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We consider black hole interiors of arbitrary genus number within the paradigm of noncommutative
geometry. The study is performed in two ways: One way is a simple smearing of a matter distribution
within the black hole. The resulting structure is often known in the literature as a “model inspired by
noncommutative geometry.” The second method involves a more fundamental approach, in which the
Hamiltonian formalism is utilized and a nontrivial Poisson bracket is introduced between the configuration
degrees of freedom, as well as between the canonical momentum degrees of freedom. This is done in terms
of connection variables instead of the more common ADM variables. Connection variables are utilized here
since noncommutative effects are usually inspired from the quantum theory, and it is the connection
variables that are used in some of the more promising modern theories of quantum gravity. We find that in
the first study, the singularity of the black holes can easily be removed. In the second study, we find that
introducing a nontrivial bracket between the connections (the configuration variables) may delay the
singularity, but not necessarily eliminate it. However, by introducing a nontrivial bracket between the
densitized triads (the canonical momentum variables), the singularity can generally be removed. In some
cases, new horizons also appear due to the noncommutativity.
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I. INTRODUCTION

The general theory of relativity has, to date, robustly
passed a number of experimental tests. These tests are no
longer limited to the arena of weak-field gravity, but also
include, due to more recent gravitational wave detection
events, strong field regimes such as black hole mergers
[1]. As successful as general relativity is, there should be
some way to reconcile the fundamental properties of
matter fields sourcing gravity (which at the fundamental
level are quantum in nature) with the gravitational field
that the matter produces. This compatibility could come
from a theory of quantum gravity. General relativity,
however, possesses the fundamental symmetry of back-
ground independence, and this makes the theory difficult
to quantize in traditional manners [2,3]. At the moment,
there are a number of candidate theories of quantum
gravity which are in various stages of development [4–7],
although none can yet be seen as a complete theory of
quantum gravitation. Because of this, it is useful at the
classical level to attempt to glean what some effects of a
quantum theory of gravity may be.
One issue that is believed to be resolved in a quantum

gravity theory is that of the gravitational singularities
predicted by various classical theories of gravity. The most

famous of these singularities reside in the realms of early-
Universe cosmology and black hole interiors. It is the latter
issue that we wish to discuss in this paper.
The fundamental mathematical object on which quantum

theory is based is the nontrivial commutator between a
system’s configuration variables and its associated canoni-
cal momentum variables. At the level of classical mechan-
ics, this manifests itself as a nontrivial Poisson bracket.
The field of noncommutative geometry augments this
structure by introducing, in addition to the usual bracket
between configuration momentum variables, a nontrivial
bracket between configuration variables. At the level of
usual quantum mechanics, this would be a nontrivial
commutator of the form

½xa; yb� ¼ iϵabcθc; ð1Þ

where θc is a vector whose entries measure the amount of
noncommutativity between the various coordinates. The
bracket [Eq. (1)] of course implies an uncertainty relation
between different coordinates, and it sets a limit on the
amount of localization a particle may have. A measurement
along one axis to high precision comes at the expense of
losing some information along another axis. Hence, geom-
etry in this sense really does become noncommutative.
It is natural to then further extend the theory to include a

nontrivial bracket between the canonical momenta as
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½pa; pb� ¼ iϵabcβc; ð2Þ

leading to a similar uncertainty between the measurement
of momenta in different principal directions.
Noncommutative quantum theories have been studied in

various fields of physics. The original paper seems to be the
pioneering work of Hartland Snyder [8], and since then,
there has been much application of noncommutative
geometry to theoretical physics. (See Refs. [9–13] and
references therein.)
At the classical level, the new commutators should

manifest themselves as an extension of the usual Poisson
algebra of ordinary classical mechanics, leading to a type of
“noncommutative classical mechanics.” In noncommuta-
tive mechanics, the usual Poisson algebra is deformed via
the introduction of a deformed Moyal product. That is, the
brackets of noncommutative mechanics are calculated via

ff; gg ≔ f⋆g − g⋆f; ð3Þ

where the Moyal product here is defined as

ðf⋆gÞðvÞ ≔ exp

�
1

2
wab∂a∂̃b

�
fðvÞgðṽÞjṽ¼v: ð4Þ

Here operators with a tilde operate only on tilde coordi-
nates, and un-tilded operators operate on un-tilded coor-
dinates. In the end, the two sets of coordinates are made
coincident. The matrix wab represents the deformed sym-
plectic form

wab ¼
�
ϵabcθ

c −δab

δab ϵabcβ
c

�
: ð5Þ

We note here that there is actually a further correction to
the above symplectic form, but it is proportional to the
product θaβb, and hence we ignore it, as both these
parameters are assumed to be small [14]. It may be seen
by explicit calculation that in the limit θc ¼ 0 ¼ βc, the
expression in Eq. (4) yields the usual Poisson brackets of
ordinary classical mechanics. Explicitly, Eqs. (3) and (4),
using Eq. (5), yields

fpa; xbg ¼ δba; ð6aÞ

fxa; xbg ¼ ϵabcθ
c; ð6bÞ

fpa; pbg ¼ ϵab
cβc: ð6cÞ

Reviews of noncommutative mechanics may be found in
Refs. [14,15] and references therein.
The transition from particle mechanics to field theories is

not necessarily straightforward, particularly in the realm of
gravitation [16–21]. However, if one symmetry reduces the
system to minisuperspace models, then it can be argued that

