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Direct detection of dark energy or modified gravity may finally be within reach due to ultrasensitive
instrumentation such as atom interferometry capable of detecting incredibly small scale accelerations.
Forecasts, constraints and measurement bounds can now too perhaps be estimated from accurate numerical
simulations of the fifth force and its Laplacian field at solar system scales. The cubic Galileon gravity scalar
field model (CGG), which arises in various massive gravity models including the Dvali-Gabadadze-Porrati
(DGP) braneworld model, describes modified gravity incorporating a Vainshtein screening mechanism.
The nonlinear derivative interactions in the CGG equation suppress the field near regions of high density,
thereby restoring general relativity (GR) while far from such regions, field enhancement is comparable to
GR and the equation is dominated by a linear term. This feature of the governing equation poses some
numerical challenges for computation of the scalar potential, force and Laplacian fields even under
stationary conditions. Here we present a numerical method based on finite differences for solution of the
static CGG scalar field for a 2D axisymmetric Sun-Earth system and a 3D Cartesian Sun-Earth-Moon
system. The method relies on gradient descent of an integrated residual based on the normal attractive
branch of the CGG equation. The algorithm is shown to be stable, accurate and rapidly convergent toward
the global minimum state. We hope this numerical study, which can easily be extended to include smaller
bodies such as detection satellites, will prove useful to future measurement of modified gravity force fields
at solar system scales.
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I. INTRODUCTION

Researchers continue to debate whether dark energy or
modified gravity is responsible for the apparent accelerating
expansion of the Universe. This debate underscores our
current lack of understanding of gravitational physics at large
scales [1–4]. In order to explain cosmological expansion at
large scales while also maintaining consistency with the
observed lack of a strong “fifth force” on bodies below solar
system scales, modified gravity theories often take the form
of phenomenological scalar field theories incorporating
screening mechanisms. Such screening mechanisms can
be classified broadly as depending on the local value, the
first derivative, or the second derivative of the scalar potential
field [5]. Examples of the first class, inwhich the fifth force is
screened when the gravitational potential exceeds some
critical value, include the Symmetron [6,7], Chameleon
[8], and dilaton [9,10] screening mechanisms. Models such

as k-mouflage [11] fall into the second class for which the
screening is engaged once the gradient of the potential field
exceeds some bound. Vainshtein screeningmechanisms [12]
fall into a third class, in which the fifth force is screened in
regions of spacewhere the local curvature of the field exceeds
some value. The popular cubic, quartic and quintic Galileon
models [1,13] all incorporate such a Vainshtein mechanism.
A comprehensive review of screening mechanisms and
modified gravity theories may be found in Ref. [5] and
references therein. In this work, we focus exclusively on the
cubic Galileon gravity (CGG) form of the Vainshtein
mechanism, which was first identified in the context of
the Dvali-Gabadadze-Porrati (DGP) braneworld model [14].
The cubic and higher-order Galileon terms have been
included in various other models of massive gravity (a
review can be found in Ref. [15] and references therein).
These effective field theories have also been proposed as an
alternative to dark matter rather than dark energy [16].
In scalar field models that incorporate Vainshtein screen-

ing, the standard quadratic kinetic term in the Lagrangian is*nwhite@caltech.edu
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augmented by a higher-order nonlinearity and the system is
forced by the trace of the stress-energy tensor. The resulting
governing equation includes a linear d’Alembertian term,
which dominates at long distances (based on a length scale
derived from the forcing of the given system), and a
nonlinear term, which suppresses the field at small dis-
tances [1]. A particularly simple manifestation of the
Vainshtein mechanism, and the one investigated in this
study, is one in which the Lagrangian contains a cubic
interaction term, hence leading to an equation that is
quadratic in the field and higher derivatives.
One notable example giving rise to such a cubic

Lagrangian is the DGP model, in which the universe is
regarded as a 4D brane embedded in a 5D Minkowski bulk
space. The corresponding action contains two Einstein-
Hilbert terms, one for the bulk and one for the brane, each
with its own Planck mass setting the strength of the
gravity, which may be denoted M4 and M5, respectively.
These two mass scales induce a crossover length scale
rc ¼ ðℏ=cÞM2

4=ð2M3
5Þ, where ℏ denotes Planck’s constant

and c is the speed of light, which characterizes the distance
over which metric fluctuations propagating on the brane
dissipate into the bulk, above which 5D gravity is dominant
and below which 4D gravity is dominant [14]. Metric
perturbations can then be linearized as scalar fields acting
on the brane in the decoupling limit. These perturbations to
the metric describe leakage of gravitons from the 4D brane
universe [17]. The resulting equation of motion is dominated
by linear terms at scales above the Vainshtein radius rV , and
nonlinear terms below rV, where rV ∼ r1=3c and is also
dependent on details of the local density. To make contact
with current cosmological models, rc is typically expressed
in terms of the current Hubble rate H0 and matter density
parameterΩ0

m such that rc ¼ cH−1
0 ð1 −Ω0

mÞ−1 [18,19]. The
crossover length evaluates to approximately 1.8 × 1023 km
or 6 × 103 Mpc using the constants reported in Ref. [20].
Scalar field models are ultimately constrained by com-

parison to direct observations at cosmological or galactic
scales (e.g., Mpc scales) at which the field is still relatively
strong. Model predictions are often based on density per-
turbation analyses and n-body simulations. So far, analytic
approaches have mostly yielded field equations for large-
scale density perturbations [2,4,21–24]. Numerical simu-
lations of large-scale structure evolution in the quasistatic
approximation have also been conducted using spectral
[19] and position-space [3,25,26] methods which sequen-
tially solve for the scalar field and update the local mass
density distribution, represented as discrete particles. These
large-scale simulations have predicted perturbative density
growth rates, power spectra of mass distribution, and
parameter values for dark matter halos. Besides large-scale
structure formation, the dynamics and radiation of binary
pulsars under a Galileon scalar field have also been studied
and shown to influence orbital periods due to Vainshtein
screening [27–29]. Analysis of the dependence of the

Vainshtein radius on the radii of bodies has also demon-
strated that the relative strength of the cubic Galileon fifth
force to gravity is greater around infinite cylindrical bodies
than around spherical bodies [30], indicating potential
advantages in obtaining measurements in regions lacking
spherical symmetry in order to better discriminate signals
from the fifth force.
On the experimental side, advances in instrumentation,

such as atom interferometry, have introduced unprec-
edented sensitivity in force measurements [31–33], so
much so that there now exists the possibility of direct
detection of a “fifth force” due to modified gravity; indeed,
detection schemes for Chameleon [34–36] and Symmetron
[37] models have already been proposed. Direct detection
experiments of the cubic Galileon scalar field at solar
system scales may soon provide parameter constraints
supplementing those arising from astrophysical observa-
tions, where in particular a significant tension has been
found with data from the integrated Sachs-Wolfe effect
[38,39]. Efforts on validating modified gravity models at
solar system scales are summarized in Ref. [15], in which
the cubic Galileon field for only a single spherical object
was analyzed. A comprehensive solution of the scalar field
potential must include contributions from multiple plan-
etary bodies to enable realistic mission design and data
analysis as well as utilization of planetary ephemeris for
constraining the cubic Galileon model, an approach similar
to Ref. [40] on graviton mass bounds. To determine fully
accurate solutions of the field around multiple bodies, 3D
numerical simulations are required.
Numerical investigation of the 3D Galileon potential

field at solar system scales described by the CGG model
carries some inherent challenges. In contrast to the behavior
at large scales, the linear term at small distances is
essentially negligible, such that the field equation becomes
strongly nonlinear in the second derivative terms. Methods
based on the finite element technique therefore become
difficult to apply. Unlike the large-scale n-body regime, the
solar system regime contains mass sources with compact
support, such as the Sun and planets, which introduces
difficulties for spectral methods, and further suggests
modeling mass density as a field rather than as discrete
particles. And since the radii of bodies tend to be orders of
magnitude smaller than their separation distances, the
multiple scales inherent in this system must be managed
effectively to prevent numerical artifacts. Furthermore,
since the CGG equation is quadratic, it harbors both
attractive and repulsive solutions; care must be taken in
isolating solutions iterating toward two separate global
minima. Despite these challenges, some numerical studies
have successfully elucidated aspects at small scales within
the Vainshtein radii of the relevant bodies. For example, the
anomalous precession of bodies such as Mercury beyond
the correction to GR has been computed [17,41] as has a
solution of the Green’s functions for corrections to a
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massive, spherically symmetric body, with perturbative
corrections computed to several orders [42,43].
While prior work had concentrated on large-scale cos-

mological simulations, Hiramatsu et al. [44] realized the
importance of studying the very different small-scale
regime as well and carried out the first significant numerical
study of the static scalar potential field equation at small
scales. Their study considered an idealized system con-
taining two spherical bodies with mass ratio comparable to
Earth and the Moon but positioned within very close range,
using a finite difference technique coupled with a succes-
sive over-relaxation method. The system considered was
within the nonlinear regime subject to strong screening
since the two bodies were both well within each other’s
Vainshtein radius. In this case, the authors were able to take
advantage of the fact that despite the presence of a strong
nonlinear term, the solution at distances close to a massive
body must be dominated by that body. (We note the use of
the term “screening” in Ref. [44] to describe this effect
should not be confused with the Vainshtein screening
mechanism.) Recent studies have also examined masses
contained within spherical shells or voids which become
subject to a force, in contrast to masses subject purely to
Newtonian gravity [45]. Numerical simulations of disks
containing holes have revealed how cavities reduce the
screening force [46]. In these examples, the numerical
iteration scheme converges well so long as the initial trial
solution is sufficiently close to the true solution.
The goal of this current work therefore is to provide an

accurate and rapidly convergent numerical scheme for the
solution of the static scalar potential field of the cubic
Galileonmodel at solar system scales for systems containing
multiple dense compact mass sources. We present a numeri-
cal method based on finite differences for a solution of the
static CGG scalar field for a 2D axisymmetric Sun-Earth
system and a 3D Cartesian Sun-Earth-Moon system. The
method relies on gradient descent of an integrated residual
based on the normal attractive branch of the CGG equation.
The algorithm is shown to be stable, accurate and rapidly
convergent toward the global minimum state. While the
computation of observational constraints is beyond the scope
of this work, the results presented below nonetheless offer
useful guidelines for the positioning of space-based detection
schemes to obtain measurements at solar system scales.
This paper is organized as follows: Section II describes

the model system and nondimensionalization of the gov-
erning equation to identify dominant and subdominant
terms; Sec. III outlines the iteration scheme with applica-
tion to a solution of the Galileon potential fields for the
axisymmetric Sun-Earth system and 3D Sun-Earth-Moon
system along with a discussion of the results. Following the
conclusion, we provide in the Appendixes detailed explan-
ations of the numerical method along with validation tests.

Included there are download links to the data and software
for the interested reader.

II. ANALYTIC MODEL AND RESCALINGS

In what follows, we follow the derivations in Refs. [4,47]
and [47] and review features of the CGG model equation.
In particular, we discuss the known analytic solution for a
spherically symmetric single body at length scales above
and far below the Vainshtein limit. The CGG equation is
then nondimensionalized to highlight relative strengths of
the linear and nonlinear terms at solar system scales and to
facilitate numerical investigation.
The cubic Galileon Lagrangian is given by

L ¼ 3ϕ□ϕ −
r2c
c2

ð∂αϕÞð∂αϕÞ□ϕþ 16πGc−2Tα
αϕ; ð1Þ

where □ is the d’Alembertian operator, ∂α is the 4D
covariant derivative, ϕðr⃗Þ is the scalar field, G is the
gravitational constant, and Tα

α is the trace of the stress-
energy tensor [1,47]. Equation (1) was derived for a
Minkowski (flat) 4D space; in a Friedmann background,
the Lagrangian can instead be written as

LFr ¼ 3
β

a2
ϕ□ϕ −

r2c
a4c2

ð∂αϕÞð∂αϕÞ□ϕþ 16πGc−2Tα
αϕ;

ð2Þ

where a is the cosmological scale factor and β ¼
1� 2H0c−1rc½1þ ð∂tH0Þ=ð3H2

0Þ�, where ∂t denotes the
time derivative. In the DGP model there is an unstable self-
accelerating branch, corresponding to the positive branch
of β, and a stable “normal” nonaccelerating attractive
branch [18,48], corresponding to the negative branch of
β [2,4]. We consider only the normal branch. By definition,
a ¼ 1 at the present day and, depending on the deceleration
factor of the Universe, β may be estimated by a value
of 2–4. Following Ref. [44], we approximate β ≈ 1 and
proceed with the Lagrangian defined in Eq. (1).
The resulting equation of motion is given by

