b and Wa;b, the
solutions take the form

Hð1Þ
∞ ≈

M2ðμþνÞ−αðβþγþ2Þ
2α ;1

2

ðαxÞ
e
1
2
αxðx − 1Þ12ð1þγÞx1

2
ð1þβÞ ;

Hð2Þ
∞ ≈

W2ðμþνÞ−αðβþγþ2Þ
2α ;1

2

ðαxÞ
e
1
2
αxðx − 1Þ12ð1þγÞx1

2
ð1þβÞ : ð29Þ

Another asymptotic form of the solutions can be obtained
when we neglect Oð1=x3Þ and higher order terms, which
leads to

d2U
dx2

þ
�
−
α2

4
þ − 1

2
αðβ þ γ þ 2Þ þ μþ ν

x
þ

1
4
ð−2αðγ þ 1Þ − ðβ þ γ þ 2Þ2Þ þ 1

2
ðβ þ γ þ 2Þ þ ν

x2

�
U ≈ 0: ð30Þ

This is also a Whittaker equation and its solutions are given by

Hð1Þ
∞ ≈

M2ðμþνÞ−αðβþγþ2Þ
2α ;1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβþγþ1Þ2þ2αðγþ1Þ−4ν

p ðαxÞ
e
1
2
αxðx − 1Þ12ð1þγÞx1

2
ð1þβÞ ; ð31Þ
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and

Hð2Þ
∞ ≈

W2ðμþνÞ−αðβþγþ2Þ
2α ;1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβþγþ1Þ2þ2αðγþ1Þ−4ν

p ðαxÞ
e
1
2
αxðx − 1Þ12ð1þγÞx1

2
ð1þβÞ : ð32Þ

Using asymptotic forms of the Whittaker functions, we can
show that the two sets of asymptotic forms Eqs. (29) and
(31)–(32) exhibit the same behavior when x → ∞, namely

Hð1Þ
∞ ≈ x−

μþν
α ; j argðαÞj ≤ 1

2
π;

Hð2Þ
∞ ≈ e−αxx

μþν
α x− ð2þβþγÞ; j argðαÞj ≤ 3

2
π: ð33Þ

Now with the specific choice of parameters specified in
Eq. (14), the two parameters in the alternative notation are
given by

η ¼ −lðlþ 1Þ; δ ¼ 8ω̄2: ð34Þ

The GRS of our CHE can then be written

0
BBBBBBBBB@

1 1 2

0 1 ∞
0 0 1 ; x

0 4iω̄ 1 − 4iω̄

0

4iω̄

1
CCCCCCCCCA
: ð35Þ

Using the GRS, we can write the two Frobenius solutions
about x ¼ 1 and the two Thomé solutions in a straightfor-
ward manner,

Hð1Þ
1 ¼ HCð4iω̄;−4iω̄; 0;−8ω̄2; 8ω̄2 − lðlþ 1Þ; 1 − xÞ;

Hð2Þ
1 ¼ ðx − 1Þ4iω̄·
HCð4iω̄; 4iω̄; 0;−8ω̄2; 8ω̄2 − lðlþ 1Þ; 1 − xÞ;

Hð1Þ
∞ ≈ x−1

X∞
n¼0

an
xn

; Hð2Þ
∞ ≈ e4iω̄xx−1þ4iω̄

X∞
n¼0

an
xn

: ð36Þ

The alternative representations of the asymptotic solutions
in terms of the Whittaker functions can then be computed
assuming 1 ≪ x, giving

Hð1Þ
∞ ≈

e2iω̄xðx−1Þ− 1
2
þ2iω̄ffiffiffi

x
p M

2iω̄;1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ2−48ω̄2

p ð−4iω̄xÞ;

Hð2Þ
∞ ≈

e2iω̄xðx−1Þ− 1
2
þ2iω̄ffiffiffi

x
p W

2iω̄;1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ2−48ω̄2

p ð−4iω̄xÞ; ð37Þ

or alternatively

Hð1Þ
∞ ≈

e2iω̄xðx − 1Þ− 1
2
þ2iω̄ffiffiffi

x
p M2iω̄;1

2
ð−4iω̄xÞ;

Hð2Þ
∞ ≈

e2iω̄xðx − 1Þ− 1
2
þ2iω̄ffiffiffi

x
p W2iω̄;1

2
ð−4iω̄xÞ: ð38Þ

These solutions are only valid in the vicinity of the irregular
singular point and can be expressed by the limiting forms as
x → ∞,

Hð1Þ
∞ ≈ x−1; Hð2Þ

∞ ≈ e4iω̄xx−1þ4iω̄: ð39Þ

B. Quasinormal modes

1. QNM boundary conditions

Quasinormal modes are solutions of the eigenvalue
problem of the Regge-Wheeler equation [1] with purely
outgoing boundary conditions at the horizon and at spatial
infinity. The QNM frequencies, which are complex, cor-
respond to the poles of the Green’s function to the wave
equation, and as we shall see, are frequencies at which the
Wronskian of the two linearly independent solutions used
to construct the Green’s function vanishes. The outgoing
boundary conditions, when applied to H take the form

H ∼
1

2Mx
; x → 1;

H ∼
1

2M
e4iω̄xx−1þ4iω̄; x → ∞: ð40Þ

Here we have chosen the normalization constants such that
these conditions are identical to their counterparts in
Regge-Wheeler coordinates in the literature [4,5]. In the
original coordinates fT; r; θ;ϕg, they become

K ∼
1

r
e−iωðrþhÞ; r → 2M;

K ∼
1

r
eiωðr−hÞ

�
r
2M

�
4iω̄

; r → ∞: ð41Þ

The first of these implies that QNM solutions are finite at
the future horizon. This feature is explicit in our treatment
because of the use of horizon penetrating coordinates.
Although it is most convenient to construct QNM solutions
in the standard Schwarzschild time coordinate with that
choice the solutions appear irregular at the horizon. This is
misleading, because the blow-up occurs at the bifurcation
sphere where the Schwarzschild foliation meets the hori-
zon, but not elsewhere. Pure QNM data can thus can be
evolved with standard numerical relativity tools, provided
the outer boundary is treated appropriately. This can be
seen clearly in Kerr-Schild coordinates by setting hðrÞ ¼ 0.
The problems at the outer boundary can be ideally avoided
by employing a hyperboloidal foliation [40], which we will
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employ in future work. Choosing a suitable height function
hðrÞ ¼ rþ 4M log r, both boundary conditions are regular,

K ∼
1

r
e−2iωrr−4iω̄; r → 2M;

K ∼
1

r

�
1

2M

�
4iω̄

; r → ∞: ð42Þ

We will now discuss several solutions of the CHE which
satisfy at least one of these boundary conditions, and
then construct global solutions which satisfy both boundary
conditions simultaneously but only at the QNM
frequencies.

2. Solution satisfying boundary condition
at the horizon (f − )

The Frobenius solution around x ¼ 1 which is bounded
satisfies the boundary condition at the horizon. This
solution can be written in terms of the canonical solution
of the CHE with appropriate normalization

H ¼ 1

2M
HCð4iω̄;−4iω̄; 0;−8ω̄2; 8ω̄2 − l − l2; 1 − xÞ:

ð43Þ

This solution converges between 0 < x < 2 but can be
analytically continued to converge over the entire positive r
axis. This will be discussed later in the section.
Another solution of importance which satisfies the same

boundary conditions is a convergent series solution in terms
of the Gauss hypergeometric functions following the lines
of Mano, Suzuki, and Tagasuki (MST) [66–68],

H ¼ 1

NF

X∞
n¼−∞

an
Γð−n− ν− 2iω̄ÞΓðnþ ν− 2iω̄þ 1Þ

Γð1− 4iω̄Þ
× 2F1ð−ν− n− 2iω̄;νþ n− 2iω̄þ 1;1− 4iω̄; 1− xÞ;

ð44Þ

where 2F1 is the Gauss hypergeometric function, a0 is
equal to 1 and the normalization condition is given by

NF ¼ 2M
X∞
n¼−∞

an
Γð−n − ν − 2iω̄ÞΓðnþ ν − 2iω̄þ 1Þ

Γð1 − 4iω̄Þ :

ð45Þ

The coefficients an satisfy a three-term recurrence relation
as in Eq. (19) with

αn ¼ −
2iω̄ðnþ νþ 1 − 2iω̄Þðnþ νþ 1 − 2iω̄Þ

ð2nþ 2νþ 3Þ
× ðnþ νþ 1þ 2iω̄Þðnþ νÞ;

βn ¼ −lðlþ 1Þðnþ νÞðnþ νþ 1Þ
þ ððnþ νÞðnþ νþ 1Þ þ 4ω̄2Þ2;

γn ¼
2iω̄ðnþ νþ 2iω̄Þ2ðnþ ν − 2iω̄Þðnþ νþ 1Þ

ð2nþ 2ν − 1Þ : ð46Þ

The parameter ν called the renormalized angular momen-
tum is determined by the fact that the series should
converge both as n → ∞ and n → −∞. This is ensured
by solving the transcendental equation [66,67]:

PnðνÞQn−1ðνÞ ¼ 1; ð47Þ

where the continued fractions are given by:

PnðνÞ ¼
an
an−1

; QnðνÞ ¼
an
anþ1

;

PnðνÞ ¼−
γn

βnþanPnþ1ðνÞ
; QnðνÞ ¼−

αn
βnþanQn−1ðνÞ

:

ð48Þ

When the renormalization parameter is chosen correctly,
the series solution converges between 1 < x < ∞.

