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Accretion of the Vlasov gas on Reissner-Nordstrom black holes
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We investigate stationary, spherically symmetric accretion of the relativistic Vlasov gas on Reissner-
Nordstrom black holes. The model is based on a recent analysis done by Rioseco and Sarbach for the
Schwarzschild spacetime. Both models share many common features: The gas characterized by the
Maxwell-Jiittner distribution at infinity is no longer in thermal equilibrium in the vicinity of the black hole.
The radial pressure at the black hole horizon can even be an order of magnitude smaller than the tangential
pressure. Quantitative characteristics of the Reissner-Nordstrom model depend on the charge parameter.
For black holes with fixed asymptotic mass, the mass accretion rate decreases with the increasing black
hole charge. The ratio of the tangential pressure to the radial pressure at the horizon also decreases with the
increasing charge. On the other hand, the particle density at the horizon (normalized by its asymptotic

value) grows with the black hole charge parameter.
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I. INTRODUCTION

In this paper we investigate spherical, steady accretion
of the relativistic, collisionless (Vlasov) gas on the
Reissner-Nordstrom black hole. The analysis presented
is based on recent papers by Rioseco and Sarbach [1,2],
devoted to the accretion of the relativistic Vlasov gas on the
Schwarzschild black hole. We generalize the results of
Rioseco and Sarbach to Reissner-Nordstrom metrics,
mostly because of the well-known similarity between
causal properties of the Reissner-Nordstrom and Kerr
spacetimes. This is a common idea, allowing one to retain
the simplicity associated with the spherical symmetry and
to get an insight into some properties of rotating black holes
at the same time (as Wheeler said, “charge is a poor man’s
angular momentum”).

Theoretical works on accretion date back to early papers
by Lyttleton, Hoyle, and Bondi [3-5], who investigated
accretion of dust matter onto a star moving through the
interstellar medium. First, Newtonian solutions represent-
ing spherically symmetric configurations of perfect fluid
accreting steadily in the Keplerian gravitational potential
were derived by Bondi in [6]. This was a crucial conceptual
work, defining the physical ingredients of the model—
an infinite reservoir of the gas (with fixed nonzero
asymptotic density and fixed asymptotic temperature)
accreting steadily onto a central object at a rate that is
small enough so that the mass of the central object can be
treated as constant—and identifying fundamental technical
elements—critical solutions, sonic points, etc. Bondi’s
model was generalized to general relativity in 1972 by
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Michel, who considered spherical accretion of the perfect
fluid on the Schwarzschild black hole [7]. Since that time,
numerous works have been devoted to the analysis of
steady, spherical accretion of fluids, assuming different
spherically symmetric spacetimes (Reissner-Nordstrom,
Kottler, Schwarzschild—anti-de Sitter, etc. [§—11]) or taking
into account the self-gravity of the fluid [12-15], various
equations of state [16,17], radiation transfer [18,19], etc. In
all these cases, solving the relativistic Euler equation is
always an important element of the analysis.

From the technical point of view, the kinetic theory
(Vlasov) approach is radically different. On fixed, spheri-
cally symmetric spacetimes, the Vlasov equation can be
solved quite generally in terms of suitable canonical
coordinates (see [1], but also [20-23]). As a consequence,
the difficulty of the analysis relies not so much on actually
solving the Vlasov equation but rather on finding and
analyzing the properties of solutions that would correspond
to the gas in thermal equilibrium at infinity, steadily
accreting on the black hole. Despite these differences, a
comparison with perfect fluids can provide an interpreta-
tion of the obtained results. For instance, the eigenvalues of
the energy-momentum tensor associated with the Vlasov
gas can be interpreted as the energy density and pressures,
but they are no longer degenerate—the pressure does not
have to be isotropic.

Repeating the analysis of Rioseco and Sarbach [1] for the
Reissner-Nordstrom case consisted of two main tasks. On
one hand, we had to redo most of the calculations for a
general class of spherically symmetric metrics, instead
of specifying the analysis to the Schwarzschild solution.
On the other hand, the key difficulty was to control the
properties of the effective potential for the geodesic motion,
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which was required to compute the characteristics of
the accretion flow expressed in terms of the phase-space
integrals. This was still possible for the Reissner-
Nordstrom metric, although one had to deal with much
more complicated formulas. Slightly less complex formulas
can be obtained for extremal Reissner-Nordstrom space-
times, so we treat this case separately. In contrast to that, the
Kottler or Schwarzschild—de Sitter cases seem to be much
more difficult.

The setup of this paper is as follows. In Sec. II we rewrite
the formalism derived originally for the Schwarzschild
spacetime in [1] for more general, spherically symmetric
spacetimes. In Sec. II A we recall the Hamiltonian descrip-
tion of the geodesic motion and the Hamiltonian formulation
of the Vlasov equation. In Sec. II B we specify the class of
metrics used in the remaining part of the paper and introduce
the horizon-penetrating coordinates. A general theory of the
Vlasov gas on static, spherically symmetric metrics specified
in Sec. I B is given in Sec. I C. Section II D provides a short
discussion of the Maxwell-Jiittner distribution, which is
assumed at infinity. In Sec. II E we introduce dimensionless
variables and derive the expressions for the observables
given in terms of phase-space integrals. In Sec. IIF we
discuss the properties of the effective potential associated
with the Reissner-Nordstrom metric and define the regions
over which the phase-space integrals are performed. In
Sec. III we derive analytic expressions for the observables:
the particle current density, the energy density, the pressures,
etc. Numerical results are collected in Sec. IV. Final remarks
and conclusions are given in Sec. V.

Throughout the paper we use geometric units with
¢ =G =1, where c is the speed of light and G denotes
the gravitational constant. The signature of the metric is
assumed to be (—,+,+,+). Spacetime dimensions are
labeled with Greek indices, y = 0, 1, 2, 3; spatial dimen-
sions are labeled with Latin indices, i = 1, 2, 3.

II. VLASOV GAS IN SPHERICAL SYMMETRY

A. Hamiltonian description of the geodesic motion;
Vlasov equation

1. Hamiltonian description

The relativistic Vlasov gas consists of particles moving
along timelike geodesics. Since, following [1], we exten-
sively use the Hamiltonian formalism, we start by recalling
the Hamiltonian description of the geodesic motion. The
Hamiltonian of a single particle moving along the geodesic
can be chosen as

1 MU (2
szg ()C )pﬂpl/'
Here (x*, p,) are treated as canonical variables, and it is
assumed that H depends on x* through ¢**(x%). The
equations of motion read

dx*  OH

d' _OH  dp, __OH
dr 9p,’ dr

e (1)

The normalization of the parameter z is a matter of
convention. We require that p* = dx*/dr, and that H =
19"“p,.p, = —im?, where m is the particle rest mass.
Accordingly, 7 = s/m, where s is the proper time. The
four-velocity u* = dx*/ds is normalized to minus unity:
g*uu, = —1.

It can be easily shown that Egs. (1) lead to the standard
geodesic equation of the form

d*x* u dx® dx”?

_ + -_ = s

dr? b dr dr
where FZ/} denote the Christoffel symbols associated with
the metric g,,.

2. Vlasov equation

The relativistic Vlasov equation describes the probability
function f = f(x*, p,) [24,25]. Since it should be invariant
along a geodesic, one requires that

7 (@), pule) =0,

or

where {-,-} denotes the Poisson bracket. The above
equation can be written in more explicit terms as

L, of 1
g Py w5 PaPp gy o, (2)

and it is usually referred to as the relativistic Vlasov
equation or the relativistic Liouville equation. For conven-
ience, we chose our phase-space coordinates as (x*, p,),
i.e., the coordinates on the cotangent bundle. The version of
the Vlasov equation that usually appears in the literature is
written in terms of coordinates (x#, p*) (coordinates on the
tangent bundle). The transformation from the coordinates
(x#, p,) to the new ones (¥, p),

=X, P =g"(x*)p.,
yields
of _of o9 = Oof of _ w0l
o ox " ox Peap ap, 7 apr

It is easy to show that this change of coordinates transforms
Eq. (2) to the form
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where, for simplicity, we have removed the tildes from
(x*, p¥). An even more common form is obtained by
considering a collection of single-mass particles with
momenta satisfying the mass shell condition

Gup'p’ = —m>. (3)

In this case, it is sufficient to use the coordinates (x*, p)
and treat p° as given by Eq. (3)—one usually selects the
solution corresponding to the four-momentum pointing
towards the future. The corresponding transformation from
(x#, p') to (¥*, p*) has the form

¥=x. pP=p'(¥.p). P =p

where p® = p°(x#, p') is the solution of Eq. (3). This yields

of  of 1

o~ ox  pylf

ﬁra ﬁ 8f _ 8f Pi 8f
#ﬁaﬁo* 6pi 8pi poapo’

and after some algebra,

3f of
—Tip” f——=0.

