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We consider a model of Bose-Einstein condensate of weakly interacting off-shell gravitons in the regime
that is far from the quantum critical point. Working in static spherically symmetric setup, recent study has
demonstrated that the effective spacetime geometry of this condensate is a gravastar. In this paper we make
three generalizations: introducing a composite of two sets of off-shell gravitons with different wavelength
to enable richer geometries for the interior and exterior spacetimes, working in fðRÞ gravity, and extending
the calculations to higher dimensions. We find that the effective spacetime geometry is again a gravastar,
but now with a metric which strongly depends on the modified gravity function fðRÞ. This implies that the
interior of the gravastar can be de Sitter or anti–de Sitter and the exterior can be Schwarzschild,
Schwarzschild–de Sitter, or Schwarzschild–anti–de Sitter, with a condition that the cosmological constant
for the exterior must be smaller than the one for the interior. These geometries are determined by the
function fðRÞ, in contrast to previous works where they were selected by hand. We also presented a new
possible value for the size of the gravastar provided a certain inequality is satisfied. This restriction can be
seen manifested in the behavior of the interior graviton wavelength as a function of spacetime dimension.
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I. INTRODUCTION

According to classical general relativity, black hole is a
very dense object with a curvature singularity at the origin
and a coordinate singularity known as the event horizon at
some radius. Any particle, and even light, cannot escape
from the black hole once it enters the event horizon, making
the black hole interior inaccessible to outside observers.
Although the existence of curvature singularity is already a
controversial issue, the picture of black hole becomes more
problematic when quantum effects are included (see
Refs. [1,2] for reviews). For example, Hawking discovered
that black holes can evaporate due to a mechanism later
known as the Hawking radiation [3]. This implies that an
information in the form of a pure quantum state can
transform into a mixed state, which contradicts the unitarity
of quantum mechanics.
Several ideas have been proposed to remove these

problems or even to change drastically the physical picture
inside the black hole interior [2]. One of them is the

gravastar, which stands for the gravitational vacuum star,
proposed byMazur andMottola [4–6]. The idea is that when
an astronomical object undergoes a gravitational collapse, a
phase transition occurs at the expected position of the event
horizon to form a spherical thin shell of stiff fluid with
equation of state p ¼ ρ. The interior is a de Sitter (dS)
condensate phase obeying p ¼ −ρ, while the exterior is a
Schwarzschild vacuum obeying p ¼ ρ ¼ 0. There are also
other proposals to generalize the interior and exterior regions
of a gravastar, ranging from changing only the interior to an
anti–de Sitter (AdS) spacetime [7] and a Born-Infeld phan-
tom [8] to even changing both the interior and exterior
regions by including also the case of AdS for the interior as
before and generalizing the Schwarzschild exterior to
Schwarzschild–de Sitter (Sch-dS), Schwarzschild–anti–de
Sitter (Sch-AdS), and Reissner-Nordström spacetimes [9].
These varieties of gravastars have been proved to be stable
under radial perturbations by the respective authors.
Especially for the case where the interior is dS and the
exterior is Sch-dS, there is a relation between the cosmo-
logical constants of the interior and the exterior regions: the
latter must be smaller than the former [10].
Another idea to solve black hole paradoxes is a proposal

by Dvali and Gómez that black holes are Bose-Einstein
condensates (BEC) of weakly interacting gravitons at the
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critical point of a quantum phase transition [11–16], which
happens when αN ¼ 1, with α the dimensionless quantum
self-coupling of gravitons and N the number of gravitons
[14,17]. They explained that even a macroscopic black hole
is a quantum object and therefore treatments using semi-
classical reasoning is not adequate; one has to use full
quantum treatments to avoid paradoxes. The Bekenstein
entropy and Hawking radiation now have natural explan-
ations; the former is quantum degeneracy of the condensate
at the quantum critical point [14] and the latter is quantum
depletion and leakage of the condensate [11,15].
In this paper, we will consider a model of Bose-Einstein

condensate of weakly interacting off-shell gravitons in the
regime that is far from the quantum critical point, namely
where αN < 1. (For different approach and context, see
Refs. [18,19].) Since the language of microscopic graviton
condensate should translate into the geometrical language
of general relativity in the classical regime, one may ask
about the effective spacetime geometry that this condensate
generates. Working in the static spherically symmetric
setup, Cunillera and Germani in Ref. [20] adapted the
derivation of the Gross-Pitaevskii (GP) equation for ordi-
nary BEC to this graviton condensate, namely by varying
the condensate energy obtained from the Arnowitt-Deser-
Misner (ADM) formalism while the number of gravitons is
kept fixed. They found that the interior of the condensate is
described by the dS spacetime while the exterior is
described by the Schwarzschild spacetime, which is analo-
gous to the picture of gravastar explained earlier. Therefore,
this method provides a bridge between the theory of
graviton condensates and the model of gravastars [2].
We will perform three generalizations to the work

outlined in Ref. [20]:
(i) introducing a composite of two sets of off-shell

gravitons with different wavelength to enable richer
geometries for the interior and exterior spacetimes,

(ii) working in fðRÞ gravity,
(iii) and extending the calculations to higher dimensions.

