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Gravastars have been considered as a serious alternative to black holes in the past couple of decades.
Stable models of gravastar have been constructed in many of the alternate gravity models besides standard
general relativity (GR). The Randall-Sundrum (RS) braneworld model has been a popular alternative to
GR, especially in the cosmological and astrophysical context. Here, we consider a gravastar model in RS
brane gravity. The mathematical solutions in different regions have been obtained with calculation of
matching conditions. Various important physical parameters for the shell have been calculated and plotted
to note their variation with radial distance. We also calculate and plot the surface redshift to provide a very
cursory check on the stability of the gravastar within the purview of RS brane gravity.
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I. INTRODUCTION

There are a lot of heated debates regarding the final state
of a stellar collapse in astrophysics just like the initial state
of the Universe in cosmology. Einstein’s general relativity
(GR) has been tested quite rigorously through observatio-
nal results in both astrophysics and cosmology considering
intermediate energy phenomena. However, in situations
with extremely high energies, like the initial state of the
Universe and the end state of the stellar gravitational
collapse, due to the fact that huge amount of energy is
confined in a microscopic volume, the energy density
almost diverges leading GR to predict singularities as
the field equations break down completely [1], leaving
room for considering quantum effects to come into play to
avoid the undesirable singularities. In the case of stellar
collapse of end states, the consideration of quantum field
effects in classical GR leads to many interesting additional
features about the most popular end-state solutions of black
holes (BHs), like emission of the Hawking radiation from
the event horizon [2] (which may be thought of as the

boundary of a BH), but it cannot remove the singularities in
this particular solution of the Einstein’s field equations
(EFEs) [3]. The singularity that occurs at the Schwarzschild
radius R ¼ 2GM (c ¼ 1) is not a physical singularity as the
curvature invariants remain finite here and the singularity
can be removed by a coordinate transformation. However,
the central singularity that occurs at r ¼ 0 being a physical
singularity is irremovable.
In 2001, Mazur and Mottola (MM) [4] came up with

the idea of a gravitational condensate star or gravastar
as an alternative to a black hole, which they further
developed in 2004 [5]. Chapline et al. [6–8] by taking
quantum effects into consideration proposed that the
horizon may be considered as the critical surface of a
gravitational phase transition with the interior balancing
the gravitational collapse of the surface by holding an
equation of state (EOS) of the form p ¼ −ρ [9], where
the negative pressure leads to a repulsive effect. By
considering the fact that there is a phase transition at the
horizon, MM extended this idea to quantum fluctuations
which dominate over the temporal and radial components
of the energy-momentum tensor at the horizon and grow
large enough to lead to an EOS of the form p ¼ ρ. This
type of EOS is on the verge of violating causality
and leads the interior to develop a gravitational Bose-
Einstein condensate (BEC). Thus, the critical surface is
replaced by a shell of stiff fluid introduced first by
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Zeldovich [10,11]. This third region is the exterior which
is pressureless and has zero energy density.
The gravitational force is weaker than the other three

natural forces—the strong and weak nuclear forces, and the
electromagnetic force. This is known as the hierarchy
problem in particle physics. In an attempt to solve this
problem, Randall-Sundrum (RS) proposed their first brane-
world model [12] (RS-1) consisting of a positive and a
negative tension brane with the former brane representing
our Universe. The (3þ 1) branes are embedded in a higher
dimensional bulk. Only the force of gravity has accessibil-
ity to the bulk, while the other three forces are confined to
the brane, thus making gravity the weakest of the forces.
The higher dimensional gravity is the actual gravity at its
full strength and cannot be realized in the brane. Later, they
proposed another model [13] (RS-2) by sending the
negative tension brane off to infinity. In this model, at
low-energy limit, the Newtonian gravity can be recovered.
The single brane RS-2 model has been used extensively

to study cosmological as well as astrophysical problems.
The modifications due to RS-2 brane gravity (BG) have
been studied in the cosmological context [14–20], whereas
the study on modifications due to BG in astrophysical
context was initially confined mostly to the study of the
exterior solutions [21–25]. However, in the interior where
the gravitational collapse takes place, the brane corrections
to GR should be more significant as higher energy is
involved in the collapse process [26–30].
Even in the context of GR, tackling exact interior

