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We propose a regularization procedure for the novel Einstein-Gauss-Bonnet theory of gravity, which
produces a set of field equations that can be written in closed form in four dimensions. Our method consists
of introducing a counterterm into the action, and does not rely on the embedding or compactification of any
higher-dimensional spaces. This counterterm is sufficient to cancel the divergence in the action that would
otherwise occur, and exactly reproduces the trace of the field equations of the original formulation of the
theory. All other field equations display an extra scalar gravitational degree of freedom in the gravitational
sector, in keeping with the requirements of Lovelock’s theorem. We discuss issues concerning the
equivalence between our new regularized theory and the original.
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I. INTRODUCTION

Einstein’s theory of general relativity (GR) is the most
successful theory of gravity we have, predicting and
explaining a plethora of observations in the solar system
and remote astrophysical systems [1], as well as in the
Universe at large [2]. These observations provide ample
support for the validity of Einstein’s theory, but at the same
time it is also interesting to consider whether it is possible
to construct alternative theories of gravity that might do
equally well. Such possibilities are well studied in the
physics literature, and can be motivated from high-energy
physics [3] or the perceived shortcomings of GR [4].
In this regard, one of the most well studied classes of

alternative theories of gravity are the Lovelock theories [5],
which are specified by the following Lagrangian in D
dimensions:

L ¼
Xn
j¼0

αjRj; ð1Þ

where

Rj ¼ 1

2j
δ
μ1ν1…μjνj
α1β1…αjβj

Yj
i¼1

Rαiβi
μiνi : ð2Þ

The αj in this equation are a set of n arbitrary constants, g is
the determinant of the metric of the space-time, and Rαiβi

μiνi
are the components of the Riemann tensor. The symbol δ in
the equation above is the generalized Kronecker delta,
which is defined by

δ
μ1ν1…μjνj
α1β1…αjβj

≡ j!δμ1½α1δ
ν1
β1
…δ

μj
αjδ

νj
βj�; ð3Þ

where the square brackets denote antisymmetrization. The
n in Eq. (1) can be taken to be given by n ¼ 1

2
ðD − 2Þ for

even D, and n ¼ 1
2
ðD − 1Þ for odd D.

The Lovelock theories of gravity are of particular interest
because they are the only Lagrangian-based theories of
gravity that give covariant, conserved, second-order field
equations in terms of the metric only. In this sense, they are
the most natural possible generalizations of Einstein’s
theory. One way to see this is to write out the first few
terms in Eq. (1) explicitly, which gives

L ¼ ð−2Λþ Rþ α2Gþ…Þ; ð4Þ

where G≡ RαβμνRαβμν − 4RμνRμν þ R2, and where we have
chosen units such that α1 ¼ 1 and defined α0 ¼ −2Λ. It can
be seen that the first two terms in this equation correspond
precisely to Einstein’s theory with a cosmological constant,
while the third term contains the quadratic Gauss-Bonnet
term G. All terms with higher-powers of the curvature
tensors, which can be included in theories in dimensions
D ≥ 6, are included in the ellipsis.
In D ¼ 5 the Gauss-Bonnet term in Eq. (4) is well

known to contribute to the field equations, and to produce a
rich generalization of the phenomenology of Einstein’s
theory [6]. However, in D ¼ 4 the Gauss-Bonnet term has
long been thought to have no consequences for the
phenomenology of the classical theory. This is because
the Chern theorem states that the contribution of G to
the action one obtains from integrating the Lagrangian in
Eq. (4) is entirely equivalent to a constant, proportional to*p.g.s.fernandes@qmul.ac.uk
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the Euler characteristic of the space-time manifold [7].
It has therefore been thought to make no contribution to
the field equations of the theory, which can be verified
explicitly using dimensionally dependent identities for the
curvature tensors [8].
Recently, however, a novel theory of gravity has been

published that claims to bypass these difficulties [9].
This theory has been dubbed 4D Einstein-Gauss-Bonnet
(4DEGB) gravity, and is obtained by taking the coupling
parameter α2 to scale as 1=ðD − 4Þ in the limit D → 4.
The idea here is to attempt to introduce a divergence that
cancels the vanishing contribution that G makes to the field
equations in four dimensions, in a manner that is concep-
tually similar to the dimensional regularization procedure
used in quantum field theories. The goal of this is to
produce a new classical gravity theory in four dimensions
that includes a nonvanishing contribution from the Gauss-
Bonnet term. It has attracted a great deal of recent attention
[10–44],
In this work we investigate a method of regularizing the