one augments the field Poisson algebra in a similar manner
to what is done in the particle mechanics [22–25]. That is,
in a minisuperspace model with fields ψa and correspond-
ing canonical momenta πb, we have

fπaðxÞ;ψbðyÞg ∝ δbaδðx − yÞ; ð7aÞ

fψaðxÞ;ψbðyÞg ∝ ϵabcθ
cδðx − yÞ; ð7bÞ

fπaðxÞ; πbðyÞg ∝ ϵab
cβcδðx − yÞ: ð7cÞ

As the brackets are modified from the canonical ones, it is
possible that such an algebraic deformation introduces an
anomaly in the gravitational constraint algebra. In the
symmetry-frozen homogeneous scenarios, variable defor-
mations generally do not introduce such anomalies, as the
algebra trivializes due to the vanishing of spatial derivatives
and being able to globally set the shift vector to zero. The
situation likely needs further study under algebraic defor-
mations, but it is generally believed that at high energies,
noncommutative effects would anyway alter the symmetry
of the low-energy theory [26,27], so it is not clear if one
should demand low-energy symmetries to hold in the
regime where noncommutative effects become important.
Still, one needs to be cautious in interpreting results in such
potentially symmetry-broken theories. The general issue
for the case of variable deformations is summarized in
Ref. [28], and the situation with noncommuting coordi-
nates, and their generalized noncommutativity via the
Seiberg-Witten map technique and including generaliza-
tions to the Poincaré gauge gravity approach was studied
in Ref. [29].
It is also interesting to note that aspects of spin can be

viewed in the paradigm of noncommutative geometry [30],
including within general relativity [31].
This manuscript is laid out as follows: In Sec. II, we

analyze models where the black holes are supported by a
smeared out distribution of material, which is sometimes
performed in the literature as an approximation of non-
commutative effects on the matter fields due to the non-
localization that noncommutative geometry introduces. In
Sec. III, the noncommutativity is manifestly included in the
brackets of the Poisson algebra in the configuration and
momentum variables of the gravitational Hamiltonian
system. The study there is performed in the connection
formalism, as this formalism is seen as a promising avenue
to a theory of quantum gravity. Finally, we conclude with a
brief summary of the findings.

II. SMEARING OF THE MATTER DISTRIBUTION

The method used here is often said to be “inspired by
noncommutative geometry.” The idea here is quite simple
and straightforward and mainly serves as a segue to the
Hamiltonian analysis of the next section. For concreteness
in setting up the problem and method, we will assume at the
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moment that the black hole is a spherically symmetric one,
but the ideas apply to all the types of metrics considered in
this work. Consider the Einstein equations in mixed form:

Rμ
v −

1

2
Rδμν ¼ 8πTμ

ν: ð8Þ

If one restricts these equations to spherical symmetry by
utilizing the line element

ds2 ¼ − exp ðαðr; tÞÞdt2 þ exp ðβðr; tÞÞdr2
þ r2dθ2 þ r2sin2θdϕ2; ð9Þ

then Eq. (8) may be manipulated to yield the following
solution, assuming the stress-energy tensor components Tt

t
and Tr

r are free parameters [32–34]1:

e−β ¼ 1þ 8π

r

�Z
r

0þ
Tt

tðx; tÞx2dx
�
; ð10aÞ

eα ¼ e−β
�
exp

�
hðtÞ þ 8π

Z
r

0þ
½Tr

rðx; tÞ

− Tt
tðx; tÞ�eαðx;tÞxdx

��
; ð10bÞ

Tr
t ≔

1

r2

�
2fðtÞ _fðtÞ −

Z
r

0þ
Tt

t;tðx; tÞx2dx
�
; ð10cÞ

Tθ
θ ≡ Tϕ

ϕ ≔
r
2
½Tr

r;r þ Tt
r;t� þ

�
1þ r

4
α;r

�
Tr

r

þ r
4
ðαþ βÞ;tTt

r −
r
4
α;rTt

t; ð10dÞ

where a commadenotes partial differentiation. Equation (10c)
is defined from the r − t Einstein equation, and (10d) is
defined from the conservation law. Now, the Schwarzschild
metricmay be seen as a solution to the above equations with a
“point mass” located at r ¼ 0. That is, one may prescribe

Tt
tðrÞ ¼ −

M
4πr2

δðrÞ; Tr
r ¼ 0: ð11Þ

It is straightforward tosee,by insertingEq. (11) intoEqs. (10a)
and (10b), that the resulting metric functions eα and eβ yield,
after a trivial rescaling of the t coordinate, the famous
Schwarzschild metric:

eα ¼
�
1 −

2M
r

�
¼ e−β:

In noncommutative-geometry-inspired models, one
smears the matter distribution [Eq. (11)] on a scale propor-
tional to the coordinate noncommutativity parameter, θ.
The argument is that the matter is not completely localized
due to the uncertainty principle between coordinates
brought on by the noncommutativity. Such inspired models
have been studied in Refs. [35–39] for spherical black holes
without cosmological constant, and in Refs. [40,41] for
rotating black holes. In Ref. [42], the relationship between
inspired theories and the Voros product (instead of the
Moyal one) has been explored. Studies of inspired models
have been performed in Refs. [43–46] with respect to
wormholes.
We wish to extend the study here to encompass black