3. Solution satisfying boundary condition at infinity (f + )

Solutions satisfying the boundary condition at infinity
can be constructed from Whittaker functions or equiva-
lently the confluent hypergeometric functions following the
lines of Leaver’s U-series solutions [69]

H¼ e4iω̄x

NU

X∞
n¼0

anΓð1þn− 4iω̄ÞUð1þn− 4iω̄;1;−4iω̄xÞ;

ð49Þ

with a0 ¼ 1 and the normalization constant

NU ¼ 2Mð−4iω̄Þ−1þ4iω̄Γð1 − 4iω̄Þ: ð50Þ

The coefficients an also satisfy a three-term recurrence
relation as in Eq. (19), which match with the recurrence
relations of Leaver’s Jaffé series [69,70]

αn ¼ 1 − 4iω̄þ ð2 − 4iω̄Þnþ n2;

βn ¼ 32ω̄2 þ 8iω̄ − 1 − lðlþ 1Þ þ ð16iω̄ − 2Þn − 2n2;

γn ¼ −16ω̄2 − 8iω̄nþ n2: ð51Þ

This solution is uniformly convergent as x → ∞ and
diverges as x → 1 when ω̄ is not an eigenfrequency. It is
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absolutely convergent on any interval bounded away from
x ¼ 1 [69].

4. Solution satisfying both boundary conditions

To construct solutions which satisfy both boundary
conditions simultaneously, we have to solve the central
two-point connection problem for the CHE which connects
local solutions with the desired behavior at the two
endpoints of an interval. This problem, in its most general
form requires the construction of a connection matrix
binding these local solutions and at present remains
unsolved for the Heun class of differential equations.
Hence, we only look at eigenvalues at which both boundary
conditions are satisfied.
A detailed description of the method is provided in

[59,64], so only the approach is outlined here,
(I) The local solutions at the horizon are to be con-

nected with those at spatial infinity. Hence we shift
the singularities at 0 and 1 to −1 and 0 respectively,

x ↦ z ¼ x − 1; HðxÞ → SðzÞ: ð52Þ

(II) The next step is to perform an s-homotopic trans-
formation which makes the solution around z ¼ 0
bounded for arbitrary values of the eigenvalue ω
while the asymptotic behavior at infinity is given by
a linear combination of the two Thomé solutions in
Eq. (36),

SðzÞ ¼ e4iω̄zðzþ 1Þ−1þ4iω̄TðzÞ: ð53Þ

(III) Finally, a Möbius transformation brings the irregular
singularity to y ¼ 1 while the position of the
singularity at the origin remains unchanged,

z ↦ y ¼ z
zþ 1

; TðzÞ → UðyÞ: ð54Þ

After these two transformations, which are together
referred to as the Jaffé transformation, we obtain the
following ODE:

yðy−1Þ2U00 þ ð1−4iω̄þð16iω̄−4Þyþð3−8iω̄Þy2ÞU0

þ ð8iω̄þ32ω̄2−1− lðlþ1Þþð1−8iω̄−16ω̄2ÞyÞU¼ 0:

ð55Þ

Now the eigenvalue problem is to be solved between [0,1]
in y and there are no other singularities in that interval. A
Jaffé expansion, which is a power-series expansion of the
form

UðyÞ ¼
X∞
n¼0

anyn; ð56Þ

is always convergent in the unit circle about y ¼ 0. In the
original coordinates, this results in a solution which is
convergent in 1=2 < x < ∞

H ¼ 1

2Me4iω̄
e4iω̄xx−1þ4iω̄

X∞
n¼0

an

�
x − 1

x

�
n
; ð57Þ

where the coefficients an follow a three term recurrence
relation as in Eq. (19) with coefficients matching those of
Leaver’s Jaffe series as in Eqn. (51). This solution coincides
with the desired Frobenius solution at x ¼ 1 in the region of
overlap and can therefore be used to construct a represen-
tation of the confluent Heun function which is convergent
in 0 < x < ∞.
The boundary conditions at spatial infinity are only

satisfied when
P

an is finite, that is the series is absolutely
convergent. This only holds true for specific values of the
complex frequency which can be found out by solving the
continued fraction equation for ω

0 ¼ β0 −
α0γ1

β1 −
α1γ2
β2−…

ð58Þ

Using the recurrence relations from Eq. (51), this equation
is identical to that of Leaver [70] and hence results in the
same frequencies. An alternative method to obtain QNM
frequencies using the CHE is provided in [71].

C. The exact Green’s function

The differential operator in question is a non-self-adjoint,
non-Hermitian operator whose Green’s function satisfies
the following differential equation, now reverting to our
“physical” coordinates ðT; r; θ;ϕÞ

d
dr

�
wðω; rÞ dĜðω; r; r

0Þ
dr

�
þ Vðω; rÞĜðω; r; r0Þ

¼ pðω; rÞδðr − r0Þ; ð59Þ

where

p ¼ e2iωhr2ðr − 2MÞ−4iωM;
w ¼ e2iωhrðr − 2MÞ1−4iωM;
V ¼ e2iωhðr − 2MÞ−4iωMðrω2ðrþ 2MÞ

þ ωh0ð4Mrω − rωh0ðr − 2MÞ þ 2iðr −MÞÞ
− 2iωM − lðlþ 1Þ þ iωrðr − 2MÞh00Þ: ð60Þ

The explicit form of the Green’s function can be written
down from the two linearly independent solutions f−, fþ of
Eq. (11) satisfying one of the boundary conditions each,
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Ĝðω; r; r0Þ ¼ 1

AðωÞ
�
pðω; r0Þf−ðω; rÞfþðω; r0Þ; r ≤ r0;

pðω; r0Þf−ðω; r0Þfþðω; rÞ; r0 < r:

ð61Þ

Here AðωÞ is the standard weighted Wronskian of the two
solutions

AðωÞ ¼ wðrÞðf−f0þ − f0−fþÞ: ð62Þ

The Green’s function has poles in the lower half of the ω-
plane and a branch cut along the negative imaginary ω-axis,
as shown in Fig. 1. At the poles the f− and fþ solutions
becomes proportional to the other and the weighted
Wronskian vanishes. The frequencies at which this happens
are the QNM frequencies computed from the continuous
fraction equation, Eq. (58). The contribution from the
branch cut gives a measure of the backscattering, which
at late times generates a power law decay. The two
solutions f− and fþ are

f− ¼ 1

2Me4iω̄
eiωðr−hÞ

�
r
2M

�
−1þ4iω̄ X∞

n¼0

an

�
r − 2M

r

�
n
;

ð63Þ

fþ ¼ eiωðr−hÞ

2Mð−4iω̄Þ−1þ4iω̄Γð1 − 4iω̄Þ

×
X∞
n¼0

anΓð1þ n − 4iω̄ÞUð1þ n − 4iω̄; 1;−2iωrÞ:

ð64Þ

Note here that the presence of the arbitrary height-function
allows us to take care, within our analysis, of any spheri-
cally symmetric foliation compatible with the timelike
killing vector of the background.