3□ϕþ r2c
c2

½ð□ϕÞ2 − ∂αμϕ∂αμϕ� ¼ −8πGc−2Tα
α; ð3Þ

whose static potential field satisfies the nonlinear equation

3∇2ϕþ r2c
c2

�
ð∇2ϕÞ2 −

X
i;j

ð∇i∇jϕÞ2
�
¼ 8πGρ̃; ð4Þ

where ρ̃ denotes the local mass density difference from the
cosmological mean and ∇i is the 3D gradient operator. We
note henceforth that the Einstein summation convention no
longer applies. The scalar field can be regarded as static
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since the configuration of solar system bodies changes very
slowly in comparison with the speed of light.
In the vicinity of dense bodies, the nonlinear term is

dominant due to the size of the coefficient rc; at long scales
above the Vainshtein radius, the linear term is dominant.
The transition in solution behavior that results is evident,
for example, in the spherically symmetric solution ϕðrÞ
for a single mass source, for which Eq. (4) reduces to the
form [4]

6

r
∂rϕ þ 3∂rrϕ þ r2c

c2
2

r2
ð∂rϕÞð∂rϕ þ 2r∂rrϕÞ ¼ 8πGρ̃:

ð5Þ

Schmidt et al. [4] showed that the solution ϕðrÞ for a single
spherical body of radius rref , density ρref and total mass
Mref ¼ ð4=3Þπρrefr3ref can be written in terms of the hyper-
geometric function 2F1, where

ϕðrÞ ¼ 3c2

8

8>>>>><
>>>>>:

�
r
rc

�
2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
rV
rref

�
3

r
− 1

#
þ
�
rref
rc

�
2
�

2F1

h
− 1

2
;− 2

3
; 1
3
;−

�
rV
rref

�
3
i
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
rV
rref

�
3

r �
; r ≤ rref ;

�
r
rc

�
2
�

2F1

h
− 1

2
;− 2

3
; 1
3
;−

�
rV
r

�
3
i
− 1

�
; r > rref ;

ð6Þ

and the Vainshtein radius is given by [21]

rV ¼ 4

3
rref

�
π
G
c2

ρrefr2c

�
1=3

¼
�
16

9

G
c2

Mrefr2c

�
1=3

: ð7Þ

The constant of integration incorporated into this form,
which ensures limϕðr → ∞Þ ¼ 0, does not affect the
resulting force since the addition of a constant to the
potential is a gauge freedom.
Given the complex nature of this solution, it is useful to

examine instead the resulting force on a test body, which
yields the simpler expression [4,47]:

∂rϕðrÞ ¼
3c2r
4r2c

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 64

27
π G

c2 ρrefr
2
c

q
− 1; r ≤ rref ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 64
27
π G

c2 ρrefr
2
c

�
rref
r

�
3

r
− 1; r > rref ;

ð8Þ

or equivalently,

∂rϕðrÞ ¼
3c2r
4r2c

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
rV
rref

�
3

r
− 1; r ≤ rref ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�
rV
r

�
3

r
− 1; r > rref :

ð9Þ

This solution corresponding to the positive square root
identifies the attractive solution which correctly matches
the r → ∞ linear-dominated limit of Eq. (4).
At short distances where rref < r ≪ rV , wherein the

nonlinear terms dominate, the first-order solution becomes
[4,47]

lim
rref<r≪rV

∂rϕðrÞ ¼
3c2rV
4r2c

��
r
rV

�
−1=2

þO

�
r
rV

��
: ð10Þ

At long distances r ≫ rV in which the linear term is instead
dominant, the solution to first order becomes harmonic and
reduces to [4,47]

lim
r≫rV

∂rϕðrÞ ¼
3c2rV
8r2c

��
r
rV

�
−2

þO

�
r
rV

�
−4
�
: ð11Þ

A. Nondimensionalization of scalar potential equation

We introduce here scalings for nondimensionalization of
the governing scalar potential equation in order to clarify
the relative importance of the linear term at small scales and
to simplify the numerical method. The rescaling is based on
a suitable length scale of interest, d, and a reference
spherical mass of radius rref and density ρref. These choices
yield a characteristic scale for the potential field ϕref and a
dimensionless coefficient k preceding the linear term,
where

ϕref ¼
�
3

2

�
3=2 c2d1=2r3=2V

r2c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8πGρrefÞ

dc2r3ref
r2c

s
; ð12aÞ

k ¼
ffiffiffi
8

3

r �
d
rV

�
3=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

8π

�
d3c2

Gρrefr3refr
2
c

�s
: ð12bÞ

The resulting nondimensional equation for the scalar
field ΦðR⃗Þ becomes

k∇2Φþ
�
ð∇2ΦÞ2 −

X
i;j

ð∇i∇jΦÞ2
�
¼ ρ; ð13Þ

WHITE, TROIAN, JEWELL, CUTLER, CHIOW, and YU PHYS. REV. D 102, 024033 (2020)

024033-4



where the reduced density ρ ¼ ρ̃=ðρrefr3ref=d3Þ and dimen-
sionless reference body radius is Rref ¼ rref=d. All other
scalings and definitions can be found in Table I.

The solution in Eq. (6) can now be recast in dimension-
less form for a spherically symmetric body of radius Rb ¼
rb=d and density ρb ¼ ρ̃b=ðρrefr3ref=d3Þ:

ΦðRÞ ¼ kR2
b

8

8>>><
>>>:

�
R
Rb

�
2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8ρb
3k2

q
− 1

�
þ 2F1

h
− 1

2
;− 2

3
; 1
3
;− 8ρb

3k2

i
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ρb

3k2

q
; R ≤ Rb;

�
R
Rb

�
2
�

2F1

h
− 1

2
;− 2

3
; 1
3
;− 8ρb

3k2

�
Rb
R

�
3
i
− 1

�
; R > Rb:

ð14Þ

TABLE I. Parameter values and scalings for the numerical simulations (unless otherwise specified). In this work, the reference
distance d, reference body density ρref, and reference body radius rref were set equal to the Sun values, resulting in a reference scalar
field, ϕref , based on the Sun.

Quantity Scaling Rescaled variable

Current Hubble rate constant [20] H0¼ 71 km=s=Mpc
Matter density parameter [20] Ω0

m ¼ 0.27
Speed of light in vacuum c ¼ 2.998 × 108 ms−1

Crossover length scale rc ¼ cH−1
0 ð1 −Ω0

mÞ−1 ¼ 1.8 × 1023 km
Gravitational constant G ¼ 6.674 × 10−11 m3 kg−1 s−2

Sun density ρ̃S ¼ 1; 408 kgm−3 ρS ¼ ρ̃S=ρref ¼ 1

Sun radius rS ¼ 0.6957 × 106 km RS ¼ rS=d ¼ 1

Sun Vainshtein radius rV;S ¼ ½ð64π=27ÞGc−2ρ̃Sr3Sr2c�1=3 ¼ 4.396 × 1015 km RV;S ¼ rV;S=d ¼ 6.318 × 109

Sun coordinates xS ¼ 0 XS ¼ xS=d ¼ 0

yS ¼ 0 YS ¼ yS=d ¼ 0

zS ¼ 0.5 AU ¼ 74.80 × 106 km ZS ¼ zS=d ¼ 107.5
Earth density ρ̃E ¼ 5; 515 kgm−3 ρE ¼ ρ̃E=ρref ¼ 3.917
Earth radius rE ¼ 0.006371 × 106 km RE ¼ rE=d ¼ 9.158 × 10−3

Earth Vainshtein radius rV;E ¼ 6.346 × 1013 km RV;E ¼ rV;E=d ¼ 9.121 × 107

Earth coordinates xE ¼ 0 XE ¼ xE=d ¼ 0

yE ¼ 0 YE ¼ yE=d ¼ 0

zE ¼ −74.80 × 106 km ZE ¼ zE=d ¼ −107.5
Moon density ρ̃M ¼ 3; 344 kgm−3 ρM ¼ ρ̃M=ρref ¼ 2.375
Moon radius rM ¼ 0.001737 × 106 km RM ¼ rM=d ¼ 2.497 × 10−3

Moon Vainshtein radius rV;M ¼ 1.464 × 1013 km RV;M ¼ rV;M=d ¼ 2.105 × 107

Moon coordinates xM ¼ 0 XM ¼ xM=d ¼ 0

yM ¼ −0.3850 × 106 km YM ¼ yM=d ¼ −0.5534
zM ¼ −74.80 × 106 km ZM ¼ zM=d ¼ −107.5

Reference distance d ¼ 0.6957 × 106 km ¼ rS ðX; Y; Z; RÞ ¼ ðx; y; z; rÞ=d
Reference body density ρref ¼ 1; 408 kgm−3 ¼ ρ̃S ρ ¼ ρ̃=ρref
Reference body radius rref ¼ 0.6957 × 106 km ¼ rS Rref ¼ rref=d ¼ 1

Reference scalar field value ϕref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8πGρrefÞc2dr3ref=r2c

p
¼ 1.2 × 10−3 m2 s−2 Φ ¼ ϕ=ϕref

Linear coefficient of Eq. (13) k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9d3c2Þ=ð8πGρrefr3refr2cÞ

p
¼ 3.2 × 10−15 k ¼ 0 in simulations

Gravitational potential field ψG∶ ∇2ψG ¼ 4πGρ̃ðr⃗Þ ΨG ¼ ψG=ϕref

Quantity normalized by gravity k · kG ¼ k · k=k∇ψGk
Arbitrary body density ρ̃B ρB ¼ ðρ̃B=ρrefÞðd=rrefÞ3
Arbitrary body radius rB RB ¼ rB=d
Computational domain size l ¼ 64 AU ¼ 9; 574 × 106 km L ¼ l=d ¼ 1.376 × 104

3D simulation bounds ðx; y; zÞ ∈ ½−l;l� × ½−l;l� × ½−l;l�
2D simulation bounds ðr; zÞ ∈ ½0;l� × ½−l;l�
Iteration number n
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In regions close to a dense mass such as a planet, the
reference density ρref will typically be tens of orders of
magnitude greater than the cosmological average density
[49]; hence even if the surrounding space has an under-
density, it will tend to be negligibly small. The empty space
close to a dense mass may therefore be assumed to have a
value ρ ≥ 0.
The chosen scalings help distinguish between solutions

characterized by k large and k small and in turn make
evident whether the linear or nonlinear term in Eq. (13) is
dominant at a given distance. The scalings above derive
from consideration of a single body with spherical sym-
metry, but may be applied to the case of multiple bodies by
choosing an appropriate distance d and either one body or a
combination of the bodies for the reference mass and
radius. In the case of one massive body which dominates
the fields of all other bodies, such as the Sun in the solar
system, the massive body is the natural reference choice. In
the highly nonlinear regime characterized by negligibly
small values of k, the governing equation for ΦðR⃗Þ retains
only the nonlinear terms, thereby simplifying to the form

�
ð∇2ΦÞ2 −

X
i;j

ð∇i∇jΦÞ2
�
¼ ρ: ð15Þ

The single-body spherically symmetric solution in this
nonlinear regime is then given by

ΦðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MbRb

32π

r 8>><
>>:

�
R
Rb

�
2 þ const:; R ≤ Rb

4
ffiffiffiffi
R
Rb

q
− 3þ const:; R > Rb;

ð16Þ

where Mb ¼ ð4=3ÞπρbR3
b is the dimensionless reduced

body mass. This result corresponds to the limit of small
r derived in Ref. [4]. The choice of additive constant is
arbitrary and may be chosen to match the full single-body
solution.
Returning to Eq. (13), we note that the coefficient k

corresponding to the two-body Sun-Earth system is in fact
negligibly small. For example, with the Sun as the reference
body and a reference distance d ¼ 1 AU, k ≈ 10−11. The
distance 1 AU is well within the Vainshtein radii of the Sun,
Earth, and Moon, which are approximately 3 × 107 AU,
4 × 105 AU, and 1 × 105 AU, respectively. For compari-
son, the apogee of Pluto’s orbit is around 50 AU and the
Oort cloud extends to at most 2 × 105 AU from the Sun.
Furthermore, comparison between the analytic one-body
solutions for the force field caused by the Sun, ∂rΦS, for
k ¼ 0 and k ≠ 0 reveals that the linear term is indeed
irrelevant in the Sun-Earth system, as the relative difference
at 1 AU is only of the order of 10−11.
Smaller masses such as satellites or individual atoms

have much smaller Vainshtein radii. However, so long as

they are within the solar system, their potential fields will
be dominated by the Sun or other planets at short distances
below the Vainshtein radii of the smaller objects. For
example, a hydrogen atom has a Vainshtein radius of
approximately 0.4 m, but the fifth force it would exert
on an object one angstrom away is still tens of orders of
magnitude smaller than the fifth force exerted by the Sun on
an object at a distance of 1 AU. Similarly, a spherical
satellite of mass 104 kg has a Vainshtein radius of approx-
imately 1010 m. However, at a distance of 1 AU from the
Sun, the force the satellite would exert on a nearby mass is
comparable to the fifth force exerted by the Sun at a
millionth of an angstrom away. The magnitude of the
Laplacian of its scalar field is comparable to that of the Sun
at a distance of about 250 meters, still many orders of
magnitude below the satellite’s Vainshtein radius. In the
present work, focusing on solar system scales, the coef-
ficient k of the linear term in Eq. (13) was set to 0 in all
simulations, although the numerical method should remain
valid for arbitrary k > 0.

