
 

Shadow of a naked singularity without photon sphere
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It is generally believed that the shadows of either a black hole or naked singularity arise due to photon
spheres developing in these spacetimes. Here we propose a new spherically symmetric naked singularity
spacetime which has no photon sphere, and we show that the singularity casts a shadow in the absence of
the photon sphere. We discuss some novel features of this shadow and the lightlike geodesics in this
spacetime. We compare the shadow of the naked singularity here with shadows cast by Schwarzschild
black hole and the first type of Joshi-Malafarina-Narayan (JMN1) naked singularity, where for the last two
spacetimes the shadow is formed due to the presence of a photon sphere. It is seen, in particular, that the
size of shadow of the singularity is considerably smaller than that of a black hole. Our analysis shows that
the shadow of this naked singularity is distinguishable from the shadow of a Schwarzschild black hole and
the JMN1 naked singularity. These results are useful and important in the context of recent observations of
shadow of the M87 Galactic center.

DOI: 10.1103/PhysRevD.102.024022

I. INTRODUCTION

It is well known that when massive matter clouds
undergo a catastrophic continual gravitational collapse,
the total mass collapses into a spacetime singularity. At
such a singularity, the density, pressures, and spacetime
curvatures diverge [1,2]. To understand the final state of
such a collapse better, one could consider a collapsing
spherically symmetric compact object within a dynamical
spacetime configuration, where the internal dynamical
metric seeded by the collapsing matter is matched exter-
nally to a Schwarzschild solution.
When the collapsing matter is homogeneous and dust-

like, the final sate of the gravitational collapse is necessarily
a Schwarzschild black hole. It then has a central spacetime
singularity which is covered by a null hypersurface [3],
known as the event horizon. Since this singularity is
covered by a null surface, so no information from the
same can travel to any other spacetime events or faraway
observers. As this singularity is not causally connected to
any other spacetime points, it is a spacelike singularity.
On the other hand, there can be other types of singularity

which are causally connected with other spacetime points.
Such causally connected singularities are also known as
naked singularities. There are two types of naked singu-
larities: nulllike and timelike singularities. One can show
that both these singularities can be formed as the final state

of gravitational collapse of an inhomogeneous matter
cloud [4–12]. There are many well-known spacetimes,
e.g., Joshi-Malafarina-Narayan (JMN) spacetimes [8,9],
Janis-Newman-Winicour (JNW) spacetime [13], which
have central timelike singularities. It can also be shown
that the timelike and null singularities formed during a
gravitational collapse of massive matter cloud can be
gravitationally strong [4–12]. Around a strong curvature
naked singularity, the quantum gravitational effects should
be very large and powerful. This may indicate and imply a
possible quantum gravity resolution of strong spacetime
singularity that may happen around the extreme curvature
regions of a spacetime [14–16]. Therefore, as timelike and
null strong singularities are causally connected to the other
external spacetime points, the quantum gravity effects can
be locally or globally observable.
In [8,9], it is shown that JMN spacetimes with central

timelike singularities are obtained as the asymptotic equi-
librium state of a quasistatic gravitational collapse. Also, it
is important to investigate the observational signatures of
timelike singularities in the context of recent observation of
shadow of the M87 Galactic center by the Event Horizon
Telescope (EHT) Collaboration [17]. As for our own
galaxy, the trajectories of “S” stars around our Galactic
center as observed by the GRAVITY and SINFONI
Collaborations [18–20] are providing very useful data.
Recently, many studies have been made [10,21–39], where
the behavior of timelike and null geodesics around timelike
singularities and other compact objects has been inves-
tigated. In [30,32], the shadows cast by JMN spacetimes are
investigated and it is shown that the shadow cast by first
type of JMN spacetime (JMN1) can be similar to the

*gen.rel.joshi@gmail.com
†dipanjandey.adm@charusat.edu.in
‡psjprovost@charusat.ac.in
§grcollapse@gmail.com

PHYSICAL REVIEW D 102, 024022 (2020)