D. Quasinormal mode excitation factors

It is well known that in some region of spacetime, the
solution to the wave equation may be represented as a linear
combination of spatially truncated QNMs [72]. This can be
seen when we construct the part of the Green’s function
which encodes the contribution from the poles. In doing so,
as elsewhere, the poles are assumed to be simple, that is,
near the QNM frequency ωl;n the weighted Wronskian has
the form

Aðωl;nÞ ≈ ðω − ωl;nÞA0ðωl;nÞ: ð65Þ

Using Eq. (10), the QNM part of the time domain Green’s
function is given by

GQðT;r; r0Þ ¼ 1

2π

X
l;n

I
ωl;n

pf−fþ
ðω−ωl;nÞA0ðωÞe

−iωTdω; ð66Þ

where dependence on r and r0 has been suppressed for
brevity.
Using the fact that the QNM frequencies are located

symmetrically about the negative imaginary ω-axis, this
integral can now be easily solved by using Cauchy’s
residual theorem, giving

GQðT;r; r0Þ ¼
X∞
l¼0

X∞
n¼0

2ie−iωl;nT

A0ðωl;nÞ

×

�
pðω; r0Þf−ðωl;n; rÞfþðωl;n; r0Þ; r≤ r0;

pðω; r0Þf−ðωl;n; r0Þfþðωl;n; rÞ; r0 ≤ r:

ð67Þ

This is the key formula in this section and can be used to
calculate the QNM contribution to the scalar field signal for
any observer outside the event horizon. This equation can
be further simplified for an asymptotic observer, r → ∞ by
assuming that the initial data has no support outside the
observer, that is for r > r0,

GQðT; r; r0Þ ¼
X∞
l;n

2i
A0ðωl;nÞ

pðω; r0Þf−ðωl;n; r0Þ

×
1

r

�
r
2M

�
4iωl;nM

e−iωl;nðT−rþhðrÞÞ: ð68Þ

The quantities Bl;n ¼ 2i=A0
l;n are called the quasinormal

mode excitation factors (QNEFs). A list of some of them
can be found in Table I. One point to note while calculating
A0
l;n is that as a control for its accuracy we check the

Cauchy-Riemann conditions with respect to ω at the poles,
and keep the digits up-to which they are satisfied.
Returning to the general case, the QNM response to

some given initial data can now be evaluated as

Kl;mðT; rÞ ¼
X
n

Cl;m;ne−iωl;nT ; ð69Þ

where the QNM excitation amplitude Cl;m;n is given by

Cl;m;n ¼ Bl;n

Z
pðr0Þf−ðrÞfþðr0Þ∂TKl;mðT; r0ÞjT¼0dr

0

− iωl;nBl;n

Z
pðr0Þf−ðrÞfþðr0ÞKl;mð0; r0Þdr0:

ð70Þ

Here we have suppressed the fact that all functions are
evaluated at the QNM frequencies ωl;n. As has been
mentioned before, the limits of this integration are func-
tions of time and therefore Cl;m;n are referred to as
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“dynamic” excitation amplitudes [45]. It is only meaningful
to represent solutions of the wave equation as a linear
combination of QNMs in the region which lies in the future
light cone of the entire initial data, which is also where
these excitation amplitudes become time-independent [72].

E. Tail rates

We now proceed to calculate the part of the Green’s
function which encodes the contribution of the branch cut
to the signal, the general expression for which can be
written down as [43,45]

GBðT; r; r0Þ ¼ 1

2π

Z
−i∞

0

�
fþðωe2πi; rÞ
Aðωe2πiÞ −

fþðω; rÞ
AðωÞ

�
× f−ðω; r0Þpðω; r0Þe−iωTdω: ð71Þ

This expression, although not particularly helpful in
revealing interesting features of the backscattering, can
be evaluated numerically to obtain an exact result valid for
all observers. A more simplified expression can be obtained
if the position of the observer is assumed to be far away
from the horizon. We take the second set of approximate
solutions for f− constructed from Eqs. (31)–(32), obtaining

f− ≈ C1ZM2iωM;1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ2−48ω2M2

p ð−2iωrÞ;
fþ ≈ C2ZW2iωM;1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ2−48ω2M2

p ð−2iωrÞ; ð72Þ

where

Z ¼
ffiffiffiffiffiffiffi
2M
r

r �
r
2M

− 1

�
− 1

2
þ2iωM

e−iωhðrÞ: ð73Þ

The constants C1 and C2 can be evaluated from the specific
choice of normalization in the boundary conditions but we
do not evaluate them here since they are absent from the
final expression for the Green’s function.
The confluent hypergeometric function of Tricomi or

alternatively, the Whittaker-W function, has a branch cut
along the negative imaginary ω-axis. The fþ solution is
responsible for the branch cut in the Green’s function. The
properties of the asymptotic solutions across the branch cut
make them convenient to use. We will use the general result
obtained from Eq. (13.14.12) of [63]

Wa;bðxe2πiÞ ¼
2πi

Γð1þ 2bÞΓð1
2
− b − aÞMa;bðxÞ

− e−2πbiWa;bðxÞ; ð74Þ

TABLE I. Excitation factors for the Schwarzschild black hole with M ¼ 1. The columns from left to right are: mode number l,
overtone number n, QNM frequency ωl;n computed from the continuous fraction equation, derivative of the weighted Wronskian A0

evaluated at the QNM frequencies and the QNM excitation factor Bl;n.

l n ωl;n A0ðωl;nÞ Bl;n

0 0 0.11045493908041968588 − 0.10489571708688095878i 1.32962þ 3.01240i 0.55567þ 0.24526i
1 0.08611691833639926 − 0.34805244680646047i 4.37158þ 0.92283i 0.09246þ 0.43798i
2 0.07574193553517584 − 0.6010785900358036i 4.1171þ 0.1769i 0.0208þ 0.4849i
3 0.0704101384174665 − 0.853677318105532i 3.0109 − 0.02768i −0.0061þ 0.66420i
4 0.0670743042285181 − 1.1056318799366185i 1.97387 − 0.06594i −0.0338þ 1.01211i

1 0 0.29293613326728270862 − 0.097659988913578222156i −4.2778þ 3.3416i 0.2268 − 0.2904i
1 0.26444865060483253963 − 0.30625739155904712323i 1.4742þ 2.4857i 0.5952þ 0.3530i
2 0.22953933493130167185 − 0.54013342501910721347i 2.4729þ 0.70097i 0.2122þ 0.74862i
3 0.2032583861834636453 − 0.7882978227811980306i 2.1992 − 0.08555i −0.0353þ 0.90805i
4 0.185109020345202 − 1.040762112817569i 1.6283 − 0.2783i −0.2040þ 1.1934i

2 0 0.48364387221071298673 − 0.096758775978287862659i −5.9991 − 3.6075i −0.1472 − 0.2448i
1 0.46385057901976556322 − 0.29560393698796252621i −1.2614þ 1.7966i 0.7456 − 0.5235i
2 0.43054405437657576811 − 0.50855840215427448747i 0.62862þ 1.1773i 1.32192þ 0.7058i
3 0.39386306288868911970 − 0.73809658478099752579i 0.96947þ 0.3802i 0.70120þ 1.7880i
4 0.36129919188736593055 − 0.97992151947121679169i 0.83335 − 0.02526i −0.07268þ 2.39775i

3 0 0.67536623253662053532 − 0.09649962773400958388i 1.2979 − 8.1785i −0.2385þ 0.0379i
1 0.66067149795596247482 − 0.29228478513841188658i −1.8081 − 0.3815i −0.2234 − 1.0590i
2 0.63362580769432366407 − 0.49600823040312675197i −0.41392þ 0.70464i 2.11018 − 1.23956i
3 0.59877325279995979383 − 0.71122120737134861358i 0.2123þ 0.46522i 3.5580þ 1.62370i
4 0.56162728989869021279 − 0.93859282364463198356i 0.33704þ 0.16698i 2.36050þ 4.76455i

4 0 0.86741564173787901722 − 0.09639169234802256387i 9.137 − 2.15913i −0.049þ 0.20731i
1 0.85580803512377558870 − 0.29087602253327418949i −0.31151 − 1.59767i −1.20598 − 0.23514i
2 0.83369213256148927756 − 0.49032489461814627949i −0.561361 − 0.030657i −0.193991 − 3.552176i
3 0.80328811286099866551 − 0.69748155123442989656i −0.1409823þ 0.245928i 6.1209168 − 3.508917i
4 0.76773262396440926056 − 0.91401943246331559159i 0.063191þ 0.167472i 10.453941þ 3.944510i
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to obtain a relation between fþðωe2πiÞ, fþðωÞ and f−ðωÞ

fþðωe2πi; rÞ ≈ ξðωÞfþðω; rÞ þ
C2

C1

χðωÞf−ðω; rÞ; ð75Þ

where

ξðωÞ ¼ −e−πi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þ2−48ω2M2

p
;

χðωÞ ¼ 2πi

Γð1
2
− 2iωM − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ2 − 48ω2M2

p
Þ

×
1

Γð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ2 − 48ω2M2

p
þ 1Þ : ð76Þ

Using Eq. (75) and noting that the f− solution does not
have a branch cut along the negative imaginary-ω axis, we
can show that Aðωe2πiÞ ¼ ξðωÞAðωÞ. This can be used to
further simplify the approximate Green’s function

GBðT; r; r0Þ ≈ 1

2π

Z
−i∞

0

f−ðω; rÞf−ðω; r0Þ

×
BðωÞ
AðωÞpðω; r

0Þe−iωTdω: ð77Þ

The standard weighted Wronskian of the f− and fþ
solutions AðωÞ and BðωÞ are

AðωÞ ¼ −23−4iωMiωC1C2WM;WðωÞM2−4iωM;

BðωÞ ¼ C2

C1

χðωÞ
ξðωÞ ; ð78Þ

where the Wronskian between Ma;b and Wa;b, denoted by
WM;W with respect to the variable−2iωr can bewritten as a
ratio of two gamma functions [63]

WM;WðωÞ ¼ −
Γð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ2 − 48ω2M2

p
þ 1Þ

Γð1
2
− 2iωM þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ2 − 48ω2M2

p
Þ :

ð79Þ

1. General and mid frequency

To calculate the effect of backscattering at arbitrary times
for an asymptotic observer, we can write down a general
expression for the branch cut contribution to the Green’s
function

GBðT;r;r0Þ≈−
Z

−i∞

0

e−iðωTþωΞ−πζÞΓð1=2þζ=2−σÞ
2ωΓð1=2−ζ=2−σÞΓðζþ1Þ2

×

�
r
r0

�
−1þσ

Mσ;1
2
ζð−σr=MÞMσ;1

2
ζð−σr0=MÞdω;

ð80Þ

where ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þ2 − 48ω2M2

p
, σ ¼ 2iωM and

Ξðr; r0Þ ¼ hðrÞ − hðr0Þ. This expression may be used as
a sanity check for the low and high frequency approx-
imations to the tail signal.