III. SCALAR POTENTIAL SOLUTION FOR THE
AXISYMMETRIC SUN-EARTH AND 3D SUN-

EARTH-MOON SYSTEMS

Although Eqs. (13) and (15) have been solved analyti-
cally for the case of a single body with spherical symmetry,
as shown above, exact analytic solutions for asymmetric
systems consisting of two or more bodies have remained
intractable. By noting that the governing equation remains
invariant to the addition of terms represented by constant
gradients to Φ (so-called Galilean invariance), Hui et al.
[50] suggested that the influence of a distant mass on a local
system could be approximated by first solving for the local
system in isolation and then adding the linearized potential
of the field of the distant mass. For an axisymmetric two-
body problem, an analytic perturbation expansion based on
this assumption has been developed [51]. To achieve higher
accuracy for the two-body problem or to solve complex
systems containing many bodies or nonspherical masses, it
becomes necessary to turn to numerical solution techniques.
The success of the numerical method used in this

work relies on an important observation by Chan and
Scoccimarro [19]. Recasting Eq. (13) or Eq. (15) as a
quadratic equation in terms of the Laplacian ∇2Φ allows
one to isolate the solution which correctly matches the
large-scale limiting behavior by selecting the correspond-
ing positive or negative square root. While they used a
discriminant splitting technique to avoid complex roots in
the residual function of trial solutions in large-scale
cosmological simulations containing both overdensities
and underdensities, we find that the method without
splitting is particularly useful for simulations like ours at
distances below the Vainshtein radius containing dense and
compact mass sources, i.e., cases in which underdensities
can be ignored. In particular, we show that in this small
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scale regime, the residual error landscape of the solved
quadratic form of Eq. (13) or Eq. (15) has no local minima,
implying that an iteration scheme following gradient
descent will locally converge to the global minimum
representing the true solution. The main analytic aspects
of the iteration scheme used in the numerical simulations
are discussed in Sec. III A, while a detailed explanation of
the implementation and numerical method of central finite
differences with nested meshes is contained in Appendix A.
Unlike previous studies incorporating compact mass

sources [44,45], the Vainshtein radii in our studies are
many orders of magnitude larger than the radii and
separation distance of the solar system bodies of interest.
The scalar potential field is therefore computed well within
the Vainshtein radii of the dominant bodies, without having
to extend the computational domain to the far field region
dominated by the linear term. In addition, the boundary
conditions applied along the edges of the computational
domain derive from the values of the spherically symmetric
solution given by Eq. (14) forced by a spherical average of
the mass sources, in contrast to boundary conditions
corresponding to superposition of single-body solutions.
The reader will find in Sec. III A 2 a more detailed
explanation of the boundary conditions and validation tests
are presented in Appendix B 2.
Experimental detection relying on force measurements

would allow quantification of the Galileon force ∇Φ, and
its spatial variation in the form of the Laplacian ∇2Φ. At
solar system scales, ∇Φ is many orders of magnitude
smaller than the force of Newtonian gravity. Directly
measuring the small additional Galileon force would
require exact computation of the gravitational field to
the same precision, and is therefore one of the key obstacles
to detection. However, because the Laplacian of the
Newtonian gravitational field always vanishes, measure-
ment of the Laplacian will reveal only non-Newtonian
forces associated with the background scalar field. For this
reason, we concentrate in this work mostly on the gradient
and Laplacian functions of Φ for the two-body Sun-Earth
system and the three-body Sun-Earth-Moon system.
In Sec. III B and III C, we contrast the full numerical

solutions for the 2D axisymmetric Sun-Earth and 3D
Cartesian Sun-Earth-Moon system, with the solution to
the single body Sun case, and naïve solutions based on
simple superposition of the independent scalar fields. The
results of the Sun-Earth-Moon system are further compared
to the superposition of the two-body Earth-Moon system
with the single body Sun solution. Because the Sun’s field
has nearly a constant gradient in the region surrounding
Earth and the Moon, the latter solution closely represents
the approximation proposed by Hui et al. [50]. Simulation
parameters are listed in Table I. We note that although our
numerical simulations were all based on the nondimen-
sionalized form of the governing equation and correspond-
ing boundary conditions, the results that follow are

presented in dimensional variables for the convenience
of those readers interested in experimental scales and
verification.

A. Solution scheme

The numerical solution scheme for obtaining the CGG
scalar potential field at solar system scales is based on
inclusion of mass sources far denser than any local
cosmological underdensities. Under this assumption, the
mass density term ρ of Eq. (13) can be assumed to be non-
negative, which allows formulation of a robust iteration
scheme with rapid convergence regardless of the initial trial
solution. The accuracy and convergence of this iteration
scheme are examined next.

1. Analytic properties of implemented iteration scheme

The solution to the general governing nonlinear equation
given by Eq. (13) can be accurately approximated by
iterative linearization. Given a nonlinear residual function
R½Φ� quantifying the difference of an interim solution from
the actual solution Φ, the numerical approximation scheme
is recast as an optimization problem by minimizing the
value of the integrated residual over the volume of interest,
namely kR½Φ�k2 ¼ R

R2½Φ�dV. The initial trial function
for Φ is then made to evolve via gradient descent toward
a minimum of the residual, where the gradient operator is
defined by the functional derivative L½Φ� ¼ δR½Φ�=δΦ.
A variety of algorithms exists in the literature for speeding
the computations involving gradient descent and seeking
global minima amidst a residual landscape potentially
populated by many local minima, all the while ensuring
accuracy and stability [52].
The choice of residual function is not unique and

ultimately establishes the details of the residual landscape,
which can complicate identification of the global mini-
mum. The most straightforward option based simply on
collection of all terms in Eq. (13) yields a direct residual
function Rdirect and direct linear gradient operator Ldirect
given by

Rdirect½Φ� ¼ k∇2Φþ
�
ð∇2ΦÞ2−

X
i;j

ð∇i∇jΦÞ2
�
−ρ; ð17Þ

Ldirect½Φ� ¼ k∇2þ2ð∇2ΦÞ∇2−2
X
i;j

ð∇i∇jΦÞ∇i∇j: ð18Þ

This choice of residual and linear operator has previously
been shown to produce convergence in cases where the
initial trial function was chosen to be close to the true
solution [44–46] or in cases where the governing equation
was restricted to the large-scale regime where the linear
term is dominant [3]. The difficulty in applying this choice
of residual function to finding solutions of Eq. (13) is that
its quadratic form can yield two solution branches, leading
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to a residual landscape containing at least two global
minima [we say “at least,” because proof that there exist
only two solutions to Eq. (13) would require analysis
beyond the scope of this paper]. Furthermore, our numeri-
cal tests have found that if the trial solution is not
sufficiently close to the true solution, then gradient descent
with this direct residual can yield solutions which settle into
minima far from the true solution. Such local minima can
occur when the local solution in one region of space iterates
toward the repulsive branch of Eq. (13) while the solution
in a different region iterates towards the attractive branch.
Chan and Scoccimarro [19] made the critical observation

that upon solving Eq. (13) as a quadratic equation in ∇2Φ,
one can explicitly select a solution branch and thus avoid
the potential problem of different points converging to the
undesired branch when the starting trial solution is not
close enough to the true solution. With that insight, the
positive branch is given by

∇2Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

ð∇i∇jΦÞ2 þ ρþ
�
k
2

�
2

s
−
k
2
: ð19Þ

This then leads to the following natural choice for the
residual function and gradient operator:

R½Φ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

ð∇i∇jΦÞ2 þ ρþ
�
k
2

�
2

s
−∇2Φ −

k
2
; ð20Þ

L½Φ� ¼
P

i;jð∇i∇jΦÞ∇i∇jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l;mð∇l∇mΦÞ2 þ ρþ ðk

2
Þ2

q −∇2: ð21Þ

For any solution Φ of Eq. (13), the discriminant in the
square root will be positive. However, when evaluating the
residual for a trial solution which is not a true solution,
the discriminant will not necessarily be positive if ρ < 0.
At galactic and cosmological scales, such ρ < 0 under-
densities must be considered, so Chan and Scoccimarro
used a discriminant splitting method to ensure that the
residual could be evaluated for any trial solution. In the
small-scale case around dense bodies, underdensities can
be ignored, i.e., ρ ≥ 0, and hence splitting the discriminant
is unnecessary.
As we demonstrate next, this reformulation introduces a

significant advantage for computation in that all critical
points of R½Φ�2 are global minima, due to the fact that
R½Φ� is a convex function unbounded from below. The
convexity ofR½Φ� is evident from inspection of the second
functional derivative ofR acting on an arbitrary function ξ,
which is always non-negative:

δ2R
δΦ2

½ξ; ξ� ¼ ½ρþ ðk
2
Þ2 þP

i;jð∇i∇jΦÞ2�Pi;jð∇i∇jξÞ2
½Pl;mð∇l∇mΦÞ2 þ ρþ ðk=2Þ2�3=2

−
½Pi;jð∇i∇jΦÞð∇i∇jξÞ�2

½Pl;mð∇l∇mΦÞ2 þ ρþ ðk=2Þ2�3=2

≥
½ρþ ðk

2
Þ2�½Pi;jð∇i∇jξÞ2�

½Pl;mð∇l∇mΦÞ2 þ ρþ ðk=2Þ2�3=2 ≥ 0: ð22Þ

The functional second derivative vanishes only when ξ is a
constant or a linear function. Both forms of ξ represent a
gauge freedom ofΦ since any constant or linear function can
be added to a solution of Eq. (13) and remain a solution;
hence, R is convex. The unboundedness of R from below
can be shown by considering the ansatz function Φ ¼
ðc=2Þðx2 þ y2 þ z2Þ representing solutions close to an
extremum. Then ∇2Φ ¼ 3c and

P
i;jð∇i∇jΦÞ2 ¼ 3c2. If

c ≫ k and c ≫ ρ, then R½Φ� ≈ ð ffiffiffi
3

p
− 3Þc, which can

assume arbitrarily largevalues for arbitrarily large coefficient
values c.
Because R is a convex function unbounded from below,

R2 has the property that the only critical points are global
minima. This can be seen immediately by noting that
δR2=δΦ ¼ 2RðδR=δΦÞ, which can vanish only if
δR=δΦ ¼ 0 or R ¼ 0. But the existence of an extremum
satisfying δR=δΦ ¼ 0 would contradict the unbounded-
ness of R, and hence the only critical points of R2

correspond to points at which R ¼ 0, which represent
global minima ofR2. Furthermore, this implies that so long
as R is sufficiently smooth, the global minima of R2 must
be connected, in the sense that one solution can be
continuously deformed into another while satisfying the
global minimum conditionR2 ¼ 0. Were there to exist two
separated minima, there would then have to exist a non-
minimum critical point on a line connecting them, resulting
in a contradiction.
The properties of R and R2 so far described represent

local behavior. However, the residual function of interest,
which represents a global constraint, is represented by the
integral L2 norm of R, namely kR½Φ�k2 ¼ R

R2½Φ�dV.
Because the global minima of R2 are connected within
sufficiently smooth regions of R, then if boundary con-
ditions allow a global solution to exist, the quantity
kR½Φ�k2 is also expected to have no minima aside from
the global minimum. Rigorous proof is beyond the scope of
this paper, as is proof of the existence and uniqueness of
solutions to R½Φ� ¼ 0 subject to Dirichlet boundary con-
ditions. Furthermore, the strong concavity of the landscape
requires k > 0; if k is taken to be 0 then there are no local
minima but there may be saddle points. That said, we have
found that in practice the numerical convergence of
kR½Φ�k2 is accurate, stable, and rapidly convergent even
in the k ¼ 0 limit, suggesting that the local properties ofR2

yield a residual landscape for kR½Φ�k2, whose geometry is
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highly favorable to gradient descent techniques and rapid
identification of the global minimum.