2470-0010=2020=102(2)=024022(9) 024022-1 © 2020 American Physical Society

https://orcid.org/0000-0002-3314-0769
https://orcid.org/0000-0001-8424-3357
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.102.024022&domain=pdf&date_stamp=2020-07-07
https://doi.org/10.1103/PhysRevD.102.024022
https://doi.org/10.1103/PhysRevD.102.024022
https://doi.org/10.1103/PhysRevD.102.024022
https://doi.org/10.1103/PhysRevD.102.024022


shadow cast by the Schwarzschild black hole. JNW naked
singularity spacetime also can cast a shadow, and the pro-
perties of the shadow can be similar to the Schwarzschild
black hole shadow [32,33].
It is worth noting, however, that for JNW and JMN1

spacetimes, it is the existence of photon sphere that causes
the shadow. On the other hand, in [40], it is shown that a
thin matter shell can also cast a shadow in the absence of a
photon sphere in the spacetime. These results emphasize
that the occurrence of a shadow is not a property of black
holes only, but it also can be cast by other compact objects
in the presence of a photon sphere or thin shell of matter
[30,32,40].
In this paper, we present another new naked singularity

spacetime which resembles with a Schwarzschild space-
time at large distances. We show that this naked singularity
spacetime can cast and admit a shadow though it has no
photon sphere, or any thin shell of matter. The interesting
fact that emerges is that the shadow is created by the
singularity itself. This is an intriguing feature, because just
like a black hole or other compact objects, the singularity
itself, when not covered by an event horizon, behaves like
an “object” in its own right, even to the extent of casting a
shadow. Our analysis here shows that the size of shadow of
the singularity is considerably smaller than that of a black
hole. It is seen that the shadow of this naked singularity is
distinguishable from shadow of a Schwarzschild black hole
and JMN1 naked singularity. Since the shadow is cast by
the singularity, one may possibly speculate that the effect of
quantum gravitational resolution of the singularity could be
likely identified from the observed shadow and the various
detailed physical features it may exhibit. Also, this novel
feature of the spacetime singularity could be important in

the context of the recent observations of shadow of the
Galactic center M87.
The plan of the paper is as follows. In Sec. II, we dis-

cuss the JMN1 spacetime and the new asymptotically
flat naked singularity spacetime is presented. In Sec. III,
we discuss the nature of light trajectories around the
Schwarzschild black hole, JMN1 naked singularity, and
the new naked singularity solution presented here. In that
section, we also discuss the shadow of naked singularity,
and compare the same with that of the black hole. Finally,
in Sec. IV, we discuss our results. Throughout the paper, we
take G ¼ c ¼ 1.

II. NAKED SINGULARITY SPACETIMES

In this section, we present a new spherically sym-
metric, asymptotically flat naked singularity spacetime.
We first discuss the basic spacetime properties of this naked
singularity spacetime, and then we briefly discuss JMN1
spacetime.

A. The naked singularity spacetime

The line element of the proposed spherically symmetric,
static naked singularity spacetime can be written as

ds2 ¼ −
dt2

ð1þ M
r Þ2

þ
�
1þM

r

�
2

dr2 þþr2dΩ2; ð1Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2 andM is a positive constant,
where we will prove that M is the Arnowitt-Deser-Miser
(ADM) mass of the above spacetime. The expressions of
the Kretschmann scalar and Ricci scalar for this space-
time are

RαβγδRαβγδ ¼ 4M2ððM − 2rÞ2r4 þ 4ðM þ rÞ2r4 þ ðM þ rÞ4ðM þ 2rÞ2Þ
r4ðM þ rÞ8 ; ð2Þ

R ¼ 2M3ðM þ 4rÞ
r2ðM þ rÞ4 : ð3Þ

From the above expressions of the Kretschmann scalar and
Ricci scalar, it can be seen that the spacetime has a strong
curvature singularity at the center r ¼ 0. No null surfaces
such as an event horizon exist around the singularity in this
spacetime. Therefore, the singularity is visible to the
outside observer. As we know, the ADM mass of a
spacetime can be written as [3,41]