P el P g

Here again, for simplicity, we have removed the bars from

x*, p'. Denoting x° = ¢ and dividing by p°, we get

of P of 1, ,0f

— - = 0.
o plox po apP" P op'

This is probably the most common version of the relativ-
istic Vlasov equation [24,25].

3. Integrals over momentum space
Many important observable quantities can be expressed

as suitable integrals over momenta. The particle current
density is given as

J,(x) = / puf (x. p)dvol, (p).

whereas for the components of the energy-momentum
tensor, one assumes

T, (x) = / Pt (5. p)dvol,(p).

where the momentum-space integration element is given by

dvol, (

= /—det[g"”(x)]d*p
= \/—det[g"(x)|dpodpidp,dps.  (4)

Using Eq. (2) one can easily show that the particle
current density J# satisfies the conservation equation [26]

V,Jh =0 (5)

B. Horizon-penetrating coordinates

Although in this paper we ultimately work with the
Reissner-Nordstrom spacetime, many formulas derived in
the following sections hold for general spherically sym-
metric metrics of the form

g= gll(r)dtz + 2glr(r)dtdr + grr(r)dr2
+ r2(d6? + sin? Odg?). (6)

On the other hand, for computational convenience, the
majority of the formulas will be obtained for the spherically
symmetric metrics which in some coordinate systems can
be written as

g=—N(¥)d* + dr* + 7 (do* +sin* 0dg*)  (7)

N(F)

(Schwarzschild,  Reissner-Nordstrom,  Kottler, and
Schwarzschild—anti-de Sitter metrics belong to this cat-
egory). Since the coordinate system used in (7) is divergent
at the black hole horizon, we instead work in horizon-
penetrating, Eddington-Finkelstein-type coordinates. For a
metric of the form (7) we define a new time coordinate

t=1(1,7),
z:z+/7 [ﬁ—n(r)]dr,

keeping the areal radius as a new radial coordinate r = 7.
Here 7(r) is an arbitrary function. This yields

g = —Ndi* +2(1 — Ny)dtdr + n(2 — Nn)dr*
+ r?(d6* + sin* Odg?). (8)
The corresponding contravariant metric components read
g" =n(=2+ Nn).

tr:l—Nﬂ, grr:N.

Note that
(gtr)Z _ grrglt — 1 (9)

In particular, the Reissner-Nordstrom metric can be
written as
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2 2
g= (1——+Q>df+<l——+Q) dr?

+ 7(d6* + sin* Odg?).

Taking # =1 (this choice is sometimes referred to as
Eddington-Finkelstein coordinates), we obtain

2 M 2
g= <1———|—Q>dt2+2< Q)dtdr
ror?

2M 2
+ <1 +—- Q—) dr? 4+ r*(d¢* + sin’0dyp?).  (10)
r

The contravariant metric components corresponding to
metric (10) read

2M - Q?
:—1——+Q2, (11a)
, M@

2M  Q?
grrZI—T—f—% (11C)

In the following, we distinguish the formulas valid for
the metric (6) from those obtained for (8) by a suitable
choice of the notation. In the former case, we use the metric
components ¢,, ¢, ¢, (or their contravariant counter-
parts). In the latter, we write the formulas in terms of the
functions N and 7. Although the components of the vector
and tensor quantities depend explicitly on the choice of the
time foliation (the choice of # in our case), important
physical quantities (the particle density, the energy density,
the pressures, etc.) are independent of 7. We try to
emphasize this fact by writing the corresponding formulas
in a way manifestly independent of 7.

C. Vlasov equation on static spherically
symmetric spacetimes

1. Conserved quantities

For the general spherically symmetric metric of the
form (6), the Hamiltonian of a free particle can be written as

H= % g"(r)(p)* + 29" (r)pep- + g7 (1) (p,)?

1

1 2 2
+ = + — . 12
2 (Pe) 2sin0 (p(p) ( )

Since H does not depend on ¢ and ¢, the momenta £ = —p,,
l,=p, are constants of motion. Moreover, as the
Hamiltonian H does not depend explicitly on z, it is a
constant of motion itself. Because H = — 3 m?, this is another
expression of the fact that the rest mass of a free particle is

constant. Less obvious is that

p
= pfﬂfsinfg (13)

is also a constant of motion—this fact follows directly from
the assumed spherical symmetry. In terms of the above
constants, Eq. (12) can be written as

12

9" (r)E*=2¢"(r)Ep,+g"(r)(p )+ +m*=0. (14)

2. Classification of trajectories

Solving Eq. (14) with respect to p,, one gets

gtrE + \/[(gtr>2 _ gtrgrr]EQ _ grr (m2 + i_z)

pr = rr
g

— 2 _ T r
_ (1= NnE+\/E* = Up,(r) (15)

N ’

where we have used Eq. (9) and introduced the effective

potential
. 2
Ul,m(r) = N<m2 +p>
2

For the Reissner-Nordstrém metric we have U, (r) — m?,
as r — oo. Consequently, only trajectories with £ > m can
reach infinity.

In the spherical accretion problem we are naturally
interested in particle trajectories that originate at infinity
and go inward, attracted by the black hole. This family of
trajectories can be further divided into two subclasses,
which are crucial in the following analysis: those absorbed
by the black hole, denoted by (abs), and those scattered to
infinity, marked with (scat). The division into those sub-
classes depends on the properties of the effective potential
U, (r). A trajectory originating at infinity with the
angular momentum sufficiently high, so that at some finite
distance E* — U,,,(r) = 0, is reflected backward to infin-
ity. Otherwise, it can reach the black hole. A precise
characterization of both classes of absorbed and scattered
trajectories is important and will be studied for the
Reissner-Nordstrom spacetimes in Sec. 11 F.

3. Action-angle variables

A convenient way of proceeding further is to introduce
suitably defined action-angle variables [1]. This is a standard
procedure in classical mechanics [27,28]; however, the
details of the transformation used here (and in [1]) are subtle.

Let y be a geodesic orbit with constant m, E, [, and [,
joining some reference point with a point with coordinates
(1,7,0, ). We introduce a generating function (the abbre-
viated action)
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S:—Et—l—lz(p—l-/p,dr—i—/pgd& (16)

14 14

where the integrals are understood as line integrals along
the orbit y. More precisely, the first integral in Eq. (16) is
the line integral along the projection of the orbit y onto the
(r, p,) plane; the second integral is performed along the
projection of y onto the (6, py) plane. Thus, p, in Eq. (16)
can be expressed as

5 (17)

2 -
sin? @

po =%

while p, is given by Eq. (15). Note that the integral

2
do =+ P ——=2-do
/y Po / \ sin” @

can actually be computed analytically. Possible choices of
the starting (or reference) points of orbits y are discussed
in [1].

We define a canonical transformation, taking as new
momenta the constants

Py=m= \/—g”(r)(pt)2 =2¢"(r)pip,

PI:E:_pN
P2:lz:p(pv
2
p
Py=1= 2 ¢
3 p9+sin26

Then the corresponding conjugate variables are defined as

A dr

0
90 . 1
Q 87’1’1 m/y_ger+grrpr’ ( 88.)
a8 HE _ " .
o' :%:—H/Wdr, (18b)
Y r
oS do
L R 18
0 al, Z/],p(,sinzé (18¢)
oS d do
Q3:_:_l/ 2 1r ’ rr +l e (18d)
ol y " (=9"E+g"p,) v Do

Here, again, all integrals are understood as line integrals
along trajectories with fixed m, E, [, [. It is important to
keep this in mind when considering the transformation
(t.r.0.9.p. P Pos P,) = (O, P,) as a coordinate trans-
formation in the phase space.

In terms of the action-angle variables (P,,Q"), the
Hamiltonian simply reads H = —P3/2. Since the Poisson
bracket is covariant with respect to canonical transforma-
tions, we have

OH 0 _OH 0
dp, Ox*  0x*dp,
_OH 0 0H 0 9]

~op,00" 007 0p, 00"

-9 (n(p.) -5

(. P
y <p9+sin26’ ’

|
Accordingly, the Vlasov equation takes the form

af_
200~

and its general solution can be written as

f(xﬂ,pb):f(Q17Q25Q35P09P1’P2’P3)‘ (]9)
Further restrictions on the distribution function f can be
given, assuming symmetry conditions.