holes beyond spherical, both in shape and in topology.
This is done for the reason of consistency. That is, one
wishes to study if and how singularities are affected in
as many scenarios as possible to determine how universal
the noncommutative effects are. One can then make
more general statements about noncommutativity. We also
include a cosmological constant, since in four dimensions a
cosmological constant is required for black holes of exotic
topology [47–50].
As we are interested specifically in the singularity issue

of black holes, we will be concentrating on the interior
region. First, we wish to rewrite the line element [Eq. (9)] in
a form more appropriate for the study of black hole interiors
and various topologies. The form is as follows:

ds2 ¼ −eAðτÞdτ2 þ eBðτÞdy2 þ τ2dϱ2

þ τ2c0sinh2ð
ffiffiffiffiffi
d0

p
ϱÞdφ2; ð12Þ

and it reflects the fact that the interior region is time
dependent and that the exterior radial coordinate, r, is
timelike in the interior region (we do not consider cases
here with inner horizons).2 We are considering time
dependence only, due to the fact that we are smearing
classical nonrotating vacuum black holes, save for the
“point” source, whose corresponding interiors are also
homogeneous. The constants c0 and d0 dictate the com-
patible topology of the spacetime’s two-dimensional sub-
spaces. The various cases are as follows:

(i) d0 ¼ −1, c0 ¼ −1: In this scenario, ðϱ;ϕÞ submani-
folds are spheres.

(ii) d0 ¼ 0, limd0→0 c0 ¼ 1
d0
: In this scenario, ðϱ;ϕÞ

submanifolds are tori (and the submanifolds for this
case are intrinsically flat).

1We cannot prescribe more than two functions, as Einstein’s
spherically symmetric equations with matter are underdetermined
by precisely two [33].

2In the coordinate chart of Eq. (12), the familiar Schwarzschild
line element takes the form ds2 ¼ − dτ2

2M
τ −1

þ ð2Mτ − 1Þdy2 þ
τ2dϱ2 þ τ2 sin2 ϱdφ2, with τ < 2M.
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(iii) d0 ¼ 1, c0 ¼ 1: In this case, ðϱ;ϕÞ submanifolds are
surfaces of constant negative curvature of genus
g > 1, depending on the identifications chosen.
Such surfaces may be compact or not [50,51].

In the spherical case, such solutions are sometimes referred
to in the literature as “T-spheres” [52–54], and the time-
dependent domain inside the event horizon is sometimes
referred to as the “T-domain” of the black hole.
Einstein’s equations for the line element in Eq. (12) yield

the following general solution analogous to Eqs. (10a)–
(10d), assuming here time dependence only:

e−A ¼ d0 −
8π

τ

�Z
τ

τ1

Ty
yðτ0Þτ02dτ0

�
; ð13aÞ

eB ¼ e−A
�
exp

�
k0 − 8π

Z
τ

τ1

½Tτ
τðτ0Þ

− Ty
yðτ0Þ�eAðτ0Þτ0dτ0

��
; ð13bÞ

Tτ
y ¼ 0; ð13cÞ

Tϱ
ϱ ≡ Tφ

φ ≔
τ

2
Tτ

τ;τ þ
�
1þ τ

4
B;τ

�
Tτ

τ

−
τ

4
B;τTy

y: ð13dÞ

In the case of a “point” source [in the interior region
Ty

ymatterðτÞ ¼ − M
4πτ2

δðτÞ], supplemented with the cosmo-
logical constant ½Tτ

τΛ ¼ Ty
yΛ ¼ −Λ=ð8πÞ�, the above

solutions yield, after a rescaling of the y coordinate,

e−AðτÞ ¼
�
d0 þ

2M
τ

þ Λ
3
τ2
�

¼ eBðτÞ: ð14Þ

Such black hole solutions have been studied in detail in
Refs. [47–50], and within quantum gravity theories in
Refs. [55–58].
The noncommutative smearing is often performed via

the implementation of replacing the “point” source with a
Gaussian or Lorentzian whose characteristic width is of the
scale of the noncommutativity parameter, θ. Without
guidance from experiment, this is usually taken to be of
the order of the Planck length. We consider here the
following profile curves for Ty

ymatterðτÞ:

Ty
ymatterðτÞ ¼ −

M
ffiffiffi
θ

p

π2ðτ2 þ θÞ2 ; ð15aÞ

Ty
ymatterðτÞ ¼ −

M

ð4πθÞ3=2 e
−τ2

4θ; ð15bÞ

the first profile being Lorentzian and the second Gaussian.
Further, since the matter profile no longer vanishes

abruptly, we relate the above stress-energy components
to their corresponding local energy densities via an equa-
tion of state, for which we take the polytropic form. That is,
in both the Lorentzian and Gaussian scenarios we prescribe
an energy density via

Tτ
τmatterðτÞ ¼ kðTy

ymatterðτÞÞγ; ð16Þ

where k and γ are constants. This form works well in
idealized studies of stellar structure [59–63] and seems a
natural choice for the type of exotic “star” we are study-
ing here.
By using Eqs. (15a) and (15b) in Eqs. (13a) and (13b),

one arrives at the following analytical solutions:

e−AðτÞ ¼ d0 þ
Λ
3
τ2 þ 6M

πτ
arctanðτ=

ffiffiffi
θ

p
Þ − 6M

ffiffiffi
θ

p

πðτ2 þ θÞ ð17Þ

for the Lorentzian case, and

e−AðτÞ ¼ d0 þ
Λ
3
τ2 þ 2M

τ
erfðτ=2

ffiffiffi
θ

p
Þ − 2Mffiffiffiffiffi

πθ
p e−

τ2

4θ ð18Þ

for the Gaussian scenario. Solutions for eBðτÞ were also
obtained, but being rather complicated and in terms of
quadrature, are not displayed here.
Of particular interest here is to study the properties of

what replaces the singularity of the commutative theory. To
facilitate this, we calculate the components of the Riemann
curvature tensor in an orthonormal (hatted) frame,