4DEGB theory, in order to produce an action and set of field
equations which are well defined in the limit D → 4, and
which can be written in closed form. Our method does not
rely on the embedding or compactification of any higher-
dimensional spaces, and results in a theory of gravity in
which an extra scalar gravitational degree of freedom ismade
explicit. All solutions of the original 4DEGB theory pub-
lished in [9] are also found to be solutions of our new
formulation of the theory.
The paper is organized as follows: In Sec. IIwe summarize

the original formulation of 4DEGB theory, as presented
in [9]. We then outline a regularization procedure for a
divergent coupling constant used in two-dimensional gravity
in Sec. III, following the procedure used in Ref. [45]. This
procedure is then extended to the 4DEGB theory in Sec. IV.
We discuss our results and conclude in Secs. V and VI.
Throughout, we use notation □≡∇μ∇μ and ð∇ϕÞ2 ≡
∇μϕ∇μϕ, where ∇μ is the covariant derivative.

II. 4D EINSTEIN-GAUSS-BONNET GRAVITY

The novel 4DEGB theory was introduced in Ref. [9],
and is based on the action

S½gμν� ¼
Z
M

dDx
ffiffiffiffiffiffi
−g

p
LEGB þ Sm; ð5Þ

where Sm is the action associated with matter fields and
LEGB is the Einstein-Gauss-Bonnet Lagrangian given by

LEGB ¼ −2Λþ Rþ αG; ð6Þ

which is the Lagrangian from Eq. (4) with all terms of
cubic and higher powers in the curvature tensors neglected,
and with α2 relabeled α. The reader will note that the
number of space-time dimensions D is not yet specified.

The action (5) can then be varied with respect to the
metric, and extremized, to yield the field equations

Gμν þ gμνΛ ¼ αHμν þ Tμν; ð7Þ

where Tμν is the energy-momentum tensor of matter and
the contribution to the field equations from the Gauss-
Bonnet term is given by

Hμν ¼ 15δμ½νRρσ
ρσRαβ

αβ�: ð8Þ

The right-hand side of this equation is antisymmetrized
over five indices, and so must vanish in dimensions D < 5.
Up until this point, the presentation has been the usual

Einstein-Gauss-Bonnet theory. The novelty added in Ref. [9]
is the possibility that the vanishing ofHμν in four dimensions
might be cancelled by rescaling the coupling constant of
the Gauss-Bonnet term such that α → α̂=ðD − 4Þ in the
limit D → 4. That this might be a viable possibility is
suggested by the trace of the field equations (7), which
contain a contribution from theGauss-Bonnet term that takes
the form

Hμ
μ ¼

1

2
ðD − 4ÞG; ð9Þ

where G is the Gauss-Bonnet term defined under Eq. (4).
It is clear that in this case the multiplicative factor of
(D − 4) would be precisely cancelled by the suggested
rescaling of α, which would leave a nonvanishing con-
tribution to the trace of the field equations as D → 4 (note
that G itself is not required to vanish in this limit).
A proof that the off-diagonal field equations remain

finite in the limit D → 4 was not presented in Ref. [9], but
the authors of that paper did show that particular classes of
solutions were well behaved in this limit. In particular, they
showed that if they took D-dimensional Robertson-Walker
geometries, with maximally symmetric spatial surfaces
of dimension D − 1, then the D-dimensional Friedmann
equations were well behaved in the limit D → 4. Similarly,
theD-dimensional spherically symmetric vacuum solutions
of the theory, with (D − 2)-dimensionally spherically
symmetric subspaces, were also found to be well behaved
in the appropriate limit. These results are suggestive that
the theory may be well behaved in general in the four-
dimensional limit.
The solutions to the 4DEGB theory, found using the