4. Symmetries

In the following we impose the conditions of stationarity
and spherical symmetry. Here the key step is to compute the
lifts of the Killing vectors generating the symmetries to the
cotangent bundle with the local coordinates (x*, p,) or
(0", P,). For the Killing vector

0
— EH(x) —
& =20 gl
we compute the lifts as
K 0 0&* 0
Stp) = & (%) 5 ~Pamyy ()5 -
' Oy O 0Dyl

The Killing vectors generating the action of the rotation
group SO(3) on the spacetime can be given as
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. 0 0 0
1 — e'? | — — R — = —
E+i&=e <169 cotﬁa(p), & 90’

where a convenient complex-number notation is used to
simplify the formulas. The Killing vector generating time
translations is simply

3}

It is easy to check that the lifts of these Killing vectors to
the cotangent bundle are given by

& +i& = e (i + ify),

where

0 o p, O
A Y o~ — p Y
M+ 12 Y90~ ™% sin’0 dpy
0
+ (pg + ip,cotld) —.
[ @ ap(/)

Since the general solution of the Vlasov equation (19) is
given conveniently in terms of coordinates (Q*, P,), we

also express k, &, &, & in terms of (Q*, P,). The formulas
for k and 23 are simple:

. 9 o0~ 9 0P, 0 D
T 0p Op 00" 0p 0P, 0Q*
(0 000 0P, 0 0

ot 0Ot 0Q* Ot 0P, 0o

The formulas for 7; and 7, are more complex:

)

P . d
N + 1y = (pg + llz COte) 87 + |:— cotd — pglz / pBSin
v Fo

2

do )
(- —%  _1pcoto [ =22 )| -L
29+’< posinZg = 0 /y pgsin29)]aQ2

do [ do 0
Ll | ———+il—+Plcotd | — || —. 20
+ [pg : /ypgsin29+ l(pg tlzico /yp;gsinzﬁ)] 003 (20)

The above result is derived as follows. First, we note
that both #n; and 7, leave the constants m, E, and [
(but not /) invariant, i.e., (5, +in,)(m)=(n, +in,)(E) =
(1, +in,) (1) =0. Also, since Q' does not depend on 8, ¢,
Pg» Or p,,, and 0° depends on 8, p,, and p,, only through m,
we also have (7, + i,)(Q°) = (m + in,)(Q") = 0. Thus,
1 + in, are only spanned by 9/0P,, 8/0Q?, and 3/0Q3.
Computing (1, + in,)(Q) and (i, + iny)(Q?) is then
straightforward, keeping in mind that p, under integral
signs in Eqgs. (18c) and (18d) is given by Eq. (17).

We see that a distribution function f with a connected
support in the phase space is stationary if it is independent
of Q!, axially symmetric if it is independent of Q?, and
spherically symmetric if it is independent of P,, Q?, and
Q3. Note that the above statement is generally not true
(i.e., without additional assumptions on f). A counter-
example can be found in [29].

In what follows, we restrict ourselves to stationary and
spherically symmetric solutions of the form

f(x* p,) =F(Py, Py, P3). (21)

D. Gas in thermal equilibrium at infinity

At this stage, specifying a solution corresponding to the
gas in thermal equilibrium at infinity is quite simple. In
the flat spacetime the distribution function f describing the
relativistic, nondegenerate gas in thermal equilibrium is
known as the Jiittner or Maxwell-Jiittner distribution, and it

I

is a relativistic counterpart of the Maxwell distribution
[30-32]. For the so-called simple gas (the gas of same mass
particles) it can be written as

f*,p) = a5(\/ -y — m) ek, (22)

where m is the particle mass and E = —p, is the
particle energy. Here, a is a normalization constant, and
B = (kgT)™!, where T is the temperature and kg denotes
the Boltzmann constant. The normalization constant & can
be related to the particle density given by

K
Ne(z) = 4ﬂam4ﬂ,
z

where z = m/(kgT) and K, is the modified Bessel function
of the second kind [32].

Returning to the spherically symmetric, asymptotically
flat metrics of the form (6), we write the distribution (22) in
terms of the coordinates (Q*, P,) as

f=ad(Py—m)e P, (23)

The above formula constitutes a spherically symmetric,
stationary solution of the Vlasov equation that is valid
everywhere, not only at infinity. However, it describes a gas
in thermal equilibrium only asymptotically (i.e., for the
flat metric). We should emphasize that for a finite radius,
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the parameter 7 can no longer be associated with the
temperature.

In what follows, we generally assume distributions of the
form (21) and later specialize to (23). Thus, the whole
difficulty in describing the spherically symmetric accretion
of the Vlasov gas is effectively reduced to the computation
of relevant (observable) quantities.

E. Dimensionless variables; phase-space integrals

1. Dimensionless variables

Following [1] we introduce dimensionless variables 7, &,
T, 7o, €, A, A, as follows:

t = M7,

r= M¢,
Py = mng,
Py = Mmy,
E = me,

[ = MmAi,
[, =Mmi,.

In addition, we define the charge parameter g as ¢ = Q/M.
Metric components (11) can be expressed in terms of the
dimensionless variables as

2 q2>
= (1422,
g <+5 £

gtr:%_q_2
¢ &
2 q2
gT=1-+%.
& &

The two horizons of the Reissner-Nordstrom spacetime are
located at &, = 1 & /1 — ¢°. For the variables Q" we get

Y
, _gtr8+grr”§’
) gle—g"n
leM(—T—i—/ﬁNEdﬁf )
r 9 €-9 %
do
2 - T
o =9 Z/yﬂgsinzé’

d do
Q3:_/1/ 2 tr 5 rr +/1 e
y & (—g"e+ g ) y T

The two constraint equations (14) and (13) read,
respectively,

12
gtt€2_zgzr€ﬂ§+grrﬂ,§+?+ 1=0
and
2 2 '12
e = S 24
ﬂ9+sin29 (24)

Consequently, for the radial momentum we get

(1= Nnle £ /e = Uy(¢)
N :

ﬂ&fi =

where the dimensionless effective potential U,(¢) is

given as
12

In what follows, we also denote
€(ﬂ§ﬂ:) = Zl:l

Note that these formulas are general, valid for any metric
of the form (8). Also note that the form of the effective
potential U,(£) does not depend on the particular gauge,
which in our case is specified by the choice of the function
n. For the Reissner-Nordstrom metric we have

V(&) = (1—§+g—§) <1+§_)

Since the expression /&> — U, (&) appears frequently in
the remainder of this paper, we denote it by

s;(e,8) =1/ = U,(&).

Note that

so(e, &) = Ve* =N,
Also for N — 0 (at the horizon), we have s, — &.

2. Momentum-space volume element

In the following, we introduce another variant of
momentum coordinates, suitable for expressing the inte-
gration element (4). It is convenient to choose the set
(e,m,A,y), where y is chosen as a momentum coordinate
compatible with the constraint equation (24). We define

g = ACOSsy, A, = Asinfsiny
and change the variables (7y,4,) to (4,y). In total, we
change the momentum variables from (p,. p,. py. p,) to
(e,m, A, y), according to
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pi=—me, pg=Mmicosy, p,=MmisinOsiny.
The radial momentum p, is given as a solution to the

equation

m2/12
g'm*e* = 29" mep, + g" (p,)* + 2

+m? =0.

Computing

M?*m3)sin 6

() Ve = U (&)

M?*m3)sin 0

- grrﬂ.é _gtr8 -

a(ptv Prs Pos p(p) -
(e, m, A, )

and

—det[g" (x)] =

r2sin@’

we get

3
dvol, (p) = 52

———————dedmdAdy.
&/ -U,(¢)

Note that the above compact form assumes the metric of the
form (8).

3. Momentum integrals

We consider static, spherically symmetric distributions
with
f(x*, p,) = F(Py, Py, P3) = F(m, me, MmA).

Following [1], let us introduce the following abbreviation,
which allows us to perform the integration over m:

Fole,d) = /oo m"F(m, me, MmA)dm. (25)
0

We begin by computing the particle current density

1 / pﬂ}_(m, me, MmA)m> )

Tule) = e e —U,(¢)

dedmdady.