Rμ̂ ν̂ ρ̂ σ̂ ¼ Rαβγδhμ̂αhν̂βhρ̂γhσ̂ δ: ð19Þ

Here, h represents the components of a local orthonormal
tetrad. We choose specifically the tetrad coincident with the
coordinate directions. That is, the tetrad is given by

hτ̂μ ¼
δτ

μ

eAðτÞ=2
; hŷμ ¼

δy
μ

eBðτÞ=2
;

hϱ̂μ ¼
δϱ

μ

τ
; hφ̂μ ¼

δφ
μ

τj ffiffiffiffiffi
c0

p
sinh ð ffiffiffiffiffi

d0
p

ϱÞj :

The resulting orthonormal Riemann components are
rather lengthy and do not reveal much due to their
complication. It is useful therefore to present the lowest-
order terms in a series expansion about the commutative
solution’s singular point (τ ¼ 0). Such an expansion yields
the following components, plus those related by sym-
metries, for the Lorentzian case:

Rτ̂ ŷ τ̂ ŷ ¼ −
Λ
3
þ 4kπ

�
M

π2θ3=2

�
γ

þ 4M

3πθ3=2
þOðτ2Þ; ð20aÞ

Rτ̂ ϱ̂ τ̂ ϱ̂ ¼ −
Λ
3
−

8M

3πθ3=2
þ 32M

5πθ5=2
τ2 þOðτ4Þ; ð20bÞ
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Rŷ ϱ̂ ŷ ϱ̂ ¼
Λ
3
− 4kπ

�
M

π2θ3=2

�
γ

−
4M

3πθ3=2
þ 8kπγ

θ

�
M

π2θ3=2

�
γ

τ2

þ 8M

5πθ5=2
τ2 þOðτ4Þ; ð20cÞ

Rϱ̂ φ̂ ϱ̂ φ̂ ¼ Λ
3
þ 8M

3πθ3=2
−

16M

5πθ5=2
τ2 þOðτ4Þ; ð20dÞ

and for the Gaussian case:

Rτ̂ ŷ τŷ ¼ −
Λ
3
þ 2kπ

�
M

ð4πθÞ3=2
�

γ

þ M

12
ffiffiffi
π

p
θ3=2

þOðτ2Þ;

ð21aÞ

Rτ̂ ϱ̂ τ̂ ϱ̂ ¼
Λ
3
−

M

3πθ3=2
þ M

10
ffiffiffi
π

p
θ5=2

τ2 þOðτ4Þ; ð21bÞ

Rŷ ϱ̂ ŷ ϱ̂ ¼
Λ
3
− 4kπ

�
M

ð4πθÞ3=2
�

γ

−
M

6
ffiffiffi
π

p
θ3=2

þ kπγ
θ

�
M

ð4πθÞ3=2
�

γ

τ2 þ M

40
ffiffiffi
π

p
θ5=2

þOðτ4Þ;

ð21cÞ

Rϱ̂ φ̂ ϱ̂ φ̂ ¼ Λ
3
þ M

3πθ3=2
−

M

20
ffiffiffi
π

p
θ5=2

τ2 þOðτ4Þ: ð21dÞ

The results above are “universal” at τ ¼ 0 in the sense that
the topological parameter, d0, does not contribute at zeroth
order. This parameter comes in at order τ2 in Rτ̂ ŷ τŷ

(although this term is not shown due to its length), and
at order τ4 or higher in the other components.
It may be noted that none of the components in

Eqs. (20a)–(21d) are singular for finite θ, and therefore
the classical singularity present in the commutative theory
is removed. We should point out here that this result is
not really surprising. One has excised the singular distri-
bution of Eq. (11) and replaced it with a smooth distribu-
tion. In the T-domain, this forced smearing is accompanied
by the expected energy condition violations which cir-
cumvent the singularity theorems for such spacetimes.
Therefore, at the level of noncommutative-geometry-
inspired models of black holes, the noncommutativity
introduces energy condition violation on scales set by
the noncommutativity parameter θ.
We proceed next to a more rigorous analysis where the

noncommutativity is truly manifest in the algebra of the
field variables.

III. HAMILTONIAN EVOLUTION OF BLACK
HOLE INTERIORS

In this section, we shall study the effects of noncom-
mutativity by directly supplementing the usual Poisson

algebra of the gravitational Hamiltonian system with the
additional structure on the configuration and momentum
variables as in Eqs. (7a)–(7c). We work here in the
connection variables consisting of the suð2Þ connection,
which we denote Ai

a, and its conjugate momentum, the
densitized triad, denoted3 by Ei

a. These variables are
chosen since they are the variables utilized in the theory
of loop quantum gravity. At the quantum level, within the
paradigm of noncommutative geometry, the commutator
between the configuration variables is taken to be non-
trivial. As well, one may also take the commutator between
the conjugate momenta as nontrivial. Working “back-
wards” towards the corresponding classical theory, these
nontrivial commutators should manifest themselves as
nontrivial Poisson brackets.
It is generally accepted that loop quantum gravity puts

forward a more promising approach towards a theory of
quantum gravity than does the original Wheeler-DeWitt
theory [2,64], which utilizes ADM variables. Therefore, in
light of this, we choose to work in the variables of loop
quantum gravity. With the modification of the Poisson
brackets introduced by the extra noncommutativity, it is
possible that working in these variables is a different theory
than working in the corresponding noncommutative ADM
theory.
In terms of cosmological studies, a number of interes-

ting noncommutativity studies have been performed in
Refs. [22,24,65–67] in standard variables.