2. Boundary conditions in numerical simulations

The solution of Eq. (19), which is second order, requires
specification of a condition at each point on the boundary.
For the axisymmetric Sun-Earth simulations, we invoked a
Neumann condition reflecting symmetry about the R ¼ 0
axis such that ∂RΦðR ¼ 0; ZÞ ¼ 0. With regard to the
remaining far field boundary conditions in R and Z (or in X,
Y, and Z, for the 3D Sun-Earth-Moon simulations based on
Cartesian geometry), we note the following reasoning for
the choice of Dirichlet conditions.
When simulations of Eq. (19) are conducted in a

computational domain whose size is much larger than
the Vainshtein radii of the interior bodies, the equation
becomes dominated by the linear term along the far field
exterior boundaries. In this case, boundary conditions
based on superposition of the individual analytic single-
body solutions may represent a good choice [44]. In the
present study, however, the Vainshtein radii are prohibi-
tively large and all simulations were conducted within a
computational domain whose size represents relatively
small scales such that the nonlinear term in Eq. (19) is
dominant. For such a nonlinear equation, there is no reason
to expect that the boundary conditions applied along the
domain boundaries should be accurately represented by
simple superposition of single-body solutions. However, it
is expected that so long as the domain edges are sufficiently
far from the included bodies, they should together act as a
point source or equivalently, the scalar potential function
should behave as though it is driven by a single point mass.
Since in our simulations all bodies were confined to the

interior of the computational domain, we adopted far field
Dirichlet conditions obtained from the value of the scalar
potential given by Eq. (16) for a point mass equal to the
total mass of all interior bodies positioned at the center of
mass of those bodies. Were the computational domain to
be spherical, this boundary condition would be a constant
applied on the domain boundaries. But because the com-
putational domain was either spherical or cubic, the spheri-
cally symmetric solution was used to determine the values
at each point of the boundary, resulting in a nonconstant
boundary condition. In what follows, we refer to this choice
of boundary condition as the point source boundary
condition and its dimensional value denoted by ϕ∞ðr⃗Þ
[or dimensionless value Φ∞ðR⃗Þ]. It should also be noted
that for a spherically symmetric system whose density field
has compact support, the scalar potential field in the
external vacuum depends only on the total mass and not
its spatial distribution. Thus, a point mass and an arbitrary
compact spherically symmetric mass distribution are indis-
tinguishable beyond their radii, and the point mass boun-
dary condition is equivalent to the solution of the scalar
potential equation forced by a spherical average of the

density field. The point source boundary condition is
therefore the natural physical choice for the scalar potential
field at distances much greater than the separation distances
of the interior bodies. For the solar system, the Sun is so
massive that the relative difference between the point
source solution and the linear superposition of single-body
solutions is of the order of 10−6 and therefore essentially
negligible. However, it seems inappropriate to impose far
field boundary conditions based on linear superposition of
individual single-body potential fields when solving a
nonlinear equation.

B. Results of axisymmetric Sun-Earth system

Shown in Fig. 1 are far-field and near-field views about the
Earth body of the dimensional axisymmetric Sun-Earth
Galileon field ϕSEðr; zÞ m2=s2 for Sun (S) and Earth (E)
bodies positioned on the axis of symmetry r ¼ 0. The body
coordinates were chosen to be (rS ¼ 0; zS ¼ þ74.80×
106 km ¼ þ0.5 AU) and (rE ¼ 0; zE ¼−74.80× 106 km¼
−0.5 AU). The boundary conditions applied along the
exterior edges of the cylindrical domain were ∂rϕSEðr¼ 0;
−64AU≤ z≤þ64AUÞ¼ 0, ϕSEðr¼þ64 AU;−64 AU ≤
z ≤þ64 AUÞ ¼ ϕ∞ðr; zÞ and ϕSEð0 ≤ r ≤ 64 AU; z ¼
�64 AUÞ ¼ ϕ∞ðr; zÞ. The strong spherical symmetry of
the solution about the Sun body evident in Fig. 1(a) is indi-
cative of the fact that the field is dominated by the massive
Sun. Shown in Fig. 1(b) is amagnified view of the field about
the Earth body. The results in Fig. 1(c) and the magnified
view in (d) depict the field values along the axis of symmetry
near theEarth body. The results show a slight reduction in the
field value near the location of the Earth body. Shown for
comparison is the single-body Sun solution ϕSð0; zÞ and the
combined solution from linear superposition of the single-
body Sun and Earth solutions ϕSþEð0; zÞ. At the scales
shown about the Earth body, the full numerical solution
ϕSEð0; zÞ and the solution obtained by linear superposition of
single-body solutions ϕSþEð0; zÞ are virtually indistinguish-
able but differ from the single-body Sun solution ϕSð0; zÞ.
Whereas ϕSð0; zÞ appears nearly linear throughout the range
shown, the full solution given by ϕSE contains a visible bend
within a distance of approximately Oð105 kmÞ of the Earth
center.
Shown in Fig. 2 is a large scale view and near field views

about the Earth body of the relative strength of the fifth
force to the force of Newtonian gravity, k∇ϕSEðr; zÞkG ¼
k∇ϕSEðr; zÞk=k∇ψGk, where k · k denotes the vector norm.
These data correspond to the simulation runs shown in
Fig. 1. Here ψG, the Newtonian potential, is the solution of
∇2ψGðr⃗Þ ¼ 4πGρðr⃗Þ. The strong spherical symmetry
about the massive Sun body is evident in Fig. 2(a). The
magnified plots in Figs. 2(b) and 2(c) also indicate high
spherical symmetry about the Earth body with only slight
elongation along the z axis. The results in Fig. 2(d) and the
magnified view in 2(e) depict the spatial variation in
the field along the axis of symmetry near the Earth body.
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The plots shown exclude results within the regions interior
to the Earth body where the gravitational force vanishes.
The results show a very slight depression near the location
of the Earth body with a slight asymmetry about its center.
Shown for comparison is the single-body Sun solution and
the combined solution from superposition of the single-
body Sun and Earth solutions. At the scales about the Earth
body indicated, the full numerical solution and the super-
posed solution are virtually indistinguishable but differ
from the single-body Sun solution. The visible asymmetry
between the solutions reflects the fact that the Sun’s and the
Earth’s force fields oppose each other on the side of Earth
facing the Sun and supplement each other on the side of
Earth away from the Sun.

Shown in Fig. 3 are the results for the dimensional axisym-
metric Sun-Earth (SE) Laplacian field ∇2ϕSEðr; zÞ s−2
plotted on a logarithmic scale for the runs shown in
Fig. 1. The strong spherical symmetry of the solution about
the massive Sun body is evident in Fig. 3(a). The magnified
plots in Figs. 3(b) and 3(c)make evident the anisotropy along
the z axis due to the Sun body. The Laplacian fieldmagnitude
undergoes rapid decay with increasing distance from either
body. The results in Fig. 1(d) and the magnified view in 1(e)
depict the Laplacian field values along the axis of symmetry
near the Earth body. Shown for comparison is the single-
body Sun solution and the superposed single-body Sun and
Earth solutions. At the scales about the Earth body indicated,
the full numerical solution and the superposed solution are
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FIG. 1. Numerical solutions for the axisymmetric Sun-Earth (SE) Galileon potential field ϕSEðr; zÞ m2=s2. Magnitudes indicated on
solid contour lines (black) correspond to major divisions on color bar; dashed contour lines represent 1=5 intermediate color bar values.
Sun and Earth bodies shown in white. (a) Contour plot for region containing Sun and Earth bodies positioned at coordinate values
(rS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU) and (rE ¼ 0; zE ¼ −74.80 × 106 km ¼ −0.5 AU). (b) Magnified view of (a) showing
solution about the Earth center. (c) Comparison of three solutions in the vicinity of the Earth body along the line connecting the Sun and
Earth bodies: full solution ϕSE (solid black line), single-body Sun solution ϕS (dashed red line), and combined solution ϕSþE (dashed
gray line) from linear superposition of single-body Earth and Sun solutions. Span in z equals a distance 4.17 × 105 km about Earth.
(d) Magnified view of solutions in (c). Span in z equals a distance 3.48 × 104 km about Earth.
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virtually indistinguishable but differ significantly from the
single-body Sun solution in form and magnitude. In particu-
lar, the Laplacian field of the single-body Sun solution is
uniformly negligible by comparison. Also evident from
Fig. 1(d) is the fact that the solution obtained from super-
position everywhere slightly underestimates the correct
magnitude, with the discrepancy increasing with distance
from the Earth body. Figure 1(e) shows that the Laplacian
field for the Sun-Earth systemwithin the radius of the Earth is
approximately constant, beyond which it undergoes rapid
decay in accord with the single-body solution given
by Eq. (16).
Shown in Fig. 4 are numerical solutions of the normal-

ized differences for the Galileon force and Laplacian fields,
namely k∇ϕSEðr; zÞ −∇ϕSþEðr; zÞk=k∇ϕSEðr; zÞk (top

panel) and ½∇2ϕSEðr; zÞ −∇2ϕSþEðr; zÞ�=½∇2ϕSEðr; zÞ�
(bottom panel). The relative errors are smaller near the
Sun body than the Earth body. As evident from Figs. 4(a)
and 4(d), these smaller errors in the vicinity of Earth
are caused by the fact that the more massive Sun body
has a relatively larger influence on the field about Earth
than vice versa. As evident also from Figs. 4(c) and 4(f), for
distances close to the Earth body, the relative error in the
force field is of the order of 0.1% while that for the
Laplacian field is of the order of 1%. At a distance of 4 ×
105 km from Earth, these differences become larger—fog 4
(e). In general too, the superposition approximation tends
to underestimate the value of the Laplacian field along the
central Sun-Earth axis and to overestimate the value away
from this axis.
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FIG. 2. Numerical solutions for the axisymmetric Sun-Earth (SE) force field normalized by the force of gravity (G),
k∇ϕSEðr; zÞkG ¼ k∇ϕSEðr; zÞk=k∇ψGðr; zÞk, where ψGðr; zÞ is the Newtonian gravitational potential. Magnitudes plotted on a
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positioned at coordinate values (rS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU) and (rE ¼ 0; zE ¼ −74.80 × 106 km ¼ −0.5 AU).
Magnitudes plotted on a logarithmic scale. (b) Magnified view of solution in (a) centered about the Earth body. Span in z is 10%
larger than the Moon’s orbit radius. (c) Further magnified view of contour plot in (b). Earth body outlined in white. (d) Comparison of
three solutions in the vicinity of the Earth body along the line connecting the Sun and Earth bodies: full solution k∇ϕSEkG (solid black
line), single-body Sun solution k∇ϕSkG (dashed red line), and combined solution k∇ϕSþEkG (dashed gray line) from linear
superposition of the single-body Earth and Sun solutions. Span in z equals a distance 4.17 × 105 km about Earth. (e) Magnified view of
solutions in (d). Span in z equals a distance 3.48 × 104 km about Earth.
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C. Results of Sun-Earth-Moon system

In this section we review results of 3D simulations for the
three-body Sun-Earth-Moon system computed in a cubic
domain (Cartesian coordinates). The Sun and Earth bodies
were positioned on the z axis and the Moon (M) located at a
point in its orbit forming a 90° angle with the Earth and Sun.
The actual coordinates used in the simulations were as fol-
lows: (xS ¼ 0; yS ¼ 0; zS ¼þ74.80× 106 km¼þ0.5 AU),
(xE ¼ 0; yE ¼ 0; zE ¼ −74.80 × 106 km ¼ −0.5 AU), and
(xM ¼ 0; yM ¼ −0.3845 × 106 km ¼ −0.00257 AU; zM ¼
−74.80 × 106 km ¼ −0.5 AU). The Dirichlet boundary
conditions applied along the exterior edges of the cubic
domain −64 AU ≤ ðx; y; zÞ ≤ þ64 AU equaled those val-
ues given by Eq. (16) for a point particlewith a mass equal to

the total mass of the three individual bodies positioned at the
location of the three-body center of mass.
Shown in Fig. 5 are the numerical solutions for the Sun-

Earth-Moon scalar potential field ϕSEMðx; y; zÞ m2=s2. The
strong spherical symmetry of the solution about the Sun body
is evident in Fig. 5(a), indicative of the fact that the potential
field is dominated by that of the massive Sun. Shown in
Fig. 5(b) is a magnified view of the potential field near the
Earth andMoon showing how their presence slightly distorts
the local potential field. The plots in Figs. 5(c) and 5(e) show
magnified views at distances close to the Earth body for the
potential field along the line joining the Sun and Earth. There
is no visible difference between the plots in Figs. 5(c)
and 5(e) and the values plotted in Figs. 1(c) and 1(d), except
for the addition of an overall constant which has no effect on
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FIG. 3. Contour plots showing the axisymmetric Sun-Earth (SE) Laplacian field distribution ∇2ϕSEðr; zÞ s−2 plotted on a logarithmic
scale. Magnitudes and indicated by solid contour lines (black) correspond to major divisions on color bar; dashed contour lines represent
1=5 intermediate color bar values. Sun and Earth bodies shown in white. (a) Solution in region containing both Sun and Earth bodies
positioned at coordinate values (rS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU) and (rE ¼ 0; zE ¼ −74.80 × 106 km ¼ −0.5 AU).
(b) Magnified view of solution in (a) centered about the Earth body. Span in z is 10% larger than the Moon’s orbit radius.
(c) Magnified view of solution in (b). Earth body outlined in white. (d) Comparison of three solutions in the vicinity of the Earth body
along the line connecting the Sun and Earth bodies: full solution ∇2ϕSE (solid black line), single-body Sun solution ∇2ϕS (dashed red
line), and combined solution ∇2ϕSþE (dashed gray line) from linear superposition of the single-body Earth and Sun solutions. Span in z
equals a distance 4.17 × 105 km about Earth. (e) Magnified view of solutions in (d). Span in z equals a distance 3.48 × 104 km
about Earth.
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the force. The results in Figs. 5(c) and 5(e) also show a slight
reduction in the field near the Earth body. Shown for
comparison is the single-body Sun and combined solution
from superposition of the single-body Sun, Earth, andMoon
solutions. At the scales shown about the Earth body, the full
numerical solution and the solution obtained by linear
superposition are quite close but differ from the single-body
Sun solution. While the single-body solution exhibits linear
behavior, the full solution contains a visible bend centered
about theEarth body. The results in Figs. 5(d) and 5(f) clearly
show the influence of theMoonon the potential field solution
in close proximity to theEarth.Here, the deviations of the full
and linear superposition solutions from the single-body Sun
solution are more evident. In particular, the influence of the
Moon is clearly visible by the kink appearing on the curve at
y ¼ −0.385 × 106 km.Close inspection also reveals that the
full solution differs somewhat from the superposition sol-
ution. The latter appears to underestimate the correct field
value near theMoon and to overestimate the value on the side
of the Earth farthest from the Moon.