solutions for the spherically symmetric matter distributions
is extremely difficult [31]. In the case of a braneworld, the
field equations have nonlocality and nonclosure properties
due to the presence of projected Weyl tensor term on the
brane [32], which makes it even more difficult to obtain
exact interior solutions, only except uniform stellar-matter
distributions, and can be thought of as an idealized situa-
tion. A better understanding of bulk geometry and brane-
embedding properties is required for constructing exact
interior solutions with a realistic nonuniform distribution
which has been achieved through an elegant technique
called the minimum geometric deformation approach
developed by Ovalle in a series of papers [33–35]. The
approach has also been applied successfully to obtain exact
interior solutions for the nonuniform spherically symmetric
matter distributions [36–38]. Apart from all these theoreti-
cal applications, a few experimental evidences in support
of braneworld idea have been added in Refs. [39,40]. It has
interestingly been shown there that the bulk geometry
and brane embedding have applications in connection to
the recent near-simultaneous detection of the gravitational-
wave (GW) event GW170817 from the LIGO/Virgo
Collaboration, and its electromagnetic counterpart, the
short gamma-ray burst GRB170817A detected by the
Fermi gamma-ray burst monitor, and the INTEGRAL
anticoincidence shield spectrometer [39], and in the RS

AdS5 braneworld scenario the observation of M87*’s dark
shadow can be explained [40].
In this paper, we consider a gravastar in an RS-2

braneworld model. Such a problem has been discussed
by Banerjee et al. [41] but considering the conformal
motion and freezing one of the metric potentials. However,
we shall not consider conformal motion in our approach to
obtain explicit solutions of the EFEs. Note that there is an
effective cosmological constant on the brane but no charge
has been considered in this work unlike Ghosh et al. [42],
who considered the problem of a charged gravastar in
higher dimensions.
The present investigation has been organized as follows:

the field equations for the spherically symmetric metric on
an RS-2 brane are provided in Sec. II along with explicit
mathematical solutions to the field equations considering
the EOS for the interior, shell, and exterior of the gravastar.
However, in Sec. III, we study various physical parameters
of the gravastar. In Sec. IV, the boundary conditions are
computed which is followed by discussion and conclusion
of the results in Sec. V.

II. MATHEMATICAL FORMALISM
AND SOLUTIONS

A. Field equations on the brane

The EFE on the RS-2 with three-brane has the form

Gμν ¼ Tμν þ
6

σ
Sμν − Eμν; ð1Þ

where σ is the brane tension. Here we have used the
geometrical units, 8πG ¼ c ¼ 1.
The second and third terms on the rhs of the above

equation represent the local and nonlocal corrections to GR
due to the brane effects, respectively. The term Sμν is
quadratic in the energy momentum that arises due to the
high-energy effects, and Eμν represents the projected Weyl
tensor on the brane which can be said to be the Kaluza-
Klein correction. These terms can be expressed as follows:

Sμν ¼
TTμν

12
−
TμαTα

ν

4
þ gμν

24
ð3TαβTαβ − T2Þ; ð2Þ

Eμν ¼ −
6

σ

�
Uuμuν þ Prμrν þ hμν

�
U − P

3

��
; ð3Þ

where T in Eq. (2) is the trace of the energy-momentum
tensor.
The usual four dimensional (4D) energy-momentum

tensor on the three-brane is given as

Tμν ¼ ρuμuν þ phμν; ð4Þ

where hμν ¼ gμν þ uμuν is the projected metric on the
brane, uμ denotes four-velocity, rμ denotes the projected
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radial vector, ρ and p, respectively, denote the energy
density and pressure of the matter distribution, U and P
denote the bulk energy density and bulk pressure, respec-
tively. The last two quantities are taken to be related by the
bulk EOS P ¼ ωU [43], where ω is the EOS parameter that
lies between −3 < ω < 2. Here, we consider the relation-
ship between the energy densities of the brane (ρ) and the
bulk (U) byU ¼ Aρþ B [44], where A and B are constants
which can be determined from the boundary conditions
whereas ω is to be fixed on certain physical basis.
The static spherically symmetric line element describing

the matter distribution on the three-brane is given by

ds2 ¼ −eνðrÞdt2 þ eλðrÞdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð5Þ

The EFE on the brane, given by Eq. (1), can be computed
to be

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ ρeff ; ð6Þ

e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ peff

r ; ð7Þ

e−λ
�
ν00

2
−
λ0ν0

4
þ ν02

4
þ ν0 − λ0

2r

�
¼ peff

t ; ð8Þ

where

ρeff ¼ ρðrÞ
�
1þ ρðrÞ

2σ

�
þ 6U

σ
;

peff
r ¼ pðrÞ þ ρðrÞðpðrÞ þ ρðrÞ

2
Þ

σ
þ 2U

σ
þ 4P

σ
;

peff
t ¼ pðrÞ þ ρðrÞðpðrÞ þ ρðrÞ

2
Þ

σ
þ 2U

σ
−
2P
σ

:

As evident from Eqs. (7) and (8), the pressure is not the
same in the radial and transverse directions and hence there
is a pressure anisotropy amounting to 6P=σ. The effective
pressure on the brane in the radial and angular directions is
different due to the difference in contribution from the term
containing the bulk pressure. This difference in the two
pressure components of the energy-momentum tensor gives
rise to the pressure anisotropy for effective matter distri-
bution on the brane. This automatically justifies the claim
by Cattoen [45] that gravastars must have anisotropic
pressures, without forcing any anisotropy a priori by hand.
This is an essential intrinsic feature of the braneworld
gravastar which is absent within the framework of GR. On
the other hand, from the physical point of view, the above
expression ρeff defines the effective density on the brane,
which includes the local and nonlocal corrections to the
brane energy density ρ. The corrections are computed by
evaluating the 00ðttÞ component of Eqs. (2) and (3),

respectively. In this connection, we would like to mention
that Maartens [46] has argued that the nonlocal bulk effects
can contribute to effective imperfect fluid terms even when
the matter on the brane has perfect fluid form. There is, in
general, an effective momentum density and anisotropic
stress induced on the brane by massive Weyl modes of the
5D graviton.
However, the conservation equation, i.e. Tolman-

Oppenheimer-Volkoff (TOV) equation, on the brane reads
the same as in GR,

dp
dr

¼ −
1

2

dν
dr

ðpþ ρÞ: ð9Þ

B. Interior solution

It is already mentioned that the interior of the gravastar
has an EOS of the form p ¼ −ρ. Such an EOS is
responsible for a force to be created in the interior, which
is now a gravitational BEC after the phase transition occurs
at the horizon (replaced by a shell for a gravastar) and
acts along the radially outward direction to oppose the
collapse to continue. Plugging this EOS in the conservation
equation (9), we get that p ¼ −ρ ¼ −ρc, where ρc is the
constant interior density, thus implying constant pressure.
In order to compute the metric potentials, we need to
replace the pressure and energy density on rhs of Eqs. (6)
and (7) by the pressure and energy density of the interior,
respectively. This gives us the field equations in the
following forms:

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ ρc

�
1þ ρc

2σ

�
þ 6

σ
ðAρc þ BÞ; ð10Þ

e−λ
�
1

r2
þ ν0

r

�
−

1

r2
¼ −ρc

�
1þ ρc

2σ

�
þ 2

σ
ðAρc þ BÞ

þ 4ω

σ
ðAρc þ BÞ: ð11Þ

From Eq. (10), the first metric potential can be computed
to be

e−λ ¼ 1 −
�
ρc
3

�
2σ þ ρc

2σ

�
þ 2ðAρc þ BÞ

σ

�
r2 þ c1

r
: ð12Þ

To make the solution regular at the origin, one can
demand for c1 ¼ 0 and so we are left with

e−λ ¼ 1 −
�
ρc
3

�
2σ þ ρc

2σ

�
þ 2ðAρc þ BÞ

σ

�
r2: ð13Þ

Now, using Eqs. (13) and (7), the second metric potential
is given by
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e−ν ¼ C

��
ρc

�
1þ ρc

2σ

�
þ 6

Aρc þ B
σ

�
r2 − 3

��
1þ

6ðAρcþBÞð1þ2ωÞ
σ −3ρcð1þρc

2σÞ
ρcð1þρc

2σ
Þþ6ðAρcþBÞ

σ

�
; ð14Þ

where C is an integration constant.
From the above solutions, it can be noticed that the

interior solutions have no singularity and thus the problem
of the central singularity of a classical black hole can be
averted.