2. Low frequency

The late time behavior of the tail is attributed to the low
frequency asymptotics of the approximate Green’s func-
tion. Hence, in addition to the approximation for asymp-
totic observers, we assume jωMj ≪ 1. This leads to a
simplification of the f− solution and ξ in Eqs. (72) and (76)
respectively

f− ≈
2MC1

r
eiωΔðrÞM0;lþ1

2
ð−2iωrÞ; ξ ¼ 1; ð81Þ

where ΔðrÞ ¼ 2M logðrÞ − hðrÞ. The ratio of two Gamma
functions show up in the expression for the Green’s
function. This can be simplified in the low frequency
regime yielding

Γðlþ 1 − 2iωMÞ
Γð−l − 2iωMÞ ≈ 2ð−1Þ−lþ3

2l!Γðlþ 1ÞωM: ð82Þ

Using these results, we can write down two equivalent
expressions, either as an integral of two Whittaker func-
tions with an exponential

GBðT; r; r0Þ ≈ −
ð−1Þ−l2−4l−2πiMr0

Γðlþ 3
2
Þ2r

Z
−i∞

0

M0;lþ1
2
ð−2iωrÞ

×M0;lþ1
2
ð−2iωr0Þ

× e−iωðT−2hðr0Þ−ΔðrÞ−Δðr0Þþκðr0ÞÞdω; ð83Þ

or alternatively, as an integration of two Bessel functions
with an exponential

GBðT; r; r0Þ ≈ 2iπMr03=2ffiffiffi
r

p
Z

−i∞

0

ωJlþ1=2ðωrÞJlþ1=2ðωr0Þ

× e−iωðT−2hðr0Þ−ΔðrÞ−Δðr0Þþκðr0ÞÞdω; ð84Þ

with κðr0Þ ¼ 4M logðr0Þ. Both of these integrals are in
their standard forms and can be evaluated following
Eqs. (7.622.3) and (6.626.1) of [73], so that
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GBðT; r; r0Þ≈−
4ð−1Þl ffiffiffi

π
p

Mrlr0lþ2Γðlþ 2Þ
Γðlþ 3

2
Þ

1

ðT − r⋆ − r0⋆ þ κðr0Þ þΞðr; r0ÞÞ2lþ3

×FΛ

�
2lþ 3; lþ 1; lþ 1;2lþ 2;2lþ 2;−

2r
T − r⋆ − r0⋆ þ κðr0Þ þΞðr; r0Þ ;−

2r0

T − r⋆ − r0⋆ þ κðr0Þ þΞðr; r0Þ
�
;

ð85Þ

GBðT; r; r0Þ ≈ −
X∞
k¼0

ð−1Þl4−l−kπMr0lþ2rlþ2kΓð2lþ 2kþ 3Þ2F1ð−l − k − 1
2
;−k; lþ 3

2
; r

02
r2Þ

k!Γðlþ 3
2
ÞΓðlþ kþ 3

2
ÞðT − 2hðr0Þ − ΔðrÞ − Δðr0Þ þ κðr0ÞÞ2lþ2kþ3

; ð86Þ

where r⋆ ¼ rþ 2M logðrÞ, FΛ is the hypergeometric
function of two variables and, as before, 2F1 is the Gauss
hypergeometric function. These equations can further be
simplified by using series representations for hypergeo-
metric functions, whose arguments are suppressed here for
brevity,

2F1 ¼
X∞
s¼0

ð−l − k − 1=2Þsð−kÞs
ðlþ 3=2Þss!

�
r0

r

�
2s
; ð87Þ

FΛ ¼
X∞
s¼0

X∞
k¼0

ð2lþ 3Þsþkðlþ 1Þsðlþ 1Þk
ð2lþ 2Þsð2lþ 2Þks!k!

×

�
−2r

T − r⋆ − r0⋆ þ κ þ Ξ

�
s
�

−2r0

T − r⋆ − r0⋆ þ κ þ Ξ

�
k
;

ð88Þ

where Eq. (87) is valid when jr0=rj < 1 and Eq. (88) is
valid when,���� −2r

T − r⋆ − r0⋆ þ κ þ Ξ

����þ
���� −2r0

T − r⋆ − r0⋆ þ κ þ Ξ

���� < 1:

We note that the condition for validity of Eq. (85) is T −
r⋆ − r0⋆ þ Ξðr; r0Þ þ κðr0Þ > 0 and for Eq. (86) it is
T − r⋆ − r0⋆ þ Ξðr; r0Þ þ κðr0Þ > 1. This must be kept in
mind while convolving GB with the initial data. Also, when
considering very late times, powers of ðT−r⋆−r0⋆þ
κðr0ÞþΞðr;r0ÞÞ−1 and ðT−2hðr0Þ−ΔðrÞ−Δðr0Þþκðr0ÞÞ−1
can be expanded in an inverse power series of T about
T ¼ ∞. The slowest decaying mode immediately gives
Price’s power law GB ∼ T−2l−3 [74].

3. High frequency

An approximation for the contribution of the tail at very
early times can be computed by considering a high
frequency approximation to GB. The computations for
the high frequency Green’s function become simple when
choosing the other pair of asymptotic solutions, which
follows from Eq. (29), so that

f− ≈ C1

�
r
2M

�
−1þ2iωM

e−iωhðrÞM2iωM;1
2
ð−2iωrÞ;

fþ ≈ C2

�
r
2M

�
−1þ2iωM

e−iωhðrÞW2iωM;1
2
ð−2iωrÞ: ð89Þ

These expressions lead to simplified forms for the
Wronskian WM;W , χ and ξ,

WM;W ¼−
1

Γð1− 2iωMÞ ; χ ¼ 2πi
Γð−2iωMÞ ; ξ¼ 1:

ð90Þ

Using these expressions, we can also evaluate the ratio of
BðωÞ and AðωÞ at very high frequencies

BðωÞ
AðωÞ ¼ −

2−1þ4iωMiπM−1þ4iωM

C2
1

; ð91Þ

and also perform a high frequency expansion for f− as
r → ∞

f− ≈ −
ð−1Þ3=4C1

ffiffiffiffi
ω

p
2−2iMωM− 1

2
−4iωMffiffiffi

π
p

× r−2þ4iωMð2ωM2 − irÞeiωðrþ2M−hðrÞÞ: ð92Þ

Using Eqs. (89)–(92) in Eq. (77), we obtain the final
expression for the time domain Green’s function which
must now be convolved with the initial data

GBðT; r; r0Þ ≈ −
r0

4πrM2ϒðT; r; r0Þ2 −
r0

πr2ϒðT; r; r0Þ3

−
1

πrϒðT; r; r0Þ3 −
6M2

πr2ϒðT; r; r0Þ4 ; ð93Þ

where,

ϒðT; r; r0Þ ¼ T þ Ξðr; r0Þ − r − r0 − 4M log r

þ 4M logM − 4M: ð94Þ
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This expression for the Green’s function is valid only when
ϒðt; r; r0Þ > 0. Note that the expression in Eq. (93) is subtle
to use in practice because of the interaction between the
validity of the approximation and the domain of integration,
and is hence avoided in comparing with the numerics later
in the paper.

