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We study the image formation process with the solar gravitational lens (SGL) in the case of an extended,
resolved source. An imaging telescope, modeled as a convex lens, is positioned within the image cylinder
formed by the light received from the source. In the strong interference region of the SGL, this light is
greatly amplified, forming the Einstein ring around the Sun, representing a distorted image of the extended
source. We study the intensity distribution within the Einstein ring observed in the focal plane of the convex
lens. For any particular telescope position in the image plane, we model light received from the resolved
source as a combination of two signals: light received from the directly imaged region of the source and
light from the rest of the source. We also consider the case when the telescope points away from the
extended source or, equivalently, it observes light from sources in sky positions that are some distance away
from the extended source but still in its proximity. At even larger distances from the optical axis, in the
weak interference or geometric optics regions, our approach recovers known models related to micro-
lensing but now obtained via the wave-optical treatment. We then derive the power of the signal and related
photon fluxes within the annulus that contains the Einstein ring of the extended source, as seen by the
imaging telescope. We discuss the properties of the deconvolution process, especially its effects on noise in
the recovered image. We compare anticipated signals from realistic exoplanetary targets against estimates
of noise from the solar corona and estimate integration times needed for the recovery of high-quality
images of faint sources. The results demonstrate that the SGL offers a unique, realistic capability to obtain
resolved images of exoplanets in our Galactic neighborhood.
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I. INTRODUCTION

As a consequence of the gravitational diffraction
of light [1,2], electromagnetic (EM) waves traveling
from distant sources in the close proximity of the Sun
are focused by the solar gravitational field at heliocentric
distances beyond z̄ ≃ b2=ð2rgÞ≳ 547.6ðb=R⊙Þ2 A.U.,
where b is a light ray’s impact parameter, rg ¼
2GM⊙=c2 is the Schwarzschild radius of the Sun and
R⊙ is its radius. This diffraction process is characterized
by truly remarkable properties: At optical or near infrared
wavelengths, it offers light amplification of up to a factor
of 4π2rg=λ ≃ 2.1 × 1011ð1 μm=λÞ and angular resolution
of up to ≃0.38λ=b ¼ 0.10ðλ=1 μmÞðR⊙=bÞ nanoarcsec-
onds (nas) [1–3].
The resulting solar gravitational lens (SGL) allows for

extraordinary observational capabilities, including, for
instance, direct high-resolution imaging and spectroscopy
of Earth-like exoplanets [4]. We can benefit from this
unique natural “instrument” with the help of a meter-class
telescope, equipped with a solar coronagraph (which is
needed to block the solar light) and positioned in the strong
interference region of the SGL (see Fig. 1) with respect to

the intended imaging target. Until recently such deep space
missions were hard to contemplate, but with recent reports
on the Voyager 1 spacecraft reaching distances beyond
140 A.U. while still transmitting valuable data after more
than 42 years of continuous operation, and with advances
in spacecraft miniaturization and progress in propulsion
technologies, efforts to explore the space outside our Solar
System have intensified [4,5].
Recognizing its value for astronomy and astrophysics,

recently we investigated the optical properties of the SGL
and developed its wave-optical treatment [2,3,6]. With this
knowledge, we studied photometric imaging with the SGL

FIG. 1. The different optical regions of the SGL (adapted
from [3]).

PHYSICAL REVIEW D 102, 024038 (2020)

2470-0010=2020=102(2)=024038(36) 024038-1 © 2020 American Physical Society

https://orcid.org/0000-0003-4255-9497
https://orcid.org/0000-0003-3651-9843
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.024038&domain=pdf&date_stamp=2020-07-13
https://doi.org/10.1103/PhysRevD.102.024038
https://doi.org/10.1103/PhysRevD.102.024038
https://doi.org/10.1103/PhysRevD.102.024038
https://doi.org/10.1103/PhysRevD.102.024038


[7], estimating the total power that is incident on the
aperture of an imaging telescope, thus measuring the
amplitude of the incident signal. As part of the inves-
tigation, we studied the fact that imaging of extended
sources with the SGL is affected by blurring, due to the
SGL’s inherent spherical aberration. With these results at
hand, we investigated the process of image formation of
point sources using an optical telescope placed in the SGL
focal region [8]. We derived analytical expressions that can
be used to model extended sources using numerical tools.
In the present paper, we investigate the image formation

process by an optical telescope in the SGL focal region,
viewing an extended, resolved source positioned at a large,
but finite distance from the Sun. This investigation of the
imaging process requires knowledge not only of the
amplitude of the signal, but also its phase. Our objective
is to derive analytical expressions that may be used to
evaluate signals from realistic targets, which is important
for a variety of potential astronomical applications of the
SGL. To assess realistic observing scenarios in the context
of a potential deep space mission, we also study the process
of deconvolving blurred SGL images under realistic con-
ditions in the presence of various sources of noise. We
provide the theoretical foundation to address these impor-
tant questions. Our ultimate goal is to offer analytical tools
to compute photon fluxes from realistic sources, to estimate
detection SNRs, required integration times for a given
observing scenario, to evaluate the quality of reconstructed
images and, by doing so, to move the concept of imaging
with the SGL from a domain of theoretical physics to the
mainstream of astronomy and astrophysics.
Our paper is organized as follows: Section II introduces

the SGL and the solution for the EM field in the image
plane in the strong interference region behind the Sun.
Section III discusses the modeling of the intensity distri-
bution observed in the focal plane behind the convex lens.
We present the total signal received from the extended
source as consisting of two parts: the signal from the
directly imaged region of the source and the blur received
from the rest of the source. Although our basic results are
generic, to allow for the analytic evaluation of realistic
observing scenarios, we model the source as a uniformly
illuminated disk. This approach allows us to develop
analytical expressions to estimate the total photon flux
received by the telescope. In Sec. IV we study image
formation in the geometric optics and weak interference
regions, thus extending our results to all the optical regions
behind the Sun and demonstrating the compatibility of our
results with known microlensing models. In Sec. V we
derive the power deposited in the focal plane of the imaging
telescope from the directly imaged region of the target

object, the rest of the target and also light contamination
from off-target sources. We estimate the photon flux
received at the detector from a realistic distant target for
various cases of the image-telescope geometries. We
estimate the resulting SNRs in the presence of light from
the solar corona, which is the dominant source of noise. In
Sec. VI we develop an approach to evaluate the “deconvo-
lution penalty,” the amount by which measurement noise is
amplified by the deconvolution process that is used to
recover a high-quality image from observations blurred by
the SGL.We evaluate the integration times needed to obtain
direct, high-quality resolved images of exoplanets and
demonstrate the superiority of the SGL compared to
exoplanet imaging scenarios unaided by the SGL. In
Sec. VII we discuss results and explore avenues for the
next phase of our investigation of imaging and spectros-
copy of exoplanets with the SGL. Finally, Appendix A
contains a brief analysis of the solar corona using the same
methodology applied in the rest of the paper, offering a
suitable basis for comparison. In Appendix B we derive a
form of the point-spread function of the SGL that is
averaged over the aperture of an optical telescope and
discuss the properties of this averaged formulation.

II. IMAGE FORMATION PROCESS
WITH THE SGL

A. The EM field in the strong interference region

In [3], we considered light from an extended source at a
finite distance z0 from the Sun. We parameterize the
problem using a heliocentric spherical coordinate system
ðr; θ;ϕÞ that is aligned with a preferred axis: a line
connecting a preselected (e.g., central) point in the source
to the center of the Sun, as shown in Fig. 2. We also use a
cylindrical coordinate system ðρ; z;ϕÞ, with the z axis
corresponding to the preferred axis. Furthermore, we
characterize points in the image plane and the source plane
(both perpendicular to the z axis) using two-dimensional
vector coordinates x and x0, respectively.
We consider light, modeled as a monochromatic high-

frequency EM wave [i.e., neglecting terms ∝ ðkrÞ−1, where
k ¼ 2π=λ is the wave number] coming from a source at the
distance of r0 ¼ ðz20 þ jx0j2Þ1=2 ≃ z0 ≫ rg from the Sun
(see Fig. 2) and received on the opposite side of it at the
heliocentric distance of r ¼ ðz̄2 þ jxj2Þ1=2 ≃ z̄ ≫ rg, and
we derived the components of the EM field near the optical
axis in the strong interference region of the SGL (see
Fig. 1). Up to terms of Oðρ2=z2; ffiffiffiffiffiffiffiffiffi

2rgz̄
p

=z0Þ, the compo-
nents of such an EM field take the form [3,7,8]

�
Eρ

Hρ

�
¼
�

Hϕ

−Eϕ

�
¼ E0

z0

ffiffiffiffiffiffiffiffiffiffiffiffi
2πkrg

q
eiσ0J0

�
2π

λ

ffiffiffiffiffiffiffi
2rg
z̄

r ����xþ z̄
z0
x0
����
�
eiðkðrþr0þrg ln 2kðrþr0ÞÞ−ωtÞ

�
cosϕ

sinϕ

�
; ð1Þ
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where the z components of the EM wave behave as
ðEz;HzÞ∼Oðρ=z; ffiffiffiffiffiffiffiffiffi

2rgz̄
p

=z0Þ. The quantity z̄¼zð1þz=z0þ
Oðz2=z20ÞÞ denotes heliocentric distances along the line
connecting the point source and the center of the Sun (see
Fig. 2). Note that these expressions are valid for forward
scattering when θ þ ffiffiffiffiffiffiffiffiffi

2rgz̄
p

=z0 ≈ 0 or when 0 ≤ ρ ≤ rg.
We can describe the imaging of an extended source.

For that, we use the solution for the EM field (1) and study
the Poynting vector, S ¼ ðc=4πÞh½ReE × ReH�i, that
describes the energy flux in the image plane [9–11].
Normalizing this flux to the time-averaged value that
would be observed if the gravitational field of the Sun
were absent, jS̄0j ¼ ðc=8πÞE2

0=z
2
0, we define the amplifi-

cation factor of the SGL, μSGL ¼ jSj=jS̄0j:

μSGLðx;x0Þ ¼ μ0J20

�
2π

λ

ffiffiffiffiffiffiffi
2rg
z̄

r ����xþ z̄
z0
x0
����
�
; with

μ0 ¼
4π2

1 − e−4π
2rg=λ

rg
λ
≃ 1.17 × 1011

�
1 μm
λ

�
: ð2Þ

The angular resolution of the SGL is determined by the
first zero of the Bessel function J0ðxÞ in (2), which occurs
at x ¼ 2.4048 and yields

RSGL ¼
����xz̄ þ x0

z0

���� ¼ 0.38
λffiffiffiffiffiffiffiffiffi
2rgz̄

p
¼ 0.10

�
λ

1 μm

��
650 A.U.

z̄

�
1=2

nas: ð3Þ

Note that by setting x0 ¼ 0 in (3), we recover the SGL’s
resolution for point sources [2]. Let us compare the SGL to
a conventional optical telescope with aperture d and focal
length of f. Its light amplification is known to be [11,12]
[see also the relevant derivations in Appendix A, for
instance, (A6)]

μtelðx;x0Þ ¼ i0

�
2J1ðu1

2
dÞ

u1
2
d

�
2

; with i0¼
�
kd2

8f

�
2

and

u¼ πd
λ

����xz̄þx0

z0

����: ð4Þ

As is well known, it is the first zero of the Bessel function
J1ðxÞ at x ¼ 1.220π in (4) that determines the telescope’s
resolution:

Rtel¼
����xz̄þx0

z0

����¼ 1.22
λ

d
¼ 0.21

�
λ

1 μm

��
1m
d

�
as ; ð5Þ

which is more than 2 × 109 times less than that of the SGL.
Again, by setting x0 ¼ 0 in (5), we recover the familiar
expression for the angular resolution of an optical telescope
for point sources [11,12].
However, the impressive amplification and angular

resolution of the SGL (3) come at a price, which is the
spherical aberration inherent in the SGL’s optical properties
[7]. To discuss the impact of this aberration on the
prospective imaging with the SGL, it is convenient to
introduce its point-spread function (PSF), given by PSF¼
μSGLðx;x0Þ=μ0¼ J20ðð2π=λÞ

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p jxþðz̄=z0Þx0jÞ. This
expression (2) is the PSF of the SGL, scaled by the
amplification factor on the optical axis, μ0. [Note that (4)
does the same, by scaling the PSF of an optical telescope,
∝ ð2J1ðxÞ=xÞ2, using the intensity at the center, i0.]
The PSF concept is used in Fourier optics to describe the

properties of an imaging system characterized by its
diffraction pattern [11,12]. In fact, the imaging system’s
resolution can be limited either by aberration or by
diffraction causing blurring of the image. These two
phenomena have different origins and are unrelated. The
PSF describes the interplay between diffraction and aber-
ration: The smaller the aperture of a lens, the more likely
the PSF is dominated by diffraction. As was discussed in
[3], the PSF of the SGL is rather broad, behaving as ∝ 1=ρ,
as the distance from the optical axis, ρ ¼ jxþ ðz̄=z0Þx0j,

FIG. 2. The geometry of imaging a point source with the SGL. A point source with coordinates ðx0; y0Þ is positioned in the source
plane, at the distance z0 from the Sun. The SGL image plane is at the heliocentric distance z̄. Rays with different optical paths produce a
diffraction pattern in the SGL image plane that is observed by an imaging telescope.
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increases. The PSF of an optical telescope (4) falls off much
faster, behaving as ∝ 1=ρ3. It is this behavior of the
monopole SGL that is responsible for the considerable
blurring of any image that forms in the SGL’s image plane.
However, given that the PSF of the SGL is known, its
inverse can be used to reconstruct the original image [4].
Below we will consider the impact of the SGL blur on the
image quality.
Examining (2) and recognizing that (3) is extremely

small, we see that a monopole gravitational lens acts as a
convex lens by focusing light, according to

x ¼ −
z̄
z0
x0 → x ¼ −

z̄
z0
x0; y ¼ −

z̄
z0
y0: ð6Þ

These expressions imply that the SGL focuses light in the
opposite quadrant in the image plane while also reducing
the size of the image compared to the source by a factor of
z̄=z0 ∼ 1.0 × 10−4ðz̄=650 A.U.Þð30 pc=z0Þ. For an exopla-
net with radius R⊕, positioned at a distance of z0 from the
Sun, the image of this target at a heliocentric distance of z̄
will be compressed to a cylinder with radius

r⊕ ¼ z̄
z0
R⊕ ¼ 669.98

�
z̄

650 A.U.

��
30 pc
z0

�
m: ð7Þ

A telescope with aperture d ≪ r⊕ would have to scan this
image by traversing and sampling the image plane at
multiple locations to recover the image.
Consider the process of imaging an extended, resolved

source. In the most widely considered practical scenario, the
kilometer-scale image plane is sampled by a telescopewith a
meter-scale aperture. Such a telescope has the resolution
required to employ a coronagraph, but it is otherwise used as
a photometric detector, measuring the brightness of the
Einstein ring that forms around the Sun from light origi-
nating from the exoplanet. First, we recognize that the
telescope’s aperture is much smaller than the image size,
d ≪ 2r⊕. This leads us to separate the received signal into
two parts: the signal received from the directly imaged
region that corresponds to the telescope location, and the

blur due to light received from the rest of the source.
Based on the SGL’s mapping (6) for a given point
ðx0; y0Þ in the image plane (Fig. 3), the directly imaged
region will be in the vicinity of the point ðx00; y00Þ ¼
−ðz0=z̄Þðx0; y0Þ in the source plane. Furthermore, given
the telescope aperture d, the directly imaged region in the
source plane has the diameter

D ¼ z0
z̄
d ¼ 9.52

�
d

1 m

��
650 A.U.

z̄

��
z0

30 pc

�
km; ð8Þ

centered at ðx00; y00Þ. The signal that is received from the areas
outside ofD on the source is causing the blur [7]. Using (7)
and (8), we see that a telescope with the aperture d could
resolve an exoplanet whose radius is Rexo with Nd linear
resolution elements (see Fig. 3) given by

Nd ¼
2R⊕

D

�
Rexo

R⊕

�
¼ 2r⊕

d

�
Rexo

R⊕

�

¼ 1339.95

�
1 m
d

��
z̄

650 A.U.

��
30 pc
z0

��
Rexo

R⊕

�
: ð9Þ

B. Image formation by an optical telescope
in the SGL image plane

To produce images of faint, distant objects with the SGL,
we represent an imaging telescope by a convex lens with
aperture d and focal distance f; see Fig. 4. We position the
telescope at a point with coordinates x0 in the image plane
in the strong interference region of the lens (Fig. 1)
[3,11,13–15]. To stay within the image, x0 is within the
range jx0j þ d=2 ≤ r⊕. The amplitude of the EM wave just
in front of the telescope aperture, from (1), is given as

Aðx;x0;x0Þ ¼ ffiffiffiffiffi
μ0

p
J0

 
k

ffiffiffiffiffiffiffi
2rg
z̄

r ����xþ x0 þ
z̄
z0
x0
����
!
: ð10Þ

The presence of a convex lens is equivalent to a
Fourier transform of the wave (10). The focal plane
of the optical telescope is located at the focal distance f

FIG. 3. Imaging of extended resolved sources with the SGL. The SGL is a convex lens, producing inverted images of a source.
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of the lens, centered on x0. Using the Fresnel-Kirchhoff
diffraction formula, the amplitude of the image field in the
optical telescope’s focal plane at a location xi ¼ ðxi; yiÞ is
given by [9–11]

Aðxi;x0;x0Þ¼ i
λ

ZZ
jxj2≤ðd=2Þ2

Aðx;x0;x0Þe−iðk=2fÞjxj2 e
iks

s
d2x:

ð11Þ

The function e−iðk=2fÞjxj2 ¼ e−iðk=2fÞðx2þy2Þ represents the
action of the convex lens that transforms incident plane
waves to spherical waves, focusing at the focal point.
Assuming that the focal length is sufficiently greater than
the radius of the lens, we may approximate the optical path
s as s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xiÞ2 þ ðy − yiÞ2 þ f2

p
∼ f þ ððx − xiÞ2þ

ðy − yiÞ2Þ=2f. This allows us to present (11) as

Aðxi;x0;x0Þ ¼ −
ffiffiffiffiffi
μ0

p eikfð1þx2i =2f
2Þ

iλf

Z Z
jxj2≤ðð1=2ÞdÞ2

d2xJ0

 
k

ffiffiffiffiffiffiffi
2rg
z̄

r ����xþ x0 þ
z̄
z0
x0
����
!
e−iðk=fÞðx·xiÞ: ð12Þ

To account for the propagation distance between the
source and the image plane, we recognize that the field
strength E0=z0 of the plane wave in (1) is a function of
the coordinates on the source plane, namely E0ðx0Þ=r̄,
where r̄ is the distance between a point on the source
plane with coordinates of ðx0;−z0Þ and a point on the
image plane with coordinates of ðxþ x0; z̄Þ, namely
r̄¼ððxþx0−x0Þ2þðz̄þ z0Þ2Þ. Given the fact that z0≫
fjx0j;z̄;jxþx0jg, we may approximate r ≃ z0 þOðz̄2=z20Þ,
yielding the transformation of the field strength as

E0=z0 → E0ðx0Þ=z0. Note that we do not approximate
the phase of the EM wave (1), only its amplitude. This is
because the phase is the quantity of our primary interest
for the SGL; thus, we need to know it with the most
available precision.
Next, with the amplitude Aðxi;x0;x0Þ given by (12),

the EM field (1) in the focal plane of the telescope
(indicated by subscript xi) produced by a point source
positioned in the source plane at coordinates x0 (Figs. 2
and 3) is given as

�
Eρ

Hρ

�
xi

¼
�

Hϕ

−Eϕ

�
xi

¼ E0ðx0Þ
z0

Aðxi;x0;x0Þeiðkðrþr0þrg ln 2kðrþr0ÞÞ−ωtÞ
�
cosϕ

sinϕ

�
: ð13Þ

With this expression, we may compute the Poynting
vector of the EM field that originates at a point source at
coordinates x0 in the source plane, is captured by a telescope
with aperture d in the image plane centered on coordinates
x0, and is finally received in the telescope’s image plane atxi.