MADM ¼ −
1

8π
lim
S→∞

I
S
ðR −R0Þ

ffiffiffi
σ

p
d2θ; ð4Þ

where S is the bounded two-surface. R is the extrinsic
curvature of the two-surface S embedded in spacelike

hypersurface Σ,R0 is the extrinsic curvature of S embedded
in flat space, and the infinitesimal area of the two-surface is
written as

ffiffiffi
σ

p
d2θ ¼ r2 sin θdθdϕ, where σ is the determi-

nant of the induced metric on the two-surface. The limit
S → ∞ implies that the radius of the two-surface S tends to
infinity. For the above spacetime [Eq. (1)], the unit normal
on the S can be written as

nα ¼
ffiffiffiffiffiffi
grr

p ∂αr ¼
�
1þM

r

�
∂αr: ð5Þ

The extrinsic curvature of S embedded in Σ can be
calculated as

R ¼ nα;α ¼
2

rð1þ M
r Þ

; ð6Þ
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and the extrinsic curvature of S embedded in flat space is
R0 ¼ 2

r. Therefore, using Eq. (4), the ADMmass of the new
naked singularity spacetime [Eq. (1)] can be written as

MADM ¼ −
1

2
lim
r→∞

r2
�

2

rð1þ M
r Þ

−
2

r

�
¼ M: ð7Þ

Hence, the ADM mass of the proposed naked singularity
spacetime is M. The above metric [Eq. (1)] resembles with
Schwarzschild metric at a large distance. Therefore, at a
sufficient distance from the naked singularity, the behavior
of timelike and null geodesics is similar to what is seen in
the Schwarzschild geometry. However, near the singularity,
the causal structure of this spacetime becomes different
from the causal structure of Schwarzschild spacetime.
Distinguishable behavior of null geodesics and the shadow
cast by the naked singularity in this spacetime are discussed
in the next section.
Using Einstein field equations, we can write the

energy density and pressures of this naked singularity
spacetime as

−Tt
t ¼ ρ ¼ M2ðM þ 3rÞ

κr2ðM þ rÞ3 ; ð8Þ

Tr
r ¼ pr ¼ −

M2ðM þ 3rÞ
κr2ðM þ rÞ3 ; ð9Þ

Tθ
θ ¼ Tϕ

ϕ ¼ pθ ¼ pϕ ¼ 3M2

κr4

�
1þM

r

�
−4
; ð10Þ

where κ ¼ 8πG
c2 ¼ 8π, as in this paper, we consider G ¼

c ¼ 1. To satisfy strong, weak, and null energy conditions,
we need

ρ ¼ M2ðM þ 3rÞ
κr2ðM þ rÞ3 ≥ 0; ð11Þ

ρþ pr ≥ 0; ð12Þ

ρþ pθ ¼
M2ðM2 þ 4Mrþ 6r2Þ

κr2ðM þ rÞ4 ≥ 0; ð13Þ

ρþ pr þ 2pθ ¼
6M2

κr4

�
1þM

r

�
−4

≥ 0; ð14Þ

and it can be easily verified that all these conditions are
fulfilled for this spacetime. As it can be seen, this spacetime
is seeded by an anisotropic fluid, where the anisotropy in
the pressures can be written as

pr − pθ ¼ −
M2ðM2 þ 4Mrþ 6r2Þ

κr2ðM þ rÞ4 : ð15Þ

The equation of state (α) for an anisotropic fluid can be
written as [42]

α ¼ 2pθ þ pr

3ρ
: ð16Þ

Therefore, using Eqs. (8)–(10), we can write the equation of
state for this spacetime as

α ¼ 2

ð3þ M
r Þð1þ M

r Þ
−
1

3
; ð17Þ

where we can clearly see that as r tends to zero, the
equation of state becomes −1=3. On the other hand, as r
tends to infinity, the equation of state becomes þ1=3. It is
important to know the source of the anisotropic fluid which
seeds such a particular spacetime. As we know, to be a
minimally coupled static scalar field solution [42] of
Einstein equations, a spacetime should satisfy

Rμν −
1

2
gμνR ¼ κ

�
gμνLþ 2

∂L
∂gμν

�
; ð18Þ

where L ¼ ð− 1
2
gαβ∂αΦ∂βΦ − VðΦÞÞ and Φ is scalar field

which satisfies □ΦðrÞ ¼ V 0ðΦðrÞÞ, where VðΦÞ is the
scalar field potential. Using the above equations, one can
check that for minimally coupled scalar field solution, we
need ρþ pθ ¼ 0. From Eqs. (8)–(10), it is easy to verify
that this naked singularity spacetime is not a minimally
coupled scalar field solution of Einstein equations.