F. Contribution from the high-frequency arc

We now construct the part of the Green’s function which
comes from the high-frequency arc, that is when jωj → ∞.
This gives the part of the signal coming from direct
transmission and in the asymptotic region should reduce
to the propagator in flat space.
To derive this result, we write down the Green’s function

which is constructed from the Whittaker solutions in
Eq. (89),

GHF ≈
Z
C

W2iωM;1
2
ð−2iωrÞM2iωM;1

2
ð−2iωr0Þ

4πiω

× Γð1 − 2iωMÞ
�
r0

r

�
1−2iωM

e−iωðTþΞÞdω; ð95Þ

for r0 < r. The other case can be derived in a straightfor-
ward manner. Here C is the contour over which the
integration is performed. In the asymptotic limit r → ∞,
the Whittaker functions can be further simplified as

M2iωM;1
2
≈
2−2iωMð−iωÞ−2iωMe−iωr0r0−2iωM

Γð1 − 2iωMÞ

−
22iωMðiωÞ2iωMeiωr0r02iωM

Γð1þ 2iωMÞ ;

W2iωM;1
2
≈ 22iωMð−iωÞ2iωMeiωrr2iωM: ð96Þ

In the high-frequency limit, Stirling’s formula can be
employed for the Gamma function [63],

Γðaωþ bÞ ≈
ffiffiffiffiffiffi
2π

p
e−aωðaωÞaωþb−1=2; j argðωÞj < π:

ð97Þ
which is valid for a > 0 and b ∈ C. The high-frequency
asymptotic Green’s function can be written as

GHðT;r;r0Þ≈ r0

4πir

Z
C

e−iωðTþΞ−rþr0−4M logrþ4M logr0Þ

ω
dω

þ r0

4πr

Z
C

e−iωðTþΞ−r−r0−4M logr−4Mþ4M logMÞ

ω
dω:

ð98Þ
The choice of contour C is motivated by the discussion in
[45]. As we have assumed r to be very large, we see that
only the first term contributes when r − r0 − 4M log r ≤
T þ Ξ ≤ rþ r0 þ 4M log r0. Taking a contour C in the
upper half of the ω plane, the leading order term in the

Green’s function can be written down in terms of the
Heaviside function

GHðT;r;r0Þ≈−
r0

2r
HðTþΞ−rþr0−4M logrþ4M logr0Þ:

ð99Þ

For the case of Kerr-Schild coordinates, when convolving
with the initial data, the lower limit of the integration r0l is
obtained by solving for r0 in

r0 þ 4M log r0 ≈ rþ 4M log r − t: ð100Þ

The scalar field response from the initial data as seen by an
observer at fixed r can then be calculated as

Kl;mðt; rÞ ¼ −
Z

rþt

r0l

r0

2r
∂tKl;mð0; r0Þdr0 −

r0l
2r

Kl;mð0; r0lÞ:

ð101Þ

III. NUMERICAL RESULTS

In the second part of the paper, we numerically evolve a
massless scalar field and compare with the results obtained
from the first part of the paper. After a brief overview of our
pseudospectral NR code BAMPS and the SCALARFIELD

project in Secs. III A and III B, we record the main results
of our paper in two separate sections for the QNM and tails.

A. Numerical setup

The BAMPS code [33–38] is a massively parallel multi-
patch pseudospectral code for numerical relativity. The
code is written in C with specific algebra-heavy compo-
nents generated by Mathematica scripts. In the present
work we use this tool to solve the wave equation in a fixed
Schwarzschild background. Since BAMPS is primarily
designed to treat first order symmetric hyperbolic systems
we therefore start by reducing to first order as

∂tΦ ¼ αΠþ βiχi;

∂tχi ¼ DiðαΠÞ þ αγci þ Lβχi;

∂tΠ ¼ DiðαχiÞ þ αKΠþ γβici þ LβΠ; ð102Þ

subject to the spatial reduction constraint

ci ≡ ∂iΦ − χi ¼ 0: ð103Þ

The purpose of the parameter γ ≥ 0 is to damp inevitable
violations of this constraint. The SCALARFIELD project is
coupled to our metric evolution scheme and has been tested
on each of our domains, but in the present context, as we
excise the black hole region, we work exclusively with
nested cubed-shell grids. In this section we employ the
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standard 3þ 1 notation [75,76] for the future pointing unit
normal vector, lapse, shift, spatial covariant derivative, and
extrinsic curvature. The values for these quantities can be
read off from the background metric. The independent
nontrivial values are

α ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2M=r

p ; βr ¼ 2M=r
1þ 2M=r

;

γrr ¼ 1þ 2M=r; γθθ ¼ r2;

Krr ¼
−2MðM þ rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r5ð2M þ rÞ

p ; Kθθ ¼ 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r

2M þ r

r
; ð104Þ

in spherical polars. In the code these are transformed to our
global Cartesian basis in the obvious manner. When
evolving the system coupled to GR, we use first order
reduction variables in place of taking derivatives of metric
components so that the SCALARFIELD and gravitational field
equations remain minimally coupled from the PDEs point
of view. The characteristic variables for the system are

u� ¼�siχiþΠþ γΦ; uβi ¼ ðδji − sjsiÞχj; u0 ¼Φ;

ð105Þ

with geometric speeds −βisi ∓ α, −βisi and 0 respectively,
where si denotes an arbitrary unit spatial vector. The
computational domain is divided into subpatches, each
of which is discretized in space using a Gauss-Lobatto grid
with a Chebyshev basis. Thus spatial derivatives are
ultimately approximated with matrix multiplication. The
equations of motion (102) are then integrated in time using
a standard fourth order Runge-Kutta method. Data is
communicated into a given patch from its neighbors by
weakly imposing equality of incoming characteristic fields
using a penalty method. At the outer boundary we impose

r−2Lμ∂μðr2ðuþ − γΦÞÞ ¼ 0;

ðδji − sjsiÞsk∂ ½jck� ¼ 0; ð106Þ

with si here the spatial outward pointing unit normal to the
domain, and Lμ ¼ nμ þ sμ is an outward pointing null-
vector. These conditions are constraint preserving and
control incoming radiation. It should be noted, however,
that we typically ensure that the outer boundary is causally
disconnected from the region of spacetime we study, so that
at the continuum level we are effectively considering the
IVP rather than the IBVP. Presently we work entirely in
spherical symmetry, so we use the cartoon method [77,78]
to reduce the number of spatial dimensions to one. Apart
from the fact that this allows us to rapidly produce many
data sets on a large desktop machine, enforcing explicit
spherical symmetry ensures that only the l ¼ 0 mode is
excited as our study primarily involves the effect of
overtones on the signal. Our code is MPI parallel; large

jobs are run on a multi-core workstation. The results of
these simulations are compared with our standalone
Green’s function code written in PYTHON. More details
of BAMPS can be found in [34].

B. Initial data

For the purposes of this paper, we consider only initial
data which is spherically symmetric. This is not a restric-
tion in itself, since the analysis followed can be extended to
nonspherical initial data in a straightforward manner. For
initial data, we provide the value of the scalar field Φ at
t ¼ 0 and

Π ¼ α−1ð∂tΦ − βr∂rΦÞ; ð107Þ

also at t ¼ 0. Here α and βi are the lapse and shift
respectively. The four different types of initial data used
in our runs are listed below;

Gaussian profile I (type A). This is the simplest type of
initial data with the following profile

Φ ¼ Ae−ðr−r0Þ2=σ2 ; Π ¼ 0: ð108Þ

Here A is the amplitude of the scalar field, r0 is the
position of the peak of the Gaussian and σ=

ffiffiffi
2

p
is the

standard deviation.
Gaussian profile II (type B). The second type of initial
data is the purely ingoing Gaussian pulse in the
Minkowski spacetime

Φ ¼ A
r
e−ðr−r0Þ2=σ2 ;

Π ¼ −
2A
rσ2

ðr − r0Þe−ðr−r0Þ2=σ2 : ð109Þ

Here A=r is the amplitude of the scalar field, r0 is the
position of the peak of the Gaussian and σ=

ffiffiffi
2

p
is the

standard deviation. On a Schwarzschild background,
this data is “mostly ingoing.”

Sine Gaussian profile (type C). The scalar field profile is
given by

Φ ¼ A
r
e−ðr−r0Þ2=σ2 sinðωrþ ϕ0Þ; Π ¼ 0: ð110Þ

Here, A=r is the amplitude of the scalar field and r0 is
the peak of the scalar field while ω and ϕ0 are the
frequency and phase of the oscillating frequency.

Pure QNM initial data profile. We would also like to
evolve pure QNM data of the form
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Φ ¼ Ae−iωrHC

�
Θ; 1 −

r
2M

�
;

Π ¼ ðβr − 1Þ
α

iωAe−iωrHC

�
Θ; 1 −

r
2M

�

− Ae−iωr
βr

α

d
dr

HC

�
Θ; 1 −

r
2M

�
; ð111Þ

with Θ ¼ f4iω̄;−4iω̄; 0;−8ω̄2; 8ω̄2g being the
parameters of the CHE, the construction of which
is detailed in Sec. II B. The field profile of this type of
data is bounded at the horizon but not at spatial
infinity. To ensure that the field remains smooth
during numerical evolution, data at the outer boundary
is initially kept to be zero, at least to machine precision
by multiplying both Φ and Π with a smooth cutoff
function. More details are provided in Sec. III D.