Given the form (13) of the EM field, the Poynting vector will
have only one nonzero component, Sz. With overline and
brackets denoting time averaging and ensemble averaging
(over the source’s surface), correspondingly, and defining
ΩðtÞ¼ kðrþ r0þ rg ln2kðrþ r0ÞÞ−ωt, we compute Sz as

FIG. 4. Imaging a point source with the SGL with a telescope. The telescope is positioned on the optical axis that connects the source
and the Sun and it “sees” the Einstein ring. The telescope is represented by a convex lens with a diameter d and a focal length f.
Positions in the SGL image plane, ðx; yÞ, and the optical telescope’s focal plane, ðxi; yiÞ, are also shown.
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Szðxi;x0;x0Þ ¼ c
4π

h½ReE × ReH�zi

¼ c
4π

E2
0

z20
hðRe½Aðxi;x0;x0ÞeiΩðtÞ�Þ2i: ð14Þ

Dividing this expression by the time-averaged Pointing
vector of a spherical EM wave propagating in the absence
of gravity that would be received at the same location but
before entering the telescope [11], jS̄0j ¼ ðc=8πÞE2

0=z
2
0, we

obtain the amplification factor μðxi;x0;x0Þ ¼ Szðxi;x0;x0Þ=
jS̄0j of the optical system consisting of the SGL and an
imaging telescope, i.e., the convolution of the PSF of the
SGL with that of an optical telescope:

μðxi;x0;x0Þ ¼ 2hðRe½Aðxi;x0;x0ÞeiΩðtÞ�Þ2i: ð15Þ

To compute the intensity distribution corresponding to
the light received from the entire extended source and
received in the focal plane of the imaging telescope, we
need to form a product of the source’s surface brightness
per unit area, Bsðx0Þ ∝ E2

0ðx0Þ with dimensions of
Wm−2 sr−1, and the PSF from (15) and integrate the result
over the entire surface of the source. Therefore, the
intensity distribution on the detector at the focal plane of
the optical telescope that is positioned on the image plane
in the strong interference region of the SGL may be
presented as

Iðxi;x0Þ ¼
1

z20

ZZ
d2x0Bsðx0Þμðxi;x0;x0Þ; ð16Þ

which accounts for the fact that the EM field originating at
the extended source is not spatially coherent.
As a result, to compute the power received by a detector

in the focal plane of an imaging telescope positioned in the
SGL image plane, we need to first compute the Fourier
transform of the complex amplitude of the EM field (12)
and then follow the process that is outlined above and is

captured by (15) and (16). This approach allows one to
employ the powerful tools of Fourier optics (e.g., [12]) to
develop practical applications of the SGL.

III. MODELING THE SIGNAL IN THE FOCAL
PLANE OF AN OPTICAL TELESCOPE

In the previous section we obtained expressions that
characterize the intensity distribution of light originating at
a distant, extended source and received by an imaging
telescope in the image plane. We now consider the intensity
distribution in the focal plane of an optical telescope. We
recognize that an actual astrophysical telescope is a com-
plex instrument and has physical limitations related to its
design and manufacturing specifications. In our present
analysis, we use an idealized model in the form of an
optically perfect convex thin lens. This is sufficient to study
the principles of image formation in the telescope
image plane.

A. Complex amplitude in the focal plane

Expression (12) is rather complex and cannot be evalu-
ated analytically in the general case. Such expressions are
usually evaluated numerically instead, often in the spatial
frequency domain after a Fourier transform [12]. However,
some useful analytical approximations do exist, which we
explore here.
To simplify the discussion, it is convenient to express

the position x0 of the telescope in the SGL image plane
via the coordinates x0

0 of the corresponding central position
of the directly imaged region in the source plane (see
Fig. 3). Using the mapping (6), this can be done as

x0 ¼ −
z̄
z0
x0
0: ð17Þ

As a result, (12) takes the following equivalent form:

Aðxi;x0
0;x

0Þ ¼ −
ffiffiffiffiffi
μ0

p eikfð1þx2i =2f
2Þ

iλf

Z Z
jxj2≤ðð1=2ÞdÞ2

d2xJ0

 
k

ffiffiffiffiffiffiffi
2rg
z̄

r ����xþ z̄
z0

ðx0 − x0
0Þ
����
!
e−iðk=fÞðx·xiÞ: ð18Þ

Because the spatial frequency α is high, the Bessel
function J0ðαρÞ in (18) oscillates rapidly as the distance
from the optical axis ρ increases, but the overall behavior of
this function diminishes rather slowly, ∝ 1=

ffiffiffi
ρ

p
. Such a

behavior of J0 in the complex amplitude of the EM wave
(18) is the source of a significant imaging blur [3,7]. In
other words, a telescope with aperture d ≪ r⊕ in the focal
region of the SGL receives light not only from the directly
imaged region with diameter of D ¼ ðz0=z̄Þd ≤ R⊕ on the

surface of a resolved source, but also from the rest of that
surface that lies outside the region with the diameter D.
Following [7], we recognize that for any given location

of the telescope in the image plane, the total EM field at
the telescope’s focal plane from an exoplanet,Asource, is the
sum of two contributions: the EM field received from the
directly imaged region Adir and the blur from the rest of
the source,Ablur. We therefore need to evaluate the integral
in (18) in these two regions:
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Asourceðxi;x0
0;x

0Þ ¼ Adirðxi;x0
0;x

0Þ þAblurðxi;x0
0;x

0Þ:
ð19Þ

In this expression, the directly imaged region is given by
expression (18) for all the points on the source, x0, that lie
within the range jx0 − x0

0j ≤ 1
2
D. In addition, blur from

the rest of the source is also given by expression (18), but
for jx0 − x0

0j ≥ 1
2
D, jx0j < ρ⊕, where ρ⊕ is the radius of the

source, as measured from the origin of the coordinate
system.
Although the expressions for Adirðxi;x0

0;x
0Þ and

Ablurðxi;x0
0;x

0Þ have identical analytical form, the ampli-
tudes of the EM waves in these expressions correspond
to different regions with different intensities, Edir

0 and Eblur
0 .

Radiation received from these two regions is spatially
incoherent, hEdir

0 Eblur
0 i ¼ 0, where h� � �i denotes spatial

averaging.
To compute Adir and Ablur, we need to evaluate the

double integral over d2x for two different regions. To do
this, we introduce two-dimensional coordinates to describe
points in the source plane x0; the position of the telescope in
the image plane x0; points in the image plane within the
telescope’s aperture, x; and points in the optical telescope’s
focal plane xi. These are given as follows:

fx0g≡ ðx0; y0Þ ¼ ρ0ðcosϕ0; sinϕ0Þ ¼ ρ0n0; ð20Þ

fx0g≡ ðx0; y0Þ ¼ ρ0ðcosϕ0; sinϕ0Þ ¼ ρ0n0; ð21Þ

fxg≡ ðx; yÞ ¼ ρðcosϕ; sinϕÞ ¼ ρn; ð22Þ

fxig≡ ðxi; yiÞ ¼ ρiðcosϕi; sinϕiÞ ¼ ρini: ð23Þ

We introduce the following notations for the two relevant
spatial frequencies and a useful ratio for convenience:

α ¼ k

ffiffiffiffiffiffiffi
2rg
z̄

r
; ηi ¼ k

ρi
f
; β ¼ z̄

z0
: ð24Þ

The quantities α and ηi are the spatial frequencies involved
in the image formation process with the SGL using a
convex lens at the image plane. The frequency α is fixed
and is determined by the chosen observation wavelength
and the heliocentric distance. The frequency ηi is variable:
In addition to the observing wavelength and the focal
length of the optical telescope, the subscript i serves as a
reminder that it depends also on the position xi in the
optical telescope’s focal plane. The quantity β is a scale
factor that accounts for the finite distance to the source and
heliocentric distance to the image plane.
With the notations (24), the integral in (18) present in the

expressions for both complex amplitudes takes the form

Z Z
jxj2≤ðð1=2ÞdÞ2

J0ðαjxþ βðx0 − x0
0ÞjÞe−iηiðx·niÞ: ð25Þ

By evaluating this integral for different regions in the source
plane, we can compute the amplitudes Adirðxi;x0

0;x
0Þ and

Ablurðxi;x0
0;x

0Þ that are needed to evaluate the signal
received from the entire source.

B. Complex amplitude of the EM field received
from the directly imaged region

We first consider the directly imaged region (see Fig. 1.)
Assuming that βjx0 − x0

0j ≪ jxj everywhere in this region,
we may evaluate (25) by keeping only the leading term in
the series expansion with respect to the small parameter
βjx0 − x0

0j=jxj, which implies that the EM field here may be
approximated by light coming from the central point,
x0 ¼ x0

0, in that unresolved spot with diameter of D in
the source plane. With this assumption and notations (22),
the integral (25) may be easily evaluated:Z ð1=2Þd

0

ρdρ
Z

2π

0

dϕJ0ðαρÞe−iηiρ cosðϕ−ϕiÞ

¼ π

�
d
2

�
2 2

ðα2 − η2i Þ 12 d
�
αJ0

�
ηi
1

2
d

�
J1

�
α
1

2
d

�

− ηiJ0

�
α
1

2
d

�
J1

�
ηi
1

2
d

��
; ð26Þ

where α and ηi are given by (24). This result allows use to
present the complex amplitude of the EM field received
from the directly imaged region,Adirðxi;x0;x0Þ, which can
be derived from (18) in the following form:

Adirðxi;x0
0;x

0Þ ¼ i
ffiffiffiffiffi
μ0

p
eikfð1þx2i =2f

2Þ
�
kd2

8f

�
2

ðα2 − η2i Þ 12 d

×

�
αJ0

�
ηi
1

2
d

�
J1

�
α
1

2
d

�

− ηiJ0

�
α
1

2
d

�
J1

�
ηi
1

2
d

��
: ð27Þ

We now can compute the Poynting vector of a plane
wave that travels through the gravitational field of the Sun
and is received in the focal plane of a convex lens placed in
the focal region of the SGL. For this, we substitute the
result (27) into (14). After temporal averaging, we obtain
the following expression for the Poynting vector for an EM
wave that depends only on the radial position ρi in the focal
plane of the lens [where from (24) we have ηi ¼ ηiðρiÞ]:

SdirðρiÞ¼
c
8π

E2
0

�
kd2

8f

�
2

μ0

�
2

ðα2−η2i Þ12d
�
αJ0

�
ηi
1

2
d

�

×J1

�
α
1

2
d

�
−ηiJ0

�
α
1

2
d

�
J1

�
ηi
1

2
d

���
2

: ð28Þ
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Substituting this result in (15), we derive the PSF of an
imaging system that relies on the SGL and a convex lens,
scaled by the Fresnel number and the gain of the SGL on
the optical axis:

μdirðρiÞ¼ μ0

�
kd2

8f

�
2
�

2

ðα2−η2i Þ12d
�
αJ0

�
ηi
1

2
d

�
J1

�
α
1

2
d

�

−ηiJ0

�
α
1

2
d

�
J1

�
ηi
1

2
d

���
2

; ð29Þ

with α and ηi given by (24). This imaging PSF is a result
of a convolution of two point-spread functions: the PSF
of the SGL (2) and that of the convex lens, behaving as
∝ ð2J1ðxÞ=xÞ2. This expression shows that the PSF for an
unresolved source does not depend on the source’s position
in the source plane; nor does it depend on the telescope’s
position in the image plane. It is determined entirely by the
parameters of the imaging telescope [8].
Substituting result (29) into (16), we derive the intensity

distribution for light received from the directly imaged
region, which is determined by the following expression:

IdirðρiÞ ¼
1

z20

Z
2π

0

dϕ0
Z

D=2

0

ρ0dρ0Bsðx0ÞμdirðρiÞ: ð30Þ

Assuming that the surface brightness within the directly
imaged region is uniform, Bsðx0Þ ¼ Bs, the integrals in
(30) are easily computed. As a result, we obtain the
following intensity distribution for the light received
from this region:

IdirðρiÞ ¼ πBs

�
kd2

8f

�
2 μ0d2

4z̄2

�
2

ðα2 − η2i Þ 12 d
�
αJ0

�
ηi
1

2
d

�

× J1

�
α
1

2
d

�
− ηiJ0

�
α
1

2
d

�
J1

�
ηi
1

2
d

���
2

;

ð31Þ

where we accounted for (8). We note that (31) agrees
with a similar expression given by Eq. (15) in [8]
(which was obtained for imaging a point source), by
extending it to the case of an extended source at a large,
but finite distance. Figure 5 (left) shows the character-
istic behavior1 captured by (31).
To study the behavior of (31) at the Einstein ring, we take

the limit of ηi → α, that results in

FIG. 5. Top row: Density plots simulating images that appear in the focal plane of the optical telescope. Left: The directly imaged
region, in accordance with Eq. (31). The brightness of this image is exaggerated to ensure that the Einstein ring and diffraction artifacts
remain visible. Center: Light from the rest of the source, in accordance with Eq. (50). This is the dominant light contribution, yielding a
much brighter Einstein ring with less prominent diffraction artifacts. Right: Image contamination due to a nearby source of light, in
accordance with Eq. (58), showing light from another uniformly illuminated disk of the same size, offset horizontally by ten radii.
Bottom row: Corresponding dimensionless intensities depicted on a decimal logarithmic scale. The contribution from the directly
imaged region is Oð103Þ less than the contribution from the rest of the source. Contribution from a nearby object is of similar intensity
but confined to narrow sections of the Einstein ring.

1See also [16] for a video simulation.
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IdirðρERi Þ¼ πBs

�
kd2

8f

�
2μ0d2

4z̄2

�
J20

�
α
1

2
d

�
þJ21

�
α
1

2
d

��
2

:

ð32Þ
To take the next step, we use well-known approximations

for the Bessel functions for large arguments [17], given as

J0ðxÞ ≃
ffiffiffiffiffi
2

πx

r
cos
�
x −

π

4

�
þOðx−1Þ and

J1ðxÞ ≃
ffiffiffiffiffi
2

πx

r
sin

�
x −

π

4

�
þOðx−1Þ: ð33Þ

These approximations lead to the following approximation
for (31), which describes the intensity distribution on the
Einstein ring resulting from light originating in the directly
imaged region:

IdirðρERi Þ ¼ Bs

�
kd2

8f

�
2 4μ0
πα2z̄2

¼ Bs

�
kd2

8f

�
2 4

kz̄
; ð34Þ

where we used the definitions for μ0 and α given by (2) and
(24), correspondingly.
We note that the intensity distribution for the EM image

field received from the directly imaged region does not

explicitly depend on the Schwarzschild radius of the
gravitational lens as it is implicitly encoded in the position
of the Einstein ring in the focal plane. In addition, there is
no dependence on the distance to the source or position of
the telescope in the image plane. However, as expected,
the distribution strongly depends on the telescope aperture
and is slowly decreasing with increase of the heliocentric
distance.