prescription above, have some interesting features. The
Friedmann equations, for example, contain corrective terms
that are absent in the usual general relativistic equations,
and the propagation equations for gravitational waves
contain modified dispersion relations. Similarly, the new
static and spherically symmetric black hole solutions differ
from the Schwarzschild solution of GR, and exhibit a
repulsive force as one approaches the central singularity.
Remarkably, these new cosmological and black hole
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solutions formally coincide with the ones found in different
contexts, e.g., in gravity with a conformal anomaly and
gravity with quantum corrections [46–49].
Unfortunately, it now appears that there cannot be any

closed-form expression for the full field equations of the
novel Einstein-Gauss-Bonnet theory that is written in terms
of curvature tensors only, and which remains finite as
D → 4 [43]. This is because the contribution of the Gauss-
Bonnet term to the D-dimensional field equations can
always be written as [43]

Hμν ¼ −2ðLμν þ ZμνÞ; ð10Þ

where Lμν is written entirely in terms of the Weyl tensor as

Lμν ¼ CμαβσCν
αβσ −

1

4
gμνCαβρσCαβρσ ð11Þ

and Zμν contains all other contributions, such that

Zμν ¼
ðD − 4ÞðD − 3Þ
ðD − 1ÞðD − 2Þ

�
−2

ðD − 1Þ
ðD − 3ÞCμρνσRρσ

− 2
ðD − 1Þ
ðD − 2ÞRμρRρ

ν þ
D

ðD − 2ÞRμνR

þ 1

ðD − 2Þ gμν
�
ðD − 1ÞRρσRρσ −

ðDþ 2Þ
4

R2

��
:

ð12Þ

While it is clear that the contribution from Zμν to the field
equations will be regular after the rescaling α → α̂=ðD − 4Þ,
no such statement can be made about Lμν. This quantity
vanishes identically inD ≤ 4 only, and there does not appear
to be any way to write it such thatLμν ¼ ðD − 4ÞSμν for any
well-behaved tensor Sμν. The authors of Reference [43]
further point out that simply allowingLμν=ðD − 4Þ to vanish
in the limit D → 4 would not be sufficient to obtain well
defined field equations, as in this case it would not be
possible to satisfy the Bianchi identities. It therefore appears
that there are no field equations for the novel 4D Einstein-
Gauss-Bonnet theory that can bewritten in terms of curvature
tensors only.
Without a well defined local action for the theory in the

4D limit, it is unclear how to properly count the dynamical
degrees of freedom, how to establish whether the theory
is covariant or well posed, or how to find solutions in
cases without explicit symmetries. In the next sections we
will outline our remedy to this situation, and perform a
regularization of the 4DEGB theory in order to produce a
well-defined, covariant set of field equations. This
regularization makes explicit an extra scalar degree of
freedom in the gravitational sector of the theory, and
reproduces field equations that can also be obtained from
a Kaluza-Klein dimensional reduction of D > 4 Einstein-
Gauss-Bonnet theory [10,11].

III. REGULARIZATION IN 2D

The regularization procedure we wish to employ has
already been successfully applied in two space-time
dimensions, in order to construct an action for Einstein’s
equations, and we will use this section of our paper to
outline its application in this case. We intend this to be an
instructional demonstration of the methodology that will
also be used in the four dimensional case in Sec. IV, to
regularize the 4DEGB theory. This section closely follows
the presentation used in Ref. [45].
Two-dimensional theories of gravity are known to be

simpler than their four-dimensional counterparts, but never-
theless have been shown to admit rich and interesting
structures (such as, e.g., black holes and cosmologies).
Their simplicity also makes them a useful tool for the study
of quantum gravity, which can be realized in this case [50].
However, while it is possible to write down a consistent set
of field equations, it is more problematic to write down an
action from which the field equations can be derived. This
is because in two dimensions the Einstein-Hilbert term has
topological character, much like the Gauss-Bonnet term has
in four dimensions, which has led to the construction of a
number of gravitational theories (see, e.g., [51] for a review
on two-dimensional gravity).
A recent development in two-dimensional theories of

gravity, which is useful for our present study, is the
development of a regularization procedure that introduces
a divergence in the gravitational coupling parameter when
D → 2, and then cancels it out by adding a counterterm to
the action [45]. In this case we start by considering the
following action in D dimensions:

S ¼ α

Z
M

dDx
ffiffiffiffiffiffi
−g

p
Rþ Sm; ð13Þ

where α is a coupling constant. The contribution of R to
the field equations vanishes in D ¼ 2, so a divergence of
the form α → α̂=ðD − 2Þ is introduced into the coupling
parameter in an attempt to get a nonzero result. This causes
the action to become divergent, and of course highly
reminiscent of the procedure introduced in the 4DEGB
proposal.
In 2D, the construction of an equivalent theory is

introduced by considering a conformally related geometry
with metric

g̃μν ¼ e2ϕgμν; ð14Þ

where ϕ is a scalar function of the space-time coordinates.
One can then add the following counterterm to the action (13):

−α
Z
M

dDx
ffiffiffiffiffiffi
−g̃

p
R̃; ð15Þ

where tildes denote the quantities constructed from g̃μν.
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One may note that in D dimensions the square root of
the determinant of the metric is related to its conformal
counterpart by

ffiffiffiffiffiffi−gp ¼ e−Dϕ
ffiffiffiffiffiffi
−g̃

p
, and that the Ricci scalar

of the conformal metric can be specified as [52,53]

ffiffiffiffiffiffi
−g̃

p
R̃ ¼ ffiffiffiffiffiffi

−g
p

eðD−2Þϕ½R − 2ðD − 1Þ□ϕ

− ðD − 1ÞðD − 2Þð∇ϕÞ2�: ð16Þ

Substituing this all into the action given by Eqs. (13) and
(15), and rescaling the coupling constant by α → α̂=
ðD − 2Þ, one can find the result

S ¼ α̂

ðD − 2Þ
Z
M

dDx
ffiffiffiffiffiffi
−g

p ½2ðD − 1Þ□ϕ

þ 2ðD − 1ÞðD − 2Þð∇ϕÞ2 − ðD − 2ÞϕR
þ 2ðD − 2ÞðD − 1Þϕ□ϕ� þ Sm; ð17Þ

where we have expanded the exponential around D ¼ 2

and discarded terms of order OððD − 2Þ2Þ or higher.
After performing an integration by parts on Eq. (17), we

find that the factor (D − 2) cancels out precisely, and in the
limit D → 2 leaves

S ¼ α̂

Z
M

d2x
ffiffiffiffiffiffi
−g

p ðϕRþ ð∇ϕÞ2Þ þ Sm; ð18Þ

where we stress that here α̂ is a finite constant in the limit
D → 2. This action has the field equations

R ¼ 2

α̂
T; ð19Þ

and

∇μϕ∇νϕ −∇μ∇νϕþ gμν

�
□ϕ −

1

2
ð∇ϕÞ2

�
¼ 1

α̂
Tμν; ð20Þ

where the stress-energy tensor obeys the conservation
equation ∇μTμν ¼ 0, and has trace T ¼ Tμ

μ. The former
of these two is the Einstein equation in two dimensions,
while the trace of the latter gives □ϕ ¼ 1

α̂T.
These field equations are particularly interesting as it can

be seen that Eq. (19) can be equivalently written as R̃ ¼ 0,
i.e., is equivalent to the vanishing of the Ricci curvature of

the conformal geometry. This shows that the on-shell action
of the regularized theory takes exactly the same form of the
original theory (13), and that the classical evolution of
the gravity-matter system is independent of ϕ (although the
converse is not true).
The theory with field equation (19) is sometimes dubbed

“R ¼ T” gravity, and has been studied in much detail in the
literature [54–58]. We remark that the regularized theory
of [45] admits exactly the same solutions as R ¼ T gravity
in 2D [12,40,59], but that it also admits a finite and
well-defined action. In the next section we will deploy a
similar procedure to regularize the 4DEGB theory, in which
we will obtain similar results.