In Sec. II we will derive the Gross-Pitaevskii equations
governing the effective metric of the graviton condensate.
The combination of points (i) and (ii) above will enable us
to have dS and AdS spacetimes for the interior region and
Schwarzschild, Sch-dS, and Sch-AdS spacetimes for the
exterior region. However, unlike previous works, these
spacetimes are not selected by hand; here their cosmologi-
cal constants are determined by the modified gravity
function fðRÞ. In Sec. III, following Ref. [20], we will
discuss a method to determine the size of the gravastar and
demonstrate that the generalization to the fðRÞ gravity again
gives us richer results compared to the case of ordinary
gravity. Then in Sec. IV we will study some special cases of
interior and exterior geometries, starting from the conven-
tional case of dS interior and Schwarzschild exterior,
followed by the case of dS interior and Sch-(A)dS exterior,
and completed by the case of AdS interior and exterior.

The behavior of the interior graviton wavelength as a
function of spacetime dimension is studied in each of these
cases. The paper is then concluded in Sec. V.

II. THE EFFECTIVE METRIC

Consider a condensate of weakly interacting off-shell
gravitons in a static spherically symmetric setup of d-
dimensional spacetime described by the ansatz metric,

ds2 ¼ −LðrÞ2dt2 þ dr2

ξðrÞ þ r2dΩ2
d−2; ð1Þ

where dΩ2
d−2 is the metric of (d − 2)-dimensional compact

smooth manifold M and the functions LðrÞ and ξðrÞ are
arbitrary. This condensate is composed of N off-shell
gravitons with wavelength λ localized in the region with
radius R and Ñ off-shell gravitons with wavelength λ̃ in the
region with characteristic length scale R̃ > R. The former
region will form an object that looks like a black hole as
seen by outside observers in the semiclassical limit, while
the latter one will become a curved exterior background.
Since the gravitons are weakly coupled, we have

α < ℏGd=λd−2 ¼ Ld−2
p =λd−2, where the latter is the charac-

teristic dimensionless quantum self-coupling of gravitons,
Gd is the d-dimensional gravitational constant, and Lp is the
Planck length. If M is the mass of the condensate, then
the number of gravitons is given by N ∼M=ðℏ=λÞ ¼
GdMλ=Ld−2

P . The typical value of graviton wavelength is
λ ∼ ðGdMÞ1=ðd−3Þ, which implies αN < 1. It means that we
are working in the regime far from the critical point of a
quantum phase transition which occurs at αN ¼ 1. As a first
approximation, we will use the generalized Einstein-Hilbert
action for fðRÞ gravity as the effective gravitational action
for this condensate,

S ¼ 1

16πGd

Z
ddx

ffiffiffiffiffiffi
−g

p
fðRÞ; ð2Þ

where g is the determinant of themetric inEq. (1) andR is the
d-dimensional Ricci scalar curvature. (For a discussion of
condensate of off-shell gravitons described by the four-
dimensional action of ordinary gravity featuring nonlocal
gravitational interaction, see Ref. [21].) Using the ADM
formalism [22], we find that the gravitational Hamiltonian of
the condensate takes the form [23]

H ¼ −
Ωd−2

16πGd

Z
dr rd−2

LðrÞffiffiffiffiffiffiffiffi
ξðrÞp fððd−1ÞRÞ; ð3Þ

with Ωd−2 the volume ofM. IfM is a (d − 2)-dimensional
sphere Sd−2, then Ωd−2 ¼ 2πðd−1Þ=2=Γðd−1

2
Þ, where Γ is the

gamma function. The (d − 1)-dimensional Ricci scalar
curvature ðd−1ÞR has the form
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ðd−1ÞR ¼ −
ðd − 2Þ

r2
½ξ0ðrÞrþ ðd − 3ÞξðrÞ� þ

ðd−2ÞR
r2

; ð4Þ

where ðd−2ÞR is the Ricci scalar curvature of M, which is
taken from now on to be constant, ðd−2ÞR≡ A0. In the
ordinary case whereM ¼ Sd−2, then A0 ¼ ðd − 2Þðd − 3Þ.
Following Ref. [20], we want to study this condensate

using the GP equations, which are usually derived in the
case of ordinary BEC by making use of a variational
approach, namely by minimizing the energy of the con-
densate while the particle number is kept fixed (see, for
example, Refs. [24,25]). We start with the gravitational
energy of our condensate as given in Eq. (3) and minimize
this energy functional with a constraint that the number of
gravitons is constant. Therefore, we need to vary the
functional H − μN, where μ is the chemical potential
which serves as a Lagrange multiplier. It is important to
emphasize that we have used an off-shell formulation here;
the on-shell Einstein equations are not assumed to be
satisfied.
The number of off-shell gravitons N can be found from

the relation N ¼ hEiλ where hEi is the spatial average of
the energy of the gravitons [20]. Due to the gravitational
redshift, the energy E is related to the energy measured at
infinity E∞ through the relation