C. Tests on tails

We first test the expressions for late time tails using a set
of 7 high-resolution simulations with Gaussian I, II, and
sine-Gaussian type initial data. For each simulation, the
scalar field information is extracted for 10 different
observers outside the event horizon whose positions are
approximately at r ≃ 2, 10, 20, 30, 40, 50, 100, 200, 300,
400, and 500M. As mentioned earlier, care must be taken to
place the outer boundary at a sufficiently large radius
compared to the position of the observer and the initial
“pulse” to ensure that boundary effects do not contaminate
the time-series in the region of interest. This problem could
be completely avoided by evolving the scalar field in
hyperboloidal coordinates. In the following analysis, what
we call the “tail signal” starts when the QNM ringing
ceases to dominate the signal, and for operational purposes,
this starts from the last extremum of the time-series
onwards. This signal is then compared with our standalone
Green’s function code which computes the low frequency
contribution of the branch cut using Eq. (86), but with a
truncated sum. To quantify the disagreement between the
numerical data and the Green’s function result, we define a
measure of error

E1ðt; roÞ ¼
����Φb −Φ�

Φb

���� × 100; ð112Þ

which is the percentage error at time t as seen by an
observer at ro. HereΦb is the numerical signal which has N
points while Φ� is Φgf or Φf, the signal computed either
from the approximate Green’s function or derived from
fitting a model respectively.
One of our aims in this section is to construct a model for

the tail signal as a superposition of power laws. To find out
the number of terms needed to faithfully represent the
numerical result, we generate the first 15 terms of the
approximate Green’s function as in Eq. (86) and compute

the maximum percentage error between Φb and Φgf while
cumulatively adding more terms in Φgf . Additionally, the
starting time for computing the mismatch is varied to
compute the maximum E1 across early, intermediate and
late time tails separately.
At very late times, we see that the maximum E1 does not

vary significantly with the addition of a few terms irre-
spective of where the observer is located and both can be
kept to less than 10%. This however becomes progressively
worse at earlier times and may be improved by adding more
terms in our approximation of the Green’s function as can
be seen in the top row, left of Fig. 2. For the simulations
considered, the intermediate tail onwards can be described
to an accuracy of< 10% error if at least the first 5 terms are
considered in Eq. (86). This is demonstrated in an example
simulation in the top row, right of Fig. 2 and is the rule of
thumb followed when building our model.
At very late times, we observe only the effects of the

m ¼ 0 term within Eq. (86) on the signal. This is reflected
in the local power index (LPI) λ of the time-series defined
as [79]

jΦj ¼ At−λ; λ ¼ −
∂ log jΦj
∂ log t : ð113Þ

A comparison between the LPI computed from Φb and Φgf

again shows that they are in good agreement for inter-
mediate times. Generally irrespective of the position of the
observer the maximum E1 between the numerical and
analytically computed λ can be kept smaller than 10%, and
the mismatch is only large at very early times, as can be
seen in bottom row, left of Fig. 2. For late times, λ
approaches 4 for Gaussian I and sine-Gaussian data and
3 for Gaussian II data, which is consistent with Price’s law
[74]. We must note here that the time derivative of the scalar
field is only approximately zero at large radii for Gaussian I
and sine-Gaussian data, so λ must eventually approach 3 if
the simulations are evolved for a much longer time.
We now proceed to fit a sum of tail laws to the data with

constant coefficients

jΦj ¼
Xq
k¼0

Akt−ð3þkÞ: ð114Þ

While this model is a simplification over the time depend-
ence in Eq. (86), it should work well for late times. A
nonlinear least squares fit is performed using the
Levenberg-Marquardt algorithm as implemented in the
PYTHON package LMFIT [80] at different starting times to
obtain the coefficients Ak. Nonlinear fitting algorithms are
sensitive to initial conditions and can perform poorly if the
Ak’s are initialized with random values. To initialize the
first nonzero coefficient, we make use of the fact that at late
times, the slowest decay dominates the signal and is either
the t−3 term or the t−4 term depending on the initial data.
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While obtaining the first nonzero coefficient is straightfor-
ward, it is less clear how to obtain good guesses for the
others. Noting that the other tail components contribute
significantly at earlier times, we initialize all coefficients
with values of the first nonzero coefficient. This empirical
approach works remarkably well in practice.
For each time-series, the starting time is shifted over the

entire signal and the maximum percentage error is recorded
for each position. The maximum E1 with respect to
time between the fit and the numerical data displays a

monotonically decreasing behavior with starting time. The
earliest recorded start time at which the maximum E1 is less
than or equal to 10% is considered the optimal starting time
for the fit. The maximum number of terms q in Eq. (114) is
also allowed to vary from 1 to 11. More of the signal
can be modeled with increasing q until q is equal
to 5. The maximum E1 gets worse as q is increased further,
and hence the very early part of the signal is not well
represented as a linear combination of different power law
tails with constant coefficients. A representative fit with

FIG. 2. Top row, left: Comparison between the scalar field time-series extracted at r ≃ 500 (in dotted line) with those obtained from the
approximate Green’s function for a simulation with Gaussian I type initial data. The colors indicate the different number of terms
considered in the summation in Eq. (86). The inset figure shows that at late times, the slowest decaying t−4 term dominates. Top row,
right: Variation of the maximum E1 between Φb and Φgf at different starting times, mentioned in units of M for Gaussian II type data.
Bottom row, left: A comparison between the LPI for two simulations at different observer positions mentioned in the legend, in units of
M. The inset plots the maximum E1 for the corresponding LPI comparison. Bottom row, right: Results of the tail fits to two different
types of initial data when considering q ¼ 1, 2, 3, 4 and q ¼ 4 in Eq. (114) respectively. The inset plot shows the variation of the
maximum E1 with time for the different fits with the dotted line denoting 10%. The fits get progressively better as q increases. In both
plots, “A” corresponds to a simulation with Gaussian I data and “B” to Gaussian II type data.
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different number of terms in the tail model is shown at the
bottom row, right of Fig. 2.
Finally, we look at how well the asymptotic expressions

perform for nonasymptotic observers. To do this, we
compute the pointwise percentage error between Φb and
Φgf for several positions outside the event horizon and find
that the beginning of the tail signal always has a consid-
erable error (>10%) irrespective of the simulation and the
position of the observer. However, at intermediate times,
the percentage error falls beneath 10% and therefore we
propose that the asymptotic tail expressions may also be
used for observers very close to the event horizon at
intermediate and later times. Furthermore, we also look
at the maximum percentage error for signals at r ≃ 2M
across the 7 simulations and find that it cannot be kept to
under 10% if the entire tail signal is chosen for the analysis.
It is only from intermediate time onward that the error E1

can be kept under 10%. Figure 3 left shows the variation of
E1 between Φb and Φgf with time while Fig. 3 right shows
the maximum percentage error when the fit is performed
from the beginning of the tail signal and from intermediate
times, for different number of terms in the tail model.

D. Tests on QNMs

1. Results from exact solutions

Looking at the analytically continued solutions f− and
fþ, we see that at QNM frequencies, these solutions are
unbounded at spatial infinity. This fact makes it difficult to
evolve pure QNM type initial data in our numerical code

unless the outer boundary can be treated appropriately. One
suggestion is to have time dependent boundary conditions
at the outer boundary which can be analytically determined.
The alternative is to make the initial data near the outer
boundary of the order of machine precision or less by
employing a smooth cutoff function,

Cðr; a; r0Þ ¼
1

2
ð1 − tanhðaðr − r0ÞÞÞ: ð115Þ

This cutoff changes smoothly from 1 to 0 around r0, with C
being 0.5 at r0. The steepness of this change is controlled
by the value of a.
The second route is easier to implement and is the one

followed here. Our objective in these experiments is two-
fold. First we wish to obtain an arbitrarily long “ringing
time” for observers close to the event horizon and second to
have a ringdown at a specific QNM frequency. This data
can be used to obtain an arbitrarily long ringing time of a
single QNM, or a superposition of QNMs near the event
horizon. Since the ingoing light speed is exactly 1 in Kerr-
Schild coordinates, to obtain a ringing duration of
ΔtQNM ≃ 20M, the pure QNM solution and the initial data
must match up until at least r ≃ 22M. This is achieved in
our case by choosing r0 ¼ 25M and a ¼ 1 for the n ¼ 0
mode and r0 ¼ 25M and a ¼ 2 for the n ¼ 1 mode.
A good way to test the correctness of the SCALARFIELD

implementation is to perform a convergence test with the
initial data built from the exact solution in the region
unaffected by the cutoff function. The basic steps for
implementing such a test are given below,

FIG. 3. Left: Variation of the pointwise percentage error E1 between the numerical signal and the late time Green’s function result as a
function of time for scalar field extracted at radii r ≃ 2, 10, 20, 30, 40, 50, 100, and 200M for Gaussian I data. The inset plot shows the
values of E1 at the beginning of the tail for the same time-series. Right: Variation of the maximum E1 with respect to time for an observer
at r ≃ 2M with different number of terms in the Green’s function in Eq. (86) at two starting times for all 7 simulations. At intermediate
starting times, the maximum error can be kept to less than 10% if 5 or more terms are considered in the Green’s function. The legend
shows the three type A, three type B, and one type C simulation used in the analysis.
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(1) Generate and evolve the modified QNM data on a
Schwarzschild background at 5 different resolutions
or more. For our test, we choose subpatches with 9
to 19 points, increasing the number of points by 2
each time.