C. Amplitude of the EM field received from
outside the directly imaged region

We now consider light originating from the areas within
the source that are outside the directly imaged region
(Fig. 1) but still deposited in the focal plane of the optical
lens because of the PSF (2). This process is represented by
the complex amplitudeAblurðxi;x0

0;x
0Þ in (19). To compute

Ablur, we again use (18), but this time, we assume that
the directly imaged region is very small compared to the
rest of the planet, so that outside the directly imaged region
the following inequality holds: jxj ≪ βjx0 − x0

0j. For most
of this region, in (25), the Bessel function J0 may be
approximated by taking its asymptotic behavior for large
arguments (33), yielding

J0ðαjxþβðx0−x0
0ÞjÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παjxþβðx0−x0

0Þj
p ðeiðαjxþβðx0−x0

0
Þj−ðπ=4ÞÞ þe−iðαjxþβðx0−x0

0
Þj−ðπ=4ÞÞÞ: ð35Þ

To evaluate (35), we rely on (20)–(23) but slightly redefining them by introducing

fðx0 − x0
0Þg ¼ x00 ¼ ρ00n00 ¼ ρ00ðcosϕ00; sinϕ00Þ: ð36Þ

Next, given the fact that jxj ≤ βjx0 − x0
0j, we expand jxþ βðx0 − x0

0Þj to first order in x:

jxþ βðx0 − x0
0Þj ¼ βjx0 − x0

0j þ ðx · n00Þ þOðρ2Þ ¼ βρ00 þ ρ cosðϕ − ϕ00Þ þOðρ2Þ: ð37Þ

With these definitions, the double integral (25) takes the formZ Z
jxj2≤ðð1=2ÞdÞ2

d2xJ0ðαjxþ βðx0 − x0
0ÞjÞe−iðk=fÞðx·xiÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παβρ0

p Z
2π

0

dϕ
Z

d=2

0

ρdρ

�
1 −

ρ cosðϕ − ϕ00Þ
βρ00

�

× ðeiðαβρ00−ðπ=4Þþαρ cosðϕ−ϕ00ÞÞ þ e−iðαβρ00−ðπ=4Þþαρ cosðϕ−ϕ00ÞÞÞe−iρηi cosðϕ−ϕiÞ þOðρ2Þ: ð38Þ

The phases of these two integrals may be given as

φ�ðxÞ ¼ �
�
αβρ00 −

π

4

�
þ u�ρ cosðϕ − ϵ�Þ þOðρ2Þ; ð39Þ

where u� has the form

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 ∓ 2αηi cosðϕ00 − ϕiÞ þ η2i

q
; ð40Þ
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and the angles ϵ� are given by the following relationships:

cos ϵ� ¼ �α cosϕ00 − ηi cosϕi

u�
; sin ϵ� ¼ �α sinϕ00 − ηi sinϕi

u�
: ð41Þ

With this, the two integrals present in (38) may be evaluated as

I�ðxi;x00Þ ¼ π

�
d
2

�
2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2παβρ00
p e�iðαβρ00−ðπ=4ÞÞ

��
2J1ðu� 1

2
dÞ

u� 1
2
d

�
− i

d cosðϕ00 − ϵ�Þ
2βρ0

�
2J2ðu�ρÞ
u� 1

2
d

��
: ð42Þ

Substituting expressions (42) in (38) and then using the result in (18), we derive the amplitude Ablurðxi;x0
0;x

0Þ:

Ablurðxi;x00Þ ¼ ieikfð1þx2i =2f
2Þ
�
kd2

8f

� ffiffiffiffiffi
μ0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2παβρ00

p ×

�
eiðαβρ00−ðπ=4ÞÞ

��
2J1ðuþ 1

2
dÞ

uþ 1
2
d

�
− i

d cosðϕ00 − ϵþÞ
2βρ00

�
2J2ðuþρÞ
uþ 1

2
d

�	

þ e−iðαβρ00−ðπ=4ÞÞ
��

2J1ðu− 1
2
dÞ

u− 1
2
d

�
− i

d cosðϕ00 − ϵ−Þ
2βρ00

�
2J2ðu−ρÞ
u− 1

2
d

�	�
: ð43Þ

We may now compute the Poynting vector of a plane wave originating from outside the directly imaged region, traveling
through the gravitational field in the vicinity of the Sun, arriving in the focal plane of an imaging telescope. For this,
similarly to the derivation of (28), we substitute (43) into (14). After temporal averaging, we obtain the following expression
(similar to that obtained in [8] for point sources):

Sblurðxi;x00Þ ¼ c
8π

E2
dirðx0Þ

�
kd2

8f

�
2 μ0
2παβρ00

��
2J1ðuþ 1

2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u−
1
2
d

�
2

þ2sinð2αβρ00Þ
�
2J1ðuþ 1

2
dÞ

uþ 1
2
d

��
2J1ðu− 1

2
dÞ

u−
1
2
d

�

−
dcosð2αβρ00Þ

βρ00

�
α−ηi cosðϕ00−ϕiÞ

uþ

�
2J1ðu− 1

2
dÞ

u− 1
2
d

��
2J2ðuþ 1

2
dÞ

uþ 1
2
d

�

þαþηi cosðϕ00−ϕiÞ
u−

�
2J1ðu− 1

2
dÞ

u− 1
2
d

��
2J2ðu− 1

2
dÞ

u− 1
2
d

��
þO

�
d2

β2ρ02

��
: ð44Þ

As outside the directly imaged region the ratio d=ðβρ00Þ is very small, we may neglect this term in the expression above.
Substituting the result in (15), we compute the PSF for the SGL’s blur for a resolved source:

μblurðxi;x00Þ ¼ μ0
2παβρ00

�
kd2

8f

�
2
��

2J1ðuþ 1
2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u− 1
2
d

�
2

þ2sinð2αβρ00Þ
�
2J1ðuþ 1

2
dÞ

uþ 1
2
d

��
2J1ðu− 1

2
dÞ

u− 1
2
d

��
: ð45Þ

Using this result (45) in (16), we derive the expression
that may be used to determine the intensity distribution for
the signal received from the area outside the directly
imaged region:

Iblurðxi;x0Þ ¼
1

z20

ZZ
d2x00Bsðx00Þμblurðxi;x00Þ: ð46Þ

This integral must be evaluated for two different regions
corresponding to the telescope pointing within the image
and outside of it, as was done in [7], where we considered
the photometric signal (or the power of the signal just
before the telescope’s aperture).

1. Intensity distribution for light from outside
of the directly imaged region

Expression (46) allows us to compute the power
received from the resolved source from the area lying
outside the directly imaged region. To do that, we introduce

a new coordinate system in the source plane x00, with
the origin at the center of the directly imaged region:
x0 − x0

0 ¼ x00. As vector x0
0 is constant, dx0dy0 ¼ dx00dy00.

Next, in the new coordinate system, we use polar coor-
dinates ðx00; y00Þ → ðr00;ϕ00Þ. In these coordinates, the cir-
cular edge of the source, R⊕, is no longer a circle but a
curve, ρ⊕ðϕ00Þ, the radial distance of which is given by the
following relation:

ρ⊕ðϕ00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊕ − ρ020 sin2 ϕ00

q
− ρ00 cosϕ

00: ð47Þ

For an actual astrophysical source, Bsðx0Þ is, of course,
an arbitrary function of the coordinates x0 and thus the
integral can only be evaluated numerically. However, we
can obtain an analytic result in the simple case of a disk of
uniform brightness, characterized by Bsðx0Þ ¼ Bs. In this
case, we integrate (46):
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Iblurðxi;x0Þ ¼
1

z20

Z
2π

0

dϕ00
Z

ρ⊕

D=2
ρ00dρ00Bsðx0Þμblurðxi;x0;x0Þ

¼ Bs

z20

�
kd2

8f

�
2 μ0
2παβ

×
Z

2π

0

dϕ00
Z

ρ⊕

D=2
dρ00
��

2J1ðuþ 1
2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u− 1
2
d

�
2

þ 2 sinð2αβρ00Þ
�
2J1ðuþ 1

2
dÞ

uþ 1
2
d

��
2J1ðu− 1

2
dÞ

u− 1
2
d

��
: ð48Þ

The integral over dρ00 in (48) can be easy evaluated, resulting in

Iblurðxi;x0Þ¼
Bs

z̄2

�
kd2

8f

�
2μ0d
2α

×

8<
: 1

2π

Z
2π

0

dϕ00

0
B@2r⊕

d

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
ρ0
r⊕

�
2

sin2ϕ00
s

−
ρ0
r⊕

cosϕ00

1
CA−1

1
CA

×

��
2J1ðuþ 1

2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u− 1
2
d

�
2
�

−
2

αd
1

2π

Z
2π

0

dϕ00

0
B@cos

2
642αr⊕

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
ρ0
r⊕

�
2

sin2ϕ00
s

−
ρ0
r⊕

cosϕ00

1
CA
3
75−cos½αd�

1
CA�2J1ðuþ 1

2
dÞ

uþ 1
2
d

��
2J1ðu− 1

2
dÞ

u−
1
2
d

�9=
;:

ð49Þ

We observe that the ratios involving the Bessel functions
in the expression (49) above are at most 2J1ðxÞ=x ¼ 1, at
x ¼ 0. Given the fact that the spatial frequency α is quite
high, for most values of the argument these ratios become
negligible. In addition, the last term in this expression is at

most ∝ 2=αd, which is negligibly small even compared to
the next smallest term (i.e., that does not contain r⊕) in the
first integral in this expression. Therefore, the last term in
this expression can be omitted, and expression (49) takes
the form

Iblurðxi;x0Þ¼
Bs

z̄2

�
kd2

8f

�
2μ0d
2α

1

2π

Z
2π

0

dϕ00

0
B@2r⊕

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
ρ0
r⊕

�
2

sin2ϕ00
s

−1

1
CA��2J1ðuþ 1

2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u−
1
2
d

�
2
�
; ð50Þ

where we obtained the final form of the equation by
dropping the ðρ0=r⊕Þ cosϕ00 term in the first integral in
(49), as this term, multiplied by the squared Bessel-function
terms that have the same periodicity by virtue of the
dependence of u� on ϕ00, vanishes identically when
integrated over a full 2π period.
Expression (50) describes the blur contribution to the

intensity distribution in the focal plane, corresponding to
the image of an object of uniform brightness. Figure 5
(center) shows the characteristic behavior presented in this
expression. This result is in a good agreement with a similar
one given by Eq. (33) of [8] but extends the latter on the
case of an extended, resolved source positioned at a large,
but finite distance from the SGL. Considering the terms
remaining in (50), we note that the spatial frequency u�,
as a function of ϕ00 and ϕi, is given by expression
(40) as u� ¼ ðα2 ∓ 2αηi cosðϕi − ϕ00Þ þ η2i Þ1=2. To study
the behavior of Pblurðxi;x0Þ at the Einstein ring, we

take the limit ηi → α to present the ratios of the Bessel
functions as

�
2J1ðuþ 1

2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u−
1
2
d

�
2

→

�
2J1ðαd sin 1

2
ðϕi − ϕ00ÞÞ

αd sin 1
2
ðϕi − ϕ00Þ

�
2

þ
�
2J1ðαd cos 12 ðϕi − ϕ00ÞÞ

αd cos 1
2
ðϕi − ϕ00Þ

�
2

: ð51Þ

Given that αd ≫ 1, these expressions suggest that for any
value of ϕ00 they will uniquely select such a value for ϕi that
would make u� ¼ 0 and, thus, the arguments of the Bessel
functions vanish. When this happens, the ratios of the
Bessel functions reach their maximal value of 1, resulting
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in two peaks positioned at the azimuthal angles ϕi ¼ ϕ00
and ϕi ¼ ϕ00 þ π (a similar observation was made in [8]).
This observation greatly simplifies (50) [and (49)],

resulting in the following compact form for the intensity
distribution for light received from the Einstein ring in the
focal plane of the telescope:

IblurðρERi ;ρ0Þ¼
Bs

z̄2

�
kd2

8f

�
2μ0d
α

�
2r⊕
d

ϵðρ0Þ−1

�

¼πBs

�
kd2

8f

�
2d
z̄

ffiffiffiffiffiffiffi
2rg
z̄

r �
2r⊕
d

ϵðρ0Þ−1

�
; ð52Þ

where the blur factor ϵðρ0Þ is given by the following
expression [7] (see also Fig. 6):

ϵðρ0Þ ¼
1

2π

Z
2π

0

dϕ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2ϕ00
s

¼ 2

π
E
��

ρ0
r⊕

�
2
	
;

ð53Þ

where E½x� is the elliptic integral [17].
As a result, we see that the intensity distribution

describing the signal received in the focal plane of the
telescope is given as a sum of the intensities of the signal
received from the directly imaged region (34) and that
received from the rest of the source (52) (similarly to the
result derived in [7] for photometric signals), which, in
terms of the intensity distribution, takes the form

IsourceðρERi ; ρ0Þ
¼ IdirðρERi ; 0Þ þ IblurðρERi ; ρ0Þ

¼ πBs

�
kd2

8f

�
2
�
2R⊕

z0

ffiffiffiffiffiffiffi
2rg
z̄

r
ϵðρ0Þ þ

4

πkz̄
−
d
z̄

ffiffiffiffiffiffiffi
2rg
z̄

r �

≃ πBs

�
kd2

8f

�
2 2R⊕

z0

ffiffiffiffiffiffiffi
2rg
z̄

r
ϵðρ0Þ; ð54Þ

where we neglected the two terms in the middle expression,
as their magnitudes are negligible in comparison to the
leading term.

2. Blur at an off-image telescope position

As discussed in [7], in the case of the SGL, blur from an
extended source is present even outside the direct image of

the source. Therefore, even a telescope positioned at ρ0 ≥
r⊕ will receive light from the source. In this case, the blur
for the off-image position, Ioffðx0Þ, is obtained by integrat-
ing (46) over the surface of the source as it is seen from an
off-image coordinate system.
The same conditions to derive (49) are valid, so the

power received by the telescope takes the same form. The
only difference comes from the fact that we are outside the
image; thus, the integration limits change. First, we note
that the circular edge of the source, R⊕, is given by a curve
ρ⊕ðϕ00Þ, the radial distance of which in this polar coordinate
system is given as

ρ⊕ðϕ00Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
⊕ − ρ020 sin2 ϕ00

q
þ ρ00 cosϕ

00; ð55Þ

with the angle ϕ00 in this case defined so that ϕ00 ¼ 0 when
pointing at the center of the source. The angleϕ00 varies only
within the rangeϕ00∈½ϕ−;ϕþ�, withϕ� ¼ � arcsinðR⊕=ρ00Þ.
Given the sign in front of the square root in (55), for any
angle ϕ00 there will be two solutions for ρ⊕ðϕ00Þ, given
as ðρ−⊕; ρþ⊕Þ.
Assuming that the brightness of the source in this region

is uniform, Bðx0; y0Þ ¼ Bs, we use (55) and evaluate (46) for
this set of conditions:

Ioffðxi;x0Þ ¼
1

z20

Z
ϕþ

ϕ−

dϕ00
Z

ρþ⊕

ρ−⊕

ρ00dρ00Bsðx00Þμblurðxi;x00Þ

¼ Bs

z20

�
kd2

8f

�
2 μ0
2παβ

Z
ϕþ

ϕ−

dϕ00
Z

ρþ⊕

ρ−⊕

dρ00
��

2J1ðuþ 1
2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u−
1
2
d

�
2

þ 2 sinð2αβρ00Þ
�
2J1ðuþ 1

2
dÞ

uþ 1
2
d

��
2J1ðu− 1

2
dÞ

u−
1
2
d

��
: ð56Þ

FIG. 6. Combined behavior of ϵðρ0Þ (53), for 0 ≤ ρ0=r⊕ ≤ 1
(solid red curve) and βðρ0Þ (60), for ρ0=r⊕ ≥ 1 (dashed green
curve). The horizontal axis is in units of ρ0=r⊕. The dots
represent values obtained from a numerical simulation of (16)
with (25).
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The integral over dρ00 can be easy evaluated, resulting in

Ioffðxi;x0Þ¼
Bs

z20

�
kd2

8f

�
2 2μ0
αβ

×

8<
:R⊕

2π

Z
ϕþ

ϕ−

dϕ00

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
ρ0
r⊕

�
2

sin2ϕ00
s 1

CA��2J1ðuþ 1
2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u−
1
2
d

�
2
�

−
1

αβ

1

2π

Z
ϕþ

ϕ−

dϕ00 sinð2αρ0 cosϕ00Þsin

2
642αr⊕

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
ρ0
r⊕

�
2

sin2ϕ00
s 1

CA
3
75�2J1ðuþ 1

2
dÞ

uþ 1
2
d

��
2J1ðu− 1

2
dÞ

u−
1
2
d

�9=
;: ð57Þ

Similarly to the approach that we used in evaluating the magnitude of the terms in (49) we we may drop the second term
in this expression transforming (57) into

Ioffðxi;x0Þ ¼
Bs

z20

�
kd2

8f

�
2 2μ0R⊕

αβ

1

2π

Z
ϕþ

ϕ−

dϕ00

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2 ϕ00
s 1

CA��2J1ðuþ 1
2
dÞ

uþ 1
2
d

�
2

þ
�
2J1ðu− 1

2
dÞ

u− 1
2
d

�
2
�
: ð58Þ

Figure 5 (right) shows the behavior captured in this
expression that is characterized by two peaks of light
deposited at the Einstein ring. Such a behavior is expected
for sources of light external to the target, including its
parent star. Specifically, the light from the parent star is not
a significant source of light contamination, as its signal will
be deposited in just two compact spots on the image plane
[as seen in Fig. 5 (right)], which can be easily blocked.
Next, using similar arguments that led to result (51) (but

taking only one of the ratios), we present (58), as

IoffðρERi ; ρ0Þ ¼ πBs

�
kd2

8f

�
2 2R⊕

z0

μ0
παz̄

βðρ0Þ

¼ πBs

�
kd2

8f

�
2 2R⊕

z0

ffiffiffiffiffiffiffi
2rg
z̄

r
βðρ0Þ; ð59Þ

with the factor βðρ0Þ given by the following expression:

βðρ0Þ ¼
1

π

Z
ϕþ

ϕ−

dϕ00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ρ0
r⊕

�
2

sin2ϕ00
s

¼ 2

π
E

�
arcsin

r⊕
ρ0

;

�
ρ0
r⊕

�
2
	
; ð60Þ

where E½a; x� is the incomplete elliptic integral [17]. This
result is also similar to that obtained for the case of
photometric imaging with the SGL discussed in [7]. The
combined behavior of this factor and ϵðρ0Þ [given by
Eq. (53)] is shown in Fig. 6.
Expressions (54) and (59) are our main results that may

be used to evaluate the signals to be expected for imaging
with the SGL. They describe the intensity distribution in the
focal plane of an imaging telescope that is positioned in the
image plane in the strong interference region of the SGL.
As such, these results are helpful for the ongoing instru-
ment and mission design studies [4].