EðrÞ ¼ LðrÞE∞: ð5Þ

As in Ref. [20], the chemical potential can be written as
μ ¼ −γ=λ for a constant γ. Therefore, the term μN takes the
form

μN ¼ −β2
Z

dr rd−2
LðrÞffiffiffiffiffiffiffiffi
ξðrÞp ; ð6Þ

where all constants are absorbed to β2.
Performing the variation of H − μN with respect to LðrÞ

gives us the first GP equation,

fððd−1ÞRÞ ¼ l; ð7Þ

with l≡ 16πGdβ
2=Ωd−2. It means that ðd−1ÞR is constant,

ðd−1ÞR ¼ B; ð8Þ

where B is the root of the equation fððd−1ÞRÞ − l ¼ 0 (see
Fig. 1). Therefore, we are always dealing with a space of
constant (d − 1)-dimensional Ricci scalar curvature ðd−1ÞR
no matter which model of fðRÞ gravity that we choose. By
substituting Eq. (4) to Eq. (8), we find that the function ξðrÞ
takes the form

ξðrÞ ¼ A0

ðd − 2Þðd − 3Þ −
B

ðd − 1Þðd − 2Þ r
2 −

C
rd−3

; ð9Þ

where C is an integration constant. For the interior solution,
we need to set Ci ¼ 0 to ensure a regular solution at the
origin r ¼ 0.
Performing the variation of H − μN with respect to ξðrÞ

gives us the second GP equation,

−
Ωd−2

16πGd

�
2ðd − 2ÞξðrÞ d

dr
½f0ððd−1ÞRÞLðrÞ�

− ðd − 2Þf0ððd−1ÞRÞLðrÞξ0ðrÞ − fððd−1ÞRÞLðrÞr
�

− β2LðrÞr ¼ 0; ð10Þ

where the primed function always denotes its derivative
with respect to its argument. Substituting Eq. (7) to Eq. (10)
and solving the resulting equation, we find

LðrÞ ¼
ffiffiffiffiffiffiffiffi
ξðrÞ

p
; ð11Þ

up to a proportionality constant which can be absorbed to
the time parameter in the metric. Therefore, the interior
solution can be dS (Bi > 0) or AdS (Bi < 0), while the
exterior can be Schwarzschild (Be ¼ 0), Sch-dS (Be > 0),
or Sch-AdS (Be < 0), provided Ce > 0, which will be
assumed throughout the remainder of this paper. This is in
contrast to the system discussed in Ref. [20], where the
gravitons are localized only inside the region R and the

FIG. 1. An illustration of finding the constant B for
the hyperbolic model of the fðRÞ gravity, fðRÞ ¼ R −
bR0 tanh ðR=R0Þ, with constants b;R0 > 0 [26]. Since B is
the root of the equation fðRÞ − l ¼ 0, we have three possible
solutions for B in the figure above: two solutions correspond to
AdS (B1; B2 < 0) and one solution corresponds to dS (B3 > 0).
However, note that f0ðB2Þ < 0, hence the solution B2 should be
ruled out. If we work in ordinary gravity where fðRÞ ¼ R and
expect l > 0 for the interior and l ¼ 0 for the exterior, the only
possible solution is dS for the interior spacetime (B > 0) and
Schwarzschild for the exterior spacetime (B ¼ 0), as in Ref. [20].
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ordinary gravity fðRÞ ¼ R is used. Expecting l > 0 for the
interior and l ¼ 0 for the exterior, the solution is therefore
always dS for the interior spacetime (Bi > 0) and always
Schwarzschild for the exterior spacetime (Be ¼ 0).

III. THE SIZE OF THE INTERIOR REGION

The size R of the interior region can be determined using
two considerations. First is by matching the interior and
exterior solutions at r ¼ R to ensure the continuity at the
boundary, namely ξiðRÞ ¼ ξeðRÞ. It yields

Ce ¼
Bi − Be

ðd − 1Þðd − 2ÞR
d−1: ð12Þ

From the equation above it is clear that the condition
Ce > 0 puts a restriction Bi > Be. If we interpret B=2 as the
cosmological constant, it means that the cosmological
constant for the exterior must be smaller than the one
for the interior, as in Ref. [10]. Hence, we obtain:

(i) If the interior is dS (Bi > 0), then the exterior can be
Sch-dS (Be > 0), Schwarzschild (Be ¼ 0), or Sch-
AdS (Be < 0).