Shown on a logarithmic scale in Fig. 6 are large scale and
near field views about the Earth body of the relative
strength of the fifth force to the force of Newtonian gravity,
k∇ϕSEðx; y; zÞkG ¼ k∇ϕSEðr; zÞk=k∇ψGk for the runs
shown in Fig. 5, where ψGðr; zÞ is the Newtonian gravi-
tational potential. The normalized values of the force in the
vicinity of the Earth and Moon bodies is on the order of
10−12. As shown in Figs. 6(a)–6(d), beyond the confines of
each body, the contours are nearly spherically symmetric,
with value increasing with distance from each body. The
results in Fig. 6(e) and 6(f) depict the spatial variation in the
normalized force field along the axis connecting the Sun
and Earth bodies and the Moon and Earth bodies, respec-
tively, centered about the Earth body. Curves exclude
results within the regions interior to the Earth and Moon
bodies where the gravitational force vanishes. The curves
indicate a very slight reduction near the Earth body and
slight asymmetry about its center. Shown for comparison is
the single-body Sun solution and the combined solution
from linear superposition of the single-body Sun, Earth,
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FIG. 4. Contour plots showing the normalized differences k∇ϕSEðr; zÞ −∇ϕSþEðr; zÞk=k∇ϕSEðr; zÞk (top panel) and ½∇2ϕSEðr; zÞ −
∇2ϕSþEðr; zÞ�=½∇2ϕSEðr; zÞ� (bottom panel). Magnitudes indicated by solid contour lines (black) (logarithmic scale in top panel; linear
scale on bottom panel) correspond to major divisions on corresponding color bar; dashed contour lines represent 1=5 intermediate color
bar values. Sun and Earth bodies shown in white. (a),(d) Solutions in region containing Sun and Earth bodies positioned at the
coordinate values (rS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU) and (rE ¼ 0; zE ¼ −74.80 × 106 km ¼ −0.5 AU). (b),(e) Magnified
view of solutions in (a),(d) centered about the Earth body. Span in r and z is 10% larger than the Moon’s orbit radius. (c),(f) Magnified
view of solutions in (b),(d) in close vicinity of the Earth body. Span in r equals a distance 3.48 × 104 km about Earth.
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and Moon solutions. At the scales about the Earth body
shown, the full numerical solution and the superposed
solution are virtually indistinguishable and fairly close to
the Sun solution, though the approximate solutions have

opposing errors. In Fig. 6(f), all three solutions yield the same
result when viewed at distances on the order of 106 km.
Figure 7 shows solutions of the Sun-Earth-Moon

Laplacian field ∇2ϕSEMðx; y; zÞ s−2 for the runs in
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FIG. 5. Numerical solutions for the Sun-Earth-Moon scalar potential field ϕSEMðx; y; zÞ [m2=s2] displayed in the x ¼ 0 plane.
Magnitudes indicated on solid contour lines (black) correspond to major divisions on color bar; dashed contour lines represent 1=5
intermediate color bar values. Sun, Earth and Moon bodies shown in white. (a) Contour plot in region containing Sun, Earth,
and Moon bodies positioned at the coordinate values (xS ¼ 0; yS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU), (xE ¼ 0; yE ¼ 0;
zE ¼ −74.80 × 106 km ¼ −0.5 AU) and (xM ¼ 0; yM ¼ −0.3845 × 106 km ¼ −0.00257 AU; zM ¼ −74.80 × 106 km ¼ −0.5 AU).
(b) Magnified view of solution in (a) centered about the Earth body with the Moon to its left. (c) Comparison of three solutions in the
vicinity of the Earth body along the line connecting the Sun and Earth bodies: full solution ϕSEM (solid black), single-body Sun solution
ϕS (dashed red) and combined solution ϕSþEþM (dashed gray) from linear superposition of the single-body Earth, Sun and Moon
solutions. Span in z equals a distance 8.35 × 105 km about Earth. (d) Comparison of three solutions in the vicinity of the Earth body
along the line connecting the Earth and Moon: full solution ϕSEM, single-body Sun solution ϕSEM and combined solution ϕSþEþM from
linear superposition of the single-body Earth, Sun and Moon solutions. (e) Magnified view of solutions in (c) in the vicinity of the Earth
body. (f) Magnified view of solutions in (d) in the vicinity of the Earth body.

WHITE, TROIAN, JEWELL, CUTLER, CHIOW, and YU PHYS. REV. D 102, 024033 (2020)

024033-14



10
-1
2

10-11
10 -11

-100

-50

0

50

100

10-15

10-14

10-13

10-12

10-11

10 -12

-100 0 100 -0.4 -0.2 0 0.2 0.4
-75.2

-75.0

-74.8

-74.6

-74.4

10-15

10-14

10-13

10-12

10-11

10
-1
2

10
-1
2

-0.42 -0.40 -0.38 -0.36

-74.82

-74.80

-74.78

10-15

10-14

10-13

10-12

10-11

10
-1
4

10 -13

10
-13

10
-13 10 -13

10
-1
3

-0.02 0 0.02

-74.82

-74.80

-74.78

10-15

10-14

10-13

10-12

10-11

-75.5 -75.0 -74.5 -74.0
0

2

4

6

8

-0.5 0 0.5
0

2

4

6

8

x = 0 plane x = 0 plane

y (106 km) y (106 km)

y (106 km) y (106 km)

z 
 (

10
6  k

m
)

(a) (b)

(c) (d)

(e) (f)

SEM G

  × 10-12   × 10-12

z (106 km) y (106 km)

z 
 (

10
6  k

m
)

S+E+M G

S G

Sun

Earth

FIG. 6. Numerical solutions for the Sun-Earth-Moon force field normalized by gravity (G), k∇ϕSEMðx; y; zÞkG ¼
k∇ϕSEMðx; y; zÞk=k∇ψGðx; y; zÞk displayed in the x ¼ 0 plane and on a logarithmic scale, corresponding to the simulation runs
in Fig. 5. Magnitudes indicated by solid contour lines (black) correspond to major divisions on color bar; dashed contour lines
represent 1=5 intermediate color bar values. Sun, Earth, and Moon bodies shown in white. The plots exclude regions interior to the
Earth and Moon bodies where the gravitational force vanishes. (a) Contour plot showing Sun, Earth, and Moon bodies positioned
at coordinate values (xS ¼ 0; yS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU), (xE ¼ 0; yE ¼ 0; zE ¼ −74.80 × 106 km ¼ −0.5 AU),
and (xM ¼ 0; yM ¼ −0.3845 × 106 km ¼ −0.00257 AU; zM ¼ −74.80 × 106 km ¼ −0.5 AU). (b) Magnified view of solution in
(a) centered about Earth body with the Moon to its left. (c) Magnified view of solution in (b) centered about the Moon body.
(d) Magnified view of solution in (b) centered about Earth body (surface outlined in white). (e) Comparison of three solutions in
the vicinity of the Earth body along the line connecting the Sun and Earth bodies: full solution k∇ϕSEMkG (solid black), single-body
Sun solution k∇ϕSkG (dashed red), and combined solution kϕSþEþMkG from linear superposition of the single-body Earth, Sun,
and Moon solutions (dashed gray). Span in z equals a distance 8.35 × 105 km about Earth. (f) Comparison of three solutions in
the vicinity of the Earth body along the line connecting the Earth and Moon: full solution, single-body Sun solution and
combined solution.
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Fig. 5, plotted on a logarithmic scale. The magnitudes
about the Earth and Moon span roughly 10−23 to 10−21 s−2,
decreasing rapidly with distance from each body. Contours
of the Laplacian field along the axis connecting the Earth
and Moon in Fig. 7(b) and centered about the Moon in

Fig. 7(c) exhibit some elongation. [The small ripples visible
in some of the contours adjacent to the Moon and Earth
surface boundaries in Fig. 7(c) and Fig. 7(d) are numerical
artifacts due to meshing and not physical phenomena.]
Shown also are closeup views of the spatial variation in the
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FIG. 7. Numerical solutions for the Sun-Earth-Moon Laplacian field ∇2ϕSEMðx; y; zÞ s−2 on a logarithmic scale, corresponding to
the simulation runs in Fig. 5. Magnitudes indicated by solid contour lines (black) correspond to major divisions on color bar; dashed
contour lines represent 1=5 intermediate color bar values. Sun, Earth, and Moon bodies shown in white. (a) Contour plot in region
containing Sun, Earth, and Moon bodies positioned at the coordinate values (xS ¼ 0; yS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU),
(xE ¼ 0; yE ¼ 0; zE ¼ −74.80 × 106 km ¼ −0.5 AU), and (xM¼0;yM¼−0.3845×106 km¼−0.00257AU;zM¼−74.80×106 km¼
−0.5AU). (b) Magnified view of (a) centered about the Earth body with the Moon body to its left. (c) Magnified view of (b) centered
about the Moon. (d) Magnified view of (b) centered about Earth. (e) Comparison of solutions in the vicinity of the Earth body along the
line connecting the Sun and Earth: full solution ∇2ϕSEM (solid black), single-body Sun solution ∇2ϕS (dashed red), and combined
solution ∇2ϕSþEþM (dashed gray) from linear superposition of the single-body Earth, Sun, and Moon solutions. Span in z equals a
distance 8.35 × 105 km about the Earth. (f) Comparison of three solutions in the vicinity of the Earth body along the line connecting the
Moon and Earth: full solution, single-body Sun solution, and combined solution.
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Laplacian field in the vicinity of the Earth body along the
line connecting the Sun and Earth [Fig. 7(e)] and Earth and
Moon [Fig. 7(f)]. For comparison, shown are the single-
body Sun solution and the combined solution from linear
superposition of the single-body Sun, Earth, and Moon
solutions. At the scales about the Earth body indicated in
Fig. 7(e), the full numerical solution and the solution based
on linear superposition are virtually indistinguishable and
differ significantly from the uniform single-body Sun
solution shown. The rapid decay with increasing distance
from each body in Fig. 7(e) accords with the single-body
solution given by Eq. (16). The data in Fig. 7(f) indicate

that the approximate solution based on linear superposition
tends to overestimate the correct solution with increasing
distance from the Earth and Moon bodies.
The contour plots depicted in Fig. 8 show the normalized

residuals for the runs in Fig. 5 of the force field—
k∇ϕSEM −∇ϕSþEþMk=k∇ϕSEMk (left column) and
k∇ϕSEM −∇ϕEM −∇ϕSk=k∇ϕSEMk (right column)—dis-
played in the x ¼ 0 plane on a logarithmic scale. As is the
case with the residual errors for the two-body Sun-Earth
system shown in Fig. 4, the relative errors for the three-
body system in Fig. 8 are nowhere more than 1%. These
errors become even smaller when the full solution is
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FIG. 8. Contour plots showing normalized residuals of the force field—k∇ϕSEM −∇ϕSþEþMk=k∇ϕSEMk (left column) and
k∇ϕSEM −∇ϕEM −∇ϕSk=k∇ϕSEMk (right column)—displayed in the x ¼ 0 plane on a logarithmic scale, corresponding to the
simulation runs in Fig. 5. Magnitudes indicated by solid contour lines (black) correspond to major divisions on color bar; dashed contour
lines represent 1=5 intermediate color bar values. Earth and Moon bodies shown in white. (a),(b) Contour plots showing Earth body with
Moon to its left. Body coordinates values are (xS ¼ 0; yS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU), (xE ¼ 0; yE ¼ 0;
zE ¼ −74.80 × 106 km ¼ −0.5 AU), and (xM ¼ 0; yM ¼ −0.3845 × 106 km ¼ −0.00257 AU; zM ¼ −74.80 × 106 km ¼ −0.5 AU).
(c),(d) Magnified view of solutions in (a),(b) centered about the Earth body (surface outlined in white). (e),(f) Magnified view of
solutions in (a),(b) centered about the Moon body (shaded in white).
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compared against the solution based on the sum of the two-
body Earth-Moon (ϕEM) and single-body Sun solution, as
is evident in the right panel.
The contour plots in Fig. 9 show the normalized resi-

duals for the corresponding Laplacian fields—ð∇2ϕSEM −
∇2ϕSþEþMÞ=ð∇2ϕSEMÞ (left column) and ð∇2ϕSEM −
∇2ϕEM −∇2ϕSÞ=ð∇2ϕSEMÞ (right column). The relative
errors corresponding to ð∇2ϕSEM −∇2ϕSþEþMÞ=ð∇2ϕSEMÞ
(left column) are of the order of 1% within distances of
about 105 km from the Earth body but increase to about
80% at distances of about 2 × 105 km from the Moon.
The relative errors corresponding to ð∇ϕSEM −∇ϕEM −
∇ϕSÞ=ð∇ϕSEMÞ (right column) are smaller though still

reach values of 15% at a distances of about 2 × 105 km
from the Moon. We note that the small-scale undulations
visible on some of the contour lines are numerical artifacts
due to the mesh size, which can be resolved by enforcing
much finer meshes in the vicinity of the respective
masses shown.