IV. IMAGE FORMATION IN THE GEOMETRIC
OPTICS AND WEAK INTERFERENCE REGIONS

As the optical telescope is moved farther away from the
optical axis, it enters the weak interference region and
eventually the region of geometric optics. It is important to
study the image formation process in these regions, as
modeling the magnitude of the signals detected here is useful
to develop realistic SNR estimates that account for back-
ground noise. These models can also to be used in the
development of autonomous navigation algorithms, required
to navigate a space-based telescope toward the SGL’s optical
axiswith respect to an imaging target such as an exoplanet [4].

A. EM field in the geometric optics and weak
interference regions

The solution for the EM field in the geometric optics and
weak interference regions consists of a combination of the
gravity-modified incident wave and also the scattered wave
that results from the diffraction of the incident wave on the
solar gravity field [2,3]. Following the approach presented
in [2,3,8], we use the method of stationary phase to develop
a solution for the incident and scattered EM fields that in
the spherical coordinate system ðr; θ;ϕÞ, to the order of
Oðr2g; θ2;

ffiffiffiffiffiffiffiffiffi
2rgr̃

p
=z0Þ, takes the form�

Dθ

Bθ

�
in=sc

¼
�

Bϕ

−Dϕ

�
in=sc

¼E0

z0
Ain=scðr̃;θÞeiðkðrþr0þrg ln4k2rr0Þ−ωtÞ

�
cosϕ

sinϕ

�
;

ð61Þ
with the complex amplitudes Ain and Asc (shorthanded as
Ain=sc with the upper and lower signs for the “in” and “sc”
waves, correspondingly) given as
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Ain=scðr̃; θÞ ¼ ain=scðr̃; θÞ exp
�
−ik
�
1

4
θðr̃θ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2θ2 þ 8rgr̃

q
Þ − rg þ 2rg ln

1

2
kðr̃θ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃2θ2 þ 8rgr̃

q
Þ
�	

; ð62Þ

where the real-valued amplitude factors ain and asc have the form

a2in=scðr̃; θÞ ¼

�
1
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rg=r̃θ2

q
� 1

��
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rg=r̃θ2

q ; ð63Þ

where the radial components of both EM waves behave as ðEr;HrÞin=sc ∼Oðρ=r; ffiffiffiffiffiffiffiffiffi
2rgr̃

p
=r0Þ. Also, the effective distance r̃

is given as r̃ ¼ z0z̄=ðz0 þ z̄Þ (see details in [3]). Note that for large angles θ ≫
ffiffiffiffiffiffiffiffiffiffiffi
2rg=r̃

p
, expression (63) results in the

known forms of the amplitude factors a2inðr̃; θÞ ¼ 1þOðrgθ2; r2gÞ and a2scðr̃; θÞ ¼ ð2rg=r̃θ2Þ2 þOðrgθ2; r2gÞ; see [3].
However, expression (63) allows studying the case when θ ≃

ffiffiffiffiffiffiffiffiffiffiffi
2rg=r̃

p
.

Since we are concerned with the EM field in the image plane, it is convenient to transform solution (61) to cylindrical
coordinates ðρ;ϕ; zÞ, as was done in [2,3]. As result, the components of this EM field, to Oðr2g; θ2Þ, take the form

�
Eρ

Hρ

�
in=sc

¼
�

Hϕ

−Eϕ

�
in=sc

¼ E0

z0
Ain=scðr̃; θÞeiðkðrþr0þrg ln k2rr0Þ−ωtÞ

�
cosϕ

sinϕ

�
; ð64Þ

where the z components of the EM waves behave as ðEz;HzÞin=sc ∼Oðρ=z; b=z0Þ.
Expressing the combination r̃θ via the angle δ ¼ b=r0 and generalizing the resulting expression to the three-dimensional

case, as was done in [3], we have

r̃θ ¼ rðθ þ δÞ þOðr3=r20Þ ¼ jxþ x0 þ βx0j þOðr3=r20Þ; ð65Þ

where β ¼ z̄=z0 is from (24). This allows us to express the complex amplitudes Ain=scðr; θ; r0Þ → Ainðx;x0;x0Þ as

Ain=scðx;x0;x0Þ ¼ ain=scðx;x0;x0Þ exp
�
−ik
�
1

4z̄
jxþ x0j



jxþ x0 þ βx0j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ x0 þ βx0Þ2 þ 8rgr̃

q �

− rg þ 2rg ln
k
2

�
jxþ x0 þ βx0j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ x0 þ βx0Þ2 þ 8rgr̃

q ��	
; ð66Þ

a2in=scðx;x0;x0Þ ¼


1
2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃=ðxþ x0 þ βx0Þ2

q
� 1
��

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃=ðxþ x0 þ βx0Þ2

q : ð67Þ

Clearly, these are rather complex expressions. However, in the case when displacements are large, ρ0 ≫ ρ and βρ0 ≪ ρ0,
we may use the approximation (37), which allows us to expand (66) and (67), to the first order in ρ=ρ0 and βρ0=ρ0, yielding
the following results:

Ainðx;x0;x0Þ ¼ ainðρ0; r̃Þ exp
�
−i
�
ðξinðx · n0Þ þ ηiðx · niÞÞ þ

1

2
ξinβðx0 · n0Þ

�	
eiδφinðρ0;r̃Þ; ð68Þ

Ascðx;x0;x0Þ ¼ ascðρ0; r̃Þ exp
�
i

�
ðξscðx · n0Þ − ηiðx · niÞÞ þ

1

2
ξscβðx0 · n0Þ

�	
eiδφscðρ0;r̃Þ; ð69Þ

where the real-valued factors a2in=sc and phases δφin=scðρ0; r̃Þ are given as

a2in=scðρ0; r̃Þ ¼
h
1
2


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃=ρ20

q
� 1
�i

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃=ρ20

q ; ð70Þ
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δφin=scðρ0; r̃Þ ¼ −k

 
ρ20
4r̃

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃

ρ20

s
−
4rgr̃

ρ20

!

þ 2rg ln kρ0
1

2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃

ρ20

s
� 1

!!
: ð71Þ

Also, the spatial frequencies ξin and ξsc in (68) and (69) are
defined as

ξin=sc ¼ k

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃

ρ20

s
� 1

!
ρ0
2r̃

; ð72Þ

where, again, the upper sign is for ξin and the lower index is
for ξsc.
Note that in the case when angles θ are large, θ ≫ffiffiffiffiffiffiffiffiffiffiffi
2rg=r̃

p
or ρ0 ≫

ffiffiffiffiffiffiffiffiffi
2rgr̃

p
, the amplitude factors (70) reduce

to the known values (see, for instance, [3]), namely

ain¼ 1þOðr2gÞ; asc ¼
2rgr̃

ρ20
þOðr2gÞ; ρ0≫

ffiffiffiffiffiffiffiffiffi
2rgr̃

p
:

ð73Þ

However, the form of the expression (70) allows us to study
the case when ρ0 ≃

ffiffiffiffiffiffiffiffiffi
2rgr̃

p
and ρ0 ≲ ffiffiffiffiffiffiffiffiffi

2rgr̃
p

, which offers a
description of the gravitational scattering of light in the
transition region between the region of geometric optics
and the weak interference region, and then toward the
optical axis. This allows us to describe the entire process of
gravitational scattering of light from the wave-optical
standpoint.
To further emphasize the point above, we show

the results that we obtained for the amplification factors
a2in=sc and the spatial frequencies ξin=sc, in relation to models
that are used to describe gravitational microlensing. As
we discussed in [8], the spatial frequencies ξin=sc can be
expressed as

ξin=sc ¼ k

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃

ρ20

s
� 1

1
CA ρ0

2r̃
¼ kθ�;

θ� ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 þ 4θ2E

q
� θ

�
; ð74Þ

where θE ¼ ffiffiffiffiffiffiffiffiffiffiffi
2rg=r̃

p
is the Einstein deflection angle and

θ ¼ ρ0=r̃. The angles θ� are the angles corresponding to
the positions of the observed major and minor images [18–
20]. Furthermore, our results match the expressions used to
describe light amplification observed in the microlensing
experiments. If the source is offset from the optical axis by
a small amount, it is lensed into two images that appear in
line with the source and the lens and close to the Einstein
ring. Because the size of the Einstein ring is so small, the
two images of the source are unresolved and the primary
observable is their combined amplification. Using (70) we
obtain the combined light amplification A by adding the
two amplification factors of the major and minor images,
which yields the familiar expression

A ¼ a2in þ a2sc ¼
1þ 4rgr̃=ρ20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8rgr̃=ρ20

q ¼ u2 þ 2

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 4

p ;

where u ¼ θ

θE
: ð75Þ

Expressions (74) and (75) establish the correspondence
between our analysis in this section and well-known
models of microlensing [18–20]. Using our approach,
we were able to present a previously unavailable descrip-
tion of microlensing phenomena using Maxwell’s vector
theory of the EM field. Our modeling approach can be
further extended to incorporate other important features
that allow for a better description of the source, the lens,
and the backgrounds, including polarization of the incident
EM wave, nonlinear propagation effects, dispersion in the
interstellar medium, contribution of the zodiacal back-
ground and others that are yet unavailable in the models
of microlensing phenomena.

B. Image EM field and intensity in the focal
plane of the telescope

With the expressions above, we may now develop the
EM field that constitutes the image and evaluate its
intensity in the focal plane of an imaging telescope. To
derive the amplitudes of the EM field in the focal plane of
the telescope that correspond to (68) and (69), we need to
put these expressions in (12). The corresponding integrals
over d2x are easy to evaluate. As a result, similarly to [8],
we derive the amplitudes of the two EM waves on the
optical telescope’s focal plane in the following form:

Ainðxi;x0;x0Þ ¼
�
kd2

8f

��
ain

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
þOðr2gÞ

�
eiðkfð1þx2i =2f

2Þþδφinðρ0;r̃Þþðπ=2Þ−ð1=2Þξinβρ0 cosðϕ0−ϕ0ÞÞ; ð76Þ

Ascðxi;x0;x0Þ ¼
�
kd2

8f

��
asc

�
2J1ðv− 1

2
dÞ

v−
1
2
d

�
þOðr2gÞ

�
eiðkfð1þx2i =2f

2Þþδφscðρ0;r̃Þþðπ=2Þþð1=2Þξscβρ0 cosðϕ0−ϕ0ÞÞ; ð77Þ
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where the spatial frequencies v� are defined as

vþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2in þ 2ξinηi cosðϕi − ϕ0Þ þ η2i

q
and v− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2sc − 2ξscηi cosðϕi − ϕ0Þ þ η2i

q
: ð78Þ

Remembering the time-dependent phase from (64), we substitute this expression in (14) and, after time averaging, we
derive the Poynting vector of the EM wave in the focal plane of the imaging telescope. As a result, in the region of the
geometric optics, where only the incident EM wave is present, the intensity of the EM field in the focal plane sensor is
derived using (76), resulting in expression independent on ρ0 and ϕ0:
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2
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�
: ð79Þ

As in the region of weak interference both incident and scattered waves are present, the field intensity in the focal plane of
the imaging telescope is derived using the sum of the two solutions, (76) and (77), yielding

Sweak-intðxi;x0;x0Þ ¼ c
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ð80Þ

also independent on ρ0 and ϕ0. Similar simplifying assumptions, based on the behavior of the ratios involving the Bessel
function 2J1ðv� 1

2
dÞ=v� 1

2
d in these regions [8], are applicable here. Therefore, the intensity distribution pattern in the weak

interference region takes the following simplified form:

Sweak-intðxi;x0;x0Þ ¼ c
8π

E2
0

z20

�
kd2

8f

�
2
�
a2in

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
2

þ a2sc

�
2J1ðv− 1

2
dÞ

v− 1
2
d

�
2

þOðr2gÞ
�
: ð81Þ

Substituting the resulting expressions (79) and (81) in (15), we compute the convolved PSFs for the two regions:

μgeom-optðxi;x0;x0Þ ¼
�
kd2

8f

�
2
�
a2in

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
2

þOðr2gÞ
�
; ð82Þ

μweak-intðxi;x0;x0Þ ¼
�
kd2

8f

�
2
�
a2in

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
2

þ a2sc

�
2J1ðv− 1

2
dÞ

v−
1
2
d

�
2

þOðr2gÞ
�
: ð83Þ

Substituting this result (45) into (16), we derive the expression that may be used to determine the intensity distribution for
the signals received in these two regions. Again assuming uniform surface brightness, and noticing that (82) and (83) do not
depend on ρ0 and ϕ0, we can easily evaluate the integral. This results in the following intensities to be observed in the focal
plane of the imaging telescope (see Fig. 7):

Igeom-optðxi;x0Þ ¼ πBs

�
kd2

8f

�
2 R2

⊕

z20

�
a2in

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
2

þOðr2gÞ
�
; ð84Þ

Iweak-intðxi;x0Þ ¼ πBs

�
kd2

8f

�
2 R2

⊕

z20

�
a2in

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
2

þ a2sc

�
2J1ðv− 1

2
dÞ

v−
1
2
d

�
2

þOðr2gÞ
�
: ð85Þ
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Equations (84) and (85) describe the intensity distribu-
tions that correspond to the imaging in two different optical
regions behind the Sun. They describe the spots of light
corresponding to incident and scattered waves, that are
given by the terms containing vþ and v−, correspondingly.
Examining (84) and (85) in conjunction with (78), we see
that these expressions nearly vanish for most values of v�,
except when v� becomes zero which happens, when
ηi → ξin=sc. When this happens, we observe a spot that is
outside the Einstein ring (for ηi → ξin) describing the major
image and the other one inside the ring (for ηi → ξsc)
describing the minor image. This approach provides a
wave-optical treatment for the microlensing phenomena
that is usually described by invoking the language of
geometric optics [20].
Examining (78), we see that because the combinations

ξin
1
2
d and ξsc

1
2
d are rather large, expression (84) is almost

zero everywhere except for one point where the argument
of the Bessel function vanishes. Taking the limit ηi → ξin in
(84), we obtain

Igeom-optðξini ;x0Þ

¼πBs

�
kd2

8f

�
2R2

⊕

z20

��
2J1ðξindcos12ðϕi−ϕ0ÞÞ

ξindcos12ðϕi−ϕ0Þ
�

2

þOðr2gÞ
�
;

ð86Þ

where to show the dominant behavior of this expression in
the geometric optics region, we used the value for ain from
(73). This expression describes one peak corresponding to
the incident wave whose intensity is not amplified by the
SGL. It is for the major image corresponding ξin, which
appears always outside the Einstein ring. Similarly to (86),
we take the limit in ηi → ξsc in the expression (85) and
obtain

Iweak-intðξsci ;x0Þ

¼ πBs

�
kd2

8f

�
2R2

⊕

z20

��
2J1ðξindcos12ðϕi−ϕ0ÞÞ

ξindcos
1
2
ðϕi−ϕ0Þ

�
2

þ
�
2rgr̃

ρ20

�
2
�
2J1ðξscdsin1

2
ðϕi−ϕ0ÞÞ

ξscdsin1
2
ðϕi−ϕ0Þ

�
2
�
; ð87Þ

where to explicitly demonstrate the behavior of Iweak-int, we
used the values for ain=sc from (73).
Equation (87) describes two images with uneven bright-

ness, one depending on vþ from (78), characteristic of the
incident wave, that appears outside the Einstein ring and the
other image given by the v−-dependent term and scaled by
the factor ð2rgz̄=ρ20Þ2, corresponding to the scattered wave,
that appears inside the Einstein ring.

V. POWER RECEIVED AT THE IMAGE OF THE
EINSTEIN RING

Figure 5 shows the signals from the directly imaged
region and from the rest of the source, as received at the
Einstein ring at the focal plane of an optical telescope. The
thickness of the Einstein ring is determined by the resolution
of the diffraction-limited telescope, given as ∼λ=d [from
(5)]. Equations (31) and (58) describe the intensities of light
received from the directly imaged region IðρiÞ and blur from
the rest of the planet, Iblurðxi;x0Þ, correspondingly. These
expressions describe the signal intensity.
In determining the useful area in the focal plane of an

optical telescope, we observe that a meter-class telescope
positioned in the strong interference region of the SGL will
not be able to resolve the thickness of the Einstein ring given
as 2r⊕ ¼ ðz̄=z0Þ2R⊕; for that, a telescope aperture of 2r⊕
would be required. However a meter-class telescope will be
able to resolve the circumference of the ring, lER¼
2π

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
, at an angular resolution characterized by λ=d.