Since py = Mmicosy and p, = MmsinOisiny, we get
Jo =10 and J, = 0. This follows immediately by evaluat-
ing the integrals with respect to y over the entire period
(0, 27). For the two nonzero components J, and J,, we get

2z [ p,F(m, me, MmA)m>)
6 =2 dedmd
(f) 52 / 82 — U}b(é) eam

_ 271' eF4(e,4)4 e A

Ve = Uy (¢)

and

dedmd2

2z [ p.F(m,me, MmA)m?*2
1.8 ==
r(é:) 2 / e — U,l(f)

27[ ﬂ§f4(8 j.)

Ve = Uy (¢)

A simple computation shows that

ded).

J'=4g"J,+4g"J,. = 52 /6(7:5).7-"4(8, A)Aded).

This means that 4zr2J" = const; i.e., the flux of particles
through a sphere of radius r is independent of r. Of course,
it is also a direct consequence of the conservation law (5).
The same result is also true for the standard hydrodynamic
accretion. We define the (baryonic) mass accretion rate as

1= —4zmr2J". (26)
The energy-momentum tensor can be computed as

1 [ pup,F(m,me, MmA)m*a
52 V e — Uz(f)

By evaluating the integrals with respect to y, one can
show that Ty, =0, Tp=0,T,y=0,T,,=0,T,,=0.
Similarly, we can show that T, = sin” 0Ty, where

T, (&) = dedmdidy.

ng(é) dsdmd/l

ﬂMQ/]:(m,me, MmA)m3 13
‘52 e — U, (&)
CaM? [ Fs(e )R

\Y e — U,()

In the same way, we express

ded). (27)

T, = jj—(:—)—i ed), (28)
2 ﬂff.s(ﬁ', /1)8/1
7, = —Z [ ZLsENE 0, 29
t & V e — U,(&) 2
2 F (e, )2
SO i GLO LN (30)

Ve —U;(é)

In order to proceed further, one has to specify the metric.
There are two technical reasons for this. Clearly, one has to
specify the effective potential U, (&), which appears in the
above integrals (both explicitly and in the expression for
m¢). More importantly, the knowledge of U, () is essential
to establish the regions in the momentum space over which
the above integrations are performed. This requires a subtle
analysis, which we do in the next section.
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F. Properties of the effective potential

1. Extremal Reissner-Nordstrom metric

For clarity, we start with the formulas valid for the
extremal Reissner-Nordstrom metric. In this case

o= (-2 H)0+8)-452(+5)

The derivative dU,/d¢é reads

AU, 2(E=1)(& + 222 = 2%)

dé & '
There is a local minimum of U,(¢£) at £ =1, i.e., at the
horizon, and, if A2 > 8, a maximum at

22 8
gmax:E<1_ 1_/1_2> (31)

and a local minimum at

22 8
é:min - 5 <1 1 _l—2>

For ¢ — oo the potential U,(£) — 1. It is easy to check that
for 2> growing from A> = 8 to infinity, the location of the
|

26V 3 sin (}(2c0s ! (Lo g5

2e(4e2-3)3/2

)+z))+262-3

local maximum &, decreases from &, = 4 to & = 2.
On the other hand, &, grows from &, = 4 for 2> = 8 to
infinity for 4> — co.

At & and &, we have & = 2%(£ — 2). Consequently,
at é:min or émax’

€-1)7°
52

U, (&) = (1+ : >: (=1 (32)

£-2) &(-2)

It follows that U,(&,,,) grows from 27/32 for 1> = 8 to
infinity for > — co. At the same time, U, (&) grows from
27/32 for 2> = 8 to 1 for 2> — co. It is also important to
note that U, (&) = 1 for Eny = (3 4+ 1/5)/2 ~ 2.61803
[this follows immediately from Eq. (32)].

The next important quantity is the value of the angular
momentum A for which the value U,(&,.) is equal to
a given value €2 > 1. It can be computed by solving the
cubic equation

max_1 :
e -

for &,,,« and then computing the value A> from Eq. (31). We
denote the value of 4 obtained in this way as 4.(¢). The
physically relevant root of Eq. (33) can be written as

1 <e <3 (15+33)

gmax(‘c’.) = ( 2 1)

2eV/4e2—3 cos (%cos" (%

))+262-3

3(e-1)

The above solution drops from &, = # fore=1 to
Emax = 2 for € » co. While the above formula is written in
explicitly real terms, in numerical applications it might
be more convenient to use simpler complex-valued ex-
pressions. The function A.(¢) is then computed as

Emax ()

A.(e) = .
C( ) gmax (8) -2

All particles that can reach infinity have €2 > 1. Particles
with €2 > 1 and 1 < 1.(¢) are absorbed by the black hole.
Moreover, these are the only constraints on the family of
particles which travel from infinity and fall into the
black hole.

The description of the particles that travel from infinity
with sufficiently high angular momentum and are scattered
back to infinity is more complex. First, one observes that
the minimal energy ¢ of a scattered particle at a given radius
£ is given by

2> 2 (154 V33).

Note that £ = 2 corresponds to the radius of the photon
sphere. Consequently, no scattered particles can be found
below the photon sphere. Next, since the motion of any
particle is only allowed in a region where £2 > U, (&), i.e.,

12 2
822(5 521) <1+/;—2),

the maximal allowed angular momentum A, (¢, &) is
given by

lmax(‘gv é) =¢ E_ 12 1.
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Scattered particles occupy the range in the phase space
specified as e, < &, A.(€) < A < Apax-

2. General Reissner-Nordstrom metrics with 0 < q <1

In the general case with 0 < ¢ <1, we have

and

s (1-202)(148). o

The derivative dU,/d¢ reads

dU, 2[8 — (¢* + 12)& + 3128 = 24° 1]
dE &

Consequently, the locations of the extrema of U, can be
easily computed using Cardano’s formulas.

We proceed further using the same trick as before. Note
that at the extremum of the potential U,, we have

52 5_ 2
e o

Inserting this expression in Eq. (35), we get

(B -2+ 47
(8 -3¢8+24¢7)

(e e-c)
SRty O

U,

which is valid at the extrema of U,. In the last expression
Ene =53+ /9-84%) are the radii of the circular
photon orbits. The radius of the outer photon sphere
corresponds to & = &, . Note that E -3¢ +24¢% > 0 for
&> Eppye Also Uy = oo for & — &, (the other root of
& —38424% ie., &= &y, is always located below the
black hole horizon: we have &;,_ <&, for 0 <g <1).
Consequently, the corresponding expression for &, reads

00 §S%(3+\/W)

) ey oy
Emin ":m 2(3+ 9 8(] ) <§SX((,])
1 E>X(q).

(38)

Here X(q) is a unique root of the equation & —4&2 4
4qP& — g* = 0 satisfying (3 ++/5)/2 < X(g) < 4. It can
be written as

4 1 2494248
X(q) =3 <\/4—3q2cos{§cos‘1 [W] }—i— 1).

Note that, quite generally, the condition &2 > U, () is
equivalent to

2
<€ %—L

In deriving the above inequality, one only assumes that
N > 0. Consequently, for the general Reissner-Nordstrom
metric with 0 < g < 1, we have

52 6‘2

/Imax(evg):‘f 52_2—§+q2—1.

The value A.(e) can also be computed analytically,
but the corresponding formulas are lengthy and of little
practical importance [setting U, = £> in Eq. (37) yields a
quartic equation for &; the appropriate solution has to be
inserted in Eq. (36)]. In practice, one can always compute
A.(¢) numerically.

To recapitulate this section, let us note that the range of
integration of the momentum-space integrals derived in
Sec. ITE 3 is effectively limited by three functions: A.(e),
Emin(), and A, (g, €). The first one, 4. (¢), is defined as the
angular-momentum parameter A for which the value of
the effective potential U, at its local maximum equals
precisely &. The second, i, (), gives the minimal energy
€ of a scattered particle at a given radius &. The function
Amax (€, €) yields an upper bound on the angular momentum
A of a scattered particle with the energy ¢ at the radius &.
The range of the phase space occupied by absorbed
particles is limited by € > 1 and 0 < 1 < 4.(¢). The range
corresponding to scattered particles is given by &, < &,
Ae(€) < A € Apax- A detailed proof of this characterization
is given in [1] for the Schwarzschild metric.