IV. REGULARIZATION IN 4D

The Einstein-Gauss-Bonnet theory in D dimensions,
and with vanishing cosmological constant, is described
by the action

S ¼
Z
M

dDx
ffiffiffiffiffiffi
−g

p ðRþ αGÞ þ Sm; ð21Þ

where α is a coupling constant. A cosmological constant
can be trivially added later, and does not change any of the
presentation that follows.
As discussed in Sec. II, we want to consider this action in

the presence of a coupling constant that is rescaled such that

α →
α̂

ðD − 4Þ : ð22Þ

Following the procedure used in Sec. III, we consider a
conformal geometry given by g̃μν ¼ e2ϕgμν, and add to the
action a counterterm

−α
Z
M

dDx
ffiffiffiffiffiffi
−g̃

p
G̃; ð23Þ

where G̃ is the Gauss-Bonnet term constructed from the
conformal metric g̃μν. We will find that this term removes
the divergence that would otherwise occur in the action
when the rescaling (22) is performed.
This can be seen by writing the Gauss-Bonnet term of the

conformal metric in terms of the original one as

ffiffiffiffiffiffi
−g̃

p
G̃ ¼ ffiffiffiffiffiffi

−g
p

eðD−4Þϕ½G − 8ðD − 3ÞRμνð∇μϕ∇νϕ −∇μ∇νϕÞ − 2ðD − 3ÞðD − 4ÞRð∇ϕÞ2
þ 4ðD − 2ÞðD − 3Þ2□ϕð∇ϕÞ2 − 4ðD − 2ÞðD − 3Þð∇μ∇νϕÞð∇μ∇νϕÞ þ 4ðD − 2ÞðD − 3Þð□ϕÞ2
þ 8ðD − 2ÞðD − 3Þð∇μϕ∇νϕÞð∇μ∇νϕÞ − 4ðD − 3ÞR□ϕþ ðD − 1ÞðD − 2ÞðD − 3ÞðD − 4Þð∇ϕÞ4�: ð24Þ

Expanding the exponential around D ¼ 4, and neglecting terms of order ðD − 4Þ2 or higher, we then obtain
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ffiffiffiffiffiffi
−g̃

p
G̃ ¼ ffiffiffiffiffiffi

−g
p ðG − 4ðD − 3ÞR□ϕþ 4ðD − 3Þ2ðD − 2Þ□ϕð∇ϕÞ2 þ 4ðD − 3ÞðD − 2Þð□ϕÞ2
− 8ðD − 3ÞRμνð∇μϕ∇νϕ −∇μ∇νϕÞ þ 8ðD − 3ÞðD − 2Þ∇μϕ∇νϕ∇μ∇νϕ

− 4ðD − 3ÞðD − 2Þð∇μ∇νϕÞð∇μ∇νϕÞ þ ðD − 4Þ½ϕG − 2ðD − 3ÞRð∇ϕÞ2
þ ðD − 3ÞðD − 2ÞðD − 1Þð∇ϕÞ4 − 4ðD − 3ÞϕR□ϕþ 4ðD − 3Þ2ðD − 2Þϕ□ϕð∇ϕÞ2
þ 4ðD − 3ÞðD − 2Þϕð□ϕÞ2 − 8ðD − 3ÞϕRμνð∇μϕ∇νϕ −∇μ∇νϕÞ
þ 8ðD − 3ÞðD − 2Þϕð∇μϕ∇νϕÞð∇μ∇νϕÞ − 4ðD − 3ÞðD − 2Þϕð∇μ∇νϕÞð∇μ∇νϕÞ�Þ: ð25Þ