There are two natural ways to use the information present
in the Einstein ring: (i) to use the total power deposited
within the Einstein ring, as seen by the diffraction-limited
telescope, or (ii) to measure brightness variations of the
Einstein ring along its circumference. Measuring the total
power allows for a straightforward signal estimation.
Measuring brightness variations along the Einstein ring
represents another valuable observable that can help
improve image quality and also reduce unwanted light
contamination from nearby off-image sources. Here, we
focus on themeasuring the total power; we leave the topic of
measuring brightness variations for a separate discussion.
As shown in Fig. 5, the Einstein ring is seen in the focal

plane of an imaging telescope as an annulus of unresolved
width, with radius determined from (24) as α ¼ ηi, yielding
ρER ¼ f

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
. Therefore, the useful signal received in

the focal plane of a diffraction-limited telescope is received
from the entire circumference of the Einstein ring that
occupies the annulus within the two radii, ρ�ER, given as

ρ�ER ¼ f

� ffiffiffiffiffiffiffi
2rg
z̄

r
� λ

2d

�
: ð88Þ

As a result, to estimate the power received in the focal
plane of a diffraction-limited telescope from a distant,
extended and resolved source, we need to integrate the
intensities (31) and (58) over the focal plane corresponding
to the annulus between the radii (88).

A. Power in the focal plane from the directly
imaged region

Before considering the power deposited at the annulus
around the Einstein ring corresponding to the signal
received from the directly imaged region, we first compute
the total power deposited by this signal in the entire focal
plane. For this, we take (31) and derive the following:
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dϕi
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IdirðρiÞρidρi ¼ πBs
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Z
2π

0

dϕi

Z
∞

0

ρidρi

�
2

ðα2 − η2i Þ 12 d
�
αJ0

�
ηi
1

2
d

�
J1

�
α
1

2
d

�

− ηiJ0

�
α
1

2
d

�
J1

�
ηi
1

2
d

���
2

: ð89Þ

To evaluate this integral, we remember the identity

Z
d=2

0

ρdρJ0ðαρÞJ0ðηiρÞ ¼
�
d
2

�
2 1

ðα2 − η2i Þ 12 d
�
αJ0

�
ηi
1

2
d

�
J1

�
α
1

2
d

�
− ηiJ0

�
α
1

2
d

�
J1

�
ηi
1

2
d

��
: ð90Þ

With the help of (90) and (24), we present (89) as

P0
fp-dir ¼ πBs

μ0d2

4z̄2

Z
d=2

0

ρdρJ0ðαρÞ
Z

d=2

0

ρ0dρ0J0ðαρ0Þ
Z

2π

0

dϕi

Z
∞

0

ηidηiJ0ðηiρÞJ0ðηiρ0Þ: ð91Þ

The last integral in (91) is just the semi-infinite integral
of a Fourier-Bessel transform (Hankel transform) that is
bounded at ρ → 0 and vanishes at ρ → ∞, constituting the
orthogonality relation on a semi-infinite interval [21]:

Z
∞

0

qdqJnðqρÞJnðqρ0Þ ¼
δðρ − ρ0Þ

ρ0
: ð92Þ

Using (92) in (91), we have

P0
fp-dir ¼ Bs

μ0π
2d4

16z̄2

�
J20

�
α
1

2
d

�
þ J21

�
α
1

2
d

��

≡ Pdir ¼
Bs

z20
π

�
1

2
d

�
2

π

�
1

2
D

�
2 4

ffiffiffiffiffiffiffiffiffi
2rgz̄

p
d

; ð93Þ

where Pdir is the power of the EM field received from the
directly imaged region of the resolved target and measured
at the entrance of the telescope (just in front of the convex
lens) as was derived in [7] by integrating the energy density
over the aperture. Equation (93) confirms that in the case of
imaging with the SGL, the total energy is conserved. This is
despite the fact that the PSF (2) diminishes as ∝ 1=ρ as the
distance from its optical axis, ρ, increases [3].
Now we can estimate the power deposited at the annuals

around the Einstein ring corresponding to the signal
received from the directly imaged region, Pfp-dir. For this,
we take (31) and integrate it over the area seen by the
diffraction-limited telescope:

Pfp-dir ¼
Z

2π

0

dϕi

Z
ρþER

ρ−ER

IdirðρiÞρidρi

¼ πBs

�
kd2

8f

�
2μ0d2

4z̄2

Z
2π

0

dϕi

Z
ρþER

ρ−ER

ρidρi

�
2

ðα2−η2i Þ12d

×
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αJ0

�
ηi
1

2
d

�
J1

�
α
1

2
d

�
−ηiJ0

�
α
1

2
d

�

×J1

�
ηi
1

2
d

���
2

: ð94Þ

To consider practical applications of the SGL, it is
convenient to represent Pfp-dir as a fraction of the total
power incident at the telescope entrance, Pdir, namely

Pfp-dir ¼ ϵdirPdir: ð95Þ

The quantity ϵdir is the encircled energy ratio (see Fig. 8)
that describes the ratio of the power deposited within the
first few Airy rings of the diffraction pattern seen at the
focal plane of a convex lens to the total energy incident on a
telescope. Similarly, in our case, ϵdir describes the fraction
of the total energy incident on the telescope from the
directly imaged region that is deposited around the Einstein
ring as seen by a diffraction-limited telescope.
To evaluate ϵdir, we introduce a new variable pi and new

integration limits corresponding to (88):

pi ¼ ηi
1

2
d ¼ πd

λf
ρi; and p�

ER ¼ α
1

2
d� π

2
; ð96Þ

where ηi and α are from (24). Then, from (93) and (94),
we have

ϵdir ¼
1

2ðJ20ðα 1
2
dÞ þ J21ðα 1

2
dÞÞ
Z

pþ
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pidpi

�
2

ðα 1
2
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2
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��
2

: ð97Þ
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As the quantity ðα 1
2
dÞ is rather large, α 1

2
d≃

24.49ð1 μm=λÞðd=1mÞð650 A.U.=z̄Þ1=2, we may simplify
(97) by using the asymptotic approximation of the Bessel
functions (33), which results in the following:

ϵdir ¼
1

π

Z
αð1=2Þdþðπ=2Þ

αð1=2Þd−ðπ=2Þ
dpi

�
sinðα1

2
d−piÞ

α1
2
d−pi

−
cosðα1

2
dþpiÞ

α1
2
dþpi

�
2

≃0.77; ð98Þ

which indicates that only ∼77% of the energy incident on
the telescope from the directly imaged region is deposited
within the annulus with thickness of λ=d centered at the
Einstein ring.
As a result, the power received from the directly imaged

region on a resolved exoplanet and measured at the Einstein
ring in the focal plane of a diffraction-limited telescope,
with ϵdir from (98), may be given as

Pfp:dir ¼ ϵdirBs
μ0π

2d4

16z̄2

�
J20

�
α
1

2
d

�
þ J21

�
α
1

2
d

��

≃ ϵdirBs
π2d3

4z̄

ffiffiffiffiffiffiffi
2rg
z̄

r
; ð99Þ

where we used the approximations (33) and the definitions
(24). We note that the power (99) is independent of the
observingwavelength and the distance to the target; however
it is a strong function of the telescope’s aperture, as expected.

B. Power in the focal plane due to blur
from the rest of the planet

Similarly to the discussion on the signal from the directly
imaged region, we first compute the total power deposited
in the focal plane from the rest of the extended, resolved
exoplanet. For this, we take (50) and form the quantity

P0
fp:blurðx0Þ ¼

Z
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0
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Using the variable pi given by (96), that yields

u�
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d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α
1

2
d

�
2 ∓ 2α

1

2
dpi cosðϕi − ϕ00Þ þ p2

i

s
; ð101Þ

the last integral in the expression (100) is evaluated as
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ρidρi
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: ð102Þ

The integrand in (102) effectively behaves akin to a delta
function as it predominantly selects points on the Einstein
ring, as shown in (51). This result allows us to express
(100) as

P0
fp:blurðx0Þ ¼ Bs

π2d3

4z̄2
μ0
πα

�
2r⊕
d

ϵðρ0Þ − 1

�
≡ Pblurðx0Þ;

ð103Þ

where ϵðρ0Þ is given by (53) and Pblurðx0Þ is the total
integrated flux (i.e., power) received from the area on the

source which is outside the directly imaged region,
as given by Eq. (30) of [7]. Therefore, our results describing
the intensity distribution due to the blur at the focal plane
of an imaging telescope (50) and those derived for photo-
metric imaging in [7], where we estimated the total
power incident on the aperture of that telescope, are also
equivalent.
Now, similarly to (100), we can estimate the power

deposited at the annulus around the Einstein ring corre-
sponding to the blur signal, Pblur. For this, we take (50) and
integrate it over the area seen by the diffraction-limited
telescope:
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To simplify (104), similarly to (95), it is convenient to
introduce the encircled energy factor ϵdir for the blur
contribution:

Pfp-blurðx0Þ ¼ ϵblurPblurðx0Þ: ð105Þ

As we integrate over dϕi for the entire period of ½0; 2π�, the
factor ϵblur may be given in a very concise form. Thus, with
the help of (103), (100) and the variable pi from (96)
yielding u� 1

2
d given by (101), after numerical integration,

we have

ϵblur ¼
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8π
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�
≃ 0.69; ð106Þ

independent of the angle ϕ00 present in (101). This result
suggests that only ∼69% of the energy incident on the
telescope from the area outside the directly imaged region
is deposited within the annulus with thickness of λ=d
centered at the Einstein ring. Because of the diffraction
within the telescope, a significant part of the remaining
energy is deposited at the center of the focal plane and in
the side lobes of the diffraction pattern, as seen in Fig. 5.
Therefore, the power received from outside the directly

imaged region of a resolved source and measured at the
Einstein ring in the focal plane of a diffraction-limited
telescope, with ϵblur from (106), is given as

Pfp-blurðρ0Þ ¼ ϵblurBs
π2d3
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�
;

ð107Þ

where we used (33) and (24) to simplify the result. We note
that the power (107) is also independent of the observing
wavelength but is inversely proportional to the distance to
the source.

As a result, the total power received from the entire
exoplanet,

Pfp-exoðρ0Þ ¼ Pfp-dir þ Pfp-blurðρ0Þ; ð108Þ

at the location of the Einstein ring in the focal plane of a
diffraction-limited telescope with the help of (99) and (107)
is given as
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ð109Þ

which is similar to the result obtained in [7] for the case of
photometric imaging of extended objects with the SGL.

C. Power in the focal plane from an off-image source

Similarly to (104), we may evaluate the energy received
at the focal plane corresponding to intensity (58). We can
do that by integrating (58) over the focal plane of the
imaging telescope, as we did for (31) and (50), namely
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Similarly to the derivation of Pfp-blurðρ0Þ above, this
expression results in the following:
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Pfp-offðρ0Þ¼ ϵblurBsπ
2d2

R⊕

2z0

ffiffiffiffiffiffiffi
2rg
z̄

r
βðρ0Þ; ρ0 ≥ r⊕; ð111Þ

which is equivalent to ϵblurPoffðρ0Þ, where Poff is the power
received for off-source pointing, as given by Eq. (38) of [7]
and βðρ0Þ is from (60). Therefore, our results describing the
intensity distribution due to the blur at the focal plane of an
imaging telescope for off-source pointing (58) and those
derived for photometric imaging in [7] are complementary.
Result (111) may be used, in particular, to model light

contamination from the parent star, which as shown in
Fig. 5 (right) contributes two spots at the Einstein ring that
may be masked by an appropriate management of the
focal plane.

D. Power in the focal plane at a large
distance from the optical axis

Once we move far away from the optical axis, the power
deposited in the focal plane of the optical telescope is
computed with the intensity distributions (84) and (85) for
the geometric optics and weak interference regions, corre-
spondingly. When we integrate over the focal plane, we see
fromFig. 5 that the two images corresponding to the incident
and scattered waves are seen in the focal plane as unresolved
circles, with radii determined from (24) and (72) as
ηi ¼ ξin=sc. Therefore, the useful signal received in the focal
plane of a diffraction-limited telescope occupies the annulus
between the two radii, ρ�in=sc, that from (72) are given as
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As a result, the variable pi from (96) varies within different
radii:
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2
: ð113Þ

Following the approach that was developed in Sec. V B,
with the help of (84) and (85), we compute the power
deposited in the focal plane in the geometric optics and
weak interference regions, which take the form

Pfp-geom-optðx0Þ ¼
Z

2π

0

dϕi

Z
ρþin

ρ−in

Igeom-optðxi;x0Þρidρi

¼ ϵgeom-optBsπ
2d2

R2
⊕

4z20
a2in; ð114Þ

Pfp-weak-intðx0Þ ¼
Z

2π

0

dϕi

Z
ρþsc

ρ−sc

Iweak-intðxi;x0Þρidρi

¼ ϵweak-intBsπ
2d2

R2
⊕

4z20
ða2in þ a2scÞ; ð115Þ

where the encircled energies for these regions with the help
of (102) are given as

ϵgeom-opt ¼
1

4π

Z
2π

0

dϕi

Z
pþ
in

p−
in

pidpi

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
2

≃ 0.69;

ð116Þ

ϵweak-int ¼
1

4πða2in þ a2scÞ
�
a2in

Z
2π

0

dϕi

Z
pþ
in

p−
in

pidpi

�
2J1ðvþ 1

2
dÞ

vþ 1
2
d

�
2

þ a2sc

Z
2π

0

dϕi

Z
pþ
sc

p−
sc

pidpi

�
2J1ðv− 1

2
dÞ

v− 1
2
d

�
2
�
≃ 0.69:

ð117Þ

We see that the power deposited at the foal plane of the
optical telescope is amplified by the factors a2in and a2sc
which, according to (75), are getting larger as the deviation
from the optical axis, ρ0, decreases. Thus, as we move
closer to the optical axis, amplification gets larger and once
we enter the strong interference region it is given by (109).
Finally, we mention that sources at moderate distances

from the parent star do not contribute to the signal
measured at the Einstein ring. As their diffraction-limited
images will be centered at the angles ξin=sc given by (72),

they will not bring light contamination to the Einstein ring
and, thus, they may be ignored in the relevant SNR
analysis.

E. Anticipated signals for imaging an exo-Earth

We may now estimate the signals that could be expected
from realistic targets when they are imaged with the SGL.
We consider a planet identical to our Earth that orbits a star
identical to our Sun. The total flux received by such a target
is the same as the solar irradiance at the top of Earth’s
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atmosphere, given as I0 ¼ 1366.83 W=m2. Approximating
the planet as a Lambertian sphere illuminated from the
viewing direction yields a Bond spherical albedo [22] of
2=3π, and the target’s average surface brightness becomes
Bs ¼ ð2=3πÞαI0, where we take Earth’s broadband albedo
to be α ¼ 0.3 and assuming that we see a fully illuminated
planet at 0 phase angle.
With these parameters, the power Pfp-dir and the photon

flux Qfp-dir ¼ Pfp-dirðλ=hcÞ, corresponding to the signal
received from the directly imaged region of the planet, are
estimated from (99) to be

Pfp-dir ¼ ϵdirαI0
πd3

6z̄

ffiffiffiffiffiffiffi
2rg
z̄

r

¼ 1.33 × 10−17
�

d
1 m

�
3
�
650 A.U.

z̄

�
3=2

W; ð118Þ

Qfp-dir ¼ 66.71

�
d
1m

�
3
�
650A.U.

z̄

�
3=2
�

λ

1 μm

�
photons=s;

ð119Þ

respectively, where we assumed that all light is transmitted
at λ ¼ 1 μm and used ϵdir ¼ 0.77.
Similarly, assuming that the planet is positioned at z0 ¼

30 pc away from us, with the help of (107) [or, equiv-
alently, from (109)] and using ϵblur ¼ 0.69, we estimate the
signal from the rest of the planet as

Pfp-blurðρ0Þ ¼ ϵblurαI0πd2
R⊕

3z0

ffiffiffiffiffiffiffi
2rg
z̄

r
ϵðρ0Þ

¼ 1.59 × 10−14ϵðρ0Þ
�

d
1 m

�
2

×

�
650 A.U.

z̄

�
1=2
�
30 pc
z0

�
W; ð120Þ

Qfp-blurðρ0Þ ¼ 8.01 × 104ϵðρ0Þ
�

d
1 m

�
2
�
650 A.U.

z̄

�
1=2

×

�
30 pc
z0

��
λ

1 μm

�
photon=s: ð121Þ

For comparison, we can also compute the power observed
by a regular telescope (unaided by the SGL). Using (114)
and positioning the telescope at the distance ρ0 ¼ 10R⊙ (so
that a2in ¼ 1) from the SGL optical axis, which corresponds
to the geometric optics regime, typically found in modern
astronomical observations (with ϵgeom-opt ¼ 0.69):

Pfp-geom-optðρ0Þ¼ ϵgeom-optαI0πd2
R2
⊕

6z20
a2in

≃7.03×10−21
�

d
1m

�
2
�
30 pc
z0

�
2

W; ð122Þ

Qfp-geom-optðρ0Þ

¼ 3.54 × 10−2
�

d
1 m

�
2
�
30 pc
z0

�
2
�

λ

1 μm

�
photons=s:

ð123Þ

Using this estimate, we can compare the performance of
a conventional telescope against one aided by the SGL.
The angular resolution (5) needed to resolve features
of size D given by (8) in the target plane requires a
telescope with aperture dD∼1.22ðλ=DÞz0¼1.22ðλ=dÞz̄≃
1.19×105km¼18.60R⊕, which is not realistic. The pho-
ton flux of a d ¼ 1 m telescope can be calculated by
scaling the result (123) by a factor of ðD=2R⊕Þ2≃
5.57×10−7, yielding the value of 1.97×10−8photons=s,
which is extremely small. Comparing this flux with
(119), we see that the SGL, used in conjunction with a
d ¼ 1 m telescope, amplifies the light from the directly
imaged region (i.e., an unresolved source) by a factor
of ∼3.38×109ðd=1mÞð650A.U.=z̄Þ3=2ðz0=30pcÞ2.