B. JMN1 spacetime

The line element of the JMN1 spacetime can be written
as

ds2 ¼ −ð1 −M0Þ
�

r
Rb

� M0
1−M0dt2 þ dr2

1 −M0

þ r2dΩ2; ð19Þ

where the dimensionless quantity M0 should be 0<M0<1
and at Rb, JMN1 spacetime matches with the external
Schwarzschild spacetime. In [8], it is shown that in
asymptotic time, JMN1 spacetime can be formed as an
end state of the gravitational collapse of anisotropic matter
fluid. This spacetime has a timelike strong singularity at the
center [8]. Using the parameters of JMN1 spacetime, the
external Schwarzschild spacetime can be written as

ds2 ¼ −
�
1 −

M0Rb

r

�
dt2 þ dr2

ð1 − M0Rb
r Þ þ r2dΩ2:

One can prove that this spacetime smoothly matches with
external Schwarzschild metric. JMN1 spacetime is an
anisotropic fluid solution of Einstein equations, where
the energy density and pressures can be written as
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ρ ¼ M0

κr2
; Pr ¼ 0; Pθ ¼

M2
0

4κð1 −M0Þr2
: ð20Þ

Therefore, the equation of state for this spacetime can be
written as α ¼ M0

6ð1−M0Þ. There are many literature where

particle trajectories in JMN1 spacetime and the shadow cast
by the same are discussed, and it is shown that those results
are very important to understand the distinguishable obser-
vational signatures of black holes and naked singularities.
In the next section, we discuss about the properties of

lightlike geodesics and the shadow of naked singularity
mentioned in Eq. (1).

III. SHADOWS OF NAKED SINGULARITY
AND BLACK HOLE SPACETIMES

A spherically symmetric, static spacetime can be written
as

ds2 ¼ −gttdt2 þ grrdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð21Þ

where gtt, grr are the functions of r only and the azimuthal
part of the spacetime shows the spherical symmetry. For the
lightlike geodesics in the above spacetime, in the θ ¼ π

2

plane, we can write

1

b2
¼ gttgrr

h2

�
dr
dλ

�
2

þ Veff ; ð22Þ

where the effective potential Veff ¼ gtt=r2 and the impact
parameter b ¼ h

γ, where γ and h are conserved energy and
conserved angular momentum per lightlike particle, res-
pectively. In the above equation, we use kμkμ ¼ 0, where kμ

is the null four velocity. From the nature of effective
potential of photons, one can investigate the stable and
unstable orbits of photons. As we know, when this effec-
tive potential has a maximum value at some radius, we get
unstable circular lightlike geodesics. The sphere cor-
responding to the radius of these unstable circular light-
like geodesics is known as the photon sphere. At the

photon sphere radius (rph), we can write VeffðrphÞ ¼ γ2

h2,
V 0
effðrphÞ ¼ 0, and V 00

effðrphÞ < 0.
When these conditions are satisfied in a spacetime, we

can say that there would exist a photon sphere at rph.
For Schwarzschild spacetime, photon sphere exists at
rph ¼ 3MT , where MT is the Schwarzschild mass. The
turning point (rtp) of lightlike geodesics can be found

when VeffðrtpÞ ¼ γ2

h2 ¼ 1
b2tp
. Therefore, from the expression

of Veff , at the turning point, we can write the impact
parameter btp as

btp ¼ rtpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gttðrtpÞ

p : ð23Þ

In a spacetime, when only one extremum value of effective
potential of null geodesics exists and if the extremum value
is the maximum value of the potential, then the minimum
impact parameter of turning point of light geodesics is
btp ¼ bph, where bph is the impact parameter correspond-
ing to the photon sphere. Lightlike geodesics, coming from
faraway source, cannot reach to the faraway observer with
the impact parameter b < bph. They will be trapped inside
the photon sphere. Therefore, the light geodesics coming
from behind the lens with impact parameter b < bph cannot
reach to the outside observer and this creates a shadow of
radius bph in the observer’s sky. Hence, one can conclude
that in this case, it is the photon sphere’s shadow which can
be seen in the observer’s sky. On the other hand, when the
photon sphere does not exist in a spacetime and the
effective potential diverges at origin, then such a shadow
would not form in that spacetime.
In Fig. 1, we show the trajectory of photons which are

coming out from the far away source and deflected due to
the curvature in JMN1, Schwarzschild, and the new naked
singularity spacetimes. In JMN1 spacetime, photon sphere
exists whenM0 > 2