D. Discussion

The results presented were obtained from numerical
simulations of 2D axisymmetric and 3D Cartesian scalar
potential fields at solar system scales in the cubic Galileon
gravity model given by Eq. (15) in the limit where the
coefficient of the linear Laplacian term vanishes (k ¼ 0).
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FIG. 9. Contour plots showing the normalized residuals of the Laplacian fields—ð∇2ϕSEM −∇2ϕSþEþMÞ=ð∇2ϕSEMÞ (left column) and
ð∇2ϕSEM −∇2ϕEM −∇2ϕSÞ=ð∇2ϕSEMÞ (right column)—displayed in the x ¼ 0 plane on a linear scale, corresponding to the simulation
runs in Fig. 5. Magnitudes indicated by solid contour lines (black) correspond to major divisions on color bar; dashed contour lines
represent 1=5 intermediate color bar values. Earth and Moon bodies shown in white. (a),(b) Contour plots showing Earth body with
Moon to its left. Body coordinates values are (xS ¼ 0; yS ¼ 0; zS ¼ þ74.80 × 106 km ¼ þ0.5 AU), (xE ¼ 0; yE ¼ 0;
zE ¼ −74.80 × 106 km ¼ −0.5 AU), and (xM ¼ 0; yM ¼ −0.3845 × 106 km ¼ −0.00257 AU; zM ¼ −74.80 × 106 km ¼ −0.5 AU).
(c),(d) Magnified view of solutions in (a),(b) centered about the Earth body (surface outlined in white). (e),(f) Magnified view of
solutions in (a),(b) centered about the Moon body (shaded in white).
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These studies for the two-body Sun-Earth system indicate
that despite the nonlinearity of the governing equation,
linear superposition of the individual Sun and Earth
potential fields satisfying Eq. (16) for a single-body,
spherically symmetric mass provides a satisfactory first-
order approximation to the correct scalar field. Inspection
of the corresponding differences for higher-order deriva-
tives such as the force and Laplacian fields, both critical to
experimental measurements, indicates significant devia-
tions away from the two bodies. These results highlight
that despite their sizable separation distance, the nonlinear
couplings between the Earth and Sun bodies play a
significant role. For the studies involving the three-body
Sun-Earth-Moon system, we find that linear superposition
of the individual Sun, Earth, and Moon potential fields
satisfying Eq. (16) for a single-body, spherically symmetric
mass do not provide a satisfactory first-order approximation
to the correct scalar field. Differences between the correct
solution and approximations based on superposition fields
for the force and Laplacian become unacceptably large.
These phenomena can be simply traced to the relatively

small distance separating the Earth and Moon and the large
distance separating the Earth and Sun. For the two-body
Sun-Earth system, the field is dominated by the massive
Sun body and its corresponding force field is practically
constant in the vicinity of the Earth. This background force
field (i.e., the gradient of the Sun potential field) near the
Earth does not affect solutions to Eq. (13) due to Galilean
invariance. By contrast, the Earth and Moon are closer in
mass and distance, and therefore the single-body potential
field of each is stronger and the corresponding gradient
functions (forces) no longer relatively constant. The two-
body Earth and Moon system is therefore expected to
exhibit stronger nonlinear coupling than the two-body Sun
and Earth system. Indeed, the approximate solutions for the
force fields and Laplacian fields based on linear super-
position of the two-body Earth-Moon system and the
single-body Sun solution (see right columns of Figs. 8
and 9) show an accuracy comparable to that of the super-
position solution for the two-body Sun-Earth system.
Based on our findings, we recommend that space-based

detection schemes for measurements at solar system scales,
which are designed around the fact that the Laplacian field
for Newtonian gravity vanishes identically, will be best
served by relying on predictions based on three-body Sun-
Earth-Moon simulations [53]. This will avoid potentially
large errors in the range of 10%–15% near the Earth-Moon
region reported in this study. We also recommend that such
detection missions be positioned in regions where the fifth
force is relatively strong compared to Newtonian gravity.
Our results in Fig. 6(f) indicate that this ratio achieves a
local maximum between the Earth and Moon body,
corresponding to the location where their individual gravi-
tational fields nearly cancel. This then provides an optimal
location for detection of the fifth force. In fact, the results in

Fig. 7(b) showing significant elongation of the Laplacian
field along the axis connecting the two bodies suggest that
the location choice based on a local maximum in the force
can also be balanced against regions exhibiting strong
modulation in the Laplacian field in order to seek optimal
orbits for detection and measurement.

IV. CONCLUSION

In this work, we provide an accurate, stable and rapidly
convergent numerical scheme for solution of the 2D
axisymmetric and 3D Cartesian scalar potential fields at
solar system scales in the cubic Galileon gravity model
given by Eq. (15). The method should be equally effective
for nonvanishing k. The approach taken derives from the
fact that the solar system must be treated differently from
systems modeled at galactic and cosmological scales since
dense mass sources have compact support and the distances
relevant to solar system bodies fall well within the
Vainshtein radii.
We illustrate the numerical method by obtaining sol-

utions for the 2D axisymmetric Sun-Earth system and 3D
Cartesian Sun-Earth-Moon system. The iteration scheme is
based on gradient descent of a residual function represent-
ing the positive (attractive) branch of the governing
equation, which is quadratic in the Laplacian field. Due
to the assumption that the dense mass sources dominate
local underdensities, the algorithm converges rapidly
toward the global minimum, regardless of the initial trial
solution. This behavior is confirmed by a simple analytic
argument. The proposed iteration scheme is therefore
robust against initial trial solutions and converges rapidly
to the global minimum representing the correct two-body
and three-body solutions. Generally speaking, the results of
our simulations indicate that the approximate solutions
based on linear superposition of fields of individual bodies
may be an acceptable zero order approximation to the
correct solution. But even in cases where the full 2D or 3D
Galileon potential solutions do not deviate too strongly
from the solutions obtained by linear superposition, higher
derivatives of the scalar field, namely the force and
Laplacian fields, always show unacceptable discrepancy.
And since current detection schemes are being designed
around measurement of the Laplacian field, we discourage
use of approximate solutions based on linear superposition
as a substitute for the correct solution.
Regarding the choice of boundary conditions used in

such simulations, we offer the following suggestions as
well. The validation studies provided in Appendix B 2 offer
good evidence that the far field boundary condition we
applied is acceptable so long as the boundaries of the
computational domain are placed sufficiently far from the
location of all interior bodies. This boundary condition
mimics the influence of an interior point source mass equal
to the total mass of all interior bodies positioned at the
center of mass of those bodies. Sensitivity studies to
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investigate the influence of choice of far field boundary
condition should also be conducted in order to quantify
how boundary perturbations affect the solution in the
interior domain. In addition to this issue, even more
realistic simulations can be conducted by attributing
density profiles to massive bodies with spatial variation.
Of course, for even more accurate predictions of the scalar,
force, and Laplacian fields for detection missions, even
finer meshes are recommended. One could also consider a
different parameter rc or include a nonunity β term. Doing
so would only multiply the results by a constant factor,
giving a different estimate for the relative strength of the
Galileon force and Newtonian gravity, but otherwise having
no effect on our conclusions.
We anticipate that our methodology can be adopted in

support of future detection missions seeking to validate the
Vainshtein screening mechanism at small scales. To this
end, we hope the results of this study can better guide the
design of future instrumentation and bounds on precision
required for such missions. To facilitate distribution of our
software code and encourage further testing, we provide the
link [54] where this material can be freely downloaded.
The supporting data for this paper are openly available

online [55].
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APPENDIX A: DETAILS OF IMPLEMENTED
ITERATION SCHEME

1. Algorithm

We present in these two Appendixes the numerical
scheme used in the numerical simulations along with tests
conducted to verify accuracy, stability, and convergence.
Note that all computations were performed in dimension-
less variables according to Table I; however, results are
presented here in dimensional form for convenience.
The iteration scheme mentioned in Sec. III A 1 was

carried out in MATLAB [56] using central finite difference
discretization. The mesh consisted of a discrete set of points
describing a series of nested rectilinear grids described in
more detail in Sec. A 2. All quantities of interest were
therefore defined on mesh points. Each mesh point was

specified by a unique number ranging from 1 to Nmesh, the
latter denoting the total number of mesh points. Each
quantity of interest, such asΦ or ρ, was stored as a vector of
length Nmesh, where the ith component defined its value at
mesh point i.
The density field ρðr⃗Þ for each body mass was con-

structed by setting all mesh points within the interior equal
to the relevant density value listed in Table I. All mesh
points in empty space between and around bodies were set
to zero. The boundary surfaces were therefore defined to
within a mesh length. The initial trial solution for the
nondimensional scalar field, Φðn¼0Þ, was then constructed
from the summation of the single-body solutions obtained
from Eq. (16) according to their respective masses. As
discussed in Sec. III A 1, however, any other trial solution is
acceptable. The values of Φðn¼0Þ at the boundaries were
then set to the required boundary conditions. For the 2D
axisymmetric Sun-Earth simulations, we applied a
Neumann condition along the symmetry axis R ¼ 0 such
that ∂RΦðR ¼ 0; ZÞ ¼ 0. With regard to the remaining far
field boundary conditions in R and Z, and for the far field
boundary conditions chosen for the 3D Sun-Earth-Moon
simulations based on Cartesian geometry, we adopted
Dirichlet conditions obtained from the value of the scalar
potential given by Eq. (16). Because the initial trial solution
was always made to satisfy the boundary condition,
iterative corrections were computed using homogeneous
boundary conditions.
Discrete differential operators ∂̂r, ∂̂2

r , ∂̂z, and ∂̂2
z for the

2D axisymmetric simulations and ∂̂x, ∂̂2
x, ∂̂y, ∂̂2

y, ∂̂z, and ∂̂2
z

for the 3D Cartesian simulations (where ∂̂ denotes the
discrete version of ∂) were constructed according to the
central difference scheme described in Sec. A 2. Each of
these operators was stored as an Nmesh × Nmesh matrix.
At each iteration step n, the corresponding discrete

residual function for Eq. (20) given by

RðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i;j

ð∂̂i∂̂jΦðnÞÞ2 þ ρþ
�
k
2

�
2

s

−
X
i

∂̂2
iΦðnÞ −

k
2
; ðA1Þ

and the discrete linear operator for Eq. (21) given by

L̂ðnÞ ¼
P

i;jð∂̂i∂̂jΦðnÞÞ∂̂i∂̂jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l;mð∂̂l∂̂mΦðnÞÞ2 þ ρþ ðk

2
Þ2

q −
X
i

∂̂2
i ðA2Þ

were computed. Here we include the linear term with
coefficient k. For i ≠ j, the term ∂̂i∂̂j was computed by
matrix multiplication since even in discrete form, the
product is commutative. The term ∂̂2

i was computed using
its own stencil instead of multiplying together the two
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first-order derivative operators. We refer to Sec. A 2 for
further explanation. Like the ∂̂i operator matrix, the linear
operator L̂ðnÞ was also stored as an Nmesh × Nmesh matrix.
The correction step ξðnÞ was then computed by solving

the equation

L̂ðnÞξðnÞ ¼ −RðnÞ: ðA3Þ

This step, based on a linear solver, is described in more
detail below. The correction ξðnÞ was then added to the
current value of ΦðnÞ to yield the updated solution Φðnþ1Þ,
namely

Φðnþ1Þ ¼ ΦðnÞ þ νξðnÞ: ðA4Þ

Had the classical Newton-Raphson method been used
instead, the gradient step size ν would have equalled 1
[57], but convergence would not have been guaranteed.
Dynamically reducing ν to be less than 1 ensured
that the integrated residual decreased at every iteration
[58]. In the present implementation, ν was chosen to
be 1 whenever possible. If