C. Active gravitational mass MðRÞ
One can calculate the active gravitational mass for the

interior of the gravastar as follows:

MðRÞ ¼ 4π

Z
R

0

ρeffr2dr

¼ 4π

3

�
ρc

�
1þ ρc

2σ

�
þ 6

σ
ðAρc þ BÞ

�
R3: ð15Þ

It is to be noted that the active gravitational mass also
depends on the brane tension σ.

D. Intermediate thin shell

The intermediate thin shell is a junction formed
between the interior and exterior spacetimes. The shell
is extremely thin but has a finite thickness. So, one can
consider the condition e−λ ≪ 1 as suggested by Mazur
and Mottola [4,5]. The field equations for the shell with
EOS p ¼ ρ describing stiff fluid cannot be solved
analytically until we take the approximation e−λ ≪ 1.
On taking this approximation, it turns out that the
equations can be solved easily and on integrating we
obtain the expression for the metric potential such that it
is proportional to the thickness of the shell ϵ. So, e−λ ≪
1 implies ϵ ≪ 1, i.e., it is equivalent to considering a thin
shell. Hence, it is called thin-shell approximation. It has
been observed that the field equations (6)–(8) can be
solved numerically only with the EOS p ¼ ρ in the shell.
However, there is a possibility to obtain a set of analytic
solutions of the metric functions of the shell considering
the thin shell limit which demands this restriction. This
facilitates to explore various properties of the thin shell.
Under this thin shell approximation, the field equa-
tions (6)–(8) are modified as

e−λλ0

r
þ 1

r2
¼ ρ

�
1þ 6A

σ

�
þ ρ2

2σ
þ 6B

σ
; ð16Þ

−
1

r2
¼ ρ

�
1þ

�
1þ 2ω

σ

�
2A

�
þ 3ρ2

2σ
þ
�
1þ 2ω

σ

�
2B;

ð17Þ

−
λ0ν0

4
e−λ −

e−λλ0

2r
¼ ρ

�
1þ

�
1 − ω

σ

�
2A

�
þ 3ρ2

2σ

þ
�
1 − ω

σ

�
2B: ð18Þ

The shell is composed of the Zel’dovich stiff fluid with
the EOS in the form p ¼ ρ. Putting this EOS in the
conservation equation on the brane, i.e., Eq. (9), we obtain
a relation between the metric potential ν and energy density
of the shell ρ as

ρ ¼ ρ0e−ν; ð19Þ

where ρ0 is a constant of integration.
Equation (17) is a quadratic equation for ρ, considering

the positive root of which we get the metric potential as

e−ν ¼ −
J

6Gρ0
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2

36G2ρ20
−

H2

36ρ20
−

1

3Gρ20r
2

s
: ð20Þ

The field equations (16) and (18) can be solved to obtain

e−λ ¼ 4 ln r
3

þ
�
J
36

−
F
12

�
r
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 − 12GH2Þr2 − 12G

q

þ
�
FJ
12G

−
H1

2
þH2

6
−

J2

36G

�
r2

þ ðF− J
3
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12GH2 − J2
p arctan

� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12GH2 − J2

p
Þrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ2 − 12GH2Þr2 − 12G
p �

;

ð21Þ

where F ¼ 1þ 6A
σ , G ¼ 1

2σ, H1 ¼ 6B
σ , H2 ¼ 2Bð1þ2ω

σ Þ,
J ¼ 1þ 2Að1þ2ω

σ Þ, K ¼ 1þ 2Að1−ωσ Þ and H3 ¼ 2Bð1−ωσ Þ.

E. Exterior region

The exterior of the gravastar is assumed to obey the EOS,
p ¼ ρ ¼ 0, which means that the outside region of the shell
is completely vacuum. In this case, Eq. (6) reduces to

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ 6B

σ
: ð22Þ

The solution has the form

e−λ ¼ 1 −
2M
r

−
2B
σ

r2; ð23Þ

where M is integration constant.
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This can be compared with a de Sitter solution in (3þ 1)
dimension, and the corresponding line element can be
written as

ds2 ¼ −
�
1 −

2M
r

−
Λr2

3

�
dt2 þ

�
1 −

2M
r

−
Λr2

3

�−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð24Þ

Here the integration constant M gives the total mass of
the gravastar, and Λ is the effective brane cosmological
constant given by Λ ¼ 6B