A. Black holes in connection variables

Here we briefly review the mathematical structure of
black holes in connection variables. In the connection
variables which are utilized in the canonical formulation
of loop quantum gravity, one begins with a 3þ 1 decom-
position of spacetime, where the metric is written in the
usual way:

ds2 ¼ −N2dτ2 þ qab½dxa þ Nadτ�½dxb þ Nbdτ�; ð22Þ

with N being the lapse and Na the shift vector. One
then writes the resulting action in terms of the Ashtekar
variables [68]. These variables comprise a generalized
suð2Þ connection Ai

a and a densitized triad Ei
a. The

connection field plays the role of the configuration variable,
and it is related to more familiar quantities as follows:

Ai
a ¼ Γi

a þ γKi
a; ð23Þ

where Γi
a is the “fiducial” spin connection

Γi
a ≔ ϵijkhjbð∂ ½ahkb� þ δklδpqhlchpa∂bhqcÞ ð24Þ

3Indices i, j, k, etc., denote suð2Þ indices; whereas indices a, b,
c, etc., denote spatial indices.
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and Ki
a is the densitized extrinsic curvature

Ki
a ≔

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp KabEj

bδij; ð25Þ

with Kab being the usual extrinsic curvature of a τ ¼ const:
surface. The quantity γ is known as the Barbero-Immirzi
parameter. In the classical theory, its value is arbitrary
(though nonzero), but in the resulting quantum theory of
loop quantum gravity, it must be set somehow. This is
usually done by calculations of black hole entropy within
the paradigm of loop quantum gravity and setting the result
to one-quarter the area of the black hole [69–73].
The momentum variable, Ei

a, is related to the three-
metric, qab, via

detðqÞqab ¼ Ei
aEj

bδij: ð26Þ

These two variables, Ai
a and Ei

a, are then the configu-
ration and momentum variables, respectively, of the theory,
subject to the Poisson algebra

fAi
aðxÞ; Ej

bðyÞg ¼ 8πγδijδa
bδðx; yÞ; ð27Þ

with other brackets equal to zero.
Via variation of the action with respect to the lapse and

shift, one obtains the Hamiltonian (S) and diffeomorphism
constraints (Vb):

S ¼ Ei
aEj

bffiffiffiffiffiffiffiffiffiffiffiffiffi
detðEÞp ½ϵijkFk

ab − 2ð1þ γ2ÞKi½aKj
b�� ¼ 0; ð28aÞ

Vb ¼ Ei
aFi

ab − ð1þ γ2ÞKi
bGi ¼ 0; ð28bÞ

with Fi
ab ≔ ∂aAi

b − ∂bAi
a þ ϵijkAj

aAk
b. The extrinsic

curvature quantities in Eq. (28a) are replaced with the
connection via Eq. (23) (the hia in Γi

a being functions
of Ei

a).
There is also the internal SUð2Þ degree of freedom that

can be fixed. (The metric, depending on the “square” of the
densitized triad via Eq. (26), allows for SUð2Þ rotations
which preserve the metric.) This gauge can be fixed via the
Gauss constraint:

Gi ≔ ∂aEi
a þ ϵij

kAj
aEk

a ¼ 0: ð29Þ

At this stage, we need to choose an ansatz for the suð2Þ
connection and the densitized triad which is compatible
with our geometries. An appropriate ansatz is provided by
the following pair [55,57,74]:

Ai
aτidxa ¼ a3τydyþ ða1τϱ þ a2τφÞdϱ

þ ða2τϱ − a1τφÞ ffiffiffiffiffi
c0

p
sinhð

ffiffiffiffiffi
d0

p
ϱÞdφ

þ τy
ffiffiffiffiffi
c0

p ffiffiffiffiffi
d0

p
coshð

ffiffiffiffiffi
d0

p
ϱÞdφ; ð30aÞ

Ei
aτi∂a ¼ −E 3τy

ffiffiffiffiffi
c0

p
sinhð

ffiffiffiffiffi
d0

p
ϱÞ ∂

∂y
− ðE1τϱ þ E 2τφÞ ffiffiffiffiffi

c0
p

sinhð
ffiffiffiffiffi
d0

p
ϱÞ ∂

∂ϱ
þ ðE1τφ − E2τϱÞ

∂
∂φ ; ð30bÞ

where τi’s represent the SUð2Þ generators. The functions aI
and E I are functions of the interior time variable, τ, only.
In terms of Eq. (30b), using Eq. (26), a line-element of

the form of Eq. (12) is written as

ds2 ¼ −N2dτ2 þ ðE1Þ2 þ ðE 2Þ2
E3

dy2 þ E 3dϱ2

þ E3c0sinh2ð
ffiffiffiffiffi
d0

p
ϱÞdφ2: ð31Þ

The Gauss constraint [Eq. (29)] for the cases considered
here yields just one condition:

a1E2 − a2E1 ¼ 0; ð32Þ

which we will satisfy here by choosing

a1 ¼ 0 ¼ E1: ð33Þ

The diffeomorphism constraint is automatically satisfied in
these cases, leaving only the Hamiltonian (scalar) con-
straint. With the gauge fixing of Eq. (33), the resulting
Hamiltonian constraint (supplemented with a cosmological
constant term) may be written as