(ii) If the interior is AdS (Bi < 0), then the exterior must
be Sch-AdS (Be < 0).

The second consideration to determine the size R is by
matching the energy due to the Gibbons-Hawking-York
boundary term EGHY [27] with the energy in Eq. (5)
evaluated at r ¼ R, namely EðRÞ ¼ E∞

ffiffiffiffiffiffiffiffiffiffiffi
ξiðRÞ

p
. We iden-

tify the energy E∞ as the Komar mass, which is the same
for the case of Schwarzschild, Sch-dS, and Sch-AdS [28].
Therefore, E∞ ¼ ðd − 2ÞΩd−2Ce=ð16πGdÞ. The energy
EGHY in fðRÞ gravity takes the form [29]

EGHY ¼ 1

8πGd

I
M

dd−2x
ffiffiffi
h

p
f0ððd−1ÞRÞK; ð13Þ

where h is the determinant of the induced metric onM and
K is the trace of the extrinsic curvature onM. For our case,
EGHY is given by

EGHY ¼ ðd − 2ÞΩd−2

8πGd
f0ðBiÞR

ffiffiffiffiffiffiffiffiffiffiffi
ξiðRÞ

p
; ð14Þ

where f0ðBiÞ is the first derivative f0ððd−1ÞRÞ evaluated at
ðd−1ÞR ¼ Bi. Requiring EGHY ¼ EðRÞ, we find�ðd − 2ÞΩd−2

8πGd
f0ðBiÞR − E∞

� ffiffiffiffiffiffiffiffiffiffiffi
ξiðRÞ

p
¼ 0: ð15Þ

This equation gives us two possible values for R,

R ¼ si; ð16Þ

R ¼ Ce

2f0ðBiÞ
; ð17Þ

where si is the horizon of the interior solution, ξiðsiÞ ¼ 0.
Since we assume Ce > 0 and expect R > 0, we find that
f0ðBiÞ > 0. Hence, the solution Bi with f0ðBiÞ < 0 should
be ruled out, such as the root B2 in Fig. 1.

IV. SPECIAL CASES FOR THE INTERIOR AND
EXTERIOR SPACETIMES

A. dS interior and Schwarzschild exterior spacetimes

Let us first consider the case where the interior is dS
(Bi > 0) and the exterior is Schwarzschild (Be ¼ 0). The
continuity condition at the boundary, Eq. (12), now reads

Ce ¼
Bi

ðd − 1Þðd − 2ÞR
d−1: ð18Þ

If si and se are the horizons of the interior and exterior
solutions, respectively, which satisfy ξiðsiÞ ¼ 0 and
ξeðseÞ ¼ 0, then

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1ÞA0

ðd − 3ÞBi

s
; ð19Þ

se ¼
�ðd − 2Þðd − 3Þ

A0

Ce

�
1=ðd−3Þ

: ð20Þ

From these three equations, we get

s2i s
d−3
e ¼ Rd−1: ð21Þ

Choosing the first possible value for R from the EGHY ¼
EðRÞ requirement, namely Eq. (16), we obtain R ¼ si ¼
se, which tells us that there is no horizon formation.
Therefore, the effective geometry of this graviton conden-
sate is analogous to the gravastar picture, as has been
demonstrated previously in Ref. [20].
We also need to require that the volume of the interior

region is equal to Ωd−2
d−1 λ

d−1 [20]. Mathematically,

Ωd−2

Z
R

0

dr
rd−2ffiffiffiffiffiffiffiffiffiffi
ξiðrÞ

p ¼ Ωd−2

d − 1
λd−1; ð22Þ

which then yields

�
λ

R

�
d−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þðd − 3Þ

A0

s
2F1

�
1

2
;
d − 1

2
;
dþ 1

2
;
R2

s2i

�
;

ð23Þ

where 2F1 is the hypergeometric function. As discussed
above, here we want to set R ¼ si. Note that λ → R for very
large spacetime dimension d ≫. Throughout the remainder
of this paper, we will assume that M is a maximally
symmetric space, such that A0 ¼ kðd − 2Þðd − 3Þ, with a
constant k > 0. The case k ¼ 1 is where M ¼ Sd−2, in
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which we get the value λ ¼ 1.33R for d ¼ 4. We plot the
ratio λ=R versus the spacetime dimension d with various
values of k for the case of general fðRÞ gravity in Fig. 2.
If we choose the second possible value for R as in

Eq. (17), then from the continuity condition at the boundary
we find an equation that can be used to determine the value
of Ce given the values of Bi and f0ðBiÞ,