ITII. ACCRETION OF GAS IN THERMAL
EQUILIBRIUM AT INFINITY

We now compute the momentum integrals of Sec. II E 3,
assuming the Maxwell-Jiittner distribution function (23).
This yields

F (e, 1) = m"ae (39)

for the distribution function (25). Integral quantities J, and
T,, can now be divided into two parts, corresponding to
absorbed and scattered particles. For the particle current

density J, = J f,abs) +J ffcat), we have
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2 4 oo
J?bs) =- ﬂ;m % dee e

dA A =
\/SZ—UA(f) - &

4 e 2
B 2ram / dee~Fe AL
1

4 (s [s9)
J&abs) = 2”% / dee™%* / dAms_ A =—
& 0 e-U,) &) &N N

Here we choose 7 = z;_, which corresponds to ingoing particles. The formulas for J,,

J(scat)

s, + 580
2mam* P (1-Npe 1
¢ Sﬂ(: + SO 2 )

T8 are slightly more complex:

52

A e+

4ﬂ'am4 oo /1max A
L = dee ¢ di
Emin lc

Ve —U,(é) B &

4ram® [ 22— )2
=- dee e =2
emin S, + 55

max

27tam Anax
Jiseat § : / dee™¢ da =
gmm j’L‘ \/ 82 - Ul(g)

4 o 2 2
B 4zrazm (1 =Nn) / dee—e Aax /L,
¢ N Emin $;, + 58,

‘max

The additional overall factor of 2 stems from the fact that both ingoing and outgoing particles are taken into account.

In the above formulas and in the following text, we omit
the arguments of the functions A., Anay, So, 5,5 55, and
Emin- We recall that A, = Ana(&,8), so = s0(€, &),
s;, =5, (€,&),s, =35, (e ¢) depend on both & and ¢&.
The energy énin = €min(¢) is a function of &, while
e = A.(¢) is a function of & only.

Note that J* = —LZJES““). Accordingly, J¢) = .

It follows that only J ,sabs) contributes to the mass accretion

rate M. A simple calculation yields

M = —4zmr2J
=8 mMz/ de/ dAF 4(g, )4
=4’ M*m’a / dee )2, (40)
1

The analysis of the energy-momentum tensor is espe-
cially interesting in terms of its spectral properties. For
perfect fluids, which can serve as a reference for the more
complex case of the Vlasov gas, the energy-momentum
tensor reads

T, = (p + p)u*u, + pd,, (41)

where u” denotes the four-velocity of the fluid
(u"u, = —1), p is the energy density, and p denotes the
pressure. It is easy to see that u* is an eigenvector of 7#,
corresponding to the eigenvalue —p. On the other hand,
any nonzero vector k* orthogonal to the four-velocity
(k*u, = 0) is also an eigenvector corresponding to the
eigenvalue p. Consequently, the pressure p is a threefold
degenerate eigenvalue of T7#,.

Solving the eigenvalue problem for 7#, gives a possi-
bility to compare the properties of the Vlasov gas with
those of the perfect fluid. In particular, we see that the
eigenvalue corresponding to the pressure is no longer
threefold degenerate. Instead, we obtain twofold degen-
eracy due to the assumed spherical symmetry. For perfect
fluids, the (conserved) particle current density can be
expressed as J¥ = nu¥, where n denotes the particle
density. In other words, J* is proportional to the four-
velocity u#, i.e., to the timelike eigenvector of 7*,. For the
Vlasov gas this does not have to be the case.

Raising the first index in Eqs. (27)-(30), we get

t: 52N/f5€/1
€—U/1(§)

T, = §2N/]:5€/1/1”5

+ e(me) (1 - Nﬂ)] ded],

e | = Np) | dedi,
< ] )| ae
Tr, = —z—” e(me) Fs (e, A)eded),
2

Trr / (7[5)?5 (€ i)lﬂ'éd&’dﬂ

52
T Fs(e, 1)A3

% = T, == | —————
\/82 - U,(¢)

It turns out that the spectral properties of 7+, differ
significantly between the contributions related to the
absorbed trajectories T ()", and scattered trajectories

# . For scattered trajectories we have

ded).

T(scat)
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Fs(e 4)de” 1) Ae?

Tiea)', = =7 JZ 0.0 ded),
g N 6' — U/l
4r(1 - Np) / [
Tisea!, = Fi(e, )|
( t) §2N2 8 _ Uﬁ(é)

+1/€* - U,l(:.f)} ded],

T(scat) rt =0,

T(scat)rr sz/fs €4 lmd&'dﬂ

271 Fs(e )P
\/8 —U}L

We can check that the orthogonal frame (9,, —(g,,/g,1)0; +
0y, 0y, 0,,) consists of eigenvectors of T (sq)* . The corre-
sponding eigenvalues can be obtained as follows. The
negative of the eigenvalue corresponding to the timelike
eigenvector 0, reads

T(scat)¢( d dA.

T(scat)eg = "

Fs(e.A)der 1)Ae?

\/8 —Ui

(scat)

— ddﬂ
§N

4

dzam’ z 22
&N
drom?’

3N?

(scat) _

P
Emin 83,185

&) 3
—ze
dee™(s; —
Emin

max

53,

)“max

(scat)
rad

(sca)  2mam’

dee‘zg 2 max e _

and it can be identified with the energy density. Note that
this also means that, similar to perfect fluids, for scattered
particles the eigenvector corresponding to the energy
density is proportional to J*. The eigenvalue corresponding
to the radial eigenvector —(g,,./g,)0; + 0, is

.sz/]:S e, )/ e* = U, (E)ded.

(scat)
rad

It can be understood as the radial pressure. The eigenvalue
corresponding to eigenvectors Jy and 4, is twofold
degenerate. It reads

2;; Fs(e /1)/13

\/E _U/l

(scat) o
tan

(42)

and is referred to as the tangential pressure. For F5(¢, A)
given by Eq. (39), we get

—22) Anax (285, + 55, ) + 22 (s, + 25, )}

max

tan

o )*rznax
3 / dee‘zg(

(55, + Sim)z

In the following, we also need explicit expressions for 7'(,*, with F s(e, 1) given by Eq. (39). These are

dram’® [ Do — A2
T(Scat)tt - - §2N . dé'e_ZS£2 75‘;“1—);— 5,
4 5(1-N -
T(scat)tr = W/ dee™ [ 2 maj_
emm Sj’(‘
T(scat)rt =0,
dram’® [
T, = W/ dge_zg(si, - Simax),
emm
2ram’ [ A2 — )2
9 _ _ — max c
T(scat) 0= T(scat) @ —3—54[_ dee ZSW

52
3N

Slmux

/12

) Wiax (255, + 55, ) + 22(s;, + 25, ).
j’max

For absorbed trajectories the situation is different. The tangential pressure, i.e., the eigenvalue corresponding to the

eigenvectors Jy and 0,,, can be written as

(abs) _ 27[

tan

f5 (8 ﬂ)/l3

\/8 _U/I

ded2,
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that is, in the same form as Eq. (42). On the other hand, the formulas for p(®*) and pgzss) are different. Moreover, 9, and

—(94r/ 94)0, + O, are no longer the appropriate eigenvectors. Instead, the timelike eigenvector corresponding to the energy
density p(@) is inclined at some angle with respect to 0,.
For absorbed trajectories, the components of the energy-momentum tensor can be written as

Tabs) = ézN/]:.S £, /1 8/1|: (5) (1 —NI’]):| dedA,
r &
Tians)', = gz—N/f5(€’ A)Ae_ [\/TT(@_ (1 —Nﬂ)} ded),

2n
T(abs)rt == 5—2/F5<€, ﬂ,)&%d&'d;{,

2n
T(abs)r = _gz/fs(é',/l)lﬂg_dﬁ'd/l,

T Fs(e, 1)23

Tws's=Tan’s =5 | 255

For F5(e, 4) given by Eq. (39), the above integrals can be evaluated as

ded).

2mam’ [ 1—N
&N i s, + 5o 2
2mam® [ (1-Np)e2az 1 (1-Np)&
Ty, = oy | dee™d U2 J (1 4 (1= Np)2Jed2 +——— > (s3 =53 ) ¢
(abs) , 52]\/2 / ee { Sa, + S0 2[ +( ’7) ]8 ¢t IN (SO Sﬂc)
5 (&)
T, = " / deeee2,
S
. 2mam® [(1—=Np) [ & o[ .
Tiaps)', = — 2N [ > [ dee™ sﬂg—l-ﬁ ] dee™ (si' —-53)].