σ . Since we consider the vacuum
exterior, it can be argued from the RS model [13] that the
effective cosmological constant on the brane vanishes as a
consequence of the fine-tuning between the brane tension
and the bulk cosmological constant. So, we claim B¼0¼Λ
for the vacuum exterior. Thus, as expected to be observed
locally, the exterior solution reduces to the Schwarzschild
solution

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð25Þ

F. Matching condition

In order to get the unknown constants, we adopted
the matching condition of the metric functions at the
junctions: (i) interior and shell (r ¼ R1) and (ii) shell
and exterior (r ¼ R2). Now, one can match gtt and

δgtt
δr at

r ¼ R2 to obtain the values of different constants, viz.
A ¼ −504.9521017, B ¼ 3.01787 inside the shell. In order
to study different features of gravastar, we took the ratio of
the matter densities of the shell and that of the core as
104ð¼ ρ0

ρc
Þ, σ ¼ 103 MeV=fm3 and ω ¼ 10−3. We also con-

sidered the following numerical values: M ¼ 3.75 M⊙,
R1 ¼ 10 km, and R2 ¼ 10.1 km.

III. PHYSICAL PARAMETERS
OF THE MODEL

In this section, we shall be discussing some of the
important physical parameters of the shell of the gravastar.

A. Pressure and matter density

It has been considered that the shell is formed with
ultrarelativistic matter of extremely high density. The EOS
has been stated as p ¼ ρ. Using Eq. (17), we get the
pressure as well as the matter density as follows:

ρ ¼ p ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64r2ðσ2
16
þ ðAσ−3BÞY

4
þ A2

4
Y2Þπ − 3πσ

q
þ ð−4YA − 2σÞπr



6πr

; ð26Þ

where Y ¼ 2ωþ 1.
The variation of the energy density which is the same as

the pressure of the shell along with the radial distance r is
plotted in Fig. 1.

B. Energy

The energy of the shell is obtained as

E¼4π

Z
Rþϵ

R
ρeffr2dr

¼2

3

�ð4πr2X−3σþ16A2πr2Y2Þ3=2
12π

1
2ðXþ4A2Y2Þ −

πr3

3
ð4AYþ2σÞ

�Rþϵ

R

;

ð27Þ

where X ¼ ðσ2 þ 8Aωσ þ 4Aσ − 24Bω − 12BÞ.
The variation of the energy of the shell along with the

radial distance r is plotted in Fig. 2.

C. Entropy

The entropy is one of the most important parameters
associated with a black hole. So, we must compute the

FIG. 1. Variation of the pressure or the matter density of the
shell with respect to r.
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entropy for a gravastar too. The entropy of the gravastar on
the brane can be calculated using the following equation:

S ¼
Z

Rþϵ

R
4πr2sðrÞ

ffiffiffiffiffi
eλ

p
dr: ð28Þ

Here, sðrÞ is defined as the entropy density and can be
written as

sðrÞ ¼ ξ2k2BTðrÞ
4πℏ2

¼ ξkB
ℏ

ffiffiffiffiffiffi
p
2π

r
; ð29Þ

where ξ is a dimensionless constant. Considering the
geometrical units (i.e., G ¼ 1, c ¼ 1) and also in the
Planck units kB ¼ 1, ℏ ¼ 1, Eq. (29) yields the following
relation:

sðrÞ ¼ ξ

ffiffiffiffiffiffi
p
2π

r
: ð30Þ

Therefore, the entropy of the shell is obtained as

S ¼ 4πξ

Z
Rþϵ

R
r2

ffiffiffiffiffiffiffiffi
peλ

2π

r
dr ¼ 4πϵξR2ffiffiffiffiffiffi

2π
p

�
4 lnR
3

þ
�
J
36

−
F
12

�
R
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 − 12GH2ÞR2 − 12G

q
þ
�
FJ
12G

−
H1

2
þH2

6
−

J2

36G

�
R2

þ ðF − J
3
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12GH2 − J2
p arctan

� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12GH2 − J2

p
ÞRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ2 − 12GH2ÞR2 − 12G
p ��

−1
2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64r2ðσ2

16
þ ðAσ−3BÞY

4
þ A2

4
Y2Þπ − 3σπ

q
þ ð−4YA − 2σÞRπÞ

6πR

vuut
: ð31Þ

The variation of entropy of the shell along with the radial distance r has been plotted in Fig. 3.