1 ¼ Bi

ðd − 1Þðd − 2Þ
Cd−2
e

½2f0ðBiÞ�d−1
: ð24Þ

This solution can be identical to or distinct from the
previous case while still preventing the horizon formation.
Therefore, we require that the horizon of the exterior to be
equal to or smaller than R so that, using Eq. (21), the
horizon of the interior is automatically equal to or larger
than R, namely se ≤ R ≤ si. It yields

½2f0ðBiÞ�d−3 ≤
A0

ðd − 2Þðd − 3ÞC
d−4
e : ð25Þ

Combined with the previous equation, we arrive at the
inequality

f0ðBiÞ ≤ f0ðBiÞmax; ð26Þ

where

f0ðBiÞmax ¼
1

2

A0

ðd − 2Þðd − 3Þ
�ðd − 1ÞA0

ðd − 3ÞBi

�d
2
−2
: ð27Þ

If this inequality is strictly satisfied, then it is possible for the
radiusR to have a valueR ¼ Ce=½2f0ðBiÞ� as in Eq. (17) that
is distinct from the value si as in Eq. (16) and that the relation
se < R < si holds. If this inequality is saturated, then the two
possible values for R in Eq. (16) and (17) are identical,
namely R ¼ si ¼ se ¼ Ce=½2f0ðBiÞ�. However, if this
inequality is not satisfied, then it is not possible for the
radius R to have a value R ¼ Ce=½2f0ðBiÞ� as in Eq. (17), so
the only possiblevalue forR is Eq. (16), namelyR ¼ si ¼ se.
If we set d ¼ 4, we find that f0ðBiÞmax is constant with

value k=2, independent of the value of Bi, while if we set
d > 4 and an arbitrary value of k, f0ðBiÞmax is monoton-
ically decreasing to zero as Bi → ∞ [see Fig. 3(a)]. If we
are working in the ordinary gravity, where f0ðBiÞ ¼ 1 for
all values of Bi, and considering the case d ¼ 4, then for
k > 2 the inequality in Eq. (26) is strictly satisfied, which
implies that the radius R can have a value R ¼ Ce=½2f0ðBiÞ�
that is distinct from si and that se < R < si. If k ¼ 2, the
inequality is saturated, so that R ¼ si ¼ se ¼ Ce=½2f0ðBiÞ�.
If k < 2, which also includes the special case k ¼ 1 where
M ¼ Sd−2, then the inequality is not satisfied, so that the
only possibility is R ¼ si ¼ se, as in Ref. [20]. For the
case d > 4 and arbitrary value of k, there exists a critical

FIG. 2. Plot of the ratio between the graviton wavelength λ and
the size R of the interior versus the spacetime dimension d in the
case of general fðRÞ gravity for dS interior with Schwarzschild,
Sch-dS, and Sch-AdS exteriors when the value R ¼ si ¼ se is
chosen. Note that λ → R for d ≫. Here the wavelength is always
real valued, which indicates that when the interior geometry is dS
spacetime it is always possible for the radius R to have the value
R ¼ si ¼ se in the case of general fðRÞ gravity.

(a) (b) (c)

FIG. 3. Plot of f0ðBiÞmax as a function of Bi for various
spacetime dimensions d, in the case of dS interior with:
(a) Schwarzschild exterior, (b) Sch-dS exterior (where we set
Be ¼ 2), and (c) Sch-AdS exterior (with Be ¼ −2), when R is
chosen to have a value as in Eq. (17). Here we set M ¼ Sd−2,
such that k ¼ 1. The ordinary gravity where f0ðBiÞ ¼ 1 for all
values of Bi is shown in solid black line. We find that for d ¼ 4,
f0ðBiÞmax is constant with value k=2 in the case of Schwarzschild
exterior and monotonically increasing (decreasing) to the asymp-
totic value k=2 in the case of Sch-(A)dS exterior. For dimension
d > 4, f0ðBiÞmax is monotonically decreasing to zero as Bi → ∞
in the case of Schwarzschild and Sch-AdS exteriors, but displays
a nonmonotonic behavior in the case of Sch-dS exterior and
approaches zero as Bi → ∞.
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value ζSchðd > 4; kÞwhich satisfies f0ðζSchðd > 4; kÞÞ ¼ 1,
namely

ζSchðd > 4; kÞ ¼ ðd − 1Þðd − 2Þ
22=ðd−4Þ

kðd−2Þ=ðd−4Þ; ð28Þ

such that the inequality in Eq. (26) is strictly satisfied in
the regime 0 < Bi < ζSchðd > 4; kÞ, saturated at Bi ¼
ζSchðd > 4; kÞ, and not satisfied in the regime Bi >
ζSchðd > 4; kÞ. The consequences in terms of the possible
values of R for each of these regimes are again the same
as above.
The graviton wavelength in the case of general fðRÞ

gravity, when the value R ¼ Ce=½2f0ðBiÞ� is chosen, is
again given by Eq. (23), with the value of R2=s2i now
becomes