Integrations by parts, and making use of the identity

∇μ

�
□ϕ∇μϕ −

1

2
∇μð∇ϕÞ2

�

¼ ð□ϕÞ2 − ð∇μ∇νϕÞ2 − Rμν∇μϕ∇νϕ;

and the Bianchi identities, we can find that our action
reads

S ¼
Z
M

dDx
ffiffiffiffiffiffi
−g

p ½Rþ αðD − 4Þð4ðD − 3ÞGμν∇μϕ∇νϕ

− ϕG − 4ðD − 5ÞðD − 3Þ□ϕð∇ϕÞ2
− ðD − 5ÞðD − 3ÞðD − 2Þð∇ϕÞ4Þ� þ Sm: ð26Þ

After rescaling the coupling constant α as prescribed in
(22), and taking the four-dimensional limit, this becomes

S ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p ½Rþ α̂ð4Gμν∇μϕ∇νϕ − ϕGþ 4□ϕð∇ϕÞ2

þ 2ð∇ϕÞ4Þ� þ Sm; ð27Þ

which can be seen to be free of divergences. This action
belongs to the Horndeski class of theories [60,61], with
functions G2 ¼ 8α̂X2, G3 ¼ 8α̂X, G4 ¼ 1þ 4α̂X, and
G5 ¼ 4α̂ lnX (where X ¼ − 1

2
∇μϕ∇μϕ). Note that the

action is shift-symmetric in the scalar-field, yielding a
conserved current whose divergence results in the scalar-
field equation of motion [62].
The field equations of this new theory can be obtained by

varying with respect to the metric, to get

Gμν ¼ α̂Ĥμν þ Tμν; ð28Þ

where

Ĥμν ¼ 2Rð∇μ∇νϕ −∇μϕ∇νϕÞ þ 2Gμνðð∇ϕÞ2 − 2□ϕÞ þ 4Gναð∇α∇μϕ −∇αϕ∇μϕÞ
þ 4Gμαð∇α∇νϕ −∇αϕ∇νϕÞ þ 4Rμανβð∇β∇αϕ −∇αϕ∇βϕÞ þ 4∇α∇νϕð∇αϕ∇μϕ −∇α∇μϕÞ
þ 4∇α∇μϕ∇αϕ∇νϕ − 4∇μϕ∇νϕðð∇ϕÞ2 þ□ϕÞ þ 4□ϕ∇ν∇μϕ − gμνð2Rð□ϕ − ð∇ϕÞ2Þ
þ 4Gαβð∇β∇αϕ −∇αϕ∇βϕÞ þ 2ð□ϕÞ2 − ð∇ϕÞ4 þ 2∇β∇αϕð2∇αϕ∇βϕ −∇β∇αϕÞÞ; ð29Þ

and by varying with respect to the scalar field, to get

Rμν∇μϕ∇νϕ −Gμν∇μ∇νϕ −□ϕð∇ϕÞ2 þ ð∇μ∇νϕÞ2

− ð□ϕÞ2 − 2∇μϕ∇νϕ∇μ∇νϕ ¼ 1

8
G: ð30Þ

It is interesting to note that the trace of the field
equations (28) takes the simple form

Rþ α̂

2
G ¼ −T; ð31Þ

which is exactly the same form as the trace of the field
equations of the original 4DEGB theory, as presented in
Eqs. (7) and (8). Our theory therefore exactly reproduces
the only known well-defined field equation of the 4DEGB
theory, and suggests that there may have been a hidden

scalar degree of freedom in the original theory, which may
be one reason it has not yet been proven possible to write
its full field equations in terms of curvature tensors only
(see Sec. II).
Remarkably, the scalar field equation (30) can be seen to

be exactly equivalent to the condition

G̃ ¼ 0; ð32Þ

i.e., that the conformal Gauss-Bonnet term should vanish.
This means that the counterterm we added to the action in
Eq. (23) must again vanish on shell, just as the correspond-
ing term did in the 2D theory we discussed in Sec. III, and
that our on-shell action has the same form as the action of
the original 4DEGB theory. Note, however, that this fact
does not guarantee that the theories are equivalent, but
instead shows that solutions exist which solve both versions
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of the theory. We discuss the subject of equivalence further
in the next section.