5

am 2s0 + S
Tl = Tiape? = —r dee )t ——"<
(abs) ¢ (abs) " 3 A (So 55, )2

While the above expressions are relatively compact, they suffer from the occurrence of expressions that would become
indeterminate (of the form 0/0) at the horizon. This drawback can be removed by rewriting them in the form

2mam’ [ eA? (1 —Np)
T to_ _ =2 dee™ % ¢ X\, 43
(abs) 2 A sty {’78 M ] )
T _Zﬂams/md e 2 +(1_N’7)X _ —Q—lX _%W (43b)
W=7 [T Gors, T 2 T3 12 ’
. _mam® [e
T(abs) ;= ? 1 dee Slc, (43C)
. 2mam’ [ e MNE &N
T, === | dee 2 (=5 4 22" ) (43d)
ram® [ 250 + 3,
Tiwe?s = Tipe? = dee ) ———< 43
( b‘) 2] ( b~) ] 364 / ee (SO + sﬂr)2 ( e)

where
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2 2
e+sy e+s; e+sy e+s;

Using expressions that are manifestly regular at the
horizon is important both from a purely theoretical
perspective and also numerically, as it helps to avoid
numerical errors in evaluating the above expressions in the
vicinity of the horizon. (Note that this is irrelevant with
respect t0 Ty ¥, since these components vanish iden-

tically in the vicinity of the horizon.) Taking the limit of

expressions (43)as & = &, =1+ /1 - g’ (the horizon),
we get

2mam® [ [ Alne 12 A
_ - 5 de ze | ¢ + e + 5 ,
fe=¢, &N 2 4e  8e&

— 2ﬂam5 /oo dee™%€ _’1%7728_’_/1_%
rle=¢. & 2 8

PTA
3o T 3:4 |0
8e &y 24e°&

t

T(abs)

T(abs)

5
ram® [
T(abs)rt e, = f%r [ dee 288/1%,

T . 2mam’ /oo Joomie (FNE_ T K
abs = Ee - _—— N
@) rlee, — 2 ) 2 de 8eg?

5 4
o =5 [ e
¢ &=, 4§+ 1 £

T(abs)eg = T(abs)(

&=E,

In evaluating the above limits, one makes use of the fact
that N — 0, Nn — 0 (this is actually an assumption on #),

] 2 2
Xo—(2 .
2 < +§2> T T 22

as &~ &y
The eigenvalues —p(s), pgsgs), and p™ of T (aps), can
be computed by “brute force.” A rather lengthy calculation

allows one to express p(2s), PEZES)

5

i) — _”0;’2" (A_ N2B? +2Bc), (44a)
5
P’ =T (A VW L 2C). )
where
1 ) 2 N 2Y3
A:—/ dee‘”[(l = >/13X+§}
4/, so + S, 3
(45a)

1 [ 2x? gy?
B=- dee %€ ¢ -, 45b
4 j ee (so + 5, 3 ) (43b)

C= /00 dee %e)2.
1

Although the components 7'y, depend on the choice
(abs)

(45¢)

of the time foliation (i.e., on 7), the eigenvalues —p

(abs) (abs)

rad > Ptan  are independent of 7. One can also check that
bs) (abs)

asymptotically, i.e., for & — oo, both pgd and pun

converge to the same limit.

At the horizon, p(), prjgs , and pti,lfs

following much simpler expressions:

are given by the

5
p(abs) - _ ”Z;n (A/ 4+ /B/C>, (4621)
=&, 1
5
(abs) Tam
Wl =g (4-VFBC),  (46b)
+ ¥
5 4
(abs) — Tam « —z¢ /1_6 4
Ptan e, 4(:1 [ dee e’ ( 6C)

where

o 22 22
A/ — dee %€ 1 _c ,
) aee 2e< +2§2)
o R 2
B’—% dee™% (1+§2+3§4>

and C is given by Eq. (45c).

We should emphasize that both T (s and T'gq”,
are of limited physical interest separately. Instead, we
are interested in the total energy-momentum tensor
T, = Tas)", + Tisea, and its eigenvalues. Although

.bv b e
Ptan = pt(szS) + pt(srclat)’ we have Prad ?é pr:ds> + pﬁzgdtJ and

p # plas) 4 plsca) This i 1s because the eigenvectors corre-

sponding to p{™ and p"™ (as well as to —p(es)

—p(5a)) are different, and the corresponding eigenvalues do
not add. In practice, it is convenient to compute the
eigenvalues of 7%, numerically, and we do this in the next
section. On the other hand, since below the photon sphere

= 0, the above expressions for ps), p{)

and

T(Scat)”,, , and

p[(:rtfs) also give the total physical values of p, p.q4, and
Pian 10 the vicinity of the horizon. In contrast, analytic

expressions for p(sa), pfﬁ‘“), and pEan o

interest only.

are of theoretical
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IV. NUMERICAL RESULTS

A. Particle current density, particle density,
and mass accretion rate

The integrals derived in the preceding sections can be
computed numerically with relatively little effort. We start
by illustrating our results with the graphs of the particle
current density J,. We work with standard Eddington-
Finkelstein-type coordinates; i.e., we set # = 1. Some
generic plots of the components J, and J, are shown in
Figs. 1 and 2 for ¢ = 1/2 and z = 1. We show explicitly

g ' | | |
' R ——
[ N
[ \ s
-10f . |
[ .
' ¥
[ S
_20 A Ill = ~ -~ <
[ 1 ——
F ’I’
I /
-30f i — ant A
./ - J(abs)/ ant
-40f ) |
L o Jt(scat)/(a m4)
-50 . ‘ ‘ |
2 ) ° 8 10
¢
FIG. 1. Sample graphs of J,/(am?), Jl(‘abs) Jam®), and

7 /(am*). The charge parameter ¢ = 1/2; z = 1. Vertical
lines mark the locations of the black hole horizon and the photon
sphere.

40 T T T T

— Jl(am®)

30+

20+

FIG. 2. Sample graphs of J,/(am®), Jﬁab”/(am“), and

75 /(am*). The charge parameter ¢ = 1/2; z = 1. Vertical
lines mark the locations of the black hole horizon and the photon
sphere.

the two components Jf,scm) and JlgabS)

J,=J Efcat) +J ,Sabs) . Note that although the total current J,

is smooth, the components J5 and Ji™ are not. The
components corresponding to the scattered particles vanish

for £ <1(3+/9—8¢%), i.e., below the photon sphere.
The particle density can be defined covariantly as

n=\/~JJ".

It is a direct counterpart of the standard definition for
perfect fluids, which relates the conserved particle current
density with the four-velocity, i.e., J# = nu*. The product
mn, which appears frequently in this paper, is usually
referred to as the rest-mass density.

Sample graphs of the particle density n obtained for
different black hole charge parameters ¢ and for z = 1 are
shown in Fig. 3. Clearly, n grows with the increasing charge
parameter.

In all Figs. 1-3 the locations of the black hole horizons
are marked with vertical lines. The areal radius of the black
hole decreases from r = 2M (or{ =2)forg =0tor =M
(or £ = 1) for g = 1. Since n is a decreasing function of the
radius &, the increase of n measured at the black hole
horizon for the increasing charge parameter ¢ is even more
pronounced.

The graphs of the particle density in Fig. 3 were
normalized by am®. Tt is a natural normalization, as long
as we restrict ourselves to solutions corresponding to the
same asymptotic temperature. To compare solutions
with different z, we follow [2] and normalize n by its
asymptotic value n.,. Sample plots of n/n,, forg = 0, 3/4,
1 and z = 1, 10, 30 are shown in Figs. 4-6. Figure 4 shows

, as well as the sum

0.5 1 5 10 50 100

FIG. 3. The particle density n vs & for three Reissner-Nordstrom
solutions with ¢ = 0 (Schwarzschild metric), g = 3/4,and ¢ = 1
(extremal Reissner-Nordstrom solution). All solutions are ob-
tained assuming z = 1. Vertical lines mark the locations of the
black hole horizons for ¢ = 0, 3/4, and 1.
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ning

FIG. 4. The ratio n/ny vs & for the Schwarzschild metric
(¢ = 0). Different graphs correspond to z = 1, 10, and 30. The
vertical line at £ = 2 marks the location of the black hole horizon.

the solutions obtained for ¢ =0, i.e., assuming the
Schwarzschild metric; it agrees with an analogous
Fig. 2 in [2].