R2

s2i
¼

�
f0ðBiÞ

f0ðBiÞmax

� 2
d−2
: ð29Þ

Therefore, we find

�
λ

R

�
d−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−2Þðd−3Þ

A0

s

× 2F1

�
1

2
;
d−1

2
;
dþ1

2
;

�
f0ðBiÞ

f0ðBiÞmax

� 2
d−2
�
: ð30Þ

For very large spacetime dimension d ≫, we again have
λ → R. In the regime where the inequality in Eq. (26) is not
satisfied, the wavelength takes unphysical complex values,
which indicates that the solution in Eq. (17) is not possible.
Otherwise, in the regime where the inequality is satisfied,
then the wavelength is real valued such that the solution in
Eq. (17) is possible, which can be identical to or distinct
from the solution in Eq. (16) depending on whether the
inequality is saturated or strictly satisfied, respectively. We
plot the ratio λ=R versus the spacetime dimension d with
various values of k for the case of ordinary gravity in Fig. 4
(dots in solid lines).

B. dS interior and Sch-(A)dS exterior spacetimes

Now we will discuss the case of dS interior where the
exterior spacetime can be Sch-dS or Sch-AdS. From the
expression for the horizon of the interior solution si given
in Eq. (19) and choosing the first solution R ¼ si as in
Eq. (16), we obtain

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1ÞA0

ðd − 3ÞBi

s
: ð31Þ

Inserting this expression to the continuity condition at the
boundary given in Eq. (12) yields

A0

ðd − 2Þðd − 3Þ −
Be

ðd − 1Þðd − 2ÞR
2 −

Ce

Rd−3 ¼ 0; ð32Þ

which is essentially a statement that ξeðRÞ ¼ 0. Therefore,
we again find that R ¼ si ¼ se, which, in the case of Sch-
dS, se means the smaller positive horizon. As before, this
indicates that there is no horizon formation. The graviton
wavelength λ is given by Eq. (23) with R2=s2i ¼ 1, hence in
this case the plot of λ=R as a function of d will be identical
to Fig. 2. Since the wavelength in this case is always real
valued, together with the result of the previous section, we
conclude that when the interior geometry is dS spacetime, it
is always possible for the radius R to have the value R ¼
si ¼ se in the case of general fðRÞ gravity.
If we choose the second possible value for R as in

Eq. (17), then we require se ≤ R so that this solution is
identical to or distinct from the previous case while still
preventing the horizon formation. Using the equation
ξeðseÞ ¼ 0 and the continuity condition at the boundary,
we obtain

�
R
se

�
d−1

¼ ðz2e=s2eÞ � 1

ðz2e=s2i Þ � 1
; ð33Þ

FIG. 4. Plot of the ratio between the graviton wavelength λ and
the size R of the interior versus the spacetime dimension d in the
case of ordinary gravity for dS interior with Schwarzschild (dots
in solid lines, with Bi ¼ 30 and Be ¼ 0) and Sch-dS (dots in
dashed lines, with Bi ¼ 30 and Be ¼ 25) exteriors when the value
R ¼ Ce=½2f0ðBiÞ� is chosen. Note that λ → R for d ≫. For the
case of general fðRÞ gravity, therefore including the ordinary
gravity used here in this plot, when the radius R has the value
R ¼ Ce=½2f0ðBiÞ� there is an inequality restriction f0ðBiÞ ≤
f0ðBiÞmax, which exists only when the interior geometry is dS
spacetime, that has to be satisfied such that the wavelength is real
valued. In the regime where this inequality is not satisfied, the
wavelength takes unphysical complex values, which indicates
that it is not possible in that regime for the radius R to have the
value R ¼ Ce=½2f0ðBiÞ�.
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with the minus (plus) sign is for the case of Sch-(A)dS
exterior, and we have defined

zi;e ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1ÞA0

ðd − 3ÞjBi;ej

s
; ð34Þ

where zi is simply si here. Note that in the case of Sch-dS,
ze is the cosmological horizon of the exterior spacetime.
Since Rmust be positive, for the case of Sch-dS exterior we
have ze > si or Bi > Be, which is automatically satisfied.
Using Eq. (33), the requirement se ≤ R gives us se ≤ si.
There are now two possible choices of inequalities, se ≤