R ðRðnþ1Þ½ΦðnÞ þ ξðnÞ�Þ2dV >R ðRðnÞ½ΦðnÞ�Þ2dV (i.e., the residual error did not decrease),
then ν was halved to a value of 0.5. If this smaller step size
still did not reduce the residual error, νwas halved yet again.
In this manner, the step size ν was continually decreased by
powers of two until either the residual decreased or attained a
limiting value of 10−10. Once a value of ν was found which
successfully reduced the residual, the iteration loop was
allowed to continue, i.e., Rðnþ1Þ, L̂ðnþ1Þ, ξðnþ1Þ, etc., were
constructed. If no step size ν could be found which reduced
the residual, then the iteration loop was either aborted or
switched to a different linear solver, as described below.
The boundary conditions were handled in two different

ways. Whenever the iteration loop for a minimum step size
ν did not reduce the value of the residual, the algorithm was
switched to an alternate linear solver that applied the
boundary conditions differently. This approach was found
to improve the final value of the residual by a few percent in
comparison to results obtained using either solver alone.
Some additional notation is required before describing

these linear solvers. Let B ⊂ f1;…; Nmeshg denote the set
of mesh points on the boundary of the computational
domain, and I denote the mesh points within the domain
interior, so that I ∪ B ¼ f1;…; Nmeshg. Let square brackets
denote indexing, so that for example, ξðnÞ½I� denotes the
subvector of ξðnÞ defined on interior mesh points and
L̂ðnÞ½I ∪ B; I� denotes the rectangular submatrix of L̂ðnÞ

consisting of rows corresponding to all nodes and columns
corresponding only to interior nodes.
The first linear solver relied only on the interior points

such that

ξðnÞ½B� ¼ 0;

L̂ðnÞ½I; I�ξðnÞ½I� ¼ −RðnÞ½I�: ðA5Þ

Since the matrix L̂ðnÞ½I; I� is square and invertible, a
solution was guaranteed, which was obtained using the
direct solver in MATLABMLDIVIDE based on least squares.
This was the approach taken for most of the runs con-
ducted. For cases involving large 3D meshes, the iterative
biconjugate gradient solver BICGSTAB in MATLAB was
used instead, with the diagonal of L̂ðnÞ½I; I� used as a
preconditioner. When the process BICGSTAB failed to
converge, the algorithm was made to revert back to the
direct solver MLDIVIDE. The second linear solver relied on
the fact that RðnÞ is defined on both interior and boundary
nodes such that the equation could be solved immediately
as a least squares problem using MLDIVIDE, according to
which

ξðnÞ½B� ¼ 0;

ξðnÞ½I� ¼ argmin
ξðnÞ½I�

ðL̂ðnÞ½I ∪ B; I�ξðnÞ½I� þRðnÞ½I ∪ B�Þ2:

ðA6Þ

2. Nested grid finite difference scheme

One of the challenges in simulating the scalar potential
field over solar system distances is the range of length
scales which must be resolved numerically. For example,
the radius of the Sun is approximately 5 × 10−3 AU, while
the radius of Earth is only about 4 × 10−5 AU. Con-
structing a uniform 3D rectilinear mesh covering one cubic
AU, with mesh spacing of one Earth radius, would easily
demand about 1013 points, clearly not an effective use of
computational resources. One alternative is to construct a
rectilinear mesh with variable mesh spacing, the approach
used by Hiramatsu et al. [44]. Constraining variable mesh
spacings to be rectilinear, however, inevitably leads to
distorted spacings of high aspect ratio in regions where the
mesh is fine along one coordinate axis but coarse along
another. When possible, it is preferable instead to imple-
ment local mesh refinement.
To resolve this issue without introducing an entirely

unstructured mesh, a system of nested rectilinear meshes
was employed. This choice led to two types of mesh points:
interior points which were not on a boundary between
coarse and fine regions, and boundary points. Derivatives
on interior points were then computed at second order using
a 3-point central difference scheme, while boundary points
involved a more complex stencil to include interpolated
“halo points” [59]. A diagram outlining this nested mesh
scheme (confined to 2D for simplicity) is shown in Fig. 10.
The solid circles (blue) denote mesh points on a fine
mesh with spacing of h, the solid squares (red) denote
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mesh points on an exterior coarser mesh with spacing of 2h,
and the open diamonds (white) denote interpolated halo
points.
We illustrate this scheme for the 3D Cartesian system.

Let x, y, and z coordinates be indexed by i, j, k so that
fiþ 1; j; kg is the point immediately adjacent to fi; j; kg
along the x axis. Let fi;j;k denote the value of a scalar
function f on the mesh point fi; j; kg where xi;j;k denotes
the value of the coordinate x at that point, and so on. Let
then xi;j;k − xi−1;j;k ¼ h1 and xiþ1;j;k − xi;j;k ¼ h2. In
Fig. 10, h1 ¼ h and h2 ¼ 2h.
All derivatives were computed to second order.

Variations in the scale function f along the x axis, for
example, are given by [60]

∂̂f
∂̂x ¼ h21ðfiþ1;j;k − fi;j;kÞ þ h22ðfi;j;k − fi−1;j;kÞ

h1h2ðh1 þ h2Þ
; ðA7Þ

∂̂2f

∂̂x2 ¼ 2
h1ðfiþ1;j;k − fi;j;kÞ − h2ðfi;j;k − fi−1;j;kÞ

h1h2ðh1 þ h2Þ
; ðA8Þ

and similarly for y and z. On the interior of each submesh,
points are equispaced and the derivatives reduce to central
difference. At the outer edges of the outermost mesh,
derivatives are computed to Oðh2Þ using two neighboring
points. For example, letting x2;j;k − x1;j;k ¼ h2 and
x3;j;k − x1;j;k ¼ h3,

∂̂f
∂̂x ¼ 1

h3 − h2

�
h3

f2;j;k − f1;j;k
h2

− h2
f3;j;k − f1;j;k

h3

�
; ðA9Þ

∂̂2f

∂̂x2 ¼
2

h3 − h2

�
f3;j;k − f1;j;k

h3
−
f2;j;k − f1;j;k

h2

�
; ðA10Þ

similarly for derivatives along the y and z axes.
The above scheme, of course, relies on every point

having neighboring points. However, certain points on the
boundary of fine submeshes will not have a neighboring
point in the exterior mesh. In Fig. 10 for example, the mesh
point fi; j; kg has no neighbor to the right along the x axis
and fi − 1; jþ 1; kg has no neighboring point above it
along the y axis. To compute a second order x derivative at
fi; j; kg, for example, information from the surrounding
points fi; jþ 1; kg, fiþ 1; jþ 1; kg, fi; j − 1; kg, fiþ 1;
j − 1; kg, and fi − 1; j; kg is required. The information
from all these surrounding points can be incorporated
through the introduction of a halo point at fiþ 1; j; kg.
To illustrate this from Fig. 10, the halo point is defined as

fiþ1;j;k ¼ fi;j;k þ 2h

×
1

2

�
fiþ1;jþ1;k − fi;jþ1;k

2h
þ fiþ1;j−1;k − fi;j−1;k

2h

�
:

ðA11Þ

The halo point is therefore defined by linear interpolation of
nearby points. In particular, the x derivative is approxi-
mated by a weighted average of first order derivatives at
fi;j−1;k and fi;jþ1;k, and the result multiplied by 2h to
extrapolate from fi;j;k to fiþ1;j;k. The 3D analog is
identically computed except that the neighboring points
fi;j;k−1 and fi;j;kþ1 along the z axis are also used in the
weighted average. Multiple derivatives for different vari-
ables, such as ∂̂2f=ð∂̂x∂̂yÞ, are constructed directly by first
computing ∂̂f=∂̂x and then ∂̂=∂̂y at each mesh point.

3. Meshes used in simulations

The 2D axisymmetric Sun-Earth simulations included 26
nested rectangular meshes, each twice as long in the ẑ
direction compared to the r̂ direction. Each mesh consisted
of (nþ 1) points per side along r̂ and (2nþ 1) points per
side along ẑ, with n ¼ 32 for all but one of the submeshes
which contained n ¼ 64. The submeshes were divided into
7 outer meshes centered at the midpoint of the Sun and
Earth bodies and containing both, 6 Sun body centered
meshes containing only the Sun, and 13 Earth body
centered meshes containing only Earth. The outer meshes
extended over a radial distance from the origin equal to
2p AU and a total longitudinal distance equal to 2pþ1 AU
for 0 ≤ p ≤ 6. The system for p ¼ 0 required extra mesh
points (n ¼ 64) since there was no outer mesh of size
0.5 AU, as such a mesh would have bifurcated the Sun and
Earth bodies. The Sun-centered meshes were constructed to
have a radial range of 2−2 AU; 2−3 AU;…; 2−7 AU, the
last representing a distance roughly 1.7 times the radius of

h

h

2hh

h

2h x (i)

y (j)

{i,j,k}

{i,j+1,k}{i-1,j+1,k}

{i,j-1,k}

{i+1,j,k}

{i+1,j+1,k}

{i+1,j-1,k}

{i-1,j+2,k}{i,j+2,k}

z (k)

{i-1,j,k}

FIG. 10. Diagram of nested mesh structure used in numerical
simulations. Filled circles (blue) indicate points on a fine mesh
with periodic spacing h. Filled squares (red) indicate points on an
exterior coarser mesh with periodic spacing 2h. Open diamonds
(white) indicate interpolated halo points.
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the Sun. The Earth-centered meshes were constructed to
have a radial range of 2−2 AU;…; 2−14 AU, the last
roughly 1.4 times the radius of Earth.
The 3D Cartesian Sun-Earth-Moon simulations were

constructed similarly and included 32 nested cubic meshes,
each with (nþ 1) points per side along each of the x̂, ŷ, and
ẑ axes. All but two of the meshes were designed with
n ¼ 10; two submeshes were designed with n ¼ 20. The
submeshes consisted of the following collection: 7 outer
meshes centered at the midpoint of the Sun and Earth
bodies, 6 centered about the Sun containing only the Sun, 7
centered about the Earth containing both the Earth and
Moon bodies, 5 additional meshes centered about the Earth
containing only the Earth body, and 7 centered about the
Moon containing only the Moon. The outer meshes had
side lengths 2pþ1 AU for 0 ≤ p ≤ 6. The p ¼ 0
system required extra mesh points (n ¼ 20), again due
to the fact that there was no outer mesh of side length 1 AU.
The Sun-centered meshes had side lengths 2−1 AU;
2−2 AU;…; 2−6 AU, the last roughly 1.7 times the diam-
eter of the Sun. The Earth-centered meshes had side extent
2−1 AU;…; 2−7 AU and 2−9 AU;… 2−13 AU, the last
roughly 1.4 times the diameter of the Earth. The choice
2−8 AU was not implemented, since the edge of such a
mesh would have bifurcated the Moon body. Instead,
double the number of mesh points was used for the runs
with side lengths 2−7 AU. The Moon-centered meshes had
side lengths 2−9 AU;…; 2−15 AU, the last roughly 1.3
times the diameter of the Moon.

APPENDIX B: VALIDATION AND
BENCHMARKING OF NUMERICAL

ALGORITHM

The analysis in Sec. III A 1 describes the iteration
scheme from an analytic standpoint, and the proofs therein
cannot be applied exactly to a discretized approximation.
That said, we observed fast convergence even in the finite
difference implementation and encountered no numerical
instabilities. In this section, we provide results of numerical
tests to validate the implementation of our algorithm.

1. Solution convergence study

The arguments presented in Sec. III A 1 indicate that the
numerical simulations should converge rapidly regardless
of choice of initial trial function for the scalar field
potential. Convergence tests were therefore conducted to
quantify approach to the global minimum representing the
solution to Eq. (15). A variety of initial trial solutions was
tested which included a uniform zero field, as well as nine
distributions representing both white and red noise, each
initiated from a different seed.
The (nondimensional) white noise trial function was

represented by values on each mesh node extracted from a
normal distribution with zero mean and a standard

deviation of 270.3, reflecting the range in values of the
single body Sun solution ΦðRÞ given by Eq. (16) evaluated
within a distance of 512 AU from the Sun body. The
(nondimensional) red noise trial function was represented by

Φðn¼0Þ ¼ 270.3
X100
j¼1

aj
Y

Xi¼fX;Y;Zg

sinðκj;iXi þ θj;iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2j;X þ κ2j;Y þ κ2j;Z

q : ðB1Þ

Here, j denotes the 100wave numbers along each coordinate
direction selected uniformly from a logarithmic distribution
ranging from 10−3–103 where the wave numbers for the 2D
axisymmetric case are labeled κj;R and κj;Z and for the 3D
Cartesian case κj;X, κj;Y , and κj;Z. The corresponding
amplitudes aj were chosen from a normal distribution with
zeromean and normalized to unity such that

P
j a

2
j ¼ 1. The

phase offsets represented by θj;X and the like were chosen
uniformly from the range ½0; 2π�.
Figure 11 shows results of the volume averaged inte-

gration of the dimensionless residual error squared com-
puted after each iteration step n according to Eq. (A1).
Within just a few iterations, the integrated residual decays
rapidly by many orders of magnitude, followed by a second
substantial drop, and is observed to asymptote rapidly to
values below 10−4. Indeed, the results of Fig. 11 confirm
that in both the 2D and 3D systems studied, the integrated
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FIG. 11. Results of volume averaged integration of the (di-
mensionless) residual error squared d−3

R ðRðnÞ½Φ�Þ2dV com-
puted after each iteration step n according to Eq. (A1). (a) Results
for 2D axisymmetric Sun-Earth potential field ϕSEðr; zÞ. (b) Re-
sults for Sun-Earth-Moon potential field ϕSEMðx; y; zÞ. Shown are
three types of initial trial functions: ϕðn¼0Þ ¼ 0 (solid blue line),
red noise (long dashed red line), and white noise (short dashed
black line). White noise and red noise distributions were
generated from nine different seeds each. Further details provided
in Sec. B 1.
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residual error for all test cases converged to the same small
value within no more than 25 iterations.
Although the analytical argument suggests that the

integrated residual error should rapidly decay to zero, this
cannot occur, or course, since the solution domain is
represented by a discretized mesh. Because all points on
domain boundaries are fixed by Dirichlet boundary con-
ditions and only internal mesh points are free to vary, there
are not enough degrees of freedom to achieve a pointwise
residual of zero. Furthermore, the gradient descent step
computed from the equation L½Φ�ξ ¼ −R½Φ� is a discrete
approximation. However, higher accuracy can be achieved
by implementation of other higher order finite difference
schemes on even finer meshes than the basic implementa-
tion outlined in Appendix A 2.