Another immediate result is the dependence of the mass
accretion rate M given by Eq. (40) on the black hole charge
parameter g. A subtle point in comparing the accretion rates
of different solutions is the proper choice of the normali-
zation. In Fig. 7 we plot M/(M*mny) vs the charge
parameter ¢ for three values of the asymptotic temperature,
z =1, 10, and 30. In all cases the quantity M/(M*mn.,)
decreases with the increasing ¢. Figure 8 shows the
dependence of M/(M*&mny,) on g. The normalization
of M by M*E mn., seems to be natural, as 4zM>&> is the
area of the horizon. This normalization is also used in [2].
On the other hand, since &, is a decreasing function of ¢, it
changes the conclusion: M/(M?&2 mn.,) increases with g.

nin,

FIG. 5. Same as in Fig. 4 but for the Reissner-Nordstrom
solution with ¢ = 3/4. The vertical line marks the location of the
black hole horizon.

35

30}

20f

nin.,

15}

FIG. 6. Same as in Fig. 4 but for the extremal Reissner-
Nordstrom solution with ¢ = 1. The vertical line at £ = 1 marks
the location of the black hole horizon.

-

2001 ——-=a 1

100t ~

MI(M?mn.,)

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Mass accretion rate M/(M>mny) vs the charge
parameter g.
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FIG. 8. Mass accretion rate M/(M*Emng,) vs the charge
parameter q.
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FIG. 9. Sample graph of p/(am’), p@)/(am%), and  FIG. 11. Sample graph of pu./(am’®), pi™/(am’), and
pB /(am®) for the parameters ¢ = 1/2 and z = 1. Note that (scat

p # ps) 4 psal “ag explained in the text. The vertical lines mark
the locations of the black hole horizon and the photon sphere.

For Reissner-Nordstrom black holes, for which the area
of the horizon is not only a function of mass but also a
charge parameter, we would rather opt for the first
normalization.

The same behavior can also be observed for perfect
fluids. In Appendix B we give a short overview of a simple
model of Bondi-type accretion of the perfect fluid on the
Reissner-Nordstrom black hole. It is obtained for the linear

equation of state p = kp. Direct perfect-fluid equivalents of
Figs. 7 and 8 are shown in Figs. 21 and 22.

35F . . . . :
[ 1
L 1
30 :/\A
L 1
L 1
L 1
25¢ \
[ 1 -
[ 1 -
L 1 P
e ‘-. o7 ‘
L \I P 7
15F ! ’
1 \ .’ Ka 1)
10f \\‘ 7 Prad |
b / b
E NS T plae” )
5p .
5 S = s Kan)
Of= == — —— /e e |
2 4 6 8 10
¢
F{G.) 10. Sample graph of pg/(am®), pggs)/(amS), and
scat

Prg /(am®) for the parameters ¢ = 1/2 and z = 1. Similarly

to the energy densities, pq # pﬁf;};” + pﬁ,jff“), as explained in the
text. The vertical lines mark the locations of the black hole
horizon and the photon sphere. Note that the radial pressure
decreases in the vicinity of the horizon.

pl(m n)

DPan ) /(am?®) for the parameters ¢ = 1/2 and z = 1. The vertical

lines mark the locations of the black hole horizon and the photon
sphere.

B. Energy density, and radial and
tangential pressures

Instead of plotting different components of 7#,, which
similar to J, are gauge dependent, we concentrate on the
eigenvalues —p, praq, and pi,.

Sample plots of p, p(s), plsea) p piigs), and pizzat)’
(abs) (scat)

Pian> Pran > and pe are shown in Figs. 9-11 for ¢ = 1/2
and z = 1. We normalize all of these quantities by am?

As discussed in Sec. III, we have p,, = p[(:: *) + pgﬁm), but
abs (scat

Prad # pﬁad )+ Prg Jand p # p() 4 pea) Also note that

all terms associated with scattered particles vanish inside
the photon sphere.

P B

FIG. 12. Sample graphs of the ratio p/(mn) for ¢ = 0, 3/4, 1,

and z = 1, 5. Vertical lines mark the locations of black hole
horizons for ¢ = 0, 3/4, and 1.
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150 1
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1 5 10 50 100
¢
FIG. 13. Sample graphs of the energy density p normalized by

mny, for ¢ =0, 3/4, 1, and z = 1, 5. Vertical lines mark the
locations of black hole horizons for ¢ = 0, 3/4, and 1.

Figures 12 and 13 depict, respectively, the ratios p/(mn)
and p/(mngy,) for ¢ =0, 3/4, 1, and z =1, 5. For both
ratios, the dependence on the asymptotic temperature (i.e.,
on z) seems to be much stronger than the dependence on the
charge parameter q.

Since asymptotically the gas is assumed to be in thermal
equilibrium, both pressures p.q and py,, should tend, at
infinity, to the same value, depending only on z, a, and m.
As the particles approach the black hole from infinity, both
Pian @and pq initially increase. On the other hand, in the
vicinity of the black hole, p,,, still increases, but p.4 can
decrease. It was observed in [2] that for the Schwarzschild
black hole, the tangential pressure can be nearly an order of
magnitude greater than the radial one. We illustrate this
behavior in Figs. 14-20. Figures 14-16 show the two

T

Prad, 2=1

pl(m n)

50 100

FIG. 14. Sample graphs of the ratios p,q/(mn) and p,/(mn)
for z =1, 5, and ¢ = 0 (Schwarzschild metric). The vertical line
at £ = 2 marks the location of the black hole horizon.
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FIG. 15. Sample graphs of the ratios p.,q/(mn) and p,/(mn)

forz = 1,5, and g = 3/4. The vertical line marks the location of
the black hole horizon.

pressures ppq and p,, normalized by the product of the
particle density n and the particle mass m (the rest-mass
density) for z =1 and z = 5. Figure 14 was obtained for
the Schwarzschild metric, and it agrees with Fig. 5 in [2].
Figures 15 and 16 were obtained for ¢ =3/4 and ¢ = 1
(extremal Reissner-Nordstrom spacetime), respectively.
In all cases the ratios p.q/(mn) and p,/(mn) decrease
with z. Note also that for ¢ = 1 the ratio p,q/(mn) can
have both a local minimum and a local maximum outside
the black hole horizon. For comparison, we plot the same
data in Figs. 17-19, normalizing p., and p,q by the
asymptotic rest-mass density mn, instead of mn.

In Fig. 20 we plot the ratio pi,/prnq for z =1, 30,
and ¢ =0, 3/4, 1. Vertical lines in this figure mark the

7
GV Prad, 2=1 ]
S e Ptan, 2=1
5 5‘ —— Prad: Z=5 ]
Y ]
= 4;‘\“ — == Ptan, Z=5 ]
g [\
I3f N ]
[ AN
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FIG. 16. Sample graphs of the ratios p,,q/(mn) and p,/(mn)
for z=1, 5, and ¢ =1 (extremal Reissner-Nordstrom space-
time). The vertical line at £ = 1 marks the location of the black
hole horizon.
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hole horizon.

Sample graphs of radial and tangential pressures
normalized by mny for z =1, 5, and ¢ =0 (Schwarzschild
metric). The vertical line at £ = 2 marks the location of the black

normalized by mn,,

FIG. 19. Sample graphs of radial and tangential pressures

for z=1, 5, and ¢g=1 (extremal

Reissner-Nordstrom spacetime). The vertical line at £ = 1 marks

the location of the black hole horizon.
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FIG. 18. Sample graphs of radial and tangential pressures

normalized by mn, for z =1, 5, and ¢ = 3/4. The vertical line

marks the location of the black hole horizon.

locations of the black hole horizons. The ratio py,/ Prad
grows with z, and it saturates relatively quickly—the graph
of the ratio pi,,/ praa for z = 30 in Fig. 20 would almost
coincide with the graph obtained for, say, z = 100. On the

other hand, the ratio p,,/ pr.q generally decreases with the

charge parameter g. Below we list a few sample values
of ptan/prad-

(1) At the black hole horizons:

(@ For z=1 and ¢=0, 3/4, 1, we have
Dian/ Prad = 6.65, 6.62, 6.53, respectively.

(b) For z=30 and ¢=0, 3/4, 1, we have

Dian/ Prad = 8.93, 8.49, 7.36, respectively.

FIG. 20. The ratio pu,/prd for ¢ =0, 3/4 1, and z = 1, 30.
Vertical lines mark the locations of the black hole horizon for

q=20,3/4, and 1.