R ≤ si and se ≤ si ≤ R, where only the former which will
give us physical results. The inequality R ≤ si implies

f0ðBiÞ ≤ f0ðBiÞmax; ð35Þ

where

f0ðBiÞmax ¼
1

2

A0

ðd − 2Þðd − 3Þ
�
1 −

Be

Bi

��ðd − 1ÞA0

ðd − 3ÞBi

�d
2
−2
:

ð36Þ
We can then apply a similar analysis as in the case of dS
interior and Schwarzschild exterior. If we set d ¼ 4 and
keep Be fixed, we find that as Bi is varied, f0ðBiÞmax is
monotonically increasing (decreasing) to the asymptotic
value k=2 in the case of Sch-(A)dS exterior, while if we set
d > 4 and an arbitrary value of k, f0ðBiÞmax is monoton-
ically decreasing to zero as Bi → ∞ in the case of Sch-AdS
exterior, but displays a nonmonotonic behavior in the case
of Sch-dS exterior and approaches zero as Bi → ∞ [see
Fig. 3(b,c)].
If we are working in the ordinary gravity and focusing on

the case of Sch-dS exterior at d ¼ 4with Be > 0 kept fixed,
then the inequality in Eq. (35) is not satisfied if k ≤ 2, and
there exists a critical value ζSch-dSðd ¼ 4; k > 2Þ if k > 2
which satisfies f0ðζSch-dSðd ¼ 4; k > 2ÞÞ ¼ 1, namely

ζSch-dSðd ¼ 4; k > 2Þ ¼ Be

1 − 2
k

; ð37Þ

such that the inequality is not satisfied in the
regime Be < Bi < ζSch-dSðd ¼ 4; k > 2Þ, saturated at Bi ¼
ζSch-dSðd ¼ 4; k > 2Þ, and strictly satisfied in the regime
Bi > ζSch-dSðd ¼ 4; k > 2Þ. For the case d > 4 and arbi-
trary value of k, there may exist two critical values
ζ<Sch-dSðd > 4; kÞ and ζ>Sch-dSðd > 4; kÞ, where the latter is
the larger of the two, such that the inequality is not
satisfied in the regimes Be < Bi < ζ<Sch-dSðd > 4; kÞ and
Bi > ζ>Sch-dSðd > 4; kÞ, saturated at Bi ¼ ζ<Sch-dSðd > 4; kÞ
and Bi ¼ ζ>Sch-dSðd > 4; kÞ, and strictly satisfied in the
regime ζ<Sch-dSðd > 4; kÞ < Bi < ζ>Sch-dSðd > 4; kÞ. If these
two critical values coincide, then the inequality is not
satisfied for all values of Bi except at Bi ¼ ζ<Sch-dSðd >
4; kÞ ¼ ζ>Sch-dSðd > 4; kÞ where it is saturated. Otherwise, if

there is no critical value, then the inequality is not satisfied
for all values of Bi without exception.
Now let us focus on the case of Sch-AdS exterior while

still working in the ordinary gravity with Be < 0 kept fixed.
At d ¼ 4 with k ≥ 2, the inequality in Eq. (35) is strictly
satisfied. At d ¼ 4 with k < 2, and also for d > 4
with arbitrary value of k, there exists a critical value
ζSch-AdSðd; kÞ which satisfies f0ðζSch-AdSðd; kÞÞ ¼ 1, such
that the inequality is strictly satisfied in the regime
0 < Bi < ζSch-AdSðd; kÞ, saturated at Bi ¼ ζSch-AdSðd; kÞ,
and not satisfied in the regime Bi > ζSch-AdSðd; kÞ.
The critical value at d ¼ 4 with k < 2, namely
ζSch-AdSðd ¼ 4; k < 2Þ, has the same expression as in
Eq. (37), but it is important to emphasize that here
Be < 0 and k < 2.
The graviton wavelength in the case of general fðRÞ

gravity, when the value R ¼ Ce=½2f0ðBiÞ� is chosen, is
given by Eq. (30), but now Eq. (36) is used for f0ðBiÞmax.
We again note that λ → R for very large spacetime
dimension d ≫. Together with the result of the previous
section, we conclude that for the case of general fðRÞ
gravity, when the radius R has the value R ¼ Ce=½2f0ðBiÞ�
and the interior geometry is dS spacetime, there is an
inequality restriction f0ðBiÞ ≤ f0ðBiÞmax that has to be
satisfied such that the wavelength is real valued. In the
regime where this inequality is not satisfied, the wavelength
takes unphysical complex values, which indicates that it is
not possible in that regime for the radius R to have the value
R ¼ Ce=½2f0ðBiÞ�. We plot the ratio λ=R versus the
spacetime dimension d with various values of k for the
case of ordinary gravity in Fig. 4 (dots in dashed lines).