D. Proper thickness

The shell is considered to be extremely thin so that the phase boundaries are taken to be at R and Rþ ϵ, where ϵ ≪ 1,
such that the phase boundary of the interior essentially is at R. Therefore, the proper thickness of the shell is computed to be

l ¼
Z

Rþϵ

R

ffiffiffiffiffi
eλ

p
dr ¼ ϵ

ffiffiffiffiffi
eλ

p
¼ ϵ

�
4 ln r
3

þ
�
J
36

−
F
12

�
r
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2 − 12GH2Þr2 − 12G

q
þ
�
FJ
12G

−
H1

2
þH2

6
−

J2

36G

�
r2

þ ðF − J
3
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12GH2 − J2
p arctan

� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12GH2 − J2

p
Þrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ2 − 12GH2Þr2 − 12G
p ��

−1
2

: ð32Þ

FIG. 3. Variation of the entropy (S) of the shell with respect
to r (km).

FIG. 2. Variation of the energy of the shell with respect
to r.
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E. Surface redshift

We compute the surface redshift in order to check the stability of our gravastar model. This is given by

Zs ¼ −1þ 1ffiffiffiffiffi
gtt

p

¼ −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6ρ0πr

�
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r2
�
σ2

16
þ 1

2
ðAσ − 3BÞX0 þ X02A2

�
π −

3σ

64

�
π

s
− 2ð4X0Aþ σÞrπ

�vuut ; ð33Þ

where X0 ¼ ðωþ 1
2
Þ.

We checked the variation of the surface redshift with
respect to r in Fig. 4. It has been observed that without
cosmological constant the surface redshift ðZsÞ lies within
the range Zs ≤ 2 [47–49]. However, Böhmer and Harko
[49] argued that Zs ≤ 5 for the compact objects in the
presence of cosmological constant. For our model, the
surface redshift lies within 2 at every point of the shell.

IV. BOUNDARY CONDITION

The gravastar comprises the following three regions:
(i) interior, (ii) shell, and (iii) exterior. The shell connects
the interior to the exterior region at the junction interface.
The metric coefficients are continuous across the interface,
but the continuity of the first derivatives of the metric
coefficients is not confirmed. The Darmois [50] and Israel
[51] junction conditions allow us to compute the intrinsic
surface stress energy at the junction in terms of the extrinsic
curvature which connects the two sides of the thin shells
geometrically. The intrinsic stress energy, following the
prescription of Lanczos [52], turns out to have surface

energy density and surface pressures as the temporal and
spatial components, respectively. These components are
computed to be of the form

Σ ¼ −
1

4πR

h ffiffiffiffiffi
eλ

p iþ
−

¼ 1

4πR

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2M
R

�s

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −
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3
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2σ þ ρc
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�
þ 2ðAρc þ BÞ
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R2

s #
; ð34Þ

P ¼ 1

16π

��
2 − λ0R

R
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e−λ
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−
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8πR
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FIG. 4. Variation of the surface redshift of the shell with respect
to r (km).

FIG. 5. Variation of the surface pressure of the shell with
respect to r (km).
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The variation of the surface pressure of the shell is shown
in Fig. 5. It is already mentioned that according to Mazur
and Mottola [4,5] the thickness of the shell of the gravastar
is very small but finite. In order to check the continuity
between the interior and exterior spacetimes, we have
studied here the Darmois [50] and Isreal [51] condition
and calculated P. So, here we have plotted P with respect
to r to check the continuity. It is interesting to note that the
surface pressure remains positive within the shell which
justifies the EOS of the shell.
Now, the mass of the thin shell [using Eq. (34)] can be

written as

ms ¼
Z

Rþϵ

R
4πR2Σdr

¼
�
−
1

2
ðM2 lnðR −M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − 2MÞR

p
Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR − 2MÞR

p
ðM − RÞÞ

þ ð36σ − 6R2ð12Aρc þ 2σρc þ ρc
2 þ 12BÞÞ32

108
ffiffiffi
σ

p ð12Aρc þ 2σρc þ ρc
2 þ 12BÞ

�Rþϵ

R
:

ð36Þ

We have plotted the variation of mass of the thin shell
in Fig. 6.