(2) Compute the pure QNM initial data at a much higher
resolution than the highest resolution used for the
numerical runs. This ensures that interpolation
errors, which can be problematic, do not dominate
in the test. We constructed the QNM data from r ∈
½1.8; 50� with 5 × 104 points or more.

(3) Interpolate the exact solution on each BAMPS sub-
patch and output at the same times as in our
numerical simulations. A comparison of the analyti-
cally evolved initial data and the numerical data for
the n ¼ 0 mode at three different times is shown in
the top row of Fig. 4.

(4) Compute the error E between the numerical result
Φb and the analytic results Φe for the first P
subpatches where the data is not affected by the
cutoff function

EðtÞ ¼
XP
i¼1

Z
i
ðΦeðt; rÞ −Φbðt; rÞÞ2dr: ð116Þ

Here the data on each grid is specified at the Gauss-
Lobatto points and the weights for the integration on
each grid with N points must be calculated from the
Chebshev Gauss-Lobatto numerical quadrature

wi ¼
( ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2i
p

ðπ=2NÞ; i ¼ 0; N;ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2i

p
ðπ=NÞ; elsewhere;

ð117Þ

FIG. 4. Top row, from left to right: A comparison between the pure QNM solution and the numerical data for the n ¼ 0 mode at three
different times. The left of the vertical red line denotes the region up to which the numerical data and the pure QNM data must agree.
Bottom row, from left to right: Convergence plot for Φ and Π respectively for data prepared from the n ¼ 1 mode with the error
computed from Eq. (116). The colors represent the different resolutions of the simulations.
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where xi for each grid are given by,

xi ¼ − cos

�
πi

N − 1

�
: ð118Þ

(5) Plot the error E as a function of time for each
resolution. For the test to be successful, E should
decrease with increasing resolution. A convergence
test for the n ¼ 1 mode is shown in the bottom row
of Fig. 4.

A comparison between the numerical and analytical
solutions at different times show excellent agreement in
the region unaffected by the cutoff. We use the matrix
pencil [81] and Prony methods [82] to fit damped expo-
nentials to the time series data on the horizon. Since the
signal is real, we fit two damped exponentials Aeiωtþiϕ0 for
each mode, ω being the complex QNM frequency. The
parameters of the fit provide very accurate numbers for the
QNM frequency, namely 0.11043074 − 0.10485913i (with
less than 0.01% error) for the n ¼ 0 mode and 0.0857 −
0.3472i (with less than 0.1% error) for the n ¼ 1 mode.

2. Results from generic data

We now test our expressions for the QNM part of the
Green’s function using nonspecialized initial data. For this,
we use the simulations in Sec. III C taking 6 observers
outside the black hole at r ≃ 2, 10, 20, 30, 40, 50,
and 100M.
The time-series at each of these points must be cropped

to include just the “ringing” part of the signal. To do this,
we restrict the signal to the interval between the first
extrema during ringing and the start of the “tail signal.”
During the data analysis, the starting time for the fit is
varied over the signal and the time at which the normalized
modulus square of the difference between the fit and the
numerical data is found to be minimized is chosen as the
optimum starting time for the fit.
The model for the fit is chosen to be a linear combination

of k damped exponentials

Φmp ¼
Xk
j¼0

AjeðαjþiωjÞtþiϕj ; ð119Þ

where the fit is performed for the parameters
fAj; αj;ωj;ϕjg using the matrix pencil method [81]. For
real signals, k is chosen to be an even number and the pencil
parameter is kept at one-third the number of points in the
time-series rounded off to an integer value. To ensure that
the frequencies extracted from the signal are reliable, we
check to ensure that the values of jωjj − ijαjj which must
occur in pairs, do not differ from each other by more than
10−4 in both the real and imaginary part. Since the
algorithm is designed for complex signals in general,
Φmp may have an imaginary component and this ensures

that it is kept small. A summary of the steps to implement
this algorithm is provided in [82].
For each time-series, we perform fits with the number of

damped exponentials in Eq. (119) varying from k ¼ 2 to 16
and record the fundamental mode frequency. If the above
conditions are met, we also record the first overtone. The
percentage error for the real and imaginary parts of the
extracted frequencies are then calculated for different
observers and for different values of k. The corresponding
contributions from the n ¼ 0, 1 modes are calculated from
the Green’s function and compared with the results of
the fit.
The Green’s function predicts that the contribution from

the overtones is significant during the beginning of the
signal, which is why fitting two damped exponentials
results in the largest percentage error in the value for the
principal QNM frequency. Despite a few exceptions when
the percentage error is small, as a general trend the
percentage error decreases as the number of exponentials
in the fitting model are increased. With only two expo-
nentials in the model, the best value for the n ¼ 0 mode is
obtained by an observer close to the horizon with the
percentage error under 10%. In general, with the addition of
6 or more terms in the model, the error for the fundamental
mode can be kept within 1% for both the real and imaginary
parts, irrespective of the observer chosen. We also com-
pared the n ¼ 0 mode generated by the fitting algorithm
and the Green’s function and found to be in good agree-
ment, with the error between the two amplitudes at the
beginning to be <10% for most cases.

3. Overtones with generic data

The investigation of overtone modes with generic initial
data is less successful. We choose the same set of
simulations and perform the data analysis using the same
methods as the previous section. It is challenging to reliably
extract the first overtone in all cases because some of the
extracted frequencies fail to satisfy the consistency test for a
pair of damped exponentials mentioned before. In this case,
a model with more damped exponentials will not neces-
sarily lead to a more accurate estimation of the first
overtone, but more than 4 damped exponentials are needed
for reliable extraction. The accuracy of the frequency
extracted is not highly dependent on the position of the
observer, although the frequency extracted is seen to be
more accurate for observers close to the horizon. As a
general rule, the imaginary part of the frequency is
extracted more accurately than the real part. Even then,
for generic initial data the percentage errors for both the real
and imaginary part of the frequency are too large for them
to be of real use. The best case we observe for our data set is
< 3% error in both the real and imaginary part of the first
overtone. The large error or the inability to detect the first
overtone can be attributed to the limitations of the fitting
algorithm, short duration of ringing and the presence of a
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significant contribution from the backscattering during
intermediate and late ringdown.
The shortcomings of the linear fitting method may be

improved by using a nonlinear algorithm with an improved
model incorporating the tail while the short ringing time
may be improved by using specialized initial data which
enhances the duration of ringing. All of this is discussed in
the rest of the paper. A representative fit for the funda-
mental mode and the first overtone is shown the top row,
left of Fig. 5 while on the top right we show the error
in estimating the n ¼ 0 QNM frequencies for various
positions of the observer and various number of terms
considered.

4. QNMs with specialized data

After limited success in extracting overtone modes with
generic initial data, we wish to prepare specialized data
which allows for more accurate measurement of the first
overtone. A naive observation here is that the data analysis
algorithm and subsequently the parameter estimation
works better with a larger number of ringdown cycles.
An elementary way to achieve this is by evolving a pure
overtone type initial data. The alternative approach, which
we describe here, is to approximate the ringing time from
the Green’s function. While it is not possible to infer the
parameters of the initial data by specifying a ringing

FIG. 5. Top row, left: A comparison between the numerical data and the Green’s function result for the n ¼ 0 and n ¼ 1mode for sine-
Gaussian initial data. Top row, right: The percentage error in extracting the real part of the n ¼ 0 QNM frequency from the fit when
different number of terms are considered in the fit model in Eq. (119). The legend specifies the positions of the observer considered, in
units ofM for a Gaussian II type simulation. The inset plot zooms in a portion of the plot. Bottom row, left: Approximate ringing time for
observers at r ≃ 100M calculated from the Green’s function for Gaussian II and sine-Gaussian initial data for different values of σ. The
legend specifies the values of ω used. Bottom row, right: Variation of QNM ringing from numerical simulations as seen by an observer at
r ≃ 100M for Gaussian II and sine-Gaussian initial data (ω ¼ 1). The legend specifies the values of σ used.
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duration ΔtQNM, the converse is easily achieved from
combining the results of the QNM and tail components
of the Green’s function. The basic prescription is out-
lined below:
(1) The first step to estimate the duration of ringing is to

choose a starting time ti for ringing. For an asymp-
totic observer, this is the time taken by the ingoing
part of the initial data to interact with the peak of the
scattering potential near the light ring and propagate
outwards toward the observer. The starting time can
be intuitively approximated as

ti ≈ r0 þ 5σ þ rþ 4M logðr − 2MÞ
− 6M þ 4M logM: ð120Þ

For observers close to the horizon, a more simple
expression can be obtained,

ti ≈ r0 þ 5σ − 2M: ð121Þ

Here r0 is the peak of the Gaussian with a standard
deviation σ=

ffiffiffi
2

p
.