F. Noise from the solar corona and detection SNR

The Einstein ring corresponding to a distant target, as
observed from a position in the SGL focal region, is seen
through the bright solar corona, which represents an
important noise contribution that must be considered.
Noise from the solar corona can be mitigated by letting
as little light from the corona reach the instrument as
possible. This is achieved by employing a suitably designed

FIG. 7. Density plot simulating the image seen by the optical
telescope when it is positioned in the region of weak interference,
ρ0 ≳ R⊙ from the optical axis, with the resulting minor and major
images shown in accordance with Eq. (85). The Sun is indicated
with a dashed line, while the Einstein ring is shown as a solid line.
Note that in the region of geometric optics only the major image
remains, as described by Eq. (84).
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solar coronagraph, needed in any case to block direct light
from the Sun but which can also be used to reduce the noise
from the solar corona.
Solar coronagraphy was invented by Lyot [23] to study

the solar corona by blocking out the Sun and reproducing
solar eclipses artificially. Coronagraphs are also considered
to block out light from point sources, such as the host star
of an exoplanet imaged with conventional telescope [24].
The SGL coronagraph is different, as it needs to block the
light from the Sun and the solar corona, leaving visible only
those areas where the Einstein ring appears.
The already available design for the SGL coronagraph

[25] rejects sunlight with a contrast ratio of ∼107. At this
level of rejection, the light from the solar disk is completely
blocked to the level comparable to the brightness of the

solar corona. Taking a further step, we consider two possible
coronagraph concepts. A conventional coronagraph (which
we call a “disk coronagraph”) that blocks light only from the
solar disk and the solar corona up to the inner boundary θ−cor
of the λ=d annulus centered on the Einstein ring, and a
coronagraph that also blocks light outside the outer boun-
dary θþcor of the λ=d annulus centered at the Einstein ring (the
“annular coronagraph”, shown in Fig. 9). Figure 10 shows
the relative angular sizes for the Sun and the Einstein ring, as
heliocentric distance increases.
Compared to the disk coronagraph, the annular corona-

graph reduces the noise contribution from the solar corona
by an additional ∼10%. As the solar corona is quite bright
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FIG. 8. Encircled energy and its normalized distribution for the directly imaged region (97) and the rest of the source (106). Horizontal
axis is in seconds of arc, as seen by a telescope positioned at z̄ ¼ 650 A.U.. The peak at ∼1.600 corresponds to the location of the
Einstein ring.

FIG. 9. The annular coronagraph concept. The coronagraph
blocks light from both within and outside the Einstein ring. The
thickness of the exposed area is determined by the diffraction
limit of the optical telescope at its typical observational wave-
length.

FIG. 10. Angular sizes of the Sun and the diffraction-limited
view of the Einstein ring as functions of heliocentric distance (for
λ ¼ 0.6 μm). As the heliocentric distance increases, the Einstein
ring (together with the entire imaged region) further separates
from the Sun. A coronagraph may have to be able to compensate
for decreasing angular sizes.
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compared to the Einstein ring, the use of an annular
coronagraph is preferred for an SGL imaging instrument.
Consequently, in the estimates that we develop for the
corona contribution, we assume an annular coronagraph
design.

In Appendix A, we estimate the contribution from
the solar corona. Integrating (A16) over the observed
width and circumference of the Einstein ring annulus, we
obtain (A18), which yields the following estimate
(with ϵcor ≃ 0.60):

Pfp-cor ¼ 19.48ϵcorπ2λd
R⊙

z̄

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
6.8
�
1þ 1.89

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
10.2

þ 0.0284

� ffiffiffiffiffiffiffiffiffi
2rgz̄

p
R⊙

�
5.3
	

¼ 4.56 × 10−10
�
1þ 0.79

�
650 A.U.

z̄

�
5.1

þ 0.05

�
z̄

650 A.U.

�
2.65
	�

d
1 m

��
650 A.U.

z̄

�
4.4
�

λ

1 μm

�
W: ð124Þ

This corresponds to the corona photon flux, which is estimated to be

Qfp-cor ¼ 2.29×109
�
1þ0.79

�
650A.U.

z̄

�
5.1

þ0.05

�
z̄

650A.U.

�
2.65
	�

d
1m

��
650A.U.

z̄

�
4.4
�

λ

1 μm

�
2

photons=s: ð125Þ

Assuming that the contribution of the solar corona is removable (e.g., by observing the corona from a slightly different
vantage point) and only stochastic (shot) noise remains, we estimate the resulting SNRC of detecting the signal (convolved
with the SGL, thus, the subscript C) in the solar corona dominated regime as

SNRC ¼ Qfp-blurffiffiffiffiffiffiffiffiffiffiffiffiffi
Qfp-cor

p ¼ 1.68ϵðρ0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0.79ð650 A.U.

z̄ Þ5.1 þ 0.05ð z̄
650 A.U.Þ2.65

q �
d

1 m

�
3=2
�
30 pc
z0

��
z̄

650 A.U.

�
1.7

ffiffiffiffiffiffi
t
1 s

r
: ð126Þ

It is noteworthy to consider the behavior of this SNRC of
(126) with respect to the several parameters involved: (i) It
does not depend on the wavelength. This is because for this
estimate we assumed the presence of an annular corona-
graph. The width of the annulus of such a coronagraph is
∝ λ=d, thus canceling out the wavelength dependence. (A
disk coronagraph would increase the noise contribution
from the corona by ∼10% with a weak wavelength
dependence.) (ii) Within heliocentric ranges of interest,
the SNRC improves almost linearly with the heliocentric
distance. Although the angular size of the Einstein ring
decreases as ∝ 1=

ffiffiffī
z

p
, the plasma contribution diminishes

much faster, as ∝ 1=z̄4.4. Combining these two factors
results in the overall ∝ z̄1.7 behavior of the SNRC. (iii) The
SNRC has a rather strong dependence on the telescope
aperture, behaving as ∝ d3=2. This is, again, due to our use
of the annular coronagraph in deriving the estimate of the
solar corona signal.

VI. IMAGE RECONSTRUCTION WITH THE SGL

In the preceding sections we developed analytical tools
that are needed to estimate the signal levels from various
distant targets. The next step is to understand how these
signals can be measured and used to reconstruct the images
of those targets. We also need to understand the actual
circumstances of signal acquisition, the inevitable noise
that accompanies these observations, and the implied
constraints such as minimum integration times that are
required to acquire signals of sufficient quality.

To address these questions, we need to study the
role of the SGL PSF μSGL from (2) in image formation
and how knowledge of the PSF makes image reconstruction
possible.

A. Image convolution by the SGL

We consider a photometric imaging process, in which a
telescope is used to measure the power (yielding the signal
amplitude) of the signal that enters a telescope with
aperture diameter d. To compute the total power of the
signal that is amplified by the SGL and is received by the
telescope, we convolve the surface brightness of the source,
Bsðx0Þ, by the amplification factor of the SGL, μSGL, given
by (2) and integrate over the aperture by way of the
following quadruple integral [as was first given by Eq. (8)
in [7]]:

Pðx0Þ ¼
μ0
z20

ZZ þ∞

−∞
d2x0Bsðx0Þ

×
Z Z

jxj2≤ðð1=2ÞdÞ2
d2xJ20ðαjx0 þ xþ βx0jÞ; ð127Þ

where α and β are given by (24) and x0, as before, is the
telescope’s position in the image plane. Equation (127)
describes the convolution of the extended source with the
SGL and may be used to estimate the power of the
anticipated photometric signals (see Sec. V and [8]). It
describes a typical power transmission from an extended
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source through the medium with the gain of μSGL and with
the 1=z20 distance dependence.
We observe that integration over d2x in (127) amounts to

averaging of the SGL PSF [which is given after (5) as
μSGL=μ0 ¼ J20ðαjx0 þ xþ βx0jÞ] over the telescope aper-
ture, namely

PSFðjx0þβx0jÞ

¼ 1

πð1
2
dÞ2
ZZ

jxj2≤ðð1=2ÞdÞ2
d2xJ20ðαjxþx0þβx0jÞ: ð128Þ

As the telescope aperture is expected to be significantly
larger than the spatial wavelength of the PSF (i.e., αd ≫ 1;
see relevant discussion in [8]), the integral in (127) can be
easily evaluated. For this, it is instructional to express the
coordinates on the source plane x0 via those measured on
the image plane x00, which can be done with the help of (6)
and (24), resulting in x0 ¼ −x00=β. Next, following [7], we
split the argument of the Bessel function into two intervals
jx0 − x00j ≪ jxj < 1

2
d and jx0 − x00j ≥ 1

2
d, which is equiv-

alent to separating the integration over the directly imaged
region and the rest of the exoplanet done in preceding
sections. Using the approach demonstrated in Appendix B,
we present the averaged SGL PSF in the form of (B12):

PSFðjx0 þ βx0jÞ≡ PSFðjx0 − x00jÞ ¼ 1

πα

4

d
μðjx0 − x00jÞ;

ð129Þ

with the factor μðjx0 − x00jÞ having the following form:

μðjx0 − x00jÞ ¼
(
ϵðjx0 − x00jÞ; 0 ≤ jx0 − x00j ≤ 1

2
d;

βðjx0 − x00jÞ; jx0 − x00j > 1
2
d;

ð130Þ

and where ϵðjx0 − x00jÞ and βðjx0 − x00jÞ are from (B9) and
(B11), correspondingly:

ϵðjx0 − x00jÞ ¼ 2

π
E

��
2jx0 − x00j

d

�
2
	

and

βðjx0 − x00jÞ ¼ 2

π
E

�
arcsin

�
d

2jx0 − x00j
�
;

�
2jx0 − x00j

d

�
2
	
;

ð131Þ

with E½x� and E½a; x� being the elliptic and incomplete
elliptic integrals [17], respectively.

With this, (127) transforms equivalently:

Pðx0Þ

¼ μ0
z20β

2
π

�
1

2
d

�
2 1

πα

4

d

ZZ þ∞

−∞
d2x00Bsð−x00=βÞμðjx0−x00jÞ:

ð132Þ

Assuming uniform irradiance at the top of the exopla-
net’s atmosphere, Bs, we may present the surface brightness
of the source as Bsðx0Þ ¼ Bsαsðx0Þ, where αsðx0Þ is the
exoplanetary albedo. With this, (132) takes the form

Pðx0Þ ¼ Pdir

ZZ þ∞

−∞
d2x00α̂sð−x00=βÞμðjx0 − x00jÞ; ð133Þ

where α̂sð−x00=βÞ ¼ αsð−x00=βÞ=ðπð1
2
dÞ2Þ is the albedo

surface density within the source area selected by the
telescope and Pdir is the power that would be received by
the telescope at a particular position in the image plane from
the source area with the diameter D ¼ b=β [as in (99)]:

Pdir ¼
μ0
z20β

2
π

�
1

2
d

�
2 4

d
1

πα
π

�
1

2
d

�
2

Bs ¼ Bs
π2d3

4z̄

ffiffiffiffiffiffiffi
2rg
z̄

r
:

ð134Þ

Expression (133) together with (130) exhibits essentially
the same structure as (108), where the total power received
by the telescope is a sum two components: the power
received from the directly imaged region and that from the
rest of the planet. At any particular telescope position in the
image plane x0i, the signal from the directly imaged region
Pdirαsi is overwhelmed by the blur from the rest of the
exoplanet and it is therefore not directly observable.
However, as we shall discuss in the next subsection, it is
recoverable after deconvolution.
For imaging purposes, we are interested in reconstruct-

ing the surface albedo αðx0Þ from a series of measurements
of Pðx0Þ. This requires inverting the convolution operator,
represented by the double integral in (133).
Computationally, this is best accomplished by way of the

Fourier quotient method, taking advantage of the convo-
lution theorem [26], according to which the inverse can be
carried out using simple division after a two-dimensional
Fourier transform into the spatial frequency domain. This
approach also makes it easy to make use of deblurring and
spatial filtering algorithms that exist and are applicable for
many deconvolution or image deblurring problems [27].
Our present goal is more modest: Wewish to estimate the

“deconvolution penalty,” the amount by which the decon-
volution process amplifies noise.
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B. Deconvolution in matrix form and noise

To understand the effect of deconvolution on signal and
noise, we first discretize the integral in (133) by replacing
the infinite integration limits with a finite integration area
that fully covers the source, rim⊕ ≥ r⊕ and then dividing this
area into N equal nonoverlapping area elements of size
∼d2; thus, N ¼ πrim 2

⊕ =ðπð1
2
dÞ2Þ ¼ ð2rim⊕ =dÞ2. We charac-

terize the positions of each of these source elements
projected in the image plane as x00

j (1 ≤ j ≤ N). We define
the mean surface albedo ᾱsj for the jth surface element
defined by the jx00

j − x00j < 1
2
d distance from position x00

j as

ᾱsj ¼
Z Z

jx00j−x00j<ð1=2Þd
d2x00α̂sð−x00=βÞ

≡ 1

πð1
2
dÞ2
Z Z

jx00
j−x

00j<ð1=2Þd
d2x00αsð−x00=βÞ: ð135Þ

Next, we choose N measurement locations x0i in the image
plane that satisfy x0i − x00

i ¼ 0.
With these notations, a discretized version of Eq. (133)

may be given as

Pðx0iÞ ¼ Pdir

XN
j¼1

ðδij þ βðjx0i − x00
j jÞð1 − δijÞÞᾱsj

¼ Pdir

XN
j¼1

Cijᾱsj; ð136Þ

where we introduced the convolution matrix

Cij ¼ δij þ βðjx0i − x00
j jÞð1 − δijÞ; ð137Þ

which, with the help of (B16), may be given in the
following approximate form:

Cij ¼ δij þ
d

4jx0i − x00
j j
ð1 − δijÞ or

Cij ¼ δij

�
1 −

d
4jx0i − x00

j j
�
þ d
4jx0i − x00

j j
: ð138Þ

The quantity jx0i − x00
j j here is distance between the ith

telescope location x0i and the projected directly imaged
location x00

j (as introduced in Sec. VI A) of the jth source
surface element, both located in the image plane.
As the relationship between the Pðx0iÞ and αsj is linear,

recovering the latter from the former, that is, deconvolution,
is accomplished easily in principle using matrix inversion:

αsi ¼
1

Pdir

XN
j¼1

C−1
ij Pðx0jÞ: ð139Þ

In practice, this is not a viable approach given the extreme
size of the convolution matrix (e.g., 1012 elements for a

megapixel image) and the resulting computational burden
and numerical instabilities. However, this representation of
the deconvolution process permits us to study its properties
and, in particular, its impact on noise.
We model measurement noise as uniform, uncorrelated

Gaussian noise of magnitude σ. The contribution of noise is
introduced in (139) using root-mean-square addition,
where the estimate for α̂si is obtained as

α̂si ¼
1

Pdir

�XN
j¼1

C−1
ij Pðx0jÞ þ

�XN
j¼1

ðC−1
ij Þ2

�
1=2

σ

�

¼ αsi þ
1

Pdir

�XN
j¼1

ðC−1
ij Þ2

�
1=2

σ; ð140Þ

where α̂si now represents the estimate of the recovered
signal in the presence of noise. We need to understand
how this deconvolution process treats the signal Pðx0iÞ and
the noise σ differently. Specifically, given the observed
SNR [again, as in (126), denoted with the subscript C for
convolved],

SNRC ¼ hPðx0iÞi
σ

; ð141Þ

we wish to estimate the SNR of the recovered signal
(denoted using the subscript R) after deconvolution:

SNRR ¼ hαsii
1

Pdir
ðPN

j¼1ðC−1
ij Þ2Þ1=2σ

: ð142Þ

To do so, we need to be able to estimate the behavior of the
deconvolution matrix C−1

ij .