S ¼ −
N

ffiffiffiffiffi
c0

p

2
ffiffiffiffiffiffiffiffiffiffiffi
d0E3

p
γ2

½ðða2Þ2 − γ2d0ÞE 2 þ 2E 3a2a3�

þ N

2
ffiffiffiffiffiffi
E 3

p
γ2

ΛE 2E3: ð34Þ

It should be noted that when integrating the Hamiltonian
density, the spatial variables have been integrated out, and
therefore the above result contains an (arbitrary) area from
the y and ϱ integrals. This is set equal to 1, and we show
below that this does not spoil the Hamiltonian evolution of
the system. We also should add here that in constructing the
field strength tensor, no further noncommutativity was
assumed beyond the usual commutation relations amongst
the suð2Þ generators. The action here acquires no correc-
tions, as there are no Poisson brackets in its construction. A
noncommutativity would introduce a potential ambiguity if
one wished to study the true quantum theory (not what is
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done here), where quantities in the Hamiltonian do not
commute. This would be analogous to the usual factor-
ordering ambiguity of going from a classical to a quantum
theory.
At this stage, one has all the ingredients required to study

the evolution of the interior regions of black holes. The
evolution proceeds according to the usual Hamiltonian
equations of motion _a2 ¼ fa2; Sg, etc., subject to the usual
Poisson algebra between the configuration variables, aI ,
and their corresponding canonical momenta, E I.

B. Noncommutative evolution of black holes

Here we study the above gravitational system in con-
nection variables, but where the usual Poisson algebra is
augmented by the following brackets:

faI; aJg ¼ ϵIJθ; fE I;E Jg ¼ ϵIJβ: ð35Þ

We study scenarios where either θ or β is zero, as well as
those where neither parameter is zero. As this is a first
study, we take the noncommutative parameters, θ and β, to
be constants. However, it is possible that they can be
modified in such a way that they depend on the metric
properties (via the densitized triad) of the spacetime. This,
for example, could arguably improve the theory by provid-
ing a natural way for the brackets to become less significant
in low-curvature regions.
The resulting equations in the noncommutative case are

too complex to find analytic solutions, so what we are
solving here is a classic initial value problem. As such,
initial conditions are required in order to study the
evolution. We set initial conditions as follows: Note that
the coordinate chart in use for the domain of Eq. (31) is
τ < τH, where τH denotes the horizon value of τ and that the
commutative solution’s singular point is located at τ ¼ 0.
The evolution is started far from the singular point, and
relatively close to the horizon. We make the assumption
that, far from the singular point, noncommutative effects
should be small, as we know, for example, that the
Schwarzschild solution is valid in moderately strong
gravitational fields [75]. (In fact, commutative general
relativity seems to hold well even in the strong field regime
[75,76], so the noncommutative results here really are
expected to be manifest only when one is approaching the
scale of quantum gravity effects.) Therefore, on the initial
time surface, which is far from the extremely strong field
region, we set the values of the functions aI and E I to their
general relativity values. That is, the following initial values
are used:

a3init ¼ −
γ

2N
eB _B; a2init ¼ −

γ

N
; ð36aÞ

E3init ¼ τ2; E 2init ¼ eB=2τ; ð36bÞ

where the densitized triad components have been calculated
via comparing Eqs. (31) and (12). The connection compo-
nents have been calculated via a rather lengthy calculation
utilizing Eqs. (23), (24), and (25), using metric (12)’s triad
pulled back to a τ ¼ const: hypersurface. The function B
here is the commutative solution’s value given by Eq. (14).
The lapse, N, is generally arbitrary, but as we have set the
coordinate system to be that of Eq. (14), we wish to use the
time variable proportional to that used in Eq. (14).
Therefore, we set the lapse equal to γ2

ffiffiffiffiffiffi
E3

p
=E2, and at

this stage one may proceed with the evolution.
The resulting “noncommutative” Hamilton equations of

motion are given by

_a2 ¼
ffiffiffiffiffi
c0

p
E3a2a3ffiffiffiffiffi

d0
p ðE 2Þ2

− θ
2

ffiffiffiffiffi
c0

p
a2E 3ffiffiffiffiffi

d0
p

E 2

; ð37aÞ

_a3 ¼ −
2

ffiffiffiffiffi
c0

p
ffiffiffiffiffi
d0

p
E 2

�
a2a3 −

E2

2
Λ
�

þ θ

ffiffiffiffiffi
c0

p
ffiffiffiffiffi
d0

p
E 2

½a2E2 þ a3E3�; ð37bÞ

_E 2 ¼
ffiffiffiffiffi
c0

p
ffiffiffiffiffi
d0

p
E 2

½a2E 2 þ a3E3�

− β
2

ffiffiffiffiffi
c0

p
ffiffiffiffiffi
d0

p
E 2

�
a2a3 −

E 2

2
Λ
�
; ð37cÞ

_E3 ¼
2

ffiffiffiffiffi
c0

p
a2E3ffiffiffiffiffi

d0
p

E2

− β

ffiffiffiffiffi
c0

p
E 3a2a3ffiffiffiffiffi

d0
p ðE2Þ2

: ð37dÞ

As mentioned previously, these equations are generally too
complex to solve numerically; hence, we illustrate the
solutions below subject to the initial conditions provided by
Eqs. (36a) and (36b).