V. DISCUSSION

We have used the regularization technique developed in
Ref. [45], and applied it to the novel 4DEGB theory in
order to find the regularized action (27). This action is free
from divergences, and produces well behaved second-order
field equations that can be used for gravitational physics.
Our theory reproduces the trace of the field equations of
the original theory (which is the only well defined field
equation of the original 4DEGB theory), and complements
it with a full set of off-diagonal equations.
We have been unable to show that the scalar degree of

freedom ϕ decouples from the metric-matter system, except
in the lone example of the trace equation, suggesting that
the original theory may have a hidden scalar degree of
freedomwithin it. If this is the case, then the 4DEGB theory
does not propagate a single massless tensor degree of
freedom, as claimed in the original paper [9]. Instead, we
find that the theory belongs to the Horndeski of scalar-
tensor theories, and therefore does not bypass Lovelock’s
theorem. This hypothesis is backed-up by a recent study of
the tree-level scattering amplitudes of gravitons in the
original 4DEGB theory [63].
We note that the action (27) is identical to the one that is

obtained by performing a Kaluza-Klein reduction of a
(Dþ p)-dimensional Einstein-Gauss-Bonnet theory with a
flat p-dimensional internal space [10,11], as well as being
the same action that appears in the context of renormaliza-
tion group flows for trace anomalies of the effective action
of the Nambu-Goldstone boson of broken conformal
symmetry [64].
It is clear from Refs. [10,11] that the cosmological and

black hole solutions found in the original paper on novel
4DEGB gravity [9] are also solutions of the field equations
derived from the action (27). However, as discussed in
these references, the action (27) also admits generalizations
of these solutions. This includes a contribution to the
Friedmann equations of the cosmological solutions that
behaves like a fluid of radiation, or static black hole
solutions with metric components −gtt ≠ g−1rr , which are
absent in the solutions found in [9].
While we believe our theory to be a compelling

regularization of the original theory, we note that it is
not possible to prove full equivalence of the two theories.
This is because the original formulation of the theory does
not have a full set of 4-dimensional field equations that can
be written in closed form, but also because the dimensional
regularization procedure used in [9] does not appear to be
unique. That is, there could potentially be arbitrarily many
ways in which one could specify the geometry of the space-
time before taking the limit D → 4. There is no guarantee

that all possibilities will yield the same solutions, and it is
therefore very difficult to establish whether the set of
admitted solutions of the two theories will always be the
same.
The equivalence of the 2-dimensional theory presented

in Ref. [45], and outlined in Sec. III does not suffer from the
same difficulty. The R ¼ T theory and the field equations
derived from the action (18) are demonstrably identical, up
to an additional equation that does not affect the metric-
matter system. We expect this to be a feature of this
procedure which is only applicable in 2-dimensions, as in
this case there is only a single degree of freedom in the
geometry, which means that the trace of the field equations
contains all information about the theory. This is not true in
dimensions D > 2, so the equivalence of the trace equa-
tion (31) does not directly imply equivalence of all of the
field equations.

VI. CONCLUSIONS

We have investigated the application of the regulariza-
tion procedure from Ref. [45], developed in the context of
2-dimensional gravity, to the novel 4DEGB theory recently
proposed in Ref. [9]. We find that the counterterm we
introduce in this procedure is sufficient to cancel the
diverge in the action that would otherwise occur, and that
the trace of the field equations (the only know field
equation of the original formulation of the theory) is
reproduced exactly. Our theory presents a full set of field
equations that generalize this one equation to the full suite,
and shows that an extra scalar field degree of freedom is
also required in the gravitational sector of the theory.
The formulation of the theory that we end up with has an

on-shell action that is identical to the action of the original
theory, and produces second-order field equations that
belong to the Horndeski class of scalar-tensor theories of
gravity. The action is also identical to that which can be
found from a Kaluza-Klein reduction of Einstein-Gauss-
Bonnet theory in higher-dimensions [10,11], as well as in
the context of renormalization group flows [64]. It admits
all of the solutions found in the original paper on novel
4DEGB theory, and provides a well defined set of equations
that can be used to study the theory further.
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