C. Approximating the deconvolution matrix
to compute the SNR

To approximate Cij (138), we first observe that its
diagonal elements are identically 1. Its off-diagonal ele-
ments are all less than 1. The largest off-diagonal element is
determined by the distance d between adjacent area
elements yielding the value 1=4. The rest of the off-diagonal
elements of Cij are smaller than this value. This leads us to
approximate Cij by the form

Cij → C̃ij ¼ μδij þ νUij; with μ ¼ 1 − ν; ð143Þ

where ν ≪ 1 is a constant, δij is the unit matrix andUij is the
“everywhere one” matrix, every element of which is equal
to 1. [Note that (143) resembles the structure of (138).] We
choose ν to be

ν ¼ hCijii≠j; ð144Þ

that is to say, ν is the average value of the off-diagonal
elements of Cij. We can easily compute ν for large N by
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replacing the summationwith an integral over the observable
image areaA¼Nπð1

2
dÞ2 (orA¼Nd2 if a square imaging area

is used) corresponding to the source coordinates x00
i and the

corresponding area A for the image coordinates x0i. Using
the relevant components of the PSF from the matrix form
(138) and that form (B16), we compute

ν ¼ 1

NðN − 1Þ
�XN

i¼1

XN
j¼1

Cij −
XN
i¼1

Cii

�

¼ 1

A2

Z Z
A
d2x0

Z Z
A
d2x00 d

4jx0 − x00j ∼
1

a
ffiffiffiffi
N

p ; ð145Þ

where the value of a depends on the shape of the integration
area A. For a circular integration area, a ¼ 1.18, while for a
square integration area, it is a ¼ 1.35.
The inverse of C̃ij from (143) is easily computed:

C̃−1
ij ¼ 1

μ
δij −

ν

μðμþ νNÞUij: ð146Þ

This form allows us to estimate the effect of deconvolution
on signal and noise. For this, we assume a uniform signal
Pðx0iÞ ¼ hPðx0iÞi≡ hPi in (140):

α̂si ¼
1

Pdir

�XN
j¼1

C−1
ij hPi þ

�XN
j¼1

ðC−1
ij Þ2

�
1=2

σ

�
; ð147Þ

and thus the postdeconvolution SNRR is calculated as

SNRR ¼
1
N

P
N
i¼1

P
N
j¼1 C

−1
ij

ð1N
P

N
i¼1

P
N
j¼1ðC−1

ij Þ2Þ1=2
hPi
σ

: ð148Þ

Replacing C−1
ij with C̃−1

ij , we estimate the deconvolution
penalty in the limit of large N:

SNRR

SNRC
¼

1
N

P
N
i¼1

P
N
j¼1 C̃

−1
ij

ð1N
P

N
i¼1

P
N
j¼1ðC̃−1

ij Þ2Þ1=2
¼ μ

νN
∼

affiffiffiffi
N

p : ð149Þ

This deconvolution penalty arises unavoidably, as a
consequence of how the deconvolution process affects
signal versus noise. However, the estimate (149) with
either a ¼ 1.18 or a ¼ 1.35 is rather conservative. Our
numerical simulations confirm that even a simple filter in
the frequency domain, introduced as part of the deconvo-
lution algorithm, especially when applied to realistic
planetary images, can improve the result such that a ¼
Oð10Þ or better. Further improvements are expected with
the use of advanced spatial filtering and deblurring tech-
niques. These are currently being investigated and results,
when available, will be reported. For now, we treat a ¼ 10
as a conservative estimate and use it in the next section to

evaluate realistic SNRs and corresponding integra-
tion times.

D. Toward realistic imaging of exoplanets

To assess the value of the estimates obtained in the
processing section, we need to consider them in the context
of realistic imaging scenarios.
We take (121) to represent the estimate of the total

convolved signal received from a uniformly illuminated
source and measured at a particular location in the image
plane, namely hQii ¼ Qfp-blurðρ0Þ. Accounting for the fact
that photons obey Poisson statistics, we estimate the variance
of the signal as being σðQiÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qfp-blurðρ0Þ

p
, resulting in the

SNR of the convolved image as SNR0
C ¼ hQii=σðQiÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qfp-blurðρ0Þ
p

. Using this result in (149) with a ¼ 10, we
obtain the SNR of the deconvolved signal:

SNRR ≥
10ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qfp-blurðρ0Þ

q ffiffiffiffiffiffi
t
1 s

r
: ð150Þ

Given the desired SNRR, Eq. (150) allows us to estimate the
per-pixel integration time tpix:

tpix ≤ 10−2N
SNR2

R

Qfp-blur
¼ 1.25×10−7NSNR2

R

�
1m
d

�
2

×

�
z̄

650A.U.

�
1=2
�
30 pc
z0

��
1 μm
λ

�
s:

ð151Þ

Therefore, from (151) we determine that in the signal-
dominated regime it takes ∼11 s of integration time to reach
SNRR ¼ 7. With ttot ¼ tpixN to be the total integration time
needed to collect data for the entire N-pixel image, using
(151) we see that to recover a high-resolution image with
N ¼ 1024 × 1024 pixels, we need ∼4.5 months of integra-
tion time. A 2-m telescope would compete this task in less
than 50 days.
The short integration times resulting from (150) are

possible for bright exoplanets or other luminous objects,
where the solar corona contribution in not a significant part of
the overall noise budget. However, as we discussed in Sec. V
F, the brightness of the solar corona affects the performance
of the SGL in a significant way. Thus, in the presence of the
solar corona, an estimate similar to (150) may be obtained
directly from the SNR for the signal in the presence of the
solar corona SNRC given by (126). Using this result in (149)
we obtain an estimate for the SNR of the deconvolved image
in the presence of the solar corona as

SNRR ≥
10ffiffiffiffi
N

p Qfp-blurffiffiffiffiffiffiffiffiffiffiffiffi
Qfp-cor

p ffiffiffiffiffiffi
t
1 s

r
: ð152Þ
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This expression yields the following per-pixel integration time tpix in the presence of the solar corona noise:

tpix ≤ 10−2N
Qfp-corSNR2

R

Q2
fp-blur

¼ 3.54 × 10−3NSNR2
R

�
1þ 0.79

�
650 A.U.

z̄

�
5.1

þ 0.05

�
z̄

650 A.U.

�
2.65
�

×

�
1 m
d

�
3
�

z0
30 pc

�
2
�
650 A.U.

z̄

�
3.4

s: ð153Þ

Result (153) suggests that for d ¼ 1 m it could take up to
∼3 × 103 s of integration time per pixel to reach the
SNRR ¼ 7 for an image of N¼100×100¼104pixels.
For z̄ ¼ 650 A.U., this translates in a ttot ¼ tpixN ∼ 1 yr
of total integration time needed to recover the entire 100 ×
100 pixel image of an exoplanet at 30 pc. Using for this
purpose a larger telescope, say d ¼ 2 m, the per-pixel
integration time drops to 390 s, reducing the integration
time required to recover an image with the same number of
pixels to ≲1.5 months of integration time. Use of a 5-m
telescope implies a per-pixel integration time of ∼150 s on
the a 250 × 250 pixel image, for a total integration time
of ∼110 days. Collecting more, redundant data will allow
us to account for the diurnal rotation of the exoplanet and
its variable cloud cover. To compensate for the diurnal

rotation, we may also benefit from a multitelescope
architecture that can reduce the total integration time [4],
while matching the temporal behavior of the target.
However, if the direct spectroscopy of an exoplanet
atmosphere is the main mission objective, this can be
achieved with a single spacecraft. We emphasize that direct
imaging and spectroscopy of an exoplanet at such reso-
lutions are impossible using any of the conventional
astronomical instruments, either telescopes or interferom-
eters; the SGL is the only means to obtain such results.

E. Image reconstruction in the presence of noise

Our estimate for the SNR deconvolution penalty (149)
can be directly compared against simulated exoplanet
image reconstruction at various levels of noise. Since the

FIG. 11. A simulation of the effects of the monopole solar gravitational lens on an Earth-like exoplanet image. Top row, left: A
monochrome image, sampled at 128 × 128 pixels; center: blurred image; right: deconvolution at SNR ∼ 4.5. From [28]. Bottom row,
left: Original RGB color image with a 1024 × 1024 pixel resolution; center: image blurred by the SGL; right: the result of image
deconvolution at an SNR of ∼5.2 per color channel, or combined SNR of ∼9.
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PSF of the SGL is known, convolution and deconvolution
of a simulated image is a relatively straightforward
process [28].
In Fig. 11, we show the results of a simulated con-

volution of an Earth-like exoplanet image with the SGL
PSF and subsequent deconvolution. The top row depicts the
result of deconvolution of a monochrome image of an exo-
Earth, using modest image resolution (128 × 128 image
pixels), reconstructed with an SNR ∼ 4.5 after deconvolu-
tion. According to Eq. (153), an image of this quality may
be achievable in ∼1.1 yr of cumulative integration time
even for a source at a distance of 30 pc, using only a single
d ¼ 1 m telescope, situated at 650 A.U. from the Sun.
Clearly, the SNR and the resulting image quality can be

much improved by using a larger telescope, conducting an
observational campaign at a greater distance from the Sun,
and, of course, using multiple instruments. A much more
ambitious image reconstruction is depicted in the bottom
row of Fig. 11: a high-resolution (megapixel) RGB-color
image of an exo-Earth, reconstructed at SNR ∼ 5.2 per
color channel, for a combined SNR ∼ 9 for the color image.
Even this image quality is within the realm of the feasible if
we consider a target at z0 ¼ 3 pc, observed through the
SGL using d ¼ 2.5 m telescopes at 1000 A.U. from the
Sun. The cumulative integration time needed to obtain this
image is less than 8 yr with a single instrument.
These estimates demonstrate that utilizing the SGL to

obtain a good quality resolved image of an exoplanet of
interest within 30 pc from the Earth is firmly within the
realm of the possible.

VII. DISCUSSION AND CONCLUSIONS

We investigated the image formation process with the
SGL. For that, we analyzed the EM field originating from
an extended, resolved source and received in the focal plane
of an imaging telescope, represented by a thin convex lens.
The complex amplitude of the EM signal in the tele-

scope’s focal plane can be modeled by splitting the signal
into two parts: light from the directly imaged region (the
spot on the distant source that geometrically corresponds to
the imaging telescope’s aperture) and the blur signal that is
received by the telescope from the rest of the source.
Assuming uniform surface brightness within the directly
imaged spot, (32) describes the image of an Einstein ring in
the imaging telescope’s focal plane, as expected. The
expression for blur (46) is given in integral form and
cannot be evaluated analytically in the general case, when
the surface brightness of the imaged source is nonuniform
and an arbitrary function of the source plane coordinates.
We have, however, endeavored to evaluate this integral in
the special case when the source is a disk of uniform surface
brightness. Being able to estimate the magnitude of the blur
in this case in the form of expression (52) provides useful
limits when evaluating the magnitude of the signal and the

anticipated SNR of measurements to be performed with
the SGL.
Far away from the SGL’s optical axis, in the region of

weak interference, we recovered an expression that, as
expected, corresponds to two spots of light of uneven
brightness that are seen by the imaging telescope: one
outside and one inside the nominal radius of the Einstein
ring (which are known as the major and minor images,
correspondingly; see [20]). These correspond to the inci-
dent and scattered wavefronts, respectively, that are pro-
duced by the SGL. In the geometric optics region, the spot
corresponding to the scattered wavefront (i.e., the minor
image) vanishes, as this light is blocked by the opaque
spherical Sun.
The results in this paper extend those obtained in [8],

where a similar analysis was performed for the case of
imaging of point sources. The new results extend our
understanding of the image formation process to the case of
extended, resolved sources positioned at large, but finite
distances from the Sun. In addition, these results are also in
good agreement with those reported in [7] for the case of
photometric imaging where the goal is to measure the total
power received by a telescope as it is positioned at various
locations in the SGL image plane (i.e., the “light bucket”
approach). Here we extended those results all the way to the
focal plane of an optical telescope.
An azimuthally resolved picture of the Einstein ring

due to an extended source opens new possibilities. If the
surface brightness of the source is not uniform, this can
produce variations in brightness along the Einstein ring [as
described by (31) and (50)]. This information on the
azimuthally varying Einstein ring’s brightness may help
improve the effectiveness of image deconvolution.
Similarly, light contamination due to nearby off-image
sources (e.g., the parent star of an exoplanet being imaged)
can contribute to the Einstein ring at specific spots [the case
that is captured by (58)]. In these cases, it makes sense to
collect light not from the entirety of the Einstein ring but
only from specific sections that are less affected by
contamination (Fig. 5). Similarly, light not coming from
the immediate vicinity of the Einstein ring can be largely
ignored by appropriate sampling the Einstein ring in the
telescope focal plane.
We were also able to investigate the most significant

source of noise, the solar corona. We have shown that it is
possible to obtain a detailed image of a distant exoplanet
with integration times consistent with a realistic SGL
mission even in the presence of this noise. We developed
a semianalytical model of the deconvolution process in
order to understand the impact of deconvolution on noise.
We showed that deconvolution amplifies measurement
noise, thus reducing sensitivity. Nevertheless, even for
very distant exoplanets located up to 30 pc from us, a
telescope located in the strong interference region of the
SGL can obtain multipixel images with the realistic mission
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lifetimes. We also note that with the use of multiple
spacecraft, integration times can be significantly reduced,
allowing investigations even in the presence of temporal
variability of the target due to diurnal rotation or changing
surface features (e.g., varying cloud cover). At the same
time, even a single spacecraft may be sufficient to obtain
spectroscopic data that can be used to confirm the presence
of active organic processes on that exoplanet.
The analytical tools developed here may be used to

evaluate the anticipated signal levels from various targets of
interest and sources of local light contamination, as well as
compare these signals against background noise. These
results are important for the design of future imaging
missions to the focal region of the SGL, as they provide
important insight into the various factors that may affect the
performance of these projects.
The properties of the exoplanet (size, distance,

albedo, parent star brightness, etc.), telescope param-
eters (aperture size, optical throughput, etc.), corona-
graph parameters (annular vs disk, contrast ratio, etc.),
increasing heliocentric distance (as the spacecraft
travels along the optical axis), use of multiple tele-
scopes, spectral filtering and other factors may improve
the SNR estimates. However, already at this level, the
analysis that we presented demonstrates that utilizing
the SGL for the purposes of resolved imaging of
distant exoplanets is feasible, providing unique capa-
bilities not available through other means. As such, the
SGL should be further investigated to determine its
most optical practical applications. This work is
ongoing and results, when available, will be reported
elsewhere.
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APPENDIX A: MODELING THE SOLAR
CORONA SIGNAL IN THE FOCAL PLANE

To develop reliable sensitivity estimates for imaging with
the SGL, we need to consider the solar corona, which is the
largest source of photometric noise [6]. For that, we model
the solar corona as a two-dimensional surface containing a
collection of point emitters. Each point x0 emits a spherical
wave, the behavior of which is determined by ∝ eiðkr−ωtÞ=r,
where r is the distance from a point with heliocentric
coordinates ðx0; 0Þ in the corona plane to a point ðx0 þ x; z̄Þ
in the image plane: r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2 þ ðxþ x0 − x0Þ2

p
. In the

case of imaging with the SGL, the characteristic
behavior of x0 is given as jx0j ¼ ρ0 ≃ r⊕ ¼ R⊕z̄=z0 ¼
1.3ðz̄=650 A.U.Þð30 pc=z0Þ km. Also, accounting for the
solar coronagraph [4], the distance jx0j is rather large, being
jx0j ¼ ρ0 ≥ R⊙. With these assumptions and keeping only
the linear terms, the distance r may be expanded as
r ≃ z̄ − ðx · x0Þ=z̄þOððρ2; ρρ0; ρ02Þ=z̄2Þ, yielding the fac-
tor ∝ eiðkz̄−kðx·x0Þ=z̄−ωtÞ=z̄.
Using these assumptions, we consider a spherical EM

wave propagating from a point source in the corona plane
toward the image plane. In the paraxial approximation, in a
cylindrical coordinate system ðρ;ϕ; zÞ, this wave may be
given as

�
Eρ

Hρ

�
¼
�

Hϕ

−Eϕ

�
¼ E0

z̄
eiðkz̄−ωtÞ exp

�
−ik

ðx · x0Þ
z̄

	�
cosϕ

sinϕ

�
;

�
Ez

Hz

�
¼ 0: ðA1Þ

From this expression, similarly to (10), we identify the complex amplitude of the EM wave just in front of the telescope
aperture, which now is given only by the phase factor that is essentially independent on x0. This amplitude allows us to
present (11) as the amplitude of the EM wave in the focal plane of the optical telescope:

Acorðxi;x0Þ ¼ −
eikfð1þx2i =2f

2Þ

iλf

Z Z
jxj2≤ðð1=2ÞdÞ2

d2xe−iðk=z̄Þðx·x0Þe−iðk=fÞðx·xiÞ: ðA2Þ

With this amplitude, similarly to (12) and (13), the EM field in the focal plane of the telescope is given as�
Eρ

Hρ

�
xi

¼
�

Hϕ

−Eϕ

�
xi

¼ E0ðx0Þ
z̄

Acorðxi;x0Þeiðkz̄−ωtÞ
�
cosϕ

sinϕ

�
: ðA3Þ

The phase of the integral in (A2) may be expressed as φðxÞ¼−kððx ·x0Þ=z̄þðx ·xiÞ=fÞ¼−uρ cosðϕ−ϵÞþOðρ2Þ, where
we used (20)–(24), introduced the corona spatial frequency, αc ¼ kρ0=z̄, and defined u as

u¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2cþ2αcηi cosðϕ0−ϕiÞþη2i

q
; cosϵ¼ u−1ðαc cosϕ0 þηi cosϕiÞ; sinϵ¼ u−1ðαc sinϕ0 þηi sinϕiÞ: ðA4Þ
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With these definitions, the integral in (A2) can be easily
evaluated, yielding

Acorðxi;x0Þ ¼ ieikfð1þx2
i =2f

2Þ
�
kd2

8f

��
2J1ðu 1

2
dÞ

u 1
2
d

�
: ðA5Þ

We may now compute the Poynting vector for this EM
wave. For this, we substitute (A5) into (14) and (15) to
recover the conventional PSF of a regular optical telescope
[11,12], which we use to determine the intensity distribu-
tion of the corona signal received in the focal plane of the
optical telescope:

IcorðxiÞ¼
1

z̄2

ZZ
d2x0Bcorðx0Þμcorðxi;x0Þ

¼ 1

z̄2

�
kd2

8f

�
2
ZZ

d2x0Bcorðx0Þ
�
2J1ðu1

2
dÞ

u1
2
d

�
2

; ðA6Þ

where Bcor ≃ E2
cor is the surface brightness of the solar

corona. We use a recent model for the solar corona [29],
which is slightly more conservative (predicting a slightly
higher photon flux) in the region of the corona that is of
interest to us, in comparison to the widely used Baumbach
model [30–33]:

BcorðρÞ ¼ 20.09

�
3.670

�
R⊙

ρ

�
18

þ 1.989

�
R⊙

ρ

�
7.8

þ 5.51 × 10−2
�
R⊙

ρ

�
2.5
	

W
m2 sr

: ðA7Þ

This surface brightness distribution strictly applies only to
the K corona, which dominates the brightness within the
heliocentric ranges ρ ∈ ½R⊙; 2R⊙� (see [34] and Fig. 12).
A coronagraph can be used to block sunlight every-

where, except for the annulus surrounding the Einstein ring
with thickness of λ=d. Therefore, the useful signal will be
received from the annulus within the two radii ρ�cor, which
correspond to the angles θ�cor, given as

ρ�cor ¼ z̄

� ffiffiffiffiffiffiffi
2rg
z̄

r
� λ

2d

�
; θ�cor ¼

ρ�cor
z̄

¼
ffiffiffiffiffiffiffi
2rg
z̄

r
� λ

2d
: ðA8Þ

As a result, the intensity distribution in the focal plane of
the imaging telescope (46) takes the form

IcorðxiÞ¼
1

z̄2

�
kd2

8f

�
2
Z

2π

0

dϕ0
Z

ρþcor

ρ−cor

ρ0dρ0Bcorðρ0Þ

×

�
2J1ðu1

2
dÞ

u1
2
d

�
2

: ðA9Þ

To compute the corresponding power deposited by the
corona in the focal plane, Pcor, we recognize that the
Einstein ring in the focal plane is an unresolved circle with

radius determined from (24) as α¼ηi, yielding ρER¼
f
ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
. Therefore, the useful signal received in the

focal plane of a diffraction-limited telescope occupies
the annulus between the radii ρ�ER (88). Therefore, we take
(A9) and integrate it over the area seen by the diffraction-
limited telescope:

Pfp-cor ¼
Z

2π

0

dϕi

Z
ρþER

ρ−ER

IcorðxiÞρidρi

¼ 1

z̄2

�
kd2

8f

�
2
Z

2π

0

dϕ0
Z

ρþcor

ρ−cor

ρ0dρ0Bcorðρ0Þ

×
Z

2π

0

dϕi

Z
ρþER

ρ−ER

ρidρi

�
2J1ðu 1

2
dÞ

u 1
2
d

�
2

: ðA10Þ

Thus, to determine Pfp-cor we need to evaluate the two
double integrals, which can be done numerically. However,
for estimation purposes, we may simplify this expression.
Considering the parameters involved in the imaging with
the SGL, we may present this expression (A10) as

Pfp-cor ¼ ϵcorPcor; ðA11Þ

where Pcor is the total energy deposited in the focal plane of
the optical telescope given as

FIG. 12. Solar corona brightness from [34]. As heliocentric
distances increase, the Einstein ring further separates from the
Sun. Positions of the Einstein ring for z ¼ 600 A.U. and z ¼
1500 A.U. are shown, both corresponding to distances from the
center of the Sun of ≤ 2R⊙. For such solar separations, the K
corona dominates.
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Pcor ¼
Z

2π

0

dϕi

Z
∞

0

IcorðxiÞρidρi

¼
�

d
4z̄2

�
2
Z

2π

0

dϕ0
Z

ρþcor

ρ−cor

ρ0dρ0Bcorðρ0Þ; ðA12Þ

where we used the variable pi from (96) and also the
relationship (102).
The quantity ϵcor introduced in (A11) is the encircled

energy factor defined as ϵcor ¼ Pfp-cor=Pcor, yielding

ϵcor ¼
1

4π

Z
2π

0

dϕ0
Z

ρþcor

ρ−cor

ρ0dρ0Bcorðρ0Þ
Z

2π

0

dϕi

×
Z
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pidpi
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×
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ρ0dρ0Bcorðρ0Þ: ðA13Þ

As the argument of J1 here is a function of x0,
u1
2
d¼ ½ðkρ0

z̄
1
2
dÞ2þ2kρ0

z̄
1
2
dpi cosðϕi−ϕ0Þþp2

i �1=2, in gen-
eral, ϵcor requires evaluation of two double integrals in
(A13). In our case ρ0 is rather large, ρ0 ≳ ffiffiffiffiffiffiffiffiffi

2rgz̄
p

, varying
within narrow integration limits (A8), corresponding to a
coronagraph that blocks out not just the solar disk but also
parts of the solar corona. Therefore, αc 1

2
d is also con-

strained to behave as ðαc 1
2
dÞ ¼ ðk ρ0

z̄
1
2
dÞ ≃ α 1

2
d� π

2
, where

α is from (24). Taking the mean value yields u 1
2
d≃

ððα 1
2
dÞ2 þ 2α 1

2
dpi cosðϕi − ϕ0Þ þ p2

i Þ1=2 ¼ uþ 1
2
d.

Consequently, the expression for u is now independent of ρ0
and the two double integrals may be evaluated separately,
allowing us to integrate the numerator of (A13) over dϕi.
Numerical evaluation of the remaining terms [similarly to
(106) and (116)] yields the value ϵcor ≃ 0.69. This is
comparable to the value of ϵcor ≃ 0.60 obtained by direct
numerical integration of (A13). In addition, we can also
evaluate (A13) numerically by letting ρþcor → ∞, represent-
ing a coronagraph that blocks only the solar disk; the result
is ϵcor ¼ 0.36. These two coronagraph designs will differ in
engineering complexity, but it is clear that the annular
coronagraph will block more corona light; thus, it is
preferred for imaging with the SGL.
As a result, the power received from the solar corona

within the annulus surrounding the Einstein ring around the
Sun formed by the light from an exoplanet and measured at
the region occupied by the image of that Einstein ring in the
focal plane of a diffraction-limited telescope is given as

Pfp-cor ¼ ϵcor

�
πd2

4z̄2

�Z
2π

0

dϕ0
Z

ρþcor

ρ−cor

ρ0dρ0Bcorðρ0Þ: ðA14Þ

By changing the integration variable from ρ0 to θ ¼ ρ0=z̄
and using (A8), we present (A14) in the equivalent form

Pfp-cor ¼ ϵcorπ

�
1

2
d

�
2
Z

2π

0

dϕ0
Z

θþcor

θ−cor

θ0dθ0Bcorðθ0Þ; ðA15Þ

where the surface brightness BcorðθÞ is developed from the
expression (A7) by expressing R⊙=ρ0 via a new variable
θ ¼ ρ0=z̄ and θ0 ¼ R⊙=z̄, which yields the following
expression for BcorðθÞ:

BcorðθÞ ¼ 20.09

�
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�
θ0
θ

�
18

þ 1.939

�
θ0
θ

�
7.8

þ 5.51 × 10−2
�
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�
2.5
	

W
m2 sr

: ðA16Þ

Figure 13 shows the typical surface brightness of the solar
corona from (A16) as seen at 800 A.U.. It also gives the
position of the Einstein disk as used in the relevant
estimates of the noise from the corona surface brightness.
We can now take the advantage of the corona

model discussed above. We recognize that the two terms
in the expressions for θ�cor given by (A8) have very
different magnitudes, namely θER¼

ffiffiffiffiffiffiffiffiffiffiffi
2rg=z̄

p
≃7.795×

10−6ð650A.U.=z̄Þ1=2 and λ=2d≃5×10−7ðλ=1μmÞð1m=dÞ.
This allows us to integrate (A15) together with
(A16) and expand the results in series of the small
parameter λ=ð2dÞ=θER. For heliocentric ranges z̄∈
½547.8;2500�A.U., we may keep only the leading term
with respect to this parameter, yielding

Pfp-cor¼10.04ϵcorπ2λd
R⊙

z̄

�
3.67

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
17

þ1.94

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
6.8

þ5.51×10−2
�

R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
1.5
	
W
m2

:

ðA17Þ

We can rewrite this expression emphasizing that it is the
middle term within the square brackets that dominates the
region of our interest; the first term becomes significant for

FIG. 13. Typical surface brightness of the solar corona (from
[29]) as seen at 800 A.U., as given by (A16).
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impact parameters less than 650 A.U., whereas the third
term only becomes relevant at 1000 A.U. and beyond:

Pfp-cor ¼ 19.48ϵcorπ2λd
R⊙

z̄

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
6.8

×

�
1þ 1.89

�
R⊙ffiffiffiffiffiffiffiffiffi
2rgz̄

p �
10.2

þ 2.84 × 10−2
� ffiffiffiffiffiffiffiffiffi

2rgz̄
p
R⊙

�
5.3
	

W
m2

: ðA18Þ

These results may now be used to estimate the power
deposited by the solar corona in the focal plane of an
imaging telescope. As such, they allow one to develop SNR
estimates for various imaging scenarios involving the SGL.

APPENDIX B: AVERAGING THE
PSF OF THE SGL

As derived in [2], the PSF of the SGL, PSF ¼
μSGLðx; yÞ=μ0 [as given by (2)], has the form

PSFðx; yÞ ¼ J20ðαjy − xjÞ; ðB1Þ
where α from (24) is given as

α ¼ k

ffiffiffiffiffiffiffi
2rg
z̄

r
¼ 48.976

�
1 μm
λ

��
650 A.U.

z̄

�
1=2

m−1: ðB2Þ

As α is rather large, there are at least 16 oscillations of
J20ðαjxjÞ contained within 1 m. Thus, unless we use a
telescope whose aperture d is very small satisfying the
condition αd≲ 10 or d≲ 10=α ¼ 0.2 m (see [8] for dis-
cussion), a moderate-size telescope will not see those
oscillations but will average them. Therefore, instead of
using the PSF given by (B1) we introduce the PSF averaged
over the telescope aperture:

PSFðxÞ ¼ 4

πd2

Z Z
jyj2≤ðð1=2ÞdÞ2

d2yJ20ðαjy − xjÞ: ðB3Þ

To integrate (B3), we split the integral in two parts,
namely (i) for jy − xj ≤ 1

2
d, or when the integration is

conducted within the aperture d, and (ii) for jy − xj > 1
2
d,

or when the integration is outside d. We introduce a new
variable y − x ¼ u, which in the polar coordinate system
has the form u ¼ ðu;ϕÞ.
For the first integration interval (i.e., with x is within the

aperture or jxj≡ r ≤ 1
2
d), u and ϕ vary within the follow-

ing limits: ϕ ∈ ½0; 2π� and u ∈ ½0; ρðϕÞ�, where, similarly to
the discussion in Sec. III C 1 [see (47)], ρðϕÞ is given as

ρðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
d

�
2

− r2sin2ϕ

s
− r cosϕ: ðB4Þ

With these notations, (B3) takes the form

PSFinðxÞ ¼
4

πd2

Z Z
jyj2≤ðð1=2ÞdÞ2

d2yJ20ðαjy − xjÞ ¼ 4

πd2

Z
2π

0

dϕ
Z

ρðϕÞ

0

udu J20ðαuÞ

¼ 1

2π

Z
2π

0

dϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2r
d

�
2

sin2ϕ

s
−
2r
d
cosϕ

	
2

×

�
J20

�
α
1

2
d

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2r
d

�
2

sin2ϕ

s
−
2r
d
cosϕ

	�
þ J21

�
α
1

2
d

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2r
d

�
2

sin2ϕ

s
−
2r
d
cosϕ

	��
: ðB5Þ

Now we consider the second integration interval where x is outside the aperture or r > 1
2
d. In this case, similarly to the

discussion in Sec. III C 2, u and ϕ vary within different limits, given as ϕ ∈ ½ϕ−;ϕþ�, where ϕ� ¼ � arcsinðd=2rÞ and
u ∈ ½ρ−ðϕÞ; ρþðϕÞ�, where the quantity ρ�ðϕÞ [analogous to (55)] is given as

ρ�ðϕÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
d

�
2

− r2sin2ϕ

s
þ r cosϕ: ðB6Þ

With these notations, (B3) may be integrated:

PSFoutðxÞ ¼
4

πd2

Z Z
jyj2>ðð1=2ÞdÞ2

d2yJ20ðαjy − xjÞ ¼ 4

πd2

Z
ϕþ

ϕ−

dϕ
Z

ρþðϕÞ

ρ−ðϕÞ
udu J20ðαuÞ

¼ 1

2π

4

d2

Z
ϕþ

ϕ−

dϕfρ2þðϕÞðJ20ðαρþðϕÞÞ þ J21ðαρþðϕÞÞÞ − ρ2−ðϕÞðJ20ðαρ−ðϕÞÞ þ J21ðαρ−ðϕÞÞÞg; ðB7Þ

where ϕ� ¼ � arcsinðd=2rÞ and ρ�ðϕÞ is given by (B6).
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Given the fact that the arguments of the Bessel functions
in (B5) and (B7) are large [this is especially true for (B7)],
we may use the approximations for the Bessel functions for
large arguments (33) and simplify these two expressions.
Thus, for (B7) we have

PSFinðxÞ¼
1

πα

4

d
1

2π

Z
2π

0

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
2r
d

�
2

sin2ϕ

s
¼ 1

πα

4

d
ϵðrÞ;

ðB8Þ
where ϵðrÞ is equivalent to (53)

ϵðrÞ ¼ 1

2π

Z
2π

0

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2r
d

�
2

sin2ϕ

s
¼ 2

π
E

��
2r
d

�
2
	
;

ðB9Þ
with E½x� being the elliptic integral [17], which is similar to
(53) obtained for a uniform surface brightness.
Similarly, we have for (B7)

PSFoutðxÞ¼
1

2π

4

d2
2

πα

Z
ϕþ

ϕ−

dϕðρþðϕÞ−ρ−ðϕÞÞ

¼ 1

πα

4

d
1

π

Z
ϕþ

ϕ−

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
2r
d

�
2

sin2ϕ

s
¼ 1

πα

4

d
βðrÞ;

ðB10Þ
where βðrÞ is equivalent to (60)

βðrÞ ¼ 1

π

Z
ϕþ

ϕ−

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2r
d

�
2

sin2ϕ

s

¼ 2

π
E

�
arcsin

�
d
2r

�
;

�
2r
d

�
2
	
; ðB11Þ

with E½a; x� being the incomplete elliptic integral [17]. This
result is similar to (60), which was obtained for a uniform
surface brightness and an off-image telescope pointing.

The similarities between Eqs. (B9) and (B11), on the one
hand, and Eqs. (53) and (60), on the other, though striking,
should not be surprising. The fundamental geometry of the
problem of mapping light from a uniformly illuminated
disk to a location in the image plane vs the geometry of
mapping light from a point source to the uniformly
sampled, finite, circular area of a telescope aperture in
the image plane are identical.
Thus, the averaged PSF takes the form

PSFðxÞ ¼ PSFinðxÞ þ PSFoutðxÞ ¼
1

πα

4

d
μðrÞ; with

μðrÞ ¼
(
ϵðrÞ; 0 ≤ r ≤ 1

2
d;

βðrÞ; r > 1
2
d:

ðB12Þ

Figure 14 shows that this expression (B12) is a very good
approximation of the averaged PSF (B3). Apart from the
mild oscillatory behavior in (B3) (which arises due to
random phases of the Bessel function at the integration
boundary), which is absent from (B12), the two represen-
tations are identical. Equation (B12), therefore, is a suitable
representation of the SGL PSF in high-fidelity numerical
approximations.
Although the expression (B12) is much simpler than

Eq. (B3), it is still not very convenient for estimating
changes in the SNR during deconvolution. For that, instead
of ϵðrÞ from (B9), we take its mean value within the
aperture:

ϵ̄ ¼ 4

πd2

Z
2π

0

dϕ0
Z ð1=2Þd

0

rdrϵðrÞ

¼ 1

π

Z
2π

0

dϕ
Z

1

0

qdq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2sin2ϕ

q
¼ 8

3π
: ðB13Þ

In addition, (B11) may be approximated as

FIG. 14. Behavior of the averaged PSF of the SGL. Left: Numerical integration of Eq. (B3). Evaluating the analytical expression for
the averaged PSF given by the combination of Eqs. (B5) and (B7) yields an identical plot. Right: The PSF from Eq. (B12) given by ϵðrÞ
(blue line) and βðrÞ (red, dashed line). The plots are nearly identical. Note that a minor oscillatory behavior evident on the left is absent
on the right. The horizontal axis is the distance from the center of the aperture in meters.
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βðrÞ ¼ 1

π

Z
ϕþ

ϕ−

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2r
d

�
2

sin2ϕ

s
≃

d
4r

: ðB14Þ

With these approximations, the averaged PSF (B12) may
be given as

PSFðxÞ ¼ 1

πα

4

d
μðrÞ; with μðrÞ ¼

(
8
3π ; 0 ≤ r ≤ 1

2
d;

d
4r ; r > 1

2
d:

ðB15Þ

Figure 15 shows the result (B15) comparing it to the
numerically integrated (B3).
Alternatively, ϵðrÞ may be approximated by its value at

the center of the aperture, ϵð0Þ ¼ 1, yielding

PSFðxÞ ¼ 1

πα

4

d
μðrÞ; with μðrÞ ¼

(
1; 0 ≤ r ≤ 1

2
d;

d
4r ; r > 1

2
d;

ðB16Þ

which slightly overestimates the contribution from the
directly imaged region.
Note that expression (B16) is the form of the averaged

PSF that we implicitly used in [7,8] to derive the power
from the directly imaged region and that from the rest of the
exoplanet.
The piecewise-defined result given by Eq. (B16) consists

of two discontinuous parts, representing the two regions
where the corresponding solutions were obtained, namely
r ≤ 1

2
d and r > 1

2
d. To derive continuous version of the

PSFðxÞ, we combine these expressions to form

PSFðxÞ ≃ 4

πα

1

4rþ d
: ðB17Þ

Result (B17) is not perfect but still a good approximation
of (B3). This can be seen from Fig. 15 that shows the result
of a numerical integration of (B3) and the behavior of the
smoothed PSF from (B17). The two solutions are quite
different within the aperture but match each other quite well
for r=d ≫ 1.
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