(2) An appropriate duration for the search tf is then
chosen, assuming that the effects of the tail dominate
over the QNM ringing before this time. In our
searches, we choose tf ¼ ti þ 300M.

(3) The QNM contribution to the signal, up to the first
three terms in Eq. (69) and the tail contribution to the
signal, up to the first 15 terms in Eq. (86) is
evaluated over ½ti; tf �, for a specific choice of initial
data.

(4) The modulus of the QNM sum amplitude decays
linearly and intersects with the tail amplitude at time
tq, which we shall consider at the end time of
ringing. The approximate ringing time is taken to
be ΔtQNM ≈ tq − ti. Some estimates for the approxi-
mate ringing time from the Green’s function are
given in the bottom left of Fig. 5.

As a test for this method, we perform a brief comparison
between Gaussian II and sine-Gaussian type initial data.
For Gaussian II data, we estimate ΔtQNM for 5 different
values of σ ¼ 1, 3, 5, 7, 9. The same is used for sine-
Gaussian data with ω ¼ 0.1, 0.5, 1, 3, 5 for each σ. In both
cases, the Gaussian is centered around r0 ¼ 100M and the
observer is positioned at r ≈ 100M. We observe an appre-
ciable variation in ΔtQNM when sine-Gaussians are used, in
fact with suitable choice of parameters, ΔtQNM ∼ 250M
which is about 5 times what we can achieve with Gaussian
II data. We must note here that although such long duration
ringing may be seen by observers far away from the event
horizon in principle, it is hardly the case in practice owing
to the constraints from numerical noise. This technical
problem could be redressed by assigning more memory for
floating point numbers in BAMPS. To illustrate the point that

the QNM frequencies can be extracted from the data more
reliably, we consider two simulations, one with Gaussian II
type data with parameters A ¼ 104M, σ ¼ 7M, r0 ¼ 100M
and another with sine-Gaussian data with parameters
A ¼ 104M, σ ¼ 5M, r0 ¼ 100M, ωM ¼ 1. An observer
is placed at r ≈ 100M and a fit of damped sinusoids is
performed on the QNM part of the time-series extracted in
both cases. A plot of the signals, as seen in the bottom right
of Fig. 5, shows a very short ringdown phase in the first
signal, labeled as B:7while a much longer ringdown phase
is observed in the second signal, labeled as C:5. A longer
ringdown signal enables QNM frequencies to be estimated
more accurately far away from the black hole with some
estimates given in Table II.
In our case, there is an improvement of two orders of

magnitude for the n ¼ 0 mode, which is impressive given
that all l ¼ 0 modes are damped away fairly quickly.

5. Importance of tails during ringdown

We now investigate the effect of the branch cut to the
signal during QNM ringing. To do this, we compute the
overtone and the approximate tail contribution for the entire
duration of the “ringing signal.” The tail contribution is
approximated by extending the low frequency expressions
in Eq. (86), evaluated up to the first 15 terms to earlier times
and the QNM contribution is computed from the sum of the
contribution of the first three modes. We then calculate the
difference between the numerical data Φb and the mode
sum Φq and between the numerical data minus the
approximate tail contribution Φt and the mode sum. The
modulus of the ratio of these two quantities

Λ ¼
����Φb −Φt −Φq

Φb −Φq

����; ð122Þ

is observed as a function of time. For all simulations
considered, Λ is seen to be less than 1 and in general
decreases with increasing time. This can be seen in the left
of Fig. 6. This demonstrates that the contribution from the
tail becomes important during intermediate and late time
ringing and should be considered in the fitting model along
with the damped sinusoids for better extraction of the QNM
frequencies. As a proof of concept, we fit damped sinusoids
to Φb −Φt using the linear fitting strategy described before
to 168 signals and observe an improvement in the

TABLE II. Estimated values of the n ¼ 0 and n ¼ 1 for generic
and special initial data as measured by an observer at r ≃ 100M.

Simulation n ωn % error

B∶7 0 0.1179 − 0.1039i (6.71, 0.99)
1 � � � � � �

C∶5 0 0.1105 − 0.1050i (0.05, 0.06)
1 0.0912 − 0.3630i (5.96, 4.31)
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percentage error for the principal QNM frequency in ∼69%
cases while the improvement in measuring the first over-
tone is seen in 33% cases for generic initial data. On the
right of Fig. 6 we show a representative plot where both
contributions of the overtones and the tail are considered
during ringing.

E. Approximation of preringdown

We make a comparison between the leading order
contribution from the high frequency arc and the numerical

data and find good agreement with the numerics at early
times but the flat space approximation rapidly fails at later
times. This shortcoming can be redressed by considering
higher order terms in the high frequency approximation of
the Whittaker functions. In the left of Fig. 7 we display a
comparison plot for Gaussian I type data.

IV. DISCUSSION AND CONCLUSIONS

Motivated both by gravitational wave astronomy and by
pure theory, the principal objective of this paper was to help

FIG. 6. Left: The values of Λ, defined in Eq. (122) for different observers located at r ≃ 2, 10, 20, 30, 40, 50, and 100M are less than 1,
showing that the effects of the tail play an important role during QNM ringing, especially at intermediate and late times, since generally
Λ decreases with increasing time. Right: A comparison of the numerical signal with theoretical contributions from the QNM only and
the combined contribution of the QNMs and tail. The inset plot shows the pointwise percentage error in the two cases.

FIG. 7. Left: A fit for the scalar field time series as seen by an observer near the horizon (r ≈ 2M) with the model in Eq. (123) using the
Levenberg-Marquardt algorithm. The separate QNM and tail guesses are also shown. Right: A comparison between the contribution of
the high frequency arc to the signal from the approximate Green’s function and the numerical data for Gaussian I type initial data with
the observer at r ≃ 500M.
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facilitate, in the near future, a comparison between linear
and nonlinear perturbation theory by extending the Green’s
function approach to arbitrary horizon-penetrating coordi-
nates. This allows us to find the dynamic excitation
amplitude of each QNM excited for any observer outside
the event horizon. This was achieved by generalizing the
computations of [59] for QNMs in Eddington-Finkelstein
coordinates to arbitrary horizon penetrating coordinates,
and computing the exact Green’s function from solutions of
the CHE. Under the approximation that the observer is far
away from the event horizon, the solutions of the asymp-
totic form of CHE are just solutions of a Whittaker
equation. The resulting expressions for the asymptotic
Green’s function are much easier to handle. They were
then used to compute the dominant contribution from the
high frequency arc as well as the contributions from
the branch cut at low, intermediate and high frequencies.
The late time contribution from the branch cut gives rise to
Price’s tail law. These results were then put to the test using
the new SCALARFIELD project inside BAMPS, in which a
single Schwarzschild black hole is perturbed by different
configurations of a spherically symmetric massless sca-
lar field.
Besides a verification of our mathematical results, the

numerical experiments also show that the first overtone
mode may not be reliably extracted from generic initial data
for observers far away from the black hole. However, by
using specialized initial data we were able to increase the
duration of ringing almost threefold, thereby extracting the
frequencies of the fundamental mode and the first overtone
more accurately. We also found that the branch cut
contributes significantly during intermediate and late ring-
ing, and must be taken into account in the data analysis
model. It is therefore sensible to consider a data analysis
model for QNM ringing which also incorporates the effect
of the branch cut, as given for example by,

Φm ¼
X2
j¼0

Aje−αjt sinðωjtþ ϕjÞ þ
X4
k¼0

Bk

t3þk : ð123Þ

In our experiments with this model we found that at least 3
damped sinusoids and 5 tail terms are needed for an
accurate representation of the signal. Additionally, the
starting time for the signal has to be determined by an
additional parameter.
The Levenberg-Marquardt nonlinear least squares tech-

nique may be used to fit the model to the data. We find,
however, that the method may fail to converge if initial
guesses for the parameters are far away from their correct
values. Our strategy to obtain good parameters for the tail

terms is to isolate the tail signal and perform the tail
analysis separately while for the QNM parameters, we
obtain good initial values with the matrix pencil method.
All of these parameters are then used as initial guesses
while fitting for the entire signal for different starting times
of the fit. In the right of Fig. 7, a demonstration of such a fit
is given.
Several improvements are possible on the present

approach. While we see that the asymptotic expressions
for the tail work well, even for observers close to the event
horizon, an exact Green’s function for the branch cut may
also be obtained using the solutions of the CHE built along
the lines of the MST approach [66,67]. Our approximation
for the contribution of the high frequency arc fails to
account for the subdominant terms for which a more
nuanced approach for handling high frequency approxi-
mations of the Whittaker function is necessary. It is known
that solutions to the Teukolsky master equation can be
written down in terms of the confluent Heun equation [83],
so another natural extension to this work would be to
consider the spin-1 and spin-2 cases. Our comparison
between the linear results and full nonlinear theory is
ongoing and will be presented separately.
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