3
and forM0 < 2

3
, photon sphere does not

exist. For M0 > 2
3
, JMN1 spacetime matches with external

Schwarzschild metric at Rb < 3MT , where MT is the
Schwarzschild mass. Therefore, effectively, the spacetime
configuration has a photon sphere which is in the external
Schwarzschild spacetime. However, inside the photon
sphere, at the center, there exists a spacetime singularity
which is not covered by any event horizon. Therefore,
around the photon sphere lightlike geodesics behave in
the similar way what can be seen around the photon
sphere of a black hole. The effective potential and the
behavior of lightlike geodesics in JMN1 spacetime are
shown in Figs. 1(a) and 1(b), respectively, where we take
Schwarzschild massMT ¼ 1 andM0 ¼ 0.7. Therefore, the
JMN1 spacetime matches with external Schwarzschild
spacetime at Rb ¼ 2.857 and the radius of the photon
sphere corresponding to the external Schwarzschild space-
time is rph ¼ 3. Hence, for M0 >

2
3
, shadow is effectively

cast by the photon sphere of the external Schwarzschild
spacetime. In Figs. 1(c) and 1(d), we show the effective
potential and nature of light geodesics, respectively,
in the Schwarzschild spacetime with Schwarzschild mass
MT ¼ 1. The brown circles in Figs 1(b) and 1(d) show the
size of photon sphere (rph ¼ 3) in JMN1 spacetime
configuration and in Schwarzschild spacetime, respec-
tively, and the red circles in these two figures show the
size of the impact parameter (bph) corresponding to the
radius of the photon sphere. From Eq. (23), one can
calculate that the shadow radius or the impact para-
meter corresponding to the photon sphere radius is bph ¼
3

ffiffiffi
3

p
MT ¼ 3

ffiffiffi
3

p
.

For the new naked singularity spacetime, the minimum
turning point radius is rtp ¼ 0. In Fig. 1(e), it is shown that
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FIG. 1. In Figs. 1(a), 1(c), and 1(e), we show the nature of effective potentials of the null geodesics in JMN1, Schwarzschild, and the
naked singularity spacetimes given here, respectively. In Figs. 1(b), 1(d), and 1(f), the light trajectories in these spacetimes are shown. In
Figs. 1(b), 1(d), and 1(f), the blue lines are the null geodesics. Effective potential of lightlike geodesics in JMN1 spacetime configuration
is shown in Fig. 1(a). As we can see, the effective potential has a maximum value in JMN1 spacetime configuration and in
Schwarzschild spacetime. Therefore, for these two spacetimes, photon spheres exist. The brown circles in Figs. 1(b) and 1(d) show the
size of the photon sphere. The red circles show the size of the shadow. A detailed analysis of these figures is given in the text.
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the effective potential of lightlike geodesics has a finite
value. Therefore, photons with finite energy can reach very
close to the central naked singularity. Photons having
energy Eph ≥ Veffð0Þ can reach to the central singularity.
Now, the value of effective potential and the impact
parameter corresponding to the minimum value of the
radius of the turning point (i.e., rtp ¼ 0) are

VeffðrtpÞjrtp¼0 ¼
1

ðrtp þMÞ2
����
rtp¼0

¼ 1

M2
; ð24Þ

btpjrtp¼0 ¼ ðrtp þMÞjrtp¼0 ¼ M: ð25Þ

Therefore, we can get finite value of the impact para-
meter corresponding to the zero value of minimum turning
point radius and that finite value of the impact parameter
btpðrtp ¼ 0Þ ¼ M, whereM is the ADMmass of the naked
singularity spacetime given here. Hence, though the value
of the minimum turning point radius is zero, due to the
finite value of corresponding impact parameter, in this case
also, the lightlike geodesics coming from a distant source
with impact parameter b < M must be trapped closer to the
singularity. Therefore, in this naked singularity spacetime,
the curvature of the spacetime itself around the singularity
can cast a shadow in the observer sky, even when there
exists no photon sphere in this case. As the minimum
turning point of the photons is at the singularity, one can
conclude that it is the shadow of the singularity itself.
In Fig. 1(f), we show the nature of lightlike geodesics
in this naked singularity spacetime. In that figure, the
lightlike geodesic highlighted in black corresponds to the
critical impact parameter btp ¼ M. From Figs. 1(b), 1(d),
and 1(f), the distinguishable nature of lightlike geodesics in
the new naked singularity spacetime, and in JMN1 and
Schwarzschild spacetimes, can be clearly seen. We note
that to visualize the shadow of a central massive object
which can be seen in a physical situation, one needs to
calculate the intensity of light coming out from the
accreting matter around the massive central object.
In this paper, for simplicity, we have considered spheri-