C. AdS interior and Sch-AdS exterior spacetimes

If the interior geometry is AdS spacetime, then the
exterior must be Sch-AdS due to the inequality Bi > Be.
The interior now does not have horizon, so we can only
have the value as in Eq. (17) for the radius R, in contrast to
the previous case where the interior is dS. Using the
continuity condition at the boundary, Eq. (12), and the
equation defining se, namely ξeðseÞ ¼ 0, the relation
between R and se can be obtained as

�
R
se

�
d−1

¼ 1þ ðz2e=s2eÞ
1 − ðz2e=z2i Þ

: ð38Þ

Since Bi > Be, or jBej > jBij, we find zi > ze. Therefore,
se < R, which means that in this case there is also no
horizon formation. The value of R can be obtained using

Rd−2 ¼ ðd − 1Þðd − 2Þ
jBej − jBij

½2f0ðBiÞ�: ð39Þ

This expression can then be used to calculate the graviton
wavelength in the case of general fðRÞ gravity, which now
takes the form
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�
λ

R

�
d−1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2Þðd − 3Þ

A0

s
2F1

�
1

2
;
d − 1

2
;
dþ 1

2
;−

R2

z2i

�
:

ð40Þ

We again note that λ → R for very large spacetime
dimension d ≫. In contrast to the case where the interior
is dS, here there is no inequality restriction that has to be
satisfied, which implies that the wavelength is always real
valued. Therefore, we conclude that when the interior
geometry is AdS spacetime it is always and only possible
for the radius R to have the value R ¼ Ce=½2f0ðBiÞ� in the
case of general fðRÞ gravity. We plot the ratio λ=R versus
the spacetime dimension d with various values of k for the
case of ordinary gravity in Fig. 5.

V. CONCLUSIONS

In this paper, we have studied a model of weakly coupled
off-shell gravitons which form Bose-Einstein condensate in
the regime that is far from the quantum critical point. We

adopted the approach outlined in Ref. [20] while making
the following three generalizations: (i) introducing a
composite of two sets of off-shell gravitons with different
wavelength to enable richer geometries for the interior and
exterior spacetimes; (ii) working in fðRÞ gravity; and
(iii) extending the calculations to higher dimensions.
Remaining in the static spherically symmetric setup, we
found that the effective spacetime geometry is again
analogous to a gravastar, but now with a metric which
strongly depends on the function fðRÞ. This gives more
possibilities to the effective spacetime geometries both in
the interior and the exterior. The interior spacetime now can
be dS or AdS, while the exterior can be Schwarzschild,
Sch-dS, or Sch-AdS. These geometries are determined by
the function fðRÞ, unlike in previous works where they
were selected by hand. A continuity condition of the metric
at the boundary between the interior and exterior regions
provides a relation between the interior and exterior space-
times: the cosmological constant for the exterior must be
smaller than the one for the interior.
There are two possible values for the radius R of the

interior region, R ¼ si ¼ se and R ¼ Ce=½2f0ðBiÞ�, where
the latter is only possible because of the generalizations
above. Focusing first on the case where the interior
geometry is dS spacetime, such that the exterior geometry
can be Schwarzschild, Sch-dS, or Sch-AdS, we found that
it is always possible for the radius R to have the value
R ¼ si ¼ se. However, when the radius R has the value
R ¼ Ce=½2f0ðBiÞ�, there is an inequality restriction
f0ðBiÞ ≤ f0ðBiÞmax that has to be satisfied such that the
wavelength is real valued. In the regime where this
inequality is not satisfied, the wavelength takes unphysical
complex values, which indicates that it is not possible in
that regime for the radius R to have the value
R ¼ Ce=½2f0ðBiÞ�. For the case where the interior geometry
is AdS spacetime, such that the exterior geometry is Sch-
AdS, we found that the radius R can only have the value
R ¼ Ce=½2f0ðBiÞ� and there is no inequality restriction that
has to be satisfied, in contrast to the previous case. This
implies that the wavelength is always real valued.
Therefore, in this case it is always and only possible for
the radius R to have the value R ¼ Ce=½2f0ðBiÞ�.
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FIG. 5. Plot of the ratio between the graviton wavelength λ and
the size R of the interior versus the spacetime dimension d in the
case of ordinary gravity for AdS interior with Sch-AdS exterior
(with Bi ¼ −25 and Be ¼ −30), where the radius R always has
the value R ¼ Ce=½2f0ðBiÞ�. Note that λ → R for d ≫. For the
case of general fðRÞ gravity, therefore including the ordinary
gravity used here in this plot, there is no inequality restriction in
this case that has to be satisfied, in contrast to the case where the
interior is dS. This implies that the wavelength is always real
valued. Therefore, we conclude that when the interior geometry is
AdS spacetime it is always and only possible for the radius R to
have the value R ¼ Ce=½2f0ðBiÞ� in the case of general fðRÞ
gravity.
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