2. Finite size study

Far beyond the Vainshtein radius of the largest body in a
collection of bodies, the Galileon scalar potential is
expected to vanish [43] such that limðR → ∞ÞΦðR⃗Þ ¼ 0.
In contrast to previous studies [44], our computational
domain falls well within the Vainshtein radii of all included
bodies, and we therefore argue that it is natural to apply the
approximate boundary condition set by the values of the
Galileon field given by Eq. (16). This seems a valid choice
so long as all computational boundaries are positioned at
distances far greater than any internal length scales such as
body separation distances. To validate this choice and to
quantify finite size effects, we carried out simulations with
domain boundaries positioned increasingly distant from the
massive bodies. These simulations were carried out for the
2D axisymmetric Sun-Earth and 3D Cartesian Sun-Earth-
Moon systems, which are the subject of the current work, as
well as the idealized two-body system investigated by
Hiramatsu et al. [44]. The origin of each coordinate system
was positioned half way between the two bodies for the
idealized cases, and half way between the Sun and Earth
bodies for the solar system cases.
In Fig. 12, our results for the same two-body system

examined by Hiramatsu et al. are plotted in nondimensional
form. In Fig. 13 for the Sun-Earth (SE) and Sun-Earth-
Moon systems, our results are plotted in dimensional form
for the convenience of experimentalists. The nondimensional
length scale L ¼ 2p refers to the radius of a cylindrical
domain of volume Vp ¼ π × ð2pÞ2 × 2pþ1 for integer values
1 ≤ p ≤ 10 used to compute the nondimensional Galileon
field potential ΦpðR; ZÞ. The dimensional length scale l ¼
2p AU refers instead to the distance from the origin of the
computational domain to its nearest boundary. For those
simulations carried out in cylindrical domains, this distance
l equaled the radius of a cylinder of volume Vp ¼ π ×
ð2pÞ2 × 2pþ1 AU3. For simulations carried out in a cubic
domain, this distance l equaled the half-length of the edge of
a cube of volume Vp ¼ 2pþ1 × 2pþ1 × 2pþ1 AU3 for integer

values 1 ≤ p ≤ 9. The actual simulations to determine the
potential fields ϕpðr⃗Þ m2=s2 for the SE and SEM systems
were, of course, carried out in dimensionless coordinates,
with the results then plotted in dimensional form. For proper
comparison, all differences reported were evaluated only
within the smallest volume common to all volumes tested for
a given system, namely Vp¼1. All relative errors are reported
in comparison to the solutions obtained for the largest
domain size tested.
For the idealized two-body system, we used the param-

eter values given by Hiramatsu et al. [44]. Accordingly,
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FIG. 12. Results of convergence tests carried out in a cylin-
drical domain for increasing domain boundary distance L for the
Galileon field of an idealized axisymmetric two-body system.
The parameter values were obtained from the study by Hiramatsu
et al. [44] according to which the dimensionless radii and
densities of the two bodies equaled (0.3,1.0) and (0.1,0.3375),
the separation distance equaled one, k ¼ 5.93 × 10−4 and the
Vainshtein radii (vertical dashed lines) equaled 58.9 and 13.7,
respectively. Additional details can be found in Sec. B 2. (a) Log-
log plot showing the volume averaged relative errors in field
strength

R k∇Φp −∇Φ10k=ðV1k∇Φ10kÞdV1 (solid blue circles)
and Laplacian field

R j∇2Φp −∇2Φ10j=ðV1j∇2Φ10jÞdV1 (solid
red squares) for increasing domain size L2p for integer values
1 ≤ p ≤ 10. (b) Log-log plot of

R k∇Φpþ1 −∇ΦpkdV1 for
increasing domain size. (c) Log-log plot of

R j∇2Φpþ1 −
∇2ΦpjdV1 for increasing domain size. Shown in (b),(c) for
comparison is the decay function L−1.
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body A was assigned a radius and density of (0.3, 1.0),
respectively, and body B was assigned the values (0.1,
0.3375). The two bodies were given a separation distance
of 1.0. These choices yielded a nondimensional value for
the linear coefficient in Eq. (13) k ¼ 5.93 × 10−4 and
Vainshtein radii of 58.9 and 13.7, respectively. The results
in Fig. 12(a) demonstrate just how small are the relative
errors for the force and Laplacian fields when compared to
the results for the largest domain. The comparison in
Figs. 12(b) and 12(c) of the results for the gradient and
Laplacian fields to the decay function L−1 also confirm
rapid convergence. The results in Fig. 12(b) showing the
mean relative difference in the force field for the smallest
domain V1 (where L falls well within the Vainshtein radii)
and the largest domain V10 (where L far exceeds the
Vainshtein radii) is only about 0.43%. The corresponding
mean relative difference for the Laplacian field, shown
in Fig. 12(c), is only about 0.23%. There does appear a
region around the larger Vainshtein radius at which the
convergence stalls, but the relative error subsequently
continues to decrease as the size of the computational
domain increases. A more comprehensive study of boun-
dary conditions is required to determine whether this stall is
spurious.
The results in Fig. 13 showconvergence of the solar system

simulations with increasing domain size. The Sun-Earth (3D
Cartesian) and Sun-Earth-Moon (3D Cartesian) results are

indistinguishable to two significant digits. The results in
Figs. 13(a) and 13(b) demonstrate rapid convergence with
increasing l when compared to the decay function l−1. The
results in Figs. 13(c) and 13(d) evidence numerical consis-
tencywith increasingl, as expected.Quantitatively, in the SE
(cylindrical) simulations, the mean relative gradient differ-
ence between the simulations carried out with l ¼ 2 AU and
l ¼ 256 AUwas only 0.075% and between the l ¼ 64 AU
and l ¼ 256 AU simulations only 0.00033%. The corre-
sponding mean relative Laplacian difference was 0.16% and
0.000060%, respectively. Likewise for the Sun-Earth (3D
Cartesian) and Sun-Earth-Moon (3D Cartesian) simulations,
themean relative gradient difference between the simulations
carriedoutwithl ¼ 2 AUandl ¼ 256 AUwasonly0.33%
and between the l ¼ 64 AU and l ¼ 256 AU simulations
only 0.00071%. The corresponding mean relative Laplacian
difference was 1.7% and 0.0010%, respectively.
Based on these results, we chose a domain boundary

distance of 64 AU, measured from the midpoint of the axis
connecting the Sun-Earth bodies, as the standard domain
boundary distance for the main computations presented in
the body of this work. The improved convergence seen in
Fig. 13 for the SE (cylindrical) system is likely due to the
finer meshes used there. In particular, when comparing the
slope of the curves in Fig. 13(b) connecting the final two
points, we find for the SE (3D Cartesian) system yields a
value slightly greater than −1 while the SE (cylindrical)
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yields a value closer to −1.5, indicating more rapid
convergence.

3. Convergence with mesh refinement

A mesh refinement study was conducted comparing
the difference between the numerical solution ϕSðr⃗Þ and the
analytic solution for the Galileon field ϕtheorðr⃗Þ of the
single-body Sun system given by Eq. (16). Both cylindrical
and 3D Cartesian volumes were used with boundary
distance l ¼ 64 (i.e., V6 AU3). The cylindrical volume
contained 26 submeshes and the 3D Cartesian volume
contained 32 submeshes. For the cylindrical coordinate
system, the underlying rectangular mesh elements con-
tained ðnþ 1Þ × ð2nþ 1Þ mesh points per side for n ¼ 4,
8, 16, 32, 64, and 128. For the 3D Cartesian system, the
underlying cubic mesh elements contained (2nþ 1) mesh
points per side for n ¼ 4, 6, 8, 10, and 12. The total number
of mesh points was therefore approximatelym× ð2nþ 1Þ×
ðnþ 1Þ for the cylindrical volume and m × ð2nþ 1Þ3 for
the 3D cubic volume. These numbers are not exact because
some points are shared between submeshes and some
submeshes contained (4nþ 1) points per side instead of
(2nþ 1) for the reasons described in Sec. A 3.
The results in Fig. 14 for either geometry at constant

volume confirm that the integrated residual error decreases
monotonically with increasing mesh refinement as shown
in (a), indicating that the numerical results approach the
analytical results as the total number of mesh points is
increased. The root-mean-square (RMS) error for Φ in (b)
and ∇Φ in (c) also decreases, though not entirely mono-
tonically. In particular, two somewhat odd features are
apparent. First, the simulations conducted within a cylin-
drical volume exhibit a dip of about an order of magnitude
at the third mesh refinement step. This is likely a spurious
effect, perhaps reflecting that the distribution of points at
that mesh size better captures the spherical contours about
the Sun center. Regardless, the error continues to decrease
monotonically upon further mesh refinement. Second, the
RMS error of ∇Φ for the 3D Cartesian system increases
slightly at the final mesh refinement step, while that of the
cylindrical system continues to drop. This suggests that the
simulation results may become more accurate far from
the Sun and slightly less accurate near the Sun. However,
this behavior may also arise from numerical issues in
connection with the fact that the linear problem was solved
approximately by using the MATLAB BICG biconjugate
gradient solver instead of the direct linear solver.
Additional tests conducted using even finer meshes will
help resolve this issue.

4. Study of computational times

Simulations were also conducted to quantify the
mean time per iteration, total iteration time and time for

constructing nested mesh differential operators for the
single-body field ϕSðr⃗Þ by increasing the number of total
mesh points with a cylindrical and a cubic domain
referenced to a volume V6. The computations were per-
formed on a Dell Power Edge R430 server with two 10-core
Intel Xeon E5-2630 v4 2.2 GHz processors and 112 GB of
RAM (including 25M Cache, 8.0 GT/s QPI, Turbo, HT,
10C/20T, Max Mem 2133 MHz). Our software code was
not parallelized although some matrix operations in
MATLAB automatically run in parallel across multiple
cores. The initial trial function for this study was chosen to
be the analytic solution given by Eq. (16), which of course
is not an exact solution once discretized. The total number
of mesh points ranged from 903 for the cylindrical domains
with the coarsest meshes to 635,941 for the cubic domains
with the finest meshes.
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FIG. 14. Mesh refinement study quantifying the difference
between the single-body Sun solutions, ϕS and ∇ϕS, and the
exact analytical result given by Eq. (20), namely ϕtheor. Results
were carried out with a cylindrical and cubic domain of boundary
distance 64 AU and volume V6. Since the computational volume
for each geometry was held constant, increasing number of mesh
points reflects smaller mesh lengths. (a) Integrated residual value
d−3

R ðRðnÞ½Φ�Þ2dV6. (b) Root mean square error of ϕ given by
½R ðϕS − ϕtheorÞ2dV6=V6�1=2. (c) RMS value of ∇ϕ given by
½R k∇ϕS −∇ϕtheork2dV6=V6�1=2.
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The results in Fig. 15 show that for the cylindrical
volume, the mean time per iteration scales approximately
linearly with the total number of mesh points, while the
cubic volume scales somewhere closer to a quadratic. The
total iteration time in either case does not increase mono-
tonically due to the variable number of iterations required
for the residual to cease to decrease. The time required to
set up the initial nested meshes and discrete differential
operators appears to scale somewhat between linear and
quadratic for both geometries. The results in the main body
of this paper were obtained with 47,985 mesh points for the
cylindrical volumes with a radius measuring 26 ¼ 64 AU,
resulting in computation times on the order of one or two
minutes, and 374,411 mesh points for the cubic volumes of
side half-length measuring 26 ¼ 64 AU, resulting in com-
putation times on the order of 30 minutes.
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