cally symmetric, radially freely falling, thin accreting matter
which radiates monochromatic radiation, where the emis-
sivity (in the emitter frame) per unit volume falls as

jðνeÞ ∝
δðνe − ν�Þ

r2
; ð26Þ

where νe is the emitted photon frequency as measured in the
rest frame of the emitter. The observed specific intensity (Iνo )
of the light coming out from the accreting matter can be
written as the function of X, Y which are the coordinates of
the asymptotic observer’s sky [39],

IνoðX; YÞ ¼
Z
γ
g3jðνeÞdlprop; ð27Þ

where g ¼ νo=νe is the redshift factor and dlprop is the
infinitesimal proper length in the rest frame of emitter with
dlprop ¼ −kαuαedλ, where kμ is the null four velocity and uαe
is the timelike four velocity of the emitter. Here λ is the affine
parameter and the integration is done along the lightlike
trajectory γ. The redshift factor can be written as

g ¼ kαuαo
kβu

β
e
; ð28Þ

where uμo ¼ ð1; 0; 0; 0Þ is the four velocity of the static
distant observer. As we mentioned before, in this paper, we
consider spherically symmetric accreting matter which is
radially freely falling. The components of four velocity of
radially freely falling particle in a general spherically
symmetric, static spacetime [Eq. (21)] can be written as

ute ¼
1

gtt
; ure ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − gttÞ
gttgrr

s
; uθe ¼ uϕe ¼ 0: ð29Þ

Using the components of four velocity of radially freely
falling matter, we can write down the redshift factor as

g ¼ 1

1
gtt
− kr

kt

ffiffiffiffiffiffiffiffiffiffi
ð1−gttÞ
gttgrr

q ; ð30Þ

where

kr

kt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt
grr

�
1 −

gttb2

r2

�s
: ð31Þ

Now, integrating Eq. (27) over all observed frequencies, we
get [39]

IoðX; YÞ ∝ −
Z
γ

g3ktdr
r2kr

; ð32Þ

where IoðX; YÞ is the intensity distribution in the (X, Y)
plane of the observer’s sky, where X2 þ Y2 ¼ b2. Using
Eq. (32), one can simulate the shadow. In Figs 2(a),
2(c), and 2(e), we show how intensity varies with the
impact parameter b in the Schwarzschild, JMN1, and the
naked singularity spacetimes given here, respectively.
In Figs. 2(b), 2(d), and 2(f), we simulate the shadows cast
by Schwarzschild, JMN1, and the new naked singularity
spacetimes, respectively.
From Fig. 2, one can see that due to the presence

of photon sphere in the Schwarzschild spacetime and in
the external Schwarzschild spacetime of the JMN1 space-
time configuration (with M0 > 2

3
), the shadow radius is
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bph ¼ 3
ffiffiffi
3

p
MT ¼ 3

ffiffiffi
3

p
. The shadow cast by the JMN1

spacetime configuration withM0 >
2
3
is not distinguishable

from the shadow cast by a Schwarzschild black hole [30].
On the other hand, the radius of the shadow cast by the new

naked singularity spacetime is M, where M is the ADM
mass of the spacetime. If we consider the ADM mass to be
M ¼ 1, then the shadow radius will be btpjrtp¼0 ¼ M ¼ 1.