(2) At the photon spheres:

(@ For z=1 and ¢=0, 3/4, 1, we have
Pian/ Praa = 3-19, 3.18, 3.17, respectively.
(b) For z=30 and ¢=0, 3/4, 1, we have
Dian/ Prad = 4.66, 4.49, 4.26, respectively.

V. CONCLUSIONS

Some features of the steady spherically symmetric
accretion of the Vlasov gas on Reissner-Nordstrom black
holes resemble those characteristic of the accretion of

perfect fluids. Michel-type (or Bondi-type) accretion of
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perfect fluids on Reissner-Nordstrom black holes was
investigated, e.g., in [8,11]; we give a short overview of
this model in Appendix B. As usual, precise results depend
on the assumed equation of state. Several analytic solutions
can be obtained for a class of linear equations of state of the
form p = kp, where 0 < k <1 is a constant. Similarly to
the Vlasov case, for the black holes with a fixed mass, the
mass accretion rate decreases with the increasing charge
parameter. Also, as for the Vlasov model, the ratio of the
particle density at the black hole horizon to its asymptotic
value (the so-called compression parameter) grows with the
charge parameter g (we show this fact in Appendix B for
the stiff equation of state with £ = 1).

In terms of the energy-momentum tensor, the two models
(the perfect fluid and the Vlasov model) differ significantly.
In this work we have recovered the general properties of
the energy-momentum tensor and its eigenvalues—the
energy density, and the radial and tangential pressures—
discovered by Rioseco and Sarbach in [1] for the accretion
of the Vlasov gas on Schwarzschild black holes. Similarly
to the Schwarzschild case, we observe that the two
pressures differ in the vicinity of the black hole. While
the tangential pressure is a decreasing function of the
radius, the radial pressure is not monotonic, and it
decreases near the black hole horizon. In general, p,
exceeds p,,q in the vicinity of the black hole, but the precise
ratio P/ Praa depends both on the asymptotic temperature
of the gas and on the black hole charge parameter ¢. For
z = 1 we have, at the black hole horizons, p,/Prag = 6.65
for ¢ = 0 and pn/ prag = 6.53 for g = 1. The correspond-
ing values for z = 30 are p,/pPrq = 8.93 for ¢ = 0 and
Puan/ Prag = 7.36 for g = 1.

The model presented in this paper follows the footsteps
of Rioseco and Sarbach [1], as closely as possible. In
particular, we have neglected a number of factors that could
both complicate and alter the corresponding physical
picture. In the first place, we have neglected all terms

b3 Ad2 A=A
W JE—UE) sty
o AdA 3=

describing the scattering between the particles of the gas.
As a consequence, there is no interaction between the
two classes of particles investigated in this paper: those
absorbed by the black hole and those scattered to infinity.
More importantly, neglecting the scattering between the
particles, one can also neglect the existence of particles on
bounded trajectories. The latter would also become impor-
tant if we took into account the self-gravity of the accreting
gas and attempted to solve the corresponding Einstein-
Vlasov system.

In the analysis presented in this paper, we have deli-
berately concentrated only on stationary states. The for-
malism developed in [1] also allows for a relatively simple
stability analysis, which we postpone to the future.

From the perspective of the current work, the most
interesting direction of future investigation is the analysis
of axially symmetric accretion systems (we are mainly
interested in the Reissner-Nordstrom metric as a toy model
for the spinning black hole). An elegant work in this
direction has recently been published by Rioseco and
Sarbach, who investigated the motion of Vlasov gas in
the equatorial plane of the Kerr spacetime [33].
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APPENDIX A: INTEGRALS WITH RESPECT TO
THE ANGULAR MOMENTUM

In this appendix we collect a few analytic integrals used
in establishing the results of Sec. IIl. For simplicity, we

denote
S1:\/€2—U11(§>, SZZ\/€2—U/12(§),

= 5 [43(251 + 52) + 23 (s1 + 255)].

w JE—U,E)  3(s1+5)
X 2 __52(52_sl)
A] M e —U,(&)dr = N
2

AdA A3 —4[(1—Nne
L e N {sl—l—sz
no dir Bk
y EE U0 Nsi )
N
385y + )

1
)
{((1 — Nn)e)? +e* =N+ (1 = Nn)e(s; + s,)

[A3(2s) + s7) + A3 (s + 2s2)]}.
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APPENDIX B: SPHERICALLY SYMMETRIC
ACCRETION OF PERFECT FLUIDS IN
REISSNER-NORDSTROM SPACETIME

Stationary, spherically symmetric accretion of perfect
fluids in the Reissner-Nordstrom spacetime was studied,
e.g., in [8,11]. It is a simple model that can serve as a
reference for the results of this paper. In this appendix we
provide a few formulas that can be obtained for the linear
equation of state of the form p = kp, where p is the energy
density, p is the pressure, and 0 < k < 1 is a constant (the
square of the local speed of sound).

We assume standard conditions of the relativistic Bondi-
type accretion: The flow is stationary and spherically
symmetric. We assume the energy-momentum tensor of
the perfect fluid of the form (41). The Reissner-Nordstrom
metric is given by Eq. (10). The four-velocity of the fluid
satisfies #’ = u? = 0. Due to the symmetry assumptions,
p, p, u', u” can only depend on the radius r.

The conservation equations V,(nu*) =0, V,T#, =0
yield
M
rut= -

2M Q?
h\/l —7+%+(M’)2=hoo,

where M and h,, are constants. The enthalpy per particle
h is defined as h = (p+p)/n, and hy is its asymp-
totic value.

For the linear equation of state p = kp, we get

()
n=nexl—1_ ,
Poo

(1 +Kpo
SR

(B1)

(B2)

where n, and p, denote the asymptotic values of n and p,
respectively.
This yields

(B3)

Combining Eqs. (B3) and (B1) we get the following,
general expression for the mass accretion rate:

2

p
damr-u'ng

M= - oM | 0 203
[1- 24 & (P

(B4)

In the following, we restrict ourselves to critical
solutions, i.e., solutions passing through a (saddle-type)
critical point. These are the only solutions smoothly joining

the black hole horizon with infinity. Characteristics of
the critical solutions can be obtained from the following
relations:

2
_MQk<

. 3M | Q*
(u})? =3 —53- +—>, (B5)

2r,  2r?

in which the quantities referring to the critical point are
denoted with an asterisk.

Solving Eqs. (B5) with respect to r, and u/, and inserting
the results into Eq. (B4), we get

143k k41, k-1

M = amM*k™32~ % Y+ Z5 M?n,,,

where

Y =143k + /14 k(6 - 8¢2) + k(9 — 8¢%),

Z=1+k(3—4g%) +1/1+ k(6 - 8¢7) + k(9 - 8¢2).

In particular, for £ = 1, one obtains

. 2
M = 47zmM2(1 +4/1 - q2) Ne = 4amM*En,.

In Figs. 21 and 22 we plot the ratios M/(M2mn.,) and
M/(M*Emn,), respectively. These figures can be com-
pared with Figs. 7 and 8 obtained for the Vlasov gas.
Similarly to the Vlasov gas, the ratio M/(M*mn.,)
decreases with ¢; the ratio M /(M2 mn.,) (normalization
by the area of the horizon) increases with g for 0 < k < 1.
In the Ilimiting case of ultra-stiff fluids, (k= 1),
M/(M*E mn.) = const = 4x.

Analytic solutions of the form n = n(r), u” = u’(r),

etc, can be obtained for selected values of

200 ——————————————

100+ ]
I T,
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20} N
- —— k=3/4 \
— — k=1
10 1 " 1 1 " 1 " " "
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 21. Mass accretion rate M/(M?mng) vs the charge
parameter ¢ for the perfect-fluid model with the linear equation
of state p = kp.
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FIG. 22. Mass accretion rate M/(M*£2mng,) vs the charge
parameter g for the perfect-fluid model with the linear equation of
state p = kp.

k=1/4,1/2,1/3,1,...; however, in most cases the cor-
responding formulas are lengthy. The cases with k = 1/2
and k = 1 are exceptional. For k = 1/2 we get

.1

2K

)

2M Z
24t —4k2 1——+—Q
r r2

where x = M/(4zmn.,). The result for k = 1 reads

2 M | O°
(ur)Z :K (1_74_7).
A2

For the critical flow with k = 1 (the only solution that is
regular at the black hole horizon), we get

<n>2 _E+e)E+8)
ge-¢)

nOO
Consequently, the ratio of n/n, at the black hole horizon
(the compression factor) is given by

n 1 3
a1+ L),
N \/l—qz

and it grows with g.
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