V. DISCUSSIONS AND CONCLUSION

In this work, we studied gravastar in the framework of
RS-2 brane gravity. The study of this model of gravitation

was found to be interesting not only in the context that it
modifies the EFE but also that the higher dimensions were
involved. Following the earlier work done on gravastar
under the modified theory of gravity models [53–56], a
detail study was done on the three different regions of
gravastar under braneworld theory.
Let us summarize some of the important physical

properties of our study as follows:
(1) Interior region: By solving the TOV equation along

with the EOS of the interior, it was found that the
matter density and the pressure remain constant in
the interior and the solution is free from singularity.
We also calculated the active gravitational mass of
the interior and it was observed that it has an
additional dependence on the brane tension.

(2) Intermediate thin shell: To solve the intermediate
thin shell, we applied the thin shell approximation
and computed metric functions of it. The metric
functions were found to be modified due to the
braneworld effects reflected in the dependence on
the brane tension and the bulk EOS parameter.

(3) Physical parameters of the shell: Various physical
parameters associated with the shell were computed
and the behavior was found to be modified due to the
brane effects—both local and nonlocal. The details
are provided as follows:
(a) Matter density: We calculated the matter density

and the pressure of the shell and plotted it against
r as shown in Fig. 1. The variation of the matter
density or pressure for the shell was found to be
positive and constantly increased as we moved
from the interior to the exterior surface.

(b) Energy: The energy of the shell was obtained in
Eq. (27), and the variation with respect to the
radial parameter is shown in Fig. 2. The graph
shows similar nature as the matter density of the
shell, which suggests the physical acceptability
of the model.

(c) Proper length and entropy: We also calculated
the entropy and the proper thickness of the shell
and the solutions were found to be physically
acceptable. The variation of the entropy with the
radial parameter is plotted in Fig. 3 which
displays a constantly increasing nature.

(d) Surface energy density and surface pressure:
Following the condition of Darmois and Israel
[50,51], we calculated the surface energy density
and the surface pressure and plotted the surface
pressure against the radial parameter (Fig. 4).
The surface pressure remained positive through-
out the shell and decreased as we moved from
the inner boundary of the shell to the outer which
supports the formation and existence of the thin
shell between the two spacetimes, i.e., interior
and exterior.

FIG. 6. Variation of the surface mass of the shell with respect
to r (km).
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(e) Surface redshift and surface mass: We checked
the stability of the gravastar through a surface
redshift analysis. For any stable model, the value
of the surface redshift lies within 2 [47–49]. We
found that our model is stable under the surface
redshift 1.714, as can be observed from Fig. 5,
whereas in Fig. 6, the feature of the surface mass
is exhibited. However, one can note that the
surface redshift computation, in order to check
the stability of gravastar model, is basically a
very cursory check at best. A more proper
evaluation of the stability would require a
linearized stability analysis or a dynamical
analysis, the latter presumably performed nu-
merically. This aspect is beyond the scope of the
present investigation and can be considered in
the future project.

Now, the question arises regarding the possible existence
and detection of the gravastar in our present study. Though
there are no direct evidences to detect gravastar, but some
of the indirect ways have been discussed in literature
[57–62]. The idea for possible detection of gravastar was
first proposed by Sakai et al. [57] through the study of
gravastar shadows. Another possible method for the detec-
tion of gravastar may be employing gravitational lensing as
suggested by Kubo and Sakai [58], where they claimed to
have found gravastar microlensing effects of larger maxi-
mal luminosity compared to black holes of the same mass.

According to Cardoso et al. [60,61], the ringdown signal of
GW150914 [59] detected by interferometric LIGO detec-
tors is most probably generated by objects without event
horizon which might be gravastar, though it is yet to be
confirmed [62] (in this context, a detailed review on
gravastar can be found in Ref. [63]).
As a final comment, we can conclude that in the present

paper a successful study was done on gravastar under
the braneworld theory of gravity. We obtained a set of
physically acceptable and nonsingular solutions of the
gravastar, which immediately overcome the problem of
the central singularity and the existence of the event
horizon of black hole. One can note that this work provides
a general solution of the gravastar in the framework of
braneworld gravity without admitting conformal motion
unlike Banerjee et al. [41]. The solution for the exterior
metric was found to be Schwarzschild type, whereas
Banerjee et al. [41] found the solution as Reissner-
Nordström type. Analyzing all the results that we obtained,
we claim the possible existence of gravastar in braneworld
theory as obtained in Einstein’s GR.
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