Therefore, the shadow cast by Schwarzschild black hole

–15 –10 –5 0 5 10 15
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0.8
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3.5
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FIG. 2. In this figure, the intensity map in observer sky (left column figures) and the shadow of the central object (right column figures)
are shown for Schwarzschild spacetime, JMN1 spacetime configuration (with M0 ¼ 0.7), and the naked singularity spacetime given
here. The radius of the shadow of the Schwarzschild black hole [Fig. 2(b)] and JMN1 naked singularity [Fig. 2(d)] is 3

ffiffiffi
3

p
, where the

Schwarzschild mass isMT ¼ 1. The shadow shown in the right bottom corner is the shadow of the new naked singularity spacetime and
the size of the shadow is M ¼ 1, where M is the ADM mass.
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and JMN1 naked singularity spacetime is 3
ffiffiffi
3

p
times the

size of the shadow cast by the naked singularity considered
here. It can be seen that in each of the shadow images of
Fig. 2, there exists a color bar which shows that the
intensity is not zero inside the critical btp (i.e., 3

ffiffiffi
3

p
for

Schwarzschild and JMN1 spacetimes and 1 for new naked
singularity spacetime), though it looks like absolutely dark.
As we know, in the near future, the EHT group will

release the shadow of the Sagittarius A* (Sgr-A*).
Therefore, it is very important to theoretically predict the
size of the shadow. From the S stars motions around our
galaxy center and from other physical phenomenon, it is
estimated that the mass of the central object of our
Milky Way Galaxy is around 4.31 × 106 M⊙ with an error
�0.38 M⊙ [39]. If the central object is a black hole or
JMN1 naked singularity, then it is not possible to distin-
guish the black hole shadow from a naked singularity
shadow. In Table I, it is shown that the angular size of the
shadow of the Schwarzschild black hole and the JMN1
naked singularity is 56� 8 μarcsec.
However, when such a spacetime exists where a naked

singularity can form the shadow (e.g., the one we have
analyzed here), then the shadow size can be quite different
for the same value of the ADM mass. In Table I, we show
that the naked singularity spacetime we discussed, with
ADM mass ð4.31� 0.38Þ × 106 M⊙, would cast a shadow
of diameter 10� 8 μarcsec.

IV. CONCLUSION

In this paper, we study the nature of light geodesics and
shadow in a new naked singularity spacetime, and compare
the results with the light geodesics and shadow in the
Schwarzschild and JMN1 (with M0 > 2

3
) spacetimes. We

show that the nature of light geodesics in JMN1 and
Schwarzschild spacetimes is quite different from that of
light geodesics in the proposed naked singularity space-
time. We also show that the shadow cast by the photon
sphere (Schwarzschild and JMN1 with M0 > 2

3
case) is

3
ffiffiffi
3

p
times bigger than the shadow cast by the singularity,

that happens for the new naked singularity spacetime, when
we take same ADM mass for all spacetimes.
The main purpose of this work is to show that the

shadow is not only the property of a black hole or a photon
sphere, but a singularity by itself can also cast a shadow, as
demonstrated explicitly by the example spacetime we have
considered and proposed here. An important point that
follows is one of the observable signatures of a naked
singularity is the shadow that it could cast. Thus, such a
shadow could be an important property of a naked
singularity. Further, the important characteristic of such a
shadow of singularity is, it would be considerably smaller
in size, as compared to the shadow of a black hole. This
would provide an important characteristic and observable
difference that might distinguish a singularity from the
black hole.
Near the naked singularity, the quantum gravity effects

should be dominant, and therefore, such quantum gravity
effects might be manifested or can be observed in the
shadow cast by a naked singularity. This will require a
detailed analysis of the various features encoded in such
shadows. Hence, this novel feature of a naked singularity
may be important as well in the context of recent obser-
vations of the shadow of the Galactic center M87 [17] and
for the upcoming image of the center of Milky Way
Galactic center (Sgr-A*). Of course, what we have given
here is a case study, and more detailed analysis will be
needed to know if shadows are a general feature associated
with singularities.
It is intriguing to note that when proposed initially, black

holes were considered to be highly exotic objects, and their
existence was even doubted sometimes. The past few
decades have, however, seen them to emerge as more
realistic astrophysical objects, used to explain several
cosmic phenomena. Similarly, spacetime singularities
and the naked singularities are seen as probable exotic
entities in the cosmos. But, as shown here, if they manifest
observable features such as casting and creating shadows in
their own right, this could be an interesting and useful step
to bring them in an observable domain and in the realm of
physical reality.

TABLE I. Mass of sagittarius A* and its shadow size in naked singularity and black hole spacetimes.

Object Mass (M⊙) Shadow (diameter) (μarcsec)

Black hole ð4.31� 0.38Þ × 106 56� 8

JMN naked singularity ð4.31� 0.38Þ × 106 56� 8

New naked singularity ð4.31� 0.38Þ × 106 10� 8
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