1. Noncommutative connection only

Here we briefly summarize the results of the evolution
of the above system subject to θ ≠ 0 and β ¼ 0. That is,
here the standard theory is augmented with a nontrivial
configuration bracket only. For each of the three topologi-
cal compatibilities (spherical, toroidal/cylindrical/planar,
higher genus) the results are shown in Figs. 1–3.
The figures show a few, but not all, possible scenarios,

and below, we summarize all cases. In none of the
solutions can the results be evolved indefinitely. In some
cases shown there is a true singularity present, with E 3

shrinking to zero, whereas in others it is a (curvature)
finite solution (E 3 nonzero), but with a new horizon
appearing (see figure captions for details).4 In general,

4The condition for an event horizon may seem peculiar here,
but note that in the T-domain, the metric condition gyy → 0þ is an
equivalent statement to gtt → 0− (t being exterior time).
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it is found that if β ¼ 0, and the noncommutativity parameter
θ is fairly large, one may eliminate the singularity, although
in some cases an inner horizon results, and we are unable to

probe beyond that horizon to glean if there is singular
structure hiding behind it. For small enough values of θ, the
singularity is always present.

FIG. 2. θ ≠ 0, β ¼ 0. Commutative (red) vs noncommutative
(black) interior of a toroidal black hole. Top: The triad compo-
nent E3. Middle: The triad combination ðE2Þ2=E 3, correspond-
ing to gyy. Bottom:N2, corresponding to jgττj. Notice from the top
graph that the radius of the 2D subspaces in this particular case
does not shrink to zero in the noncommutative case, indicating
the removal of the singularity, but the evolution stops due to gyy →
0 and jgττj → ∞, indicating the presence of another horizon. The
parameters are M ¼ 1, Λ ¼ −0.1, γ ¼ 0.274, θ ¼ −0.08,
and β ¼ 0.

FIG. 1. θ ≠ 0, β ¼ 0. Commutative (red) vs noncommutative
(black) interior of a spherical black hole. Top: The triad
component E3. Middle: The triad combination ðE2Þ2=E3,
corresponding to gyy. Bottom: N2, corresponding to jgττj. Notice
from the top graph that the radius of the 2D subspaces, governed
by the value of E3, shrinks to zero beyond τ ¼ 0 in the
noncommutative case, indicating a delay in the singularity.
The parameters are M ¼ 1, Λ ¼ −0.1, γ ¼ 0.274, θ ¼ −0.4,
and β ¼ 0.
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2. Noncommutative triad only

For the case where the connection remains self-commu-
tative but the triad becomes noncommutative, we present

the sets of scenarios in Figs. 4–6, along with a full summary
at the end of the section.
It turns out that for both large and small nonzero values

of β, the quantity E3 asymptotes to a nonzero constant.

FIG. 3. θ ≠ 0, β ¼ 0. Commutative (red) vs noncommutative
(black) interior of a higher-genus black hole. Top: The triad
component E3. Middle: The triad combination ðE2Þ2=E3,
corresponding to gyy. Bottom: N2, corresponding to jgττj. Notice
from the top graph that the radius of the 2D subspaces in this
particular case does not shrink to zero in the noncommutative
case, but the evolution stops due to gyy → 0 and jgττj → ∞,
indicating the presence of another horizon. The parameters are
M ¼ 1, Λ ¼ −0.1, γ ¼ 0.274, θ ¼ −0.06, and β ¼ 0.

FIG. 4. θ ¼ 0, β ≠ 0. Commutative (red) vs noncommutative
(black) interior of a spherical black hole. Top: The triad
component E3. Middle: The triad combination ðE2Þ2=E3,
corresponding to gyy. Bottom: N2, corresponding to jgττj. Notice
from the top graph that the radius of the 2D subspaces, governed
by the value of E3, does not shrink to zero in the noncommutative
case, indicating removal of the singularity. The parameters are
M ¼ 1, Λ ¼ −0.1, γ ¼ 0.274, θ ¼ 0, and β ¼ −0.1. There is no
new horizon in this case.
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The size of the 2D subspaces, governed by the value of E 3,
depends on the value of β, with larger β values yielding
larger volumes. The situation here is somewhat reminiscent
of what occurs in effective loop quantum gravity when

holonomy corrections are introduced, the main difference
being that in the loop quantum gravity scenario the volume
of the subspaces oscillates in a damped manner, asymp-
totically approaching a constant for large negative τ [56].

FIG. 5. θ ¼ 0, β ≠ 0. Commutative (red) vs noncommutative
(black) interior of a toroidal black hole. Top: The triad compo-
nent E3. Middle: The triad combination ðE2Þ2=E 3, correspond-
ing to gyy. Bottom:N2, corresponding to jgττj. Notice from the top
graph that the radius of the 2D subspaces does not shrink to zero
in the noncommutative case, indicating removal of the singu-
larity. The parameters are M ¼ 1, Λ ¼ −0.1, γ ¼ 0.274, θ ¼ 0,
and β ¼ −0.1. There is no new horizon in this case.

FIG. 6. θ ¼ 0, β ≠ 0. Commutative (red) vs noncommutative
(black) interior of a higher-genus black hole. Top: The triad
component E3. Middle: The triad combination ðE2Þ2=E3,
corresponding to gyy. Bottom: N2, corresponding to jgττj. Notice
from the top graph that the radius of the 2D subspaces does not
shrink to zero in the noncommutative case, indicating removal
of the singularity. The parameters are M ¼ 1, Λ ¼ −0.1,
γ ¼ 0.274, θ ¼ 0, and β ¼ −0.5. There is no new horizon in
this case.
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Although some appear small in the plots, no noncommu-
tative metric component goes to zero in Figs. 4–6, and this
remains true as long as β ≠ 0.

3. Noncommutative connection and triad

Finally, we consider here the scenarios where all quantities
possess a nontrivial Poisson bracket. Some representative
results are shown inFigs. 7–9. (See figure captions fordetails.)

FIG. 7. θ ≠ 0, β ≠ 0. Commutative (red) vs noncommutative
(black) interior of a spherical black hole. Top: The triad
component E3. Middle: The triad combination ðE2Þ2=E3,
corresponding to gyy. Bottom: N2, corresponding to jgττj. Notice
from the top graph that the radius of the 2D subspaces, governed
by the value of E3, does not shrink to zero in the noncommutative
case, indicating removal of the singularity. The parameters are
M ¼ 1, Λ ¼ −0.1, γ ¼ 0.274, θ ¼ −0.3, and β ¼ −0.1. There is
no new horizon in this case.

FIG. 8. θ ≠ 0, β ≠ 0. Commutative (red) vs noncommutative
(black) interior of a toroidal black hole. Top: The triad compo-
nent E3. Middle: The triad combination ðE2Þ2=E 3, correspond-
ing to gyy. Bottom:N2, corresponding to jgττj. Notice from the top
graph that the radius of the 2D subspaces in this particular case
does not shrink to zero in the noncommutative case, indicating
the removal of the singularity, but the evolution stops due to
gyy → 0 and jgττj → ∞, indicating the presence of another
horizon. The parameters are M ¼ 1, Λ ¼ −0.1, γ ¼ 0.274,
θ ¼ −0.1, and β ¼ −0.05.
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The above analyses are somewhat complicated due to all
the different possible scenarios. We therefore provide the
following summary of all the possibilities:
(1) Spherical topology

(a) θ ≠ 0, β ¼ 0: Small values of θ delay the singu-
larity. Large values of θ remove the singularity.

(b) θ ¼ 0, β ≠ 0: Singularity is removed.
(c) θ ≠ 0, β ≠ 0: Singularity is removed.

(2) Toroidal topology
(a) θ ≠ 0, β ¼ 0: Small values of θ delay the singu-

larity. Large values of θ introduce a new horizon.5

(b) θ ¼ 0, β ≠ 0: Singularity is removed.
(c) θ ≠ 0, β ≠ 0: Singularity is removed for large θ.

For small θ a new horizon appears5.
(3) Higher-genus topology

(a) θ ≠ 0, β ¼ 0: Small values of θ delay the
singularity. Large values of θ introduce a new
horizon5.

(b) θ ¼ 0, β ≠ 0: Singularity is removed.
(c) θ ≠ 0, β ≠ 0: Singularity is removed for large θ.

For small θ a new horizon appears5.

IV. CONCLUDING REMARKS

In this manuscript, we studied the effects of noncom-
mutative geometry on the interiors of black holes compat-
ible with various topologies. The introduction of
noncommutativity was performed in two ways. In the first
part of the study, a smearing of the gravitating source was
performed, mimicking the effects of the nonlocalization
introduced by a nontrivial commutator between the space-
time coordinates. It was found that this smearing was
capable of removing the curvature singularity in all
scenarios. This result, though, is not that surprising, as
one has essentially forced a smoothness onto the system.
The resulting matter system, known in the literature as
“inspired by noncommuta-tive geometry,” will violate the
energy conditions in the T-domain, thus circumventing the
results of the singularity theorems. However, it does hint at
the fact that a possible resolution to the singularity issue lies
in noncommutative geometry effects.
In the second part of the study, the Poisson algebra was

directly altered by the introduction of a nontrivial bracket in
(i) the configuration degrees of freedom only, (ii) the
momentum degrees of freedom only, and (iii) both. It
was found that for some cases the singularity is merely
delayed, occurring later (earlier in coordinate time) than in
the corresponding commutative scenario. However, in
many cases, some rather interesting results emerge.
Either the singularity is removed, or else a new inner
horizon forms. In the case of a new horizon, the domain that
we are able to study with the method here is also non-
singular. Overall, the presence of the parameter β (non-
trivial bracket between the triads) is more capable of
singularity resolution than the parameter θ (nontrivial
bracket between the connection). The results are summa-
rized in at the end of Sec. III.

FIG. 9. θ ≠ 0, β ≠ 0. Commutative (red) vs noncommutative
(black) interior of a higher-genus black hole. Top: The triad
component E3. Middle: The triad combination ðE2Þ2=E 3, corre-
sponding to gyy.Bottom:N2, corresponding to jgττj. Notice from the
top graph that the radius of the 2D subspaces in this particular case
does not shrink to zero in the noncommutative case, indicating the
removalof the singularity, but the evolution stopsdue togyy → 0 and
jgττj → ∞, indicating the presence of another horizon. The param-
eters areM ¼ 1,Λ ¼ −0.1, γ ¼ 0.274, θ ¼ −0.05, and β ¼ −0.1.

5The presence of the new horizon prevents us from determin-
ing whether there is singular structure beyond